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ABSTRACT

The evidence of slowly mean-reverting components in stock prices has been contro-
versial. The hypothesis of stock price mean-reversion is tested using a regression
model that yields the highest asymptotic power among a class of regression tests.
Although the evidence that the equally weighted index of stocks exhibits mean-
reversion is significant in the period 1926-1988, this phenomenon is entirely
concentrated in January. In the post-war period both the equally weighted and the
value-weighted indices exhibit seasonal mean-reversion in January. A similar
phenomenon is also observed for the equally weighted index of stocks traded on the
London Stock Exchange.

IN A RECENT PAPER Fama and French (1988) report that ‘“25-45 percent of the
variation of 3- to 5-year stock returns is predictable from past returns” and
pose a serious challenge to the long-held view that stock prices follow a
random walk. In a subsequent paper, Poterba and Summers (1988) use
variance ratio tests on the stock price data from the U.S. and 17 other
countries and conclude that ‘“The results consistently suggest the presence of
transitory components in stock prices.” However, Kim, Nelson, and Startz
(1988) and Richardson (1989) criticize the earlier papers on statistical grounds
and suggest on the basis of simulation evidence that the results of Fama and
French and Poterba and Summers do not violate the random walk model.
The conflicting opinions expressed in these papers clearly highlight the
controversy surrounding the interpretation of the seemingly large point
estimates of long-term serial correlation in stock returns. The economic
interpretation of the estimates in these tests is difficult because they have
low precision, and hence more efficient tests are required.
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This paper examines the asymptotic power of a class of regression tests,
which includes the Fama and French model and shows that the highest
power against the form of mean-reverting alternative proposed by Summers
(1986) is achieved with a regression model using 1-month returns as the
dependent variable and lagged multiyear returns as the independent vari-
able. This regression model is used here to test the hypothesis that stock
prices contain a slowly decaying component.

The second objective of this paper is to test for seasonal patterns in stock
price mean-reversion. The study of seasonality is motivated by the available
evidence that a number of empirical regularities in stock returns are concen-
trated in the month of January. For example, Branch (1977) and DeBondt
and Thaler (1987) report that the cross-sectional differences in January
returns of selected securities are systematically related to their returns in
the previous 1 to 5 years.

There is reliable evidence that the equally weighted index (EWI) exhibits
mean-reversion in the sample period 1926-1988,! but there is little evidence
of mean-reversion for the value-weighted index (VWI). On closer examina-
tion, it is found that the stock price mean-reversion is entirely concentrated
in the month of January and the estimates of long-term serial correlation
outside January are indistinguishable from zero. This pattern of long-term
serial correlation is found for most size-based portfolio returns.

Fama and French (1988) and Kim, Nelson, and Startz (1988) report that
the evidence of mean-reversion in stock prices is weak in the post-war period.
The results here also suggest that there is little evidence of mean-reversion
in this subperiod when all calendar months are considered simultaneously.
However, there is reliable evidence that the stock prices exhibit mean-
reversion in January in the post-war period as well. A similar phenomenon is
also observed for the EWI of stocks traded on the London Stock Exchange,
which suggests that the empirical regularity documented here is an interna-
tional phenomenon.

My paper is organized as follows. The first section presents the specifica-
tion of the mean-reversion hypothesis as proposed by Summers (1986) and
later used by Fama and French, among others, and discusses the econometric
issues.? Section II contains the empirical tests and the results using the data
on stock returns from the U.S. and the U.K. The economic implications of the
empirical results are examined in Section III, and Section IV concludes the
paper.

11f the stock prices or the index levels contain a temporary component, then they tend to revert
to their trends in the long run which is referred to as mean-reversion. If the stock price exhibits

such a tendency, then the cumulative returns will also partially revert to the mean in the long
run.

2The econometric issues related to the different specifications of the multivariate regression
tests that examine the predictability of returns using variables such as the dividend yield and
the default premium as in Fama (1990) are not considered in this paper. The evidence that
the returns at various horizons can be predicted using these variables does not seem to be
controversial.
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1. Specification of the Fads Model and Econometric Issues

The fads model of stock prices as proposed by Summers (1986) hypothesizes
that stock prices contain a slowly decaying temporary component. Let p, be
the natural logarithm of stock price at time ¢ which consists of a permanent
component g, and a temporary component z,. Let

pP:=q;+ 2,
G =pn+q,_;+ Y, ¥ ~1.i.d.(0,0?), and
z,=Ng,_y+m, O0<A<1l, 7~1iid.(0,07),

where 7 and ¢ are independent random variables and u is the expected rate
of return. The continuously compounded stock return in period ¢ is given by

R,=p,— p,
=p+y, +n,+ ()‘_ 1)221)‘#171:4' (1)

The fads model implies that the stock returns will exhibit negative serial
correlation. As Summers (1986) points out, when \ is close to one, the
negative serial correlation in returns is small in short horizons and hence
will escape detection. Therefore, tests for slowly decaying components in
stock prices typically focus on the behavior of long-horizon returns, using
regressions of the form

J K
SiciRiqvi=agr+ by X R+ ugg (2)

Fama and French use a regression specification with the return aggregation
intervals for both the independent and the dependent variables set equal,
i.e., with J = K in (2).

The probability limit of the slope coefficient in regression (2) can be
computed in a straight-forward manner and is given by the following expres-
sion:

(=) - ¥
20K(1 -\ +2(1-N)’

plim b, =

where ¢ is the ratio of the unconditional variance of returns attributable to
the permanent component to that attributable to the temporary component.3
The asymptotic variance of the estimate of the slope coefficient under the

2
o,
3The following relation is obtained from equation (1): o2 = 6} + —, where o%, o7, and o?

are the variance of the stock returns and the variances of the random variables ¢y and 7,
respectively. The second term on the right hand side is the variance of returns attributable to
the temporary component.
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null hypothesis is given by the expression*

3KJ? - J*+dJ

N,ygvar(b,x) = 3K? ) (3)

where N is the number of time series observations and Nz, = N+ 1 - J —
K.

The power of a particular regression test depends both on the expected
value of the slope coefficient under the alternate hypothesis and also on the
precision with which the estimate is obtained. For instance, increasing the
aggregation interval J would, on average, result in a higher point estimate
of the slope coefficient if the alternate hypothesis is true. However, increas-
ing J would also increase the standard error of the estimate. Both these
effects need to be considered simultaneously in order to choose the most
powerful test among the class of regression tests specified above.

Geweke (1981) recommends the use of the approximate slope criterion for
the purpose of relative power comparison. Geweke shows that when the
limiting distribution of the test statistic is x2, then the approximate slope of

1
the test is given by the probability limit of N times the test statistic under

the alternate hypothesis. In the present context, the approximate slope of a
regression test with aggregation intervals J and K is given by

- 3K (1 - V)’ - N)°
- BKIZ-J°+Jd) (2K¢(1 - ) + 2(1 - XK))*

c(bsx)

Geweke shows that, asymptotically, the test with the biggest approximate
slope achieves the highest power among the class of tests considered.’ There-
fore, the aggregation intervals J and K should be chosen so that the
approximate slope is maximized under the specified alternate hypothesis in
order to achieve the highest asymptotic power. The optimal choices of aggre-
gation intervals under different specifications of ¢ and A are considered, and
the results are presented in Table I. Specifically, ¢ is allowed to vary from
0.25 to 1.0, and the half life of the temporary component is varied from about

4This expression generalizes the result derived by Richardson and Smith (1988) for the case of
regression tests with symmetric aggregation intervals, i.e., with J = K. Richardson and Smith
specialize the general results of Hansen and Hodrick (1980) and derive the expressions for the
standard errors of the autocorrelation estimates using overlapping observations. This expression
assumes J < K, which is usually the case of interest. If J > K the expression for the asymptotic

X 3JK - K? +1

variance is N gvar(b x) = —————— (see Appendix A).

5Geweke’s result is fairly intuitive. Note that the approximate slope is the probability limit of

N times the square of the usual t-statistic. Heuristically, in large samples, the ¢-statistic can be
expected to be close to /Nc(b JK) if the alternate hypothesis is true. Therefore, a test with a

bigger approximate slope can be expected to be more powerful than one with a smaller
approximate slope.
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Table I

Choice of Aggregation Intervals
This table presents the aggregation intervals J and K in the regression model below that yield
the highest asymptotic power against the alternate hypothesis of stock price mean-reversion,
with different specifications of the parameters ¢ and \. ¢ is the ratio of the unconditional
variance attributable to the permanent component of stock returns to that attributable to the
temporary component and X is the mean-reversion parameter under the alternate hypothesis.

Regression model: Z;’=1Rt_1+i =ayx+ byg Zf‘;lR,_i + ugg ;-

[ A J K
0.25 0.99 1 442
0.98 1 221

0.97 1 147

0.96 1 110

0.95 1 88

0.50 0.99 1 287
0.98 1 143

0.97 1 95

0.96 1 71

0.95 1 57

1.00 0.99 1 210
0.98 1 105

0.97 1 70

0.96 1 52

0.95 1 41

1 year to about 6 years (\ is varied from 0.95 to 0.99). It is found that the
optimal choice of the aggregation interval for the dependent variable is
always equal to one.® In other words, it is always desirable to use non-
aggregated returns on the left hand side of the regression model (2). To see
the intuition behind this result, note that increasing J has two opposing
effects on c(b k). First, increasing J has the effect of making the probability
limit of the point estimate of b, bigger by making N smaller. However, an
increase in J also leads to an increase in the variance of the estimate which
makes the magnitude of the approximate slope smaller. The latter effect
always dominates, and hence it is always optimal to set  equal to one.”
However, the optimal choice of the aggregation interval for the inde-
pendent variable varies across different parametric specifications of the

®In addition to the results reported in Table I, the function ¢(b k) was numerically maximized
for a number of other parametric specifications of the alternate hypothesis with Ae (0, 1) and
¢ €[0.01, 2]. Function ¢(b ) always attained its maximum at J = 1.

In a subsequent paper, Hodrick (1990) compares the regression test with aggregated returns
as the dependent variable as in Fama and French (1988) with the specification using nonaggre-
gated return as the dependent variable as proposed here, and he uses the dividend yield as the
predictor variable. Hodrick suggests also that it is preferable to use nonaggregated return as the
dependent variable.
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alternate hypothesis. The optimal aggregation interval is large when X\ is
close to one. When A\ is close to one, the temporary component of the stock
price closely resembles a random walk in the short run, and hence serial
correlation in stock returns can be uncovered only when long-horizon returns
are considered. The optimal aggregation interval is small when the share of
return variance attributable to the permanent component is large, i.e., when
¢ is big. When ¢ is large, the variance of aggregate returns increases rapidly
when K is increased, which in turn makes the probability limit of the slope
coefficient small. Based on the above analysis the following regression speci-
fication is used here:

R, = ag+ by Zf{:lRt—i +ug,,- (4)

From the results in Table I it is found that the optimal aggregation
intervals for the independent variable vary from 4 to 9 years for \ close to
0.95 and from 9 to 38 years for A close to 0.99. The aggregation intervals used
in this study are 4 to 9 years and 20 years.

A. Heteroskedasticity and Small Sample Considerations

The1 analytic variance of the estimate of the slope coefficient in (4) is
m (set J =1 in expression (3)). The assumption of homoskedastic-
ity used to derive this expression is analytically convenient, but there is
evidence that the series of stock returns is heteroskedastic (see Officer
(1973)). The analytic expression for the standard error is consistent even
under conditions of heteroskedasticity if the variance of returns at time ¢ is
uncorrelated with the past variances of returns.® However, to allow for more
general forms of heteroskedasticity in the data, White’s heteroskedasticity-
consistent estimator is used in the tests. The small sample distribution of the
White t-statistic under the null hypothesis, based on Monte Carlo simulation,
is presented in Appendix B. The small sample distribution has a fatter left
tail than the standard normal distribution, and hence the use of the asymp-
totic distribution will lead to excessive rejection of the null hypothesis.
Therefore, the inferences drawn from the tests are based on the simulated
distribution of the test statistic.

In small samples the estimate of the slope coefficient in regression (4) is
biased downwards (see Marriot and Pope (1954)). Under the null hypothesis,

the OLS estimate is biased downwards by

, and hence this factor is

added to the OLS estimates both in the si:nulation and in the actual
empirical tests.

8 White (1980) shows that under this form of heteroskedasticity the OLS regression estimator
of the standard error of the parameter estimate is consistent (see his Theorem 3, p. 826).
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II. Empirical Tests and Results

This section examines the time-series properties of returns on the EWI and
the VWI of stocks traded on the New York Stock Exhange (NYSE) using the
regression model (4). The monthly returns data for the period 1926-1988 are
obtained from the data set maintained by the CRSP.

The estimates of the slope coefficients in (4), using the returns on the EWI
and the VWI, are presented in Table II.° The series of returns on the EWI is
found to exhibit significant negative serial correlation (see Panel A of Table
II). For example, the point estimate of the slope coefficient (#-statistic) is
—0.018 (—2.27) when the aggregation interval is 84 months. The slope
coefficients exhibit a U-shaped pattern across different aggregation intervals
as observed by Fama and French using their regressions. The average of the
slope coefficients in the regressions with different aggregation intervals,
denoted by b, is —0.009.1° This statistic suggests rejection of the hypothesis
that all slope coefficients are jointly equal to zero at the 10% level (one-sided)
of significance.!’ However, there is little evidence that the VWI exhibits
mean-reversion. The estimate (¢-statistic) of the slope coefficient furthest
from zero is only —0.007 (—0.75). The average of the slope coefficients is
—0.003 which is not statistically different from zero.

Tests to examine the seasonal pattern in long-term return reversals are
carried out next. The regression model (4) is fitted separately within and
outside January. Specifically, to examine the extent to which the temporary
components in stock prices decay in the month of January, the regression
model (4) is fitted with only January returns as the dependent variable. The
independent variable is obtained by aggregating the returns in all months in
the aggregation interval. These regression estimates, adjusted for small
sample bias,'? are also presented in Table II. It is found that the long-term
return reversals are entirely concentrated in the month of January. For
example, for the EWI returns, the estimate (¢-statistic) of the slope coefficient
is —0.066 (—2.97) when the regression model is fitted in January with
K = 84, while the corresponding estimate outside January is —0.012 (— 1.48).
The slope coefficients are never statistically significant in the non-January

9The results based on nominal returns are presented here. The results using returns in excess
of the T-bill rate are qualitatively similar and hence are not reported.

0Richardson and Stock (1989) suggest the use of the statistic b to test the hypothesis that all
the slope coefficients are jointly equal to zero. This statistic is recommended since it preserves
the sign of the regression coefficients and hence may possess desirable power against the
mean-reversion hypothesis.

(Critical values based on the distribution of b from the Monte Carlo simulation are used for
statistical inference here and in the subsequent tests.

12The specification of the January regressions is somewhat different from the time-series
regression considered by Marriot and Pope, where all observations except the end points enter
both sides of the regression. However, the analytic expression for the small sample bias found by
them can be extended in a straightforward manner to the case of the January regressions as

well. The small sample bias in the OLS estimate of the slope coefficient is — N_K’ where N is

the number of months in the sample period including months other than Janua‘ry.
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Table II

Regresions of 1-Month Returns against Lagged Multiperiod
Returns: Equally Weighted and Value-Weighted Indices of the
U.S. Stocks

The regression model below is fitted using continuously compounded monthly returns on the
equally weighted and the value-weighted indices of stocks traded on the NYSE.

Model: R,=agx+bgxSr R, ;+ug.,,

where K is the aggregation interval in months for the independent variable. The estimates of
the slope coefficients are reported below. They are adjusted for small sample bias by adding to

the OLS estimates the factor

sample period. The January regressions are fitted with only the returns in the month of January
as the dependent variable. However, the independent variable is obtained by aggregating the
returns in all months within the chosen aggregation interval. The non-January regressions are
also fitted in a similar manner. The White t-statistics are presented in parentheses. b is the
average of the slope coefficients in the seven regressions. This statistic is used to test the
hypothesis that all slope coefficients are jointly equal to zero. Monte Carlo simulation experi-
ments are run separately for each sample period and also for the January and the non-January
subperiods in order to obtain the critical values for . Eﬁdj is the average of the adjusted R? in
the regressions with different aggregation intervals.

where N is the number of time-series observations in the

Panel A. Equally Weighted Index

K 48 60 72 84 96 108 240 b RZy
1926-1988
All —0.005 —0.009 —0.016 —0.018 —0.009 —0.005 —0.003 —0.009* 0.007
(—0.45) (—0.93) (—1.67) (—2.27) (—1.81) (=0.75) (-0.56)
Jan. (bg) —0.024 —0.041 —0.058 —0.066 —0.061 —0.023 —0.037 —0.044" 0.146

(~1.30) (—2.11) (—2.94) (—2.97) (—2.55) (—0.90) (—1.74)

Non-Jan. (b7) —0.003 —0.006 —0.011 —0.012 —0.004 —0.004 0.001 —0.005 0.003
(=0.23) (—0.54) (—1.09) (—1.48) (—0.52) (—0.50) (0.20)

t(bY7 —bJ=0) 098 1595 2110 2257 2.314 0.732 1.750

1947-1988

All ~0.008 0.000 —0.004 —0.004 —0.002 —0.003 —0.003 —0.003 0.002
(=0.72) (=0.03) (—0.45) (—0.47) (—0.24) (—0.43) (—0.56)

Jan. (b)) ~0.079 —0.072 —0.086 —0.079 —0.052 —0.037 —0.036 —0.063* 0.211

(—1.98) (—2.29) (—3.83) (—3.23) (—1.81) (—1.18) (—1.70)

Non-Jan. (b7)  0.001 0.008 0.005 0.005 0.004 0.001 0.001 0.003 0.000
(0.08) (0.97) (0.78) (0.72) (0.65) (0.15) (0.18)

t(bY7 —bf=0) 1.942 2462 3892 3303 1901 1.190 1.704

Panel B. Value-Weighted Index

1926-1988
All —0.003 —0.004 —0.007 —0.005 0.001 0.001 —0.001 —0.003 0.002
(—0.30) (—0.50) (—0.88) (—0.88) (0.10) (0.18) (-0.37)
Jan (bg) —-0.002 —-0.010 —0.027 —-0.027 —-0.013 0.004 -0.011 —-0.012 0.027

(—0.14) (—0.60) (—1.54) (—1.66) (—0.75) (0.27) (—0.95)

Non-Jan. (5}7) —0.003 —0.004 —0.005 —0.003 0.002 0.001 0.000 —0.002 0.001
(-0.29) (—0.41) (-0.59) (—0.49) (0.30) (0.12) (—0.05)

t(bYI — b =0) —0.040 0.340 1.148 1.371 0.807 —0.209 0.908
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Table II—Continued
Panel B. Value-Weighted Index

K 48 60 72 84 9 108 240 5 R
1947-1988
All —0.007 0.003 0.001 0.001 0.004 0.002 —0.002 0.000 0.001
(-0.75) (0.36) (0.12) (0.14) (0.62) (0.35) (—0.61)
Jan (b%) ~0.032 —0.026 —0.048 —0.037 —0.013 —0.005 —0.010 —0.024* 0.038

(-0.75) (—0.71) (—1.81) (—1.41) (—0.49) (—0.19) (-0.79)
Non-Jan. (bf7) —-0.005 0.006 0.005 0.005 0.005 0.003 —0.001 0.003 0.001

(-0.52) (0.64) (0.68) (0.65) (0.88) (0.46) (—0.35)

t(BY - bf=0) 0615 0.842 1.927 1.530 0.675 0.288 0.683

*Significant at the 10% level (single-tailed).
TSignificant at the 5% level (single-tailed).
*Significant at the 1% level (single tailed).

sample period.!® The average adjusted R? in January is 0.15 for the EWI
returns, and the corresponding statistic outside January is only 0.003. The
hypothesis that the slope coefficient in January is the same as the slope
coefficient in the corresponding regression outside January is rejected at the
5% level of significance for aggregation intervals of 6 to 8 years. Even in the
case of the VWI returns, the slope coefficients in January are statistically
significant at the 10 and 5% levels (one-sided) when aggregation intervals of
72 and 84 months, respectively, are used in the regression model. The mean
of the slope coefficients in the January regressions with EWI returns is
—0.044 (p-value < 0.05). However, the random walk hypothesis cannot be
rejected in the non-January months with the EWI returns, and the tests
using the statistic b also do not suggest rejection of the random walk model
for the VWI, both within and outside January.

A. Post-War Period Results

Fama and French and Kim, Nelson, and Startz report that in the post-war
period there is no reliable evidence that the stock prices exhibit mean-rever-

13When the non-January months were individually considered, b was significant only in the
month of August where b = —0.025, which is significant at the 10% level (one-sided). The
estimates of the slope coefficients (¢-statistics) in the regressions with aggregation intervals of 4
to 9 years and 20 years were —0.07 (—1.5), —0.06 (—1.5), —0.07 (-1.6), —0.02 (-0.9), 0.01
(0.5), 0.03 (1.8), and 0.01 (1.1), respectively. However, the August estimates were driven by a
single outlier in the month of August 1932. The return on the EWI in this month was 65.5%
which followed a 4-year compounded market decline of 71.9%. The White standard errors are
also large in this sample period since the White estimator places a large weight on the outlier
which happens to follow a large market decline. When this observation is excluded, the
estimates of the slope coefficients with aggregation intervals of 4 to 6 years were —0.01, —0.01,
and —0.02, respectively. The slope coefficients in the regressions with aggregation intervals
longer than 6 years are not affected by this exclusion since the outlier does not enter these
regressions on the left-hand side.
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sion. This section examines the behavior of stock returns in the sample
period 1947-1988 using regression (4).

The slope coefficients in the entire subperiod are all close to zero for both
the EWI and the VWI returns (see Table II). The negative slope coefficient
furthest from zero is only —0.008 (¢-statistic of —0.72), and there is little
evidence that the stock prices exhibit mean-reversion. However, when the
month of January is considered separately there is reliable evidence against
the null hypothesis. For example, with the EWI returns the slope coefficients
(t-statistics) with 72- and 84-month aggregation intervals are —0.086 (— 3.83)
and —0.079 (—3.23), respectively. The point estimates of the slope coeffi-
cients in January in the post-war period are generally further from zero than
the corresponding estimates in the entire sample period. The average ad-
justed R? in January in this sample period is 0.21. The statistic & for the
January regressions is —0.063 (p-value < 0.01). The point estimates of the
slope coefficients in the January regressions with the VWI returns are
qualitatively similar. The January slope coefficients are further from zero
than the non-January slope coefficients, and the estimate of b is —0.024,
which is significant at the 10% level.

B. Size-Based Portfolios

The regression results with the returns on size-quintile portfolios are
presented in Table III. The size-based portfolio 1 is the equally weighted
portfolio of the 20% of the smallest firms listed on the NYSE, and portfolio 2
is the portfolio of firms in the next size-quintile and so on. The extent of stock
price mean-reversion for the small firm portfolios are generally more pro-
nounced than those for the large firm portfolios. The results of the joint tests
suggest rejection of the random walk hypothesis only for the size quintile 2
over the sample period 1926-1988. Again, it is found that the long-term
return reversals are concentrated in the month of January, and no evidence
of mean-reversion outside January is found.!* In the post-war period the
estimates of all the slope coefficients are close to zero when all months are
considered simultaneously, and the estimate (¢-statistic) of the coefficient
furthest from zero is —0.009 (—0.84) in this period. However, all size-based
portfolios exhibit significant January mean-reversion in the post-war period,
and the point estimates of the January slope coefficients are generally
further from zero than the corresponding slope coefficients in the entire
sample period. The average adjusted R? in the January regressions are also
bigger in the post-war period than those in the period 1926-1988.

C. Stock Returns in the U.K.

The robustness of the phenomenon of stock price mean-reversion in
January can be examined by analyzing the behavior of the stock returns
outside the U.S. This subsection examines whether the EWI of stocks traded

14T conserve space the non-January results for size-based portfolios are not reported here.
These results are available from the author.
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Table III

Regressions of 1-Month Returns against Lagged Multiperiod
Returns: Size-Based Portfolios of U.S. Stocks
The regression model below is fitted using continuously compounded monthly returns on
size-based portfolios of stocks traded on the NYSE.

Model: R,=ayx+bg X5 R, i+ ug.,,

where K is the aggregation interval in months for the independent variable. Portfolio 1 is the
equally weighted portfolio of the 20% of the smallest firms listed on the NYSE, and portfolio 2 is
the portfolio of firms in the next size-quintile and so on. The estimates of the slope coefficients
are reporttled below. They are adjusted for small sample bias by adding to the OLS estimates the

factor where N is the number of time-series observations in the sample period. The

January regressions are fitted with only the returns in the month of January as the dependent
variable. However, the independent variable is obtained by aggregating the returns in all
months within the chosen aggregation interval. The White ¢-statistics are presented in parenthe-
ses. b is the average of the slope coefficients in the seven regressions. This statistic is used to
test the hypothesis that all slope coefficients are jointly equal to zero. Monte Carlo simulation
experiments are run separately for each sample period and also for the January subperiod in
order to obtain the critical values for 5. I—i’-ﬁdj is the average of the adjusted R?2 in the regressions
with different aggregation intervals.

Panel A. Overall Period 1926-1988

K 48 60 72 84 96 108 240 b R

1 Al -0.001 -0.006 —-0.013 -0.013 -0.006 —-0.002 0.000 —0.006 0.005
(—=0.09) (-0.82) (-1.79) (-2.12) (-1.11) (-0.50) (-0.15)

Jan. —0.003 -0.022 -0.036 —0.039 -0.032 -0.011 -0.019 —0.023* 0.071
(=0.15) (=1.09) (-1.90) (-2.27) (-1.81) (—0.50) (—1.56)

2 All  -0.003 -0.008 -0.015 -0.020 -0.011 -0.007 -0.001 —0.009* 0.008
(-0.26) (-0.85) (-1.56) (—2.37) (-1.62) (—0.91) (-0.21)

Jan. -0.019 -0.037 -0.053 -0.065 -0.072 -0.031 -0.039 —0.045¢ 0.166
(-1.11) (-1.98) (-2.69) (-2.69) (-3.03) (—1.38) (-1.76)

3 Al -0.003 -0.007 -0014 -0.016 -0.008 —0.006 —0.002 —0.008 0.006
(-0.29) (-0.76) (-1.46) (—2.06) (—1.20) (—0.81) (-0.42)

Jan. -0.026 -0.037 -0.051 —0.057 -0.047 -0.015 -0.031 -0.038' 0.128
(-1.63) (-2.19) (-2.71) (-2.94) (-2.16) (—0.69) (—1.47)

4 Al -0.004 -0.006 —0.010 -0.010 -—0.003 -0.001 —0.001 —0.005 0.003
(-0.34) (-0.62) (-1.14) (-1.36) (=0.49) (-0.22) (-0.27)

Jan. -0.015 -0.025 -0.037 -0.039 -0.031 -0.005 -0.019 —0.024* 0.063
(-0.81) (-1.24) (-1.80) (—1.91) (-1.55) (—0.25) (-1.18)

5 All  -0.004 -0.006 -0.009 -0.007 0.000 0.000 —0.001 —0.004 0.002
(-0.39) (-0.63) (-1.09) (—1.06) (-0.07) (—0.03) (—0.45)

Jan. -0.008 -0.017 -0.033 -0.030 -0.014 0.005 -0.011 —0.015 0.036
(—0.49) (-1.02) (-1.90) (-1.77) (-0.80) (0.26) (—0.85)

Panel B. Post-War Period 1947-1988

1 Al -0.003 0.000 -0.003 -0.003 -0.001 -0.002 0.000 —0.002 0.001
(—0.26) (0.03) (-0.44) (-0.47) (-0.28) (—0.48) (0.14)

Jan. —0.065 -0.058 —0.067 —0.060 —0.041 -0.034 -0.022 —0.050% 0.208
(~1.60) (-1.92) (-2.61) (-2.56) (—1.86) (—1.44) (-1.83)

2 All -0.002 0.001 -0.004 -0.004 -0.003 —-0.004 -0.002 —0.003 0.002
(—0.24) (0.16) (-0.48) (-0.62) (-0.50) (—0.66) (—0.39)

Jan. —0.067 -0.070 —0.085 —0.080 —-0.059 —0.045 —0.038 —0.063' 0.248
(—1.84) (-2.51) (-4.28) (-3.84) (-2.30) (—1.57) (—1.64)
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Table III—Continued
Panel A. Overall Period 1926-1988

K 48 60 72 84 96 108 240 2 RZ;

All —0.003 0.001 -0.003 -0.002 -0.002 -0.004 -0.003 -0.002 0.001
(-0.837) (0.16) (-0.40) (-0.35) (—0.35) (—0.70) (—0.61)

Jan. —0.067 -0.064 —0.078 -0.070 -0.046 —0.034 —0.030 -0.056* 0.180
(—-1.95) (—-2.34) (-3.83) (-3.12) (-1.77) (-1.19) (-1.37)

All  -0.009 0.001 -0.003 -0.002 0.000 -0.002 -0.002 -0.003 0.001
(—-0.84) (0.06) (—0.38) (—0.24) (—0.06) (—0.31) (—0.62)

Jan. —0.071 -0.062 —0.079 -0.069 -0.042 -0.029 -0.018 -0.053* 0.134
(-1.74) (—1.83) (—3.26) (—2.62) (—1.42) (—-0.93) (—-1.02)

All —0.009 0.002 0.000 0.001 0.003 0.001 -0.002 -0.001 0.001
(-0.84) (0.17) (-0.08) (0.07) (0.43) (0.10) (—0.69)

Jan. —0.032 -0.028 -0.050 -0.036 —0.014 -0.006 -0.009 -0.025* 0.038
(-0.71) (-0.76) (—-1.78) (—1.25) (—0.48) (—-0.22) (-0.69)

*Significant at the 10% level (single-tailed).
"Significant at the 5% level (single-tailed).
*Significant at the 1% level (single-tailed).

on the London Stock Exchange exhibit mean-reversion. The sample period is
1955-1988.1° The estimates of the slope coefficients in regression (4) with the
U.K. data are presented in Table IV. As with the post-war period U.S. stock
return data, there is no evidence of mean-reversion when the entire sample
period is considered. In the January regressions with aggregation intervals of
4 to 6 years the slope coefficients are statistically significant, using single-
tailed critical values. The statistic b in January is —0.041 which is signifi-
cant at the 10% level. The average adjusted R? is 0.123 in the January
regressions, while it is close to zero outside January. Therefore, it appears
that the seasonality in stock price mean-reversion in the U.K. is qualita-
tively similar to that in the U.S.

The correlation between the U.K. stock returns and the returns on the
EWI was 0.4 in the sample period 1955-1988. To the extent that the stock
returns in the U.S. and the U.K. are correlated, large estimates of the slope
coefficients in January observed with the U.S. data can be expected to carry
over to the British data as well. The expectations of the slope coefficients in
the regressions fitted with the U.K. stock return data, conditional on the
estimates obtained with the U.S. data, can be analytically determined. Using
asymptotic theory, it is shown in Appendix C that under the random walk
hypothesis E(bZX | 52%) = p2bYS where p is the correlation between the
U.S. and the U.K. stock market returns, by is the estimate of the slope
coefficient in the regression (4), and the superscripts denote the respective
countries. For instance, if the estimate of a particular slope coefficient with
the U.S. data is —0.08 then, under the random walk hypothesis, the condi-

5] would like to thank Jeremy Smithers of the London Business School for generously
providing me with the data used here.
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Table IV

Regressions of 1-Month Returns against Lagged Multiperiod
Returns: Equally Weighted Index of U.K. Stocks

The regression model below is fitted using continuously compounded monthly returns on the
equally weighted portfolio of stocks traded on the London Stock Exchange.

Model: R,=agx+ bxSE R, , +ug,,

where K is the aggregation interval in months for the independent variable. The estimates of
the slope coefficients are reported below. They are adjusted for small sample bias by adding to

1
the OLS estimates the factor N

where N is the number of time-series observations in the

sample period. The January regressions are fitted with only the returns in the month of January
as the dependent variable. However, the independent variable is obtained by aggregating the
returns in all months within the chosen aggregation interval. The non-January regressions are
also fitted in a similar manner. The White ¢-statistics are presented in parentheses. b is the
average of the slope coefficients in the seven regressions. This statistic is used to test the
hypothesis that all slope coefficients are jointly equal to zero. Monte Carlo simulation experi-
ments are run separately for the overall period and also for the January and the non-January
subperiods in order to obtain the critical values for b. ﬁﬁdj is the average of the adjusted R2 in
the regressions with different aggregation intervals. The sample period is 1955-1988.

K 48 60 72 84 9 108 [ RZ,

All —0.002 —0.006 -0.008 —0.007 —0.001  0.004 -0.003 0.004
(-0.23) (—0.61) (—0.83) (—0.66) (—0.09) (0.47)

Jan. (bg) ~0.050 —0.048 —0.053 -0.039 —0.032 -0.025 -0.041* 0.123

(-1.79) (-157) (-1.65) (-1.21) (-0.93) (—0.79)

Non-Jan. (b27) 0.003 —-0.001 —0.003 -0.003 0.003 0.008 0.001 0.004
0.42) (-0.13) (-0.33) (-0.27) (0.30) (0.82)

t(bYY —b=0) 1.837 1.383 1484 1.080 0973  0.994

*Significant at the 10% level (single-tailed).

tional expectation of the slope coefficient with the U.K. data in the corre-
sponding regression is —0.013. The estimates of the January slope coeffi-
cients with the U.K. data are generally further from zero than what can be
expected under the random walk hypothesis, conditional on the estimates
with the U.S. data.

III. Economic Implications

A. Rolling Forecasts

The extent of variability of the expected January returns implied by the
evidence in the last section is examined in order to obtain some insights into
the economic significance of the results. For this purpose, the average
one-step-ahead forecasts of January returns based on the time-series regres-
sions are examined over the sample period 1957-1988. To obtain the average
one-step-ahead forecast of January return in the year ¢, regression (4) is first
fitted in the sample period from 1926 to the year ¢ — 1 with January returns
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as the dependent variable. The lagged returns aggregated over 4- to 9-year
intervals are used as the independent variables to fit six separate regressions
and obtain six one-step-ahead forecasts of January return in year ¢.!® The
final forecast of January return in year ¢ is obtained by averaging the
one-step-ahead forecasts from the individual regressions. The average one-
step-ahead forecasts of January returns on the EWI ranged from 1.41% to
9.07%. The forecasts of the VWI returns ranged from 0.57% to 2.48%. The
wide ranges of the forecasts, particularly for the EWI returns, suggest that
the variation in the expected returns in January is economically important.
However, some caution in interpreting the results is in order since the range
of the forecasts obtained here may overstate or understate the true variabil-
ity in expected returns, depending on the signs of the measurement errors in
the estimated parameters used in forecasting. To provide an alternate per-
spective on the magnitude of the changes in expected returns, the realized
returns in two subperiods partitioned based on the predicted returns are
examined. In the subperiod when the predicted returns are greater than the
historic mean January returns, the average realized January return on the
EWI was 6.75% compared with an average January return of 1.99% in the
complementary subperiod. The VWI returns in the subperiods partitioned in
a similar fashion were 2.48% and 1.33%, respectively. These results also
suggest that the expected January returns on the EWI vary substantially
depending on the return realizations in the previous 4 to 9 years.

B. Tax-Motivated Trading?

Market inefficiency and predictable changes in equilibrium risk premia are
two competing hypotheses that have been proposed to explain the phe-
nomenon of mean-reversion in stock prices. The evidence that the stock price
mean-reversion is concentrated in the month of January suggests a third
possible explanation, viz., that the empirical regularity may be related to
year-end tax-motivated trading. For instance, it is possible that a large
number of securities will be exposed to concentrated year-end tax-loss selling
following prolonged periods of market decline. The subsequent turn-of-the-
year rebound in the prices of these securities may result in high market
returns in January.!” However, the evidence of seasonal stock price mean-
reversion in the U.K. casts some doubts on the plausibility of this explana-
tion. Capital gains taxation was in effect in the U.K. during most of the
sample period considered here, but the fiscal year ends on the fifth of April in
the U.K.'® However, British stock prices did not exhibit mean-reversion in
April or any other month outside January. In spite of this evidence, the tax

16The regression with aggregation interval of 20 years is not used for forecasting due to
limited data availability.

"See Branch (1977), Dyl (1977), and Givoly and Ovadia (1983), among others, for evidence in
favor of the tax-loss selling hypothesis for individual securities.

8Taxes on short-term capital gains were introduced in 1962 in Britain and both long- and
short-term capital gains were taxed from 1965 onwards.
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hypothesis cannot be ruled out completely for two reasons. First, the U.K.
stock market is open to the U.S. based investors, and secondly, many
corporations in the U.K. end their fiscal years in the month of December.
Therefore, it is possible that the stocks listed on the London Stock Exchange
also experienced year-end tax-loss selling. Examining the relation between
the volume of year-end transactions and lagged multiyear returns and also
the relation between the former and January returns may shed some light on
the viability of this explanation.

IV. Conclusion

The hypothesis that the stock prices contain slowly decaying components is
tested using a set of regressions with 1-month returns as the dependent
variable and lagged multiyear returns as the independent variable. It is
shown that the regression model used here is asymptotically the most power-
ful test among a class of regression tests that includes the model previously
used by Fama and French (1988) against a mean-reverting alternative previ-
ously considered in the literature. The seasonal pattern in the phenomenon
of stock price mean-reversion is also investigated.

It is found that the EWI of stocks traded on the NYSE exhibits mean-
reversion over the sample period 1926-1988, consistent with the earlier
findings of Fama and French. However, it is found that the phenomenon of
stock price mean-reversion is entirely concentrated in the month of January.
In the post-war period there is no evidence of stock price mean reversion
when all calendar months are jointly considered, but the January return
reversals appear stronger in this subperiod. The EWI of stocks traded on the
London Stock Exchange also exhibits a similar seasonal mean-reversion
which suggests that the empirical regularity documented here is an interna-
tional phenomenon.

Appendix A

The standard error of the estimate of b ;5 in regression (2) is derived in
this appendix.

Hansen and Hodrick (1980) show that the asymptotic variance-covariance
matrix (1980) of the parameter estimates in (2) is given by R _(0)~'S,R_(0)"?,
where

SO = Z;i 7ooRu(l)Rx(l)
= ZEI:_—lJHRu(l)Rx(l)’
Ru(l) = E[uJK,tuJK,t~l] ’
R.(l) = E[x,x,,,], and

Xy = (1 Z£1R14i)-
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Taking expectations under the null hypothesis and algebraic manipulation
yields

R, (1) = (J - |1])e?,
1 Ku

R.(1) = , and
() =g, max(0, K — |I])o? + K%2|" "
J20? J20%2Kpu
S, = 3JKL - I? + L
° | J202K, ot + J202K 22

3K?

where L = min(J, K). Using these expressions we find that var(d JK)
3JKL - L+ L

3K?

Appendix B

This appendix presents the small sample distribution of the White
t-statistics based on Monte Carlo simulations. The distribution of the ¢
statistics using simulated homoskedastic and heteroskedastic time series are
presented in Table V in Panels A and B, respectively. A heteroskedastic
time-series that roughly matches the properties of the EWI returns is gener-
ated using the method followed by Fama and French (1988). Specifically, 756
independent random numbers are generated, and the variance of the random
numbers is changed every twenty-four observations to match the variance of
the EWI returns in the corresponding period (the variance of the last thirty
six observations is kept constant). The regression model (4) is fitted to the
time-series with K varying from 48 to 108 and with K = 240. The distribu-
tion of the test statistics are based on 8000 replications.

The critical values of the White ¢-statistics for the subperiod regressions
were close to those reported.

Appendix C

The expectation of the estimate of the slope coefficient when regression
(4) is fitted with stock return data from country i, conditional on the estimate
of the slope coefficient obtained from the corresponding regression fitted
using the data from country j, is derived in this appendix.
Express regression (4) in matrix notation as

R = Bi Xj; + <k,

where the superscript denotes the country. Let ¢; and u; denote the mean
and standard deviation, respectively, of the monthly returns in country i,
and let o;; denote the covariance between the stock returns in the countries i
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Table V
Small Sample Distribution of the Test Statistics: Simulation Evidence

Panel A. Homoskedastic Time-Series

K 48 60 72 84 96 108 240
bOLs-mean —0.003 -0.003 —-0.003 —0.003 —0.003 —0.004 —0.005
badj-mean" —0.002 -0.002 —0.002 -0.002 —0.002 —0.002 —0.003

Distribution of ¢-statistics based on White standard errors
0.01 —-2.53 -2.60 -2.59 -2.59 -2.61 -2.61 —2.86
0.05 -1.80 -1.84 —1.88 -1.90 -1.93 -1.95 -2.15
0.10 -1.43 -1.48 -1.49 —1.52 -1.55 -1.57 -1.78
Panel B. Heteroskedastic Time-Series
bOLgmean —0.005 —0.005 —0.005 —0.004 —0.003 —0.003 —0.003
b, adi -mean’ —0.003 —0.003 —0.003 —0.002 —0.001 —-0.001 —0.001
Distribution of ¢-statistics based on White standard errors
0.01 —2.43 —-2.51 —-2.54 —-2.44 -2.50 —-2.47 -2.37
0.05 -1.81 —1.83 -1.85 -1.84 -1.80 -1.79 -1.70
0.10 -1.47 -1.50 -1.49 -1.49 —1.43 -1.45 -1.31

"The usual OLS estimate of the slope coefficient is biased downward by a factor where

N is the numbeg' of observations in the simulation. T}lerefore, this factor is added t_o the OLS
estimate to get b,4;. The t-statistics are computed for b,4;.

and j. The asymptotic covariance matrix between the parameter estimates
Bi  and B under the null hypothesis, is derived below. Letting the number
of observatlons N tend to infinity,

plim N cov(B%, B%)
= plim N(X@ X}) ' X@ehel Xi(X§ XE) ™
0 Ko? + K% —Kp,|. 1 K
Kzaizajz -Kyu,; 1 Ky, Kaij+K2;Li/4j

12

KUJ~2 + K2yf~ —Kup,;

2 2 2 3 2
B 0, K o707 + K Wilk;O0; -K ®i0;;
= %2 2 3 9

The asymptotic variance of the estimate of the regression slope coefficient in

regression (4) is (see Appendix A). Since the regression esti-

1
K(N-K)
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mates are joint normally distributed in large samples, we get
cov(b, bj

E(by | b%) =

= p?j bf{ ’
where p;; is the correlation between the stock returns in the countries i and
J.
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