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Abstract

I use asymptotic arguments to show that the t-statistics in long-horizon regressions do not

converge to well-defined distributions. In some cases, moreover, the ordinary least squares

estimator is not consistent and the R2 is an inadequate measure of the goodness of fit. These

findings can partially explain the tendency of long-horizon regressions to find ‘‘significant’’

results where previous short-term approaches find none. I propose a rescaled t-statistic, whose

asymptotic distribution is easy to simulate, and revisit some of the long-horizon evidence on

return predictability and of the Fisher effect.
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1. Introduction

There has been an increasing interest in long-horizon regressions, because studies
using long-horizon variables seem to find significant results where previous ‘‘short-
term’’ approaches have failed. For example, Fama and French (1988), Campbell and
Shiller (1987, 1988), Mishkin (1990, 1992), Boudoukh and Richardson (1993), and
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Fisher and Seater (1993), all studies with long-run variables, have received a lot of
attention in finance and economics. The results in those papers are based on long-
horizon variables, where the long-horizon variable is a rolling sum of the original
series. In the literature, it is heuristically argued that long-run regressions produce
more accurate results by strengthening the signal coming from the data while
eliminating the noise. Whether the focus is on excess returns/dividend yields, the
Fisher effect, or neutrality of money, the striking results produced by such studies
prompted me to scrutinize the appropriateness of the econometric methods.
In this paper, I show that long-horizon regressions will always produce

‘‘significant’’ results, whether or not there is a structural relation between the
underlying variables. To understand this conclusion, notice that in a rolling
summation of series integrated of order zero (or Ið0Þ), the new long-horizon variable
behaves asymptotically as a series integrated of order one (or Ið1Þ). Such persistent
stochastic behavior will be observed whenever the regressor, the regressand, or both
are obtained by summing over a nontrivial fraction of the sample. Based on this
insight, I use the Functional Central Limit Theorem (FCLT) to analyze the
distributions of statistics from long-run regressions commonly used in economics
and finance. I find that, in addition to incorrect testing, overlapping sums of the
original series might lead to inconsistent estimators and to a coefficient of
determination, R2; that does not converge to one in probability. These results are
reminiscent of, but not analogous to, the result in Granger and Newbold (1974) and
Phillips (1986, 1991) and those recently discussed by Ferson et al. (2003) in
forecasting excess returns. The analogy lies in finding a spurious correlation between
persistent variables when they are in fact statistically independent. However, there
are two major differences. First, in long-horizon regressions, the rolling summation
alters the stochastic order of the variables, resulting in unorthodox limiting
distributions of the slope estimator, its t-statistic, and the R2: More importantly,
even if there is an underlying relationship between variables, the t-statistic will tend
to reject it. In other words, estimation and testing using long-horizon variables
cannot be carried out using the usual regression methods.
I provide a simple guide on how to conduct estimation and inference using long-

horizon regressions. Based on previous empirical studies, I classify such regressions
into four cases. The proposed classification emerges naturally from a consideration
of null hypotheses and the persistence of the regressors. It allows a systematic
analysis of the small-sample properties of long-horizon regressions. Those properties
are analyzed by using the FCLT to derive accurate approximations of the small-
sample distributions of the OLS estimator of the slope coefficient, its t-statistic and
the coefficient of determination R2: The estimators from some regressions, frequently
used in empirical work, are not consistent. Moreover, the t-statistics from all
considered regressions do not converge to well-defined distributions, thus calling into
question the conclusions from studies that use long-run variables. The analytical
results yield exact rates of convergence or divergence and permit us to modify the
statistics in order to conduct correctly sized tests.
I propose a rescaled t-statistic, t=

ffiffiffiffi
T

p
; for testing long-horizon regressions. Its

asymptotic distribution, although non-normal, is easy to simulate. The results are
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quite general and applicable whenever long-horizon regressions are employed. The
rescaled t-statistic is easy to use and can be computed with existing computer
routines. Using arguments similar to those in Richardson and Stock (1989) and
Viceira (1997), I show that its asymptotic distributions can be approximated with a
relatively small sample. Phillips (1986) uses similar arguments to show that, in the
context of spurious regressions, the t=

ffiffiffiffi
T

p
statistic converges to a well-defined

distribution. For a good, although a bit outdated, overview of this literature, see
Stock (1994).
I use the derived analytical expressions to explain the empirical and simulation

results obtained by previous authors, including the excess returns/dividend yield
regressions in Fama and French (1988), and the Fisher effect tests in Boudoukh and
Richardson (1993), and Mishkin (1992). For example, I address the interesting
question of whether long-horizon regressions have greater power to detect deviations
from the null than do short-horizon regressions, or whether the significant results are
a mere product of size distortion. This question, indirectly discussed in Hodrick
(1992), Mishkin (1990, 1992), Goetzmann and Jorion (1993), and Campbell (2001), is
posed explicitly in Campbell et al. (1997). Some Monte Carlo simulations suggest
power gains (Hodrick, 1992), and others show size distortions (Goetzmann and
Jorion, 1993; Nelson and Kim, 1993), but a definite, analytic answer has not yet been
provided. I show that the significant results from long-horizon regressions are due to
incorrect critical values. However, if appropriately rescaled, tests of long-horizon
regressions have a somewhat better power at rejecting alternatives than their short-
horizon analogues. Another implication of my analysis is that a significant R2 in
such regressions cannot be interpreted as an indication of a good fit.
I use the FCLT because it has been shown to provide a very good approximation

of the finite-sample distributions of interest. Richardson and Stock (1989) use a
similar methodology, but they consider only univariate regressions. Their results can
be viewed as a special case within my framework. Viceira (1997) uses FCLT
asymptotics to analyze various tests for structural breaks. In recent work, Lanne
(2002) and Torous et al. (2002) also consider a particular case of long-horizon
regressions, representing a special case in my framework. In this paper, I offer an
exhaustive and coherent treatment of regressions in which the overlap in the
observations is a nontrivial fraction of the sample size. The complete analysis allows
me to compare various ways of running long-horizon regressions.
This analytical framework is broad enough to accommodate forecasting variables

that, although persistent, do not have an exact unit root. Such a generalization is
important in practice since many of the predictors, although highly serially
correlated, must nevertheless be stationary. Also, given the sensitivity of unit-root
tests to model misspecifications, it is often hard to say whether a process is truly
stationary (Schwert, 1987, 1989). The cost of this generalization is the introduction
of a nuisance parameter that measures deviations from the exact unit root case. I
discuss three ways of dealing with this nuisance parameter.
This paper is not a condemnation of long-horizon studies. My aim is to put

inference and testing using long-run regressions on a firm basis and not to rely
exclusively on simulation methods. The conclusions from Monte Carlo or bootstrap
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studies are limited to the case study at hand, but fail to yield general insights
applicable to other cases. In contrast, my analysis provides general guidelines on
how to test long-horizon relations. Many researchers are aware that normal
asymptotic approximations are not adequate when using overlapping variables. The
reason for the poor approximations is attributed to serial correlation in the error
terms. However, Monte Carlo simulations show that even after correcting for
serially correlated errors, using Hansen and Hodrick (1980) or Newey-West (1987)
standard errors, the small-sample distribution of the estimators and the t-statistics
are very different from the asymptotic normal distribution (Mishkin, 1992;
Goetzmann and Jorion, 1993).
The paper is structured as follows. Section 2 presents the various ways of

specifying long-horizon regressions that have commonly been used in the empirical
literature. Section 3 provides the main theoretical results. Testing and inference are
analyzed using asymptotic methods. In Section 4, I conduct simulations to illustrate
the analytical results. Section 5 applies the conclusions in Section 3 to the excess
returns/dividend yield equations of Fama and French (1988) and to the long-run
Fisher effect, as tested in Boudoukh and Richardson (1993) and Mishkin (1992).
Section 6 concludes.

2. The model

The underlying data-generating processes are

Ytþ1 ¼ aþ bXt þ e1;tþ1; ð1Þ

ð1� fLÞbðLÞXtþ1 ¼ mþ e2;tþ1: ð2Þ

The variable Xt is represented as an autoregressive process, whose highest root, f; is
conveniently factored out and bðLÞ ¼ b0 þ b1L þ b2L

2 þ?þ bpLp is invertible. Let
f ¼ 1þ c=T ; where the parameter c measures deviations from the unit root in a
decreasing (at rate T) neighborhood of 1. The unit-root case corresponds to c ¼ 0:
This parameterization allows us to examine highly persistent regressors, such as the
dividend-price ratio, inflation, and the short interest rate, that might behave similarly
to a unit-root process in a finite sample.1 Define et ¼ ðe1;t; e2;tÞ

0; where et is a
martingale difference sequence with Eðete0tjet�1;yÞ ¼ S ¼ ½s211 s12; s21 s222	 and
finite fourth moments. Finally, to alleviate notation, let a ¼ m ¼ 0: All regressions
are run with a constant term. The above assumptions can be relaxed considerably
without affecting the conclusions of the paper. Note that we could have started with
a general vector autoregression (VAR) as in Watson (1994). However, the system
ð1� 2Þ is convenient to use in the studies cited above, since we know what subset of
variables have a stochastic trend. In the stock return/dividend yield example, Xt is
the dividend yield, whereas Ytþ1 is the excess return. In the inflation/interest rate

1For more references on local-to-unity processes, see Phillips (1987), Stock (1991), Cavanagh et al.

(1995).
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literature, Xt denotes the interest rate. The timing of the variables is chosen to
conform exactly with the previous literature on excess returns and dividend yields
(Stambaugh, 1986, 1999; Cavanagh et al., 1995), but it is not essential for the results.
Running regression (1) often yields poor results, in the sense that the OLS estimate

of b is insignificant and the R2 is extremely small. This is not surprising in the
predictive regressions literature, since there is much more noise in Eq. (1) than signal
coming from Xt; as discussed in Torous and Valkanov (2002). The lack of testing and
explanatory power has prompted researchers to look for ways of aggregating the
data in order to obtain more precise estimates. Intuitively, the aggregation of a series
into a long-horizon variable is thought to strengthen the signal, while eliminating the
noise. Given ð1� 2Þ , the long-horizon variables are

Zk
t ¼

Xk�1
i¼0

Ytþi;

Qk
t ¼

Xk�1
i¼0

Xtþi

and regressions are run in two fashions: Zk
tþ1 on Xt; and Zk

t on Qk
t (or on Qk

t�k).
Examples of the first type are Fama and French (1988), Campbell and Shiller (1988),
Lanne (2002), and Torous et al. (2002). In the predictive regression literature, Zk

t is
the kth-period continuously compounded (log) return. Examples of the second type
of long-horizon regressions are Boudoukh and Richardson (1993), Mishkin (1992),
and Fisher and Seater (1993), where Zk

t is the kth-period continuously compounded
(log) return and the kth period GDP growth, respectively, and Qk

t is the kth period
expected inflation and the growth (or level) of nominal money supply, respectively.
In addition to the two types of long-horizon regressions, it is often convenient to

adopt different null hypotheses for b: In the predictive regressions literature, it is
appropriate to assume that dividends have no predictive power for future returns, or
b ¼ 0 (Fama and French, 1988; Campbell and Shiller, 1988). In the Fisher equation
literature, it is often assumed that b ¼ 1; or that nominal interest rates move one-for-
one with inflation (Mishkin, 1992; Boudoukh and Richardson, 1993).
The empirically interesting specifications of long-horizon regressions can be

categorized into four cases, presented in Table 1. The regressand is always Zk
tþ1 ¼Pk�1

i¼0 Ytþ1þi; but the regressor and the relation vary under the null. In the first two

Table 1

Specifications of long-horizon regressions

Under the null

Regressor b ¼ 0 ba0

Xt Case 1 Case 3

Qk
t Case 2 Case 4

Notes: Various ways of specifying long-horizon regressions. The regress and is always Zk
tþ1 ¼Pk�1

i¼0 Ytþ1þi :
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cases, one regresses Zk
tþ1 on Xt or Qk

t ; and testing is carried out under the null of
b ¼ 0; whereas in cases 3 and 4, the null is b ¼ b0a0: The distinction is important
because the stochastic behavior of Yt and Qk

t is different depending on b: If b ¼
0; Yt is an Ið0Þ process, whereas if ba0; Yt is Ið1Þ:
Let the time overlap in the summations be a fixed fraction of the sample size, or

k ¼ ½lT 	: Similar parameterizations are used by Richardson and Stock (1989) in the
univariate context, by Viceira (1997) in deriving tests for structural breaks, and by
Valkanov (1998) in estimating the persistence of short-term interest rates. More
specifically, Richardson and Stock consider case 1, where the regression is Zk

t on
Zk

t�k:
Undoubtedly, the absence of an econometric foundation has greatly contributed

to such a variety of ways of specifying long-horizon regressions. I prove that the
statistics in long-horizon relations do not have convenient properties, namely
consistent OLS estimators of the slope coefficient, t-tests with adequate power and
size, and R2 converging to one in probability under the null. More importantly, in all

cases, the t-statistic fails to converge to a well-defined distribution. It ‘‘explodes’’ as
the overlap increases. In finite samples, this results in increasingly significant t-tests
as the overlap increases, whether or not there is a relation between the variables.
Similar results can be observed in the simulations by Hodrick (1992), Goetzmann
and Jorion (1993), Mishkin (1992), and Nelson and Kim (1993), but the econometric
properties of the statistics were never systematically analyzed.
The reason underlying the results is simple. Overlapping a nontrivial fraction of

the sample produces a persistent variable that behaves very much like an Ið1Þ
process. To obtain t-statistics that have a well-defined distribution, one must divide
them by the square root of the sample size.

3. Theoretical results

In this section, I present the analytical results. In addition to stating the theorems,
I also provide informal discussions to clarify their implications and applications.
Proofs are in Appendix A.
The assumptions and additional notation are summarized here for convenience.
Assumptions. In model ð1� 2Þ;

1. Zk
t ¼

Pk�1
i¼0 Ytþi and Qk

t ¼
Pk�1

i¼0 Xtþi:
2. The portion of overlapping is a fraction of the sample size, or k ¼ ½lT 	; where l is

fixed between 0 and 1, and [.] denotes the lesser greatest integer operator.
3. f ¼ 1þ c=T and a ¼ m ¼ 0:
4. et ¼ ðe1;t; e2;tÞ

0; where et is a martingale difference sequence with Eðete0tjet�1;yÞ ¼
S ¼ ½s211 s12; s21 s222	 and finite fourth moments.

5. The roots of bðLÞ ¼ b0 þ b1L þ b2L
2 þ?þ bpLp are less than one in absolute

value,
Pp

i¼1 ijbijoN; and p is a fixed number.

From the Functional Central Limit Theorem (FCLT), it is known that under
the above assumptions, ð1=

ffiffiffiffi
T

p
s11

P½sT 	
i¼0 e1;i; 1=

ffiffiffiffi
T

p
s22

P½sT 	
i¼0 e2;iÞ ) ðW1ðsÞ;W2ðsÞÞ
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jointly, where ) denotes weak convergence, and W1ðsÞ and W2ðsÞ are two standard
Weiner processes on D½0; 1	; with covariance d ¼ s12=ðs11s22Þ: Similarly, if o2 ¼
s211=b2ð1Þ; then (1=o

ffiffiffiffi
T

p
ÞX½sT 	 ) JcðsÞ; where JcðsÞ is an Ornstein-Uhlenbeck process,

defined by dJcðsÞ ¼ cJcðsÞ þ dW2ðsÞ; with Jcð0Þ ¼ 0: Sometimes, it would be more
useful to write JcðsÞ as JcðsÞ ¼ W2ðsÞ þ c

R s

0
ecðs�tÞW2ðtÞ dt; as in this representation

the effect of the noncentrality parameter c is more evident. Note that for c ¼
0; ð1=o

ffiffiffiffi
T

p
ÞX½sT 	 ) W2ðsÞ:

The assumptions above simplify the analysis but can easily be generalized. For
instance, et can follow a less restrictive time-series process as in Stock and Watson
(1989). More generally, the results below will be valid for any strongly mixing
process et; thus allowing for weakly dependent and possibly heterogeneous
innovations (Hansen, 1992). All regressions are run with a constant, as is usually
done in practice.

3.1. Approximating the finite-sample distributions

Before deriving the main results, I prove a Lemma that will serve as a foundation
for the rest of the paper. In this Lemma, I show that long-horizon variables, which
are nothing but partial rescaled sums of the underlying processes Xt and Yt; converge
weakly to functionals of diffusion processes.

Lemma 1. If Assumptions 1–5 hold, then

1. 1=oT3=2Qk
t )

R sþl
s

JcðtÞ dt � %Jcðs; lÞ and

2. 1=oT3=2ðQk
t � %Q

kÞ ) %Jcðs; lÞ � 1=ð1� lÞ
R 1�l
0

%Jcðs; lÞ ds � %J
m
c ðs; lÞ:

If b ¼ 0; then

3. 1=
ffiffiffiffi
T

p
s11Zk

t ) W1ðs þ lÞ � W1ðsÞ ¼ W1ðs; lÞ and

4. 1=
ffiffiffiffi
T

p
s11ðZk

t � %Z
kÞ ) W1ðs; lÞ � 1=ð1� lÞ

R 1�l
0 W1ðs; lÞ ds ¼ W

m
1 ðs; lÞ;

and if ba0; then

5. 1=oT3=2Zk
t ) b %Jcðs; lÞ and

6. 1=oT3=2ðZk
t � %Z

kÞ ) b %J
m
c ðs; lÞ:

To simplify notation, let’s define the following functionals.

F1ðAðsÞ;BðsÞÞ �

R 1�l
0

AðsÞBðsÞ dsR 1�l
0 ðBðsÞÞ2 ds

;

F2ðAðsÞ;BðsÞÞ �
ð
R 1�l
0 AðsÞBðsÞ dsÞ

½
R 1�l
0 ðAðsÞÞ2 ds

R 1�l
0 ðBðsÞÞ2 ds � ð

R 1�l
0 AðsÞBðsÞ dsÞ2	1=2

;

F3ðAðsÞ;BðsÞÞ �
ð
R 1�l
0

ðAðsÞBðsÞÞ dsÞ2R 1�l
0 ðAðsÞÞ2 ds

R 1�l
0 ðBðsÞÞ2 ds

:

All distributions can be represented as one of these functionals, using the diffusion
processes in Lemma 1 as their arguments.
We start by presenting the results for case 1.
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Theorem 2. When b ¼ 0 and Assumptions 1–5 hold, if we regress Zk
tþ1 on a constant

and Xt; the slope coefficient and the associated statistics will have the following

properties:

* #b ) s11=oF1ðW
m
1 ðs; lÞ; J

m
c ðsÞÞ:

* t #b=T1=2 ) F2ðW
m
1 ðs; lÞ; J

m
c ðsÞÞ:

* R2 ) F3ðW
m
1 ðs; lÞ; J

m
c ðsÞÞ:

Some results are worth emphasizing. First, #b is not a consistent estimator of b; and
its distribution depends on s11 and o; which can be estimated consistently from
Eqs. (1) and (2). However, the limiting distribution also depends on the nuisance
parameter c; which cannot be estimated consistently using only the time-series
properties of the data. Section 3.2 discusses three ways of dealing with c: Second, the
t-statistic does not converge to a well-defined distribution, but diverges at rate T1=2:
We cannot rely on asymptotic values to construct correctly sized confidence
intervals. In other words, a bigger sample size or a bigger overlap (since k ¼ ½lT 	)
will tend to produce higher t-statistics. Therefore, we can account for the results in
Fama and French (1988) and Campbell and Shiller (1988), where the t-statistics are
increasing with the horizon of the regression. One way around this problem is to
carry out simulations on a case-by-case basis. A more general method of testing the
slope coefficient of long-horizon regressions is to use the t=

ffiffiffiffi
T

p
statistic. As we will

see below, this statistic converges weakly in all four cases. Moreover, its distribution
is simple to simulate and depends only on the parameters c and d; which can either
be estimated consistently as discussed above, or marginalized by using sub-
bound intervals. Lastly, the coefficient of determination R2 does not converge in
probability under the null, thus explaining why aggregating the data tends to
produce high R2:

Theorem 3. When b ¼ 0 and Assumptions 1–5 hold, if we regress Zk
tþ1 on a constant

and Qk
t ; the slope coefficient and the associated statistics will have the following

properties:

* Tð #b� 0Þ ) s11=oF1ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ;

* t=T1=2 ) F2ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ;

* R2 ) F3ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ:

This is case 2. Here #b is a consistent estimator of b: In fact, it converges to the true
value of zero at rate T ; which is higher than the usual

ffiffiffiffi
T

p
convergence that obtains

with stationary regressors. However, the t-statistic does not converge to a
well-defined distribution. Similar to case 1, the R2 does not converge in probability.
In fact, most of the discussion from case 1 is also applicable here. It is important
to notice that the t=

ffiffiffiffi
T

p
statistic converges weakly. Testing can be carried out

by simulating its limiting distribution and calculating its asymptotic critical
values.
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Theorem 4. When ba0 and Assumptions 1–5 hold, if we regress Zk
tþ1 on a constant

and Xt; the slope coefficient and the associated statistics will have the following

properties:

* #b=T ) bF1ðJm
c ðsÞ; %J

m
c ðs; lÞÞ;

* t #b=T1=2 ) F2ðJm
c ðsÞ; %J

m
c ðs; lÞÞ;

* R2 ) F3ðJm
c ðsÞ; %J

m
c ðs; lÞÞ:

Theorem 4 states that, in case 3, #b is not a consistent estimator for b and does not
have a well-defined distribution. As the overlap increases, one would tend to observe
slope coefficients that are increasing in magnitude, as is the case in Fama and French
(1988), Campbell and Shiller (1988), and Boudoukh and Richardson (1993).
Moreover, the limiting distribution of #b=T depends on the unknown parameter b
itself. Similar to cases 1 and 2, the t-statistic must be normalized by the square root
of the sample size to converge to a well-defined distribution. The limiting distribution
depends only on one nuisance parameter, c (but not on d). The coefficient of
determination does not converge in probability, but has a well-defined distribution.
However, it cannot be used to judge the fit of the regression in the usual fashion.
Lastly, we present the results for case 4.

Theorem 5. When ba0 and Assumptions 1–5 hold, if we regress Zk
tþ1 on a constant

and Qk
t ; the slope coefficient and the associated statistics will have the following

properties:

* Tð #b� bÞ ) s11=oF1ðW
m
1 ðsÞ; %J

m
c ðs; lÞÞ;

* t #b=T1=2 ) F2ðW
m
1 ðsÞ; %J

m
c ðs; lÞÞ;

* R2-p1:

In many respects, this is econometrically the most desirable way of estimating a
long-run regression. First, the estimator is super-consistent. Second, after appro-
priate normalization, the t-statistic converges to a distribution that can easily be
simulated, provided we have consistent estimates of c and d: Third, unlike in the
previous three cases, the R2 converges in probability to one.
An interesting pattern emerges from the results above. Regressing a long-run

variable on a short-run variable, as in cases 1 and 3, yields inconsistent estimators of
the slope coefficients, whether or not there is a true relation between Ytþ1 and Xt:
However, projecting a long-horizon variable on another long-horizon variable, as in
cases 2 and 4, produces super-consistent estimators of the true parameter, whether it
be b ¼ 0 or b ¼ b0a0: Moreover, the limiting distribution of #b and t=

ffiffiffiffi
T

p
is very

similar for cases 2 and 4.
Table 2 provides a quick summary of the above results. The stochastic order

notation VT ¼ Opð1Þ intuitively indicates that the variable VT has a well-defined
distribution as T-N: In all four cases, inference based on the t-statistic cannot be
made using asymptotic critical values. However, the normalized t-statistic, t=

ffiffiffiffi
T

p
;

has a well-defined distribution that can be easily simulated. As Monte Carlo
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simulations would show, the convergence is quite fast. Hence, asymptotic critical
values can be calculated using a relatively small sample. To obtain accurate estimates
of the slope parameter, one should run long-horizon variables on long-horizon
variables, as in cases 2 and 4, where the estimators are super-consistent. Lastly, the
R2 should not be trusted as a measure of regression fit in the usual sense. This
statistic converges to one only in Theorem 5. In the other cases, it can lead to false
conclusions, as demonstrated in the next section.
In essence, there are two distinct ways of conducting long-horizon regressions:

Zk
tþ1 on Xt and Zk

tþ1 on Qt: Often, the specification of the regression is motivated by
theory, as in the case of returns and dividend yields. Other times, the regression is
motived by a ‘‘looser’’ desire to investigate the relation between two variables at
longer horizons. Ultimately, the goal is to find out whether the maintained null
hypothesis is true, and one cannot help but wonder which setup, Zk

tþ1 on Xt or Zk
tþ1

on Qt; would yield a more powerful test for this hypothesis. We know that the t=
ffiffiffiffi
T

p
statistics in cases 1 and 2 converge to different limiting distributions. It is clear that
the power of the tests must be different. However, an analytical comparison of their
power functions is not possible. As noted earlier, the limiting distributions of t=

ffiffiffiffi
T

p
depend on the nuisance parameter c: Although consistent estimators of c can often
be designed by using additional modeling assumptions, it is sometimes time-
consuming or impossible to do so. In such cases, one would be compelled to use
strictly statistical procedures for marginalizing c; perhaps by constructing
conservative sup-bound intervals. The cost of this simplification would be a loss in
power. Comparing the power functions of t=

ffiffiffiffi
T

p
in cases 1 and 2, with a consistent

estimate of c and using sup-bound intervals, is addressed by simulations in the next
section.

3.2. The nuisance parameter c

To simulate the above distributions, we need to either assume that c is known or
estimate it. However, by construction, c cannot be estimated consistently from a
unique realization of the time-series. In this section, I discuss three ways of dealing

Table 2

Specifications of long-horizon regressions: results

Under the null

Regressor b ¼ 0 ba0

#b ¼ Opð1Þ
#b
T
¼ Opð1Þ

Xt Case 1 t
T1=2 ¼ Opð1Þ Case 3 t

T1=2 ¼ Opð1Þ
R2 ¼ Opð1Þ R2 ¼ Opð1Þ

Tð #b� 0Þ ¼ Opð1Þ Tð #b� bÞ ¼ Opð1ÞPk�1
i¼0 Xt�kþi Case 2 t

T1=2 ¼ Opð1Þ Case 4 t
T1=2 ¼ Opð1Þ

R2 ¼ Opð1Þ R2-p1

Notes: Summary of the results in Theorems 2–5.
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with this problem. The first two methods, from Stock (1991) and Cavanagh et al.
(1995), are well known and only briefly described.
Stock (1991) proposes an asymptotically median-unbiased estimator of c; cMUE;

and centered confidence intervals by inverting the distribution of the augmented
Dickey–Filler statistic. Such a method is easy to implement with a computer. The
main drawback of Stock’s (1991) procedure is that the inversion of quantiles of a
distribution usually yields confidence intervals that are too wide for practical
purposes. Such intervals often comprise a wide range of alternatives, and in
particular c ¼ 0; suggesting that the forecasting variable might be nonstationary
(Stock, 1991). This criticism will also be valid in our applications.
Cavanagh et al. (1995) propose to circumvent the estimation of the nuisance

parameter by taking the extreme values of the test statistics of interest over a wide
range of c: Such a test, called a sup-bound test, produces conservative confidence
intervals.2 This method is quite general, since it relies only on statistical arguments.
However, in addition to conservative size, the sup-bound test will also have low
power of rejecting false alternatives, since it does not use any information about the
magnitude of c (Section 4.2).
Valkanov (1998) suggests using the long-run restriction implied by an economic

model in order to consistently estimate c: For example, in the case of returns and
dividend yields, one might use the dynamic Gordon growth model in Campbell and
Shiller (1988) to estimate c; as I do in Section 5.1. Appendix B provides a more
detailed discussion of this new method. Unlike the above procedures, such an
estimator, denoted by cCONSISTENT; will not only be consistent but it will converge at
rate T ; thus providing very precise point estimates of the nuisance parameter.
Conditional on the validity of the model, using cCONSISTENT in order to compute the
t=

ffiffiffiffi
T

p
statistic will yield correctly sized tests with a higher power function than the

sup-bound tests. Since the three methods of dealing with the nuisance parameter are
not equivalent, they are all applied (in Section 5) in the testing for the relations of
interest.

4. Simulations

The theorems in the previous section provide an asymptotic approximation of the
distributions of #b; t=

ffiffiffiffi
T

p
; and R2: It is well known that rescaled partial sums

converge quickly to their limiting distributions (Stock, 1994). In other words, the
asymptotic distributions provide a very accurate approximation of the small-sample
distributions even for samples of (say) 100 observations. Here, I conduct Monte
Carlo simulations to illustrate some of the points made in the previous section. First,

2More formally, let dc;a denote the 100a% quantile of the distribution F2ð:; :Þ for a given value of d: Then,
define ð

%
da; %daÞ ¼ ðinfc dc;a; supc dc;a). Then a conservative, say 95%, sub-bound test is one that rejects

t=
ffiffiffiffi
T

p
eð

%
d0:025; %d0:975Þ: Cavanagh et al. (1995) also use Bonferroni and Scheffe-type intervals, in addition to

the sub-bound intervals, to marginalize c: None of the three methods necessarily dominates the other two.
The sub-bound test has the virtue of simplicity and, as shown in Cavanagh et al. (1995) it performs no

worse than the other two methods.
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I demonstrate that the t=
ffiffiffiffi
T

p
statistic converges asymptotically for all of the above

cases, unlike the non-rescaled t-statistic. Second, I plot the densities of the t-statistics
derived in Theorems 2–5 and demonstrate the accuracy of the approximations.
Third, I investigate how these densities depend on the nuisance parameters c and d:
Last, I investigate the power properties of the proposed t=

ffiffiffiffi
T

p
test for cases 1 and 2,

with and without a consistent estimator of c:

4.1. Validity of the asymptotic approximations

The experiment is conducted as follows. For every case in Table 1, I simulate series
of 100 and 750 observations 5,000 times using Eqs. (1) and (2). The first sample
length corresponds to a typical annual data set, whereas the second corresponds to a
series with monthly frequencies. The residuals e1;t and e2;t are normally distributed,
with a correlation of dAf0;�0:9g:3 Let cAf0;�0:5;�1;�5;�10g: For each
simulation, I compute #b; the t-statistic under the appropriate null hypothesis, and
R2: For simplicity, I set s211 ¼ o2 ¼ 1 without losing generality, since the asymptotic
distributions of t=

ffiffiffiffi
T

p
(and R2) are invariant to those parameters.

The simulated densities of the t-statistics are plotted in Fig. 1 using values of the
nuisance parameters c ¼ �1 and d ¼ 0: The first column of graphs displays the
densities of the non-normalized t-statistics, whereas the second column displays the
densities of the appropriately rescaled statistics, as suggested by Theorems 2–5. The
variances of the t-statistics increase with the sample size, in all four cases. There are
no correct asymptotic critical values for the non-rescaled t-statistics. For T ¼ 750;
the variance is considerable. Thus, it is not surprising that Mishkin’s (1992)
simulations lead him to conclude that ‘‘the t-statistics need to be greater than 14 to
indicate a statistically significant b coefficient...’’ (Mishkin, 1992, p. 203).
Goetzmann and Jorion (1993) use the bootstrap method to reach a similar
conclusion: ‘‘OLS t-statistics over 18 and R2 over 38% for all multiple-year horizons
are not unusual.’’ However, the rescaled t-statistic, t=

ffiffiffiffi
T

p
; converges to a well-

defined distribution. Notice that the partial sums converge very fast to their limiting
distributions, as the densities simulated with 100 and 750 observations are almost
identical. The properties of #b and R2 from Theorems 2–5 can be illustrated with
similar figures (omitted for conciseness.)
The results so far plot the distributions of the t-statistic for specific values of the

pair ðc; dÞ: To understand the dependence of the distribution on the nuisance
parameters, Table 3 provides the first two simulated moments of this statistic in cases
1–4, for cAf0;�0:5;�1;�5;�10g and dAf0;�0:9g: The results are similar to the
c ¼ �1; d ¼ 0 case. The column ‘‘Ratio’’ displays the variance of the statistic for
T ¼ 750 divided by the variance for T ¼ 100: If the ratio of the variances is equal to
one, then the estimated second moment of the distribution has not changed with the
increased sample size. This ratio can be used to verify the rates of convergence of our
statistics. For instance, in Table 3, case 1, the ratio of the variances of the t-statistic,

3The results hold true for various specifications of the residuals. Simulations using various serially

correlated and conditionally heteroskedastic errors are available upon request.
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for c ¼ 0; d ¼ 0; is 7.54, indicating that an increase in the sample size by a factor of
7.5 has also resulted in an increase of the variance of the t-statistic by a factor of
7.54. This result is in precise agreement with Theorem 2.
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Fig. 1. Simulation results of t-statistics. Notes: Figure 1 plots the simulated densities of the non-rescaled

and rescaled t-statistics in all four cases. The graphs in the first column are the distributions of the t-

statistic under the null b ¼ 0; c ¼ �1; d ¼ 0; and T ¼ 100 and T ¼ 750: The distributions of the same
statistic, appropriately rescaled to converge asymptotically, are presented in the second column. For an

exact description of the simulations, see the text and Table 3. The distributions for T ¼ 100 are almost

indistinguishable from those with T ¼ 750; suggesting a fast convergence of the distribution of t=
ffiffiffiffi
T

p
:

Therefore, the above methods are particularly appropriate for analyzing small-sample distributions of the

statistics of interest. The variance of the t-statistic increases with the sample size, but t=
ffiffiffiffi
T

p
has a well-

defined asymptotic distribution, as expected from Theorems 2–5.
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It is also important to know how sensitive the tails of the distributions are with
respect to the nuisance parameters. Table 4 displays the quantiles 1, 2.5, 5, 95, 97.5,
and 99 of the t=

ffiffiffiffi
T

p
statistic for various values of the parameters c and d in all four

Table 3

Simulations of the distribution of t-statistics

#Eðt � statÞ #Varðt � statÞ

d ¼ 0:00 d ¼ �0:90 d ¼ 0:00 d ¼ �0:90

c T ¼ 100 T ¼ 750 T ¼ 100 T ¼ 750 T ¼ 100 T ¼ 750 Ratio T ¼ 100 T ¼ 750 Ratio

Case 1

0.0 �0.078 �0.043 3.480 12.289 10.616 80.033 7.54 7.483 73.142 9.77

�0.5 0.032 �0.047 3.118 11.405 10.513 79.716 7.58 7.099 65.193 9.18

�1.0 �0.092 0.254 2.791 10.801 10.064 78.946 7.84 6.570 64.789 9.86

�5.0 0.011 0.012 1.198 7.011 8.834 67.546 7.65 5.758 55.286 9.60

�10.0 �0.005 �0.082 0.269 4.846 7.831 57.135 7.30 5.355 50.243 9.38

Case 2

0.0 �0.051 0.210 �0.429 �0.211 11.723 91.043 7.77 5.968 45.952 7.70

�0.5 0.054 0.058 �1.006 �1.409 11.546 92.545 8.02 5.283 37.597 7.12

�1.0 0.073 0.069 �1.477 �2.869 11.941 92.148 7.72 4.682 37.396 7.99

�5.0 0.025 �0.247 �4.372 �9.916 11.930 87.706 7.35 4.550 35.534 7.81

�10.0 �0.062 �0.184 �6.624 �15.510 10.650 82.782 7.77 5.772 40.865 7.08

Case 3

0.0 18.884 48.544 22.571 49.687 93.003 646.840 6.96 117.792 651.176 5.53

�0.5 16.983 43.396 20.361 44.337 62.999 433.632 6.88 77.409 446.140 5.76

�1.0 15.546 40.125 18.795 40.633 44.162 316.620 7.17 57.017 329.765 5.78

�5.0 11.043 27.879 13.578 28.547 16.868 117.041 6.94 19.836 113.668 5.73

�10.0 8.448 21.310 10.590 22.123 9.100 61.564 6.77 9.616 61.902 6.44

Case 4

0.0 0.023 0.069 �0.522 �0.153 12.249 92.081 7.52 5.857 44.590 7.61

�0.5 0.011 �0.060 �0.992 �1.494 11.997 96.491 8.04 5.165 39.425 7.63

�1.0 0.035 �0.060 �1.535 �2.957 12.288 92.233 7.51 4.796 37.674 7.86

�5.0 0.009 �0.042 �4.286 �9.946 12.175 86.888 7.14 4.683 34.287 7.32

�10.0 �0.049 �0.164 �6.634 �15.556 11.335 85.948 7.58 6.033 40.198 6.66

Notes: The table displays the first two moments of the non-normalized t-statistic under the null for various

values of c; d; and T : The data were generated as follows: Yt ¼ aþ bXt�1 þ e1;t; Xt ¼ fXt�1 þ e2;t; where
e1;t and e2;t are standard normal variates with correlation d ¼ ð0;�0:9Þ; y ¼ 1þ c=T ; for c ¼
ð0;�0:5;�1;�5;�10Þ; and T ¼ ð100; 750Þ: The case c ¼ 0 represents the exact unit-root. In cases 1 and

2, we let b ¼ 0; whereas in cases 3 and 4, b ¼ 1: The data are simulated 5,000 times. For each simulation, I
construct Zk

tþ1 ¼
Pk

i¼0 Ytþi and, in cases 2 and 4, Qk
t ¼

Pk
i¼0 Xtþi to be the long-horizon regressand and

regressor, respectively. I let k ¼ ½lT 	 and l ¼ 0:1: The tabulated results are those from running Zk
tþ1 on Xt

(for cases 1 and 3) and Zk
tþ1 on Qk

t (for cases 2 and 4). In each table, the column ‘‘Ratio’’ presents the

variance of the corresponding statistic for T ¼ 750 divided by the same variance for T ¼ 100: This ratio
allows us to check the rates of convergence of the t-statistics. For example, in the first panel we can see that

an increase in the sample from 100 to 750 observations results in an increase of the variance of the t-

statistic by approximately a factor of 7.5, exactly as dictated by Theorem 2. The same holds true for the

other three panels. Therefore a non-normalized t-statistic would not be suitable for testing.
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cases. As expected, the distribution of t=
ffiffiffiffi
T

p
changes noticeably in cases 1, 2, and 4

for dAf0;�0:9g: In case 3, the distribution is invariant to d; as shown in Theorem 4.
Given that we can obtain a consistent estimate of d; the dependence of the
distributions on this parameter does not represent a concern. The tails of the
distributions are less sensitive to different values of c: In fact, for values of the local-
to-unity parameter close to zero, say cp� 5; the percentiles are very similar in all
four cases, especially for d ¼ 0: From Table 4, we draw the conclusion that the
distribution of the t=

ffiffiffiffi
T

p
statistic will be insensitive to estimation errors in c and d; as

Table 4

Tails of t=
ffiffiffiffi
T

p
statistic at various percentiles

d ¼ 0:00 d ¼ �0:90

c 1.0 2.5 5.0 95.0 97.5 99.0 1.0 2.5 5.0 95.0 97.5 99.0

Case 1

0.0 �0.771 �0.659 �0.538 0.543 0.661 0.773 �0.267 �0.151 �0.051 0.975 1.088 1.237

�0.5 �0.818 �0.681 �0.532 0.544 0.642 0.774 �0.297 �0.169 �0.070 0.907 1.002 1.110

�1.0 �0.772 �0.639 �0.526 0.548 0.670 0.787 �0.282 �0.175 �0.087 0.870 0.982 1.130

�5.0 �0.727 �0.583 �0.496 0.499 0.593 0.718 �0.384 �0.268 �0.176 0.706 0.805 0.922

�10.0 �0.649 �0.533 �0.450 0.442 0.541 0.643 �0.405 �0.316 �0.244 0.608 0.686 0.801

Case 2

0.0 �0.797 �0.672 �0.563 0.595 0.727 0.853 �0.619 �0.508 �0.419 0.390 0.481 0.612

�0.5 �0.841 �0.688 �0.572 0.579 0.717 0.883 �0.653 �0.510 �0.408 0.308 0.391 0.494

�1.0 �0.817 �0.698 �0.577 0.564 0.682 0.855 �0.695 �0.585 �0.485 0.233 0.318 0.407

�5.0 �0.862 �0.698 �0.580 0.533 0.667 0.810 �0.984 �0.854 �0.743 �0.036 0.016 0.085

�10.0 �0.829 �0.660 �0.545 0.543 0.651 0.771 �1.182 �1.071 �0.974 �0.209 �0.146 �0.065

Case 3

0.0 0.406 0.510 0.636 3.586 4.045 4.811 0.492 0.594 0.689 3.610 4.092 4.693

�0.5 0.396 0.519 0.625 3.046 3.473 3.983 0.439 0.555 0.659 3.091 3.570 4.070

�1.0 0.377 0.495 0.610 2.705 3.014 3.524 0.436 0.539 0.623 2.761 3.087 3.475

�5.0 0.288 0.380 0.449 1.732 1.896 2.152 0.329 0.424 0.485 1.753 1.915 2.117

�10.0 0.225 0.292 0.350 1.292 1.426 1.539 0.228 0.308 0.380 1.312 1.432 1.599

Case 4

0.0 �0.834 �0.700 �0.564 0.574 0.692 0.835 �0.589 �0.502 �0.410 0.396 0.495 0.609

�0.5 �0.855 �0.715 �0.583 0.582 0.712 0.893 �0.653 �0.523 �0.433 0.320 0.395 0.492

�1.0 �0.833 �0.707 �0.575 0.568 0.696 0.855 �0.683 �0.572 �0.490 0.247 0.321 0.433

�5.0 �0.847 �0.669 �0.553 0.547 0.675 0.808 �0.960 �0.826 �0.737 �0.040 0.022 0.113

�10.0 �0.846 �0.689 �0.567 0.552 0.662 0.793 �1.177 �1.064 �0.976 �0.215 �0.151 �0.079

Notes: Table 4 displays the tail probabilities of the distribution of t=
ffiffiffiffi
T

p
for cases 1–4. For an exact

description of the simulations, see Section 4 or Table 3 above. Since the distributions depend on the

nuisance parameters c and d; I present percentiles 1, 2.5, 5, 95, 97.5, and 99 of the distributions for various
values of those parameters. The distributions were simulated with samples of length T ¼ 750: In all four

cases, the distributions are very similar for small values of c ðcp� 5Þ: For larger values of c; the
distributions are similar only when the correlation between the residuals is small. This implies that, for

persistent processes, the size distortions induced by the unknown parameter c will not be large.
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long as those parameters are close to zero. For values d close to �1; we need accurate
estimates of both nuisance parameters.

4.2. Power comparisons

The last set of simulations is designed to compare the power functions of various
tests of the null b ¼ 0: The data under the null is simulated as described in the
previous section. I investigate the power of the t=

ffiffiffiffi
T

p
statistic by running regressions

of Zk
tþ1 on Xt (case 1) and Zk

tþ1 on Qk
t (case 2), where k ¼ ½lT 	 and l ¼ 0:1: Since the

null b ¼ 0 can also be tested using the short-horizon regression (1), I consider the
usual t-statistic of such a regression, where the standard error of the coefficient is
computed using the Newey–West standard errors. To compute the power function of
the three tests, I simulate the model under a set of alternatives bAð0; 0:1Þ:
There are three interesting questions to be answered. The first is which of the three

tests is more powerful, given that we have a consistent estimate of c: The second is
what test is the most powerful, given that we have to resort to sup-bound intervals.
The third is how big is the loss in power when we use the conservative sup-bound
intervals. All simulations are conducted under the unfavorable scenario of d ¼ �0:9
since, as seen in Table 4, a high correlation will insure that the exact and the
conservative confidence intervals have a different coverage.
The results for the case T ¼ 100 and c ¼ �1 are plotted in Fig. 2. The first plot

displays the power function for local alternatives, i.e., alternatives that are close to
the null, whereas the second plot shows the entire power function. Given a consistent
estimate of c (solid lines), the power of the t=

ffiffiffiffi
T

p
statistic is similar under both long-

horizon specifications. For alternatives away from the null, the t=
ffiffiffiffi
T

p
test in the

long-horizon regressions offers significant power gains compared to the t-test in the
short-horizon regression. A similar conclusion holds true if a consistent estimate of c

is not available (dashed lines). In such a case, the supc t=
ffiffiffiffi
T

p
tests clearly dominate

the short-horizon supc t test. Moreover, the power function of the sup-bound
intervals in case 1 dominates the power function of case 2. Different horizons k (or l)
yield almost identical results. There is a considerable loss in power from not having a
consistent estimate of c if d is high in absolute value. To summarize the results, the
t=

ffiffiffiffi
T

p
statistic is able to reject false hypotheses with high probability, especially

when a precise estimate of c is available. An accurate estimate of c is also
indispensable when the correlation between the residuals is high.

5. Empirical results: the excess returns/dividend yield and Fisher effect regressions

5.1. Long-horizon predictability of excess returns using dividend yields

The predictability of excess returns, labeled as one the ‘‘new facts in finance’’ by
Cochrane (1999), is so widely accepted in the profession that it has generated a new
wave of models (e.g., Barberis, 2000; Brennan et al., 1997; Campbell and Viceira,
1999; Liu, 1999) that try to analyze the implications of return predictability on
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portfolio decisions. Fama and French (1988) and Campbell and Shiller (1988) first
argued that, unlike short-horizon returns, long-horizon returns can be predicted
using dividend yields or dividend-price ratios. The predictability is measured in-
sample from the t-statistic and the R2: Both of these statistics increase with the
horizon (the overlap). However, Goetzmann and Jorion (1993) and Nelson and Kim
(1993) conduct simulations and bootstrap studies on the properties of the estimates
from the excess returns/dividend yield long-horizon regressions and conclude that
the evidence for predictability is not nearly as overwhelming at long horizons as
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Fig. 2. Power comparison of various tests. Notes: The data under the null b ¼ 0 are simulated as described

in Section 4.1 and in Table 3. The data under the alternatives are simulated for bAð0; 0:1Þ: I consider the
power functions of the statistic t=

ffiffiffiffi
T

p
from the regression of Zk

tþ1 on Xt (case 1) and Zk
tþ1 on Qk

t (case 1),

where k ¼ ½lT 	 and l ¼ 0:1: The results for the case T ¼ 100 and c ¼ �1 are plotted above. The power

function of the Newey–West t-test in a short-horizon regression of Ytþ1 on Xt is also plotted, as a

reference. The first plot displays the power function for local alternatives, i.e., alternatives that are close to

the null, whereas the second plot shows the entire power function. Solid lines signify power functions

computed using a consistent estimate of c: Dotted lines signify that the tests were conducted by forming

conservative sup-bound intervals, as in Cavanagh et al. (1995). Given a consistent estimate of c; the power
of the t=

ffiffiffiffi
T

p
statistic is similar under both long-horizon specifications. For alternatives away from the null,

the t=
ffiffiffiffi
T

p
test in the long-horizon regressions offers significant power gains compared to the t-test in the

short-horizon regression. If a consistent estimate of c is not available, then the supc t=
ffiffiffiffi
T

p
test from the

regression of Zk
tþ1 on Xt dominates the supc t=

ffiffiffiffi
T

p
test from the regression of Zk

tþ1 on Qk
t ; which in turn

dominates the supc t test. The power loss from not having an estimate of c is noticeable, but not dramatic.

R. Valkanov / Journal of Financial Economics 68 (2003) 201–232 217



Table 5

Summary statistics

Panel A

Series %X #s #f P-valueðADFÞ

VW log(D/P) �3.23 0.33 0.99 0.37

EW log(D/P) �3.23 0.33 0.99 0.39

VW(1) 6.46 19.20 0.10 0.00

EW(1) 8.76 25.32 0.18 0.00

VW(12) 6.31 20.98 0.93 0.00

EW(12) 8.64 28.44 0.94 0.00

VW(24) 6.14 20.75 0.97 0.96

EW(24) 8.44 27.99 0.97 0.94

VW(36) 5.98 19.84 0.98 0.85

EW(36) 8.32 26.60 0.98 0.81

VW(48) 5.98 19.13 0.98 0.77

EW(48) 8.40 25.75 0.98 0.78

VW(60) 6.11 18.17 0.98 0.82

EW(60) 8.59 23.94 0.98 0.84

VW(72) 6.34 16.36 0.98 0.87

EW(72) 8.84 20.93 0.98 0.86

CPI Infl 3.11 1.96 0.91 0.25

3M Tbill 3.71 0.91 0.97 0.74

Panel B

Correlation of residuals ðdÞ

VW Corrðe1; e2Þ �0.94
EW Corrðe1; e2Þ �0.85
Infl. Corrðe1; e2Þ 0.04

Int.Rate Corrðe1; e2Þ 0.06

Notes: Panel A presents the summary statistics of the variables of interest. The first two columns display

the means and standard deviations. The third column is the highest autoregressive root of the series,

whereas the fourth column presents the p-value of the Augmented Dickey Fuller test under the null of a

unit root in the series. The first two series are the log dividend price ratios of the CRSP value-weighted and

equal-weighted portfolios. The next 14 series are the continuously compounded value-weighted and equal-

weighted CRSP excess returns, where the period of the return is shown in parentheses. For example,

VW(24) is the 24-month continuously compounded excess value-weighted return computed using

overlapping one-period returns. All returns are expressed in annualized percentage points. The last two

series are the CPI inflation and the nominal interest rate of a three-month T-bill. Panel B presents the

correlation of the residuals, as discussed in the text.
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previous studies had suggested. Yet, Hodrick (1992) uses VAR simulation-based
studies to conclude that the distortions in the distributions of the t-statistics were not
enough to overturn the results of Fama and French (1988). It is difficult to reconcile
or compare the conclusions from these studies, because they are all based on
simulations or bootstrap methods, and fail to yield general results. Their conclusions
are ultimately a function of how the artificial data are being generated. More
important, there is no way of knowing what features of the data would influence the
statistics of interest and in what fashion.
Section 3 provided a framework which will now be applied to explain and re-test

the results from Fama and French (1988). I take the monthly value- and equal-
weighted returns and the corresponding dividend yields from the Center for
Research in Security Prices (CRSP) dataset from 1927 to 1999. In accord with most
recent studies, I work with excess log returns (log returns minus the log yield of the
three-month Treasury bill), represented in percentage points (i.e. multiplied by 100).
The long-horizon continuously compounded excess returns are formed by taking a
rolling sum of the one-period log excess returns over a given time interval. The
annual dividend yield ratio is obtained by dividing the sum of the dividends over the
last year by the current price. To keep the regressions consistent with the log-
linearized framework of Campbell and Shiller (1988), I work with log dividend yields
(see Campbell et al., 1997). Summary statistics of the series are shown in Table 5.
The lag structure of the dividend yield series is chosen with sequential t-tests, as
suggested by Ng and Perron (1995). The selected lag structure has five lags, yielding
highest autoregressive roots of 0.987 and 0.989 for the log dividend price ratio in the
value-weighted and equal-weighted portfolios, respectively (Table 5). It is interesting
to point out that an augmented Dickey–Fuller (ADF) test cannot reject the null of a
unit root in the log dividend price ratio, but neither can it reject alternatives close to
the null (i.e. local-to-unity alternatives). I have chosen the ADF test since, as pointed
out by Schwert (1987, 1989), it is less sensitive to model misspecifications than other
unit-root tests. Finally, I obtain an estimate of #d ¼ �0:94 for the value-weighted
equation and #d ¼ �0:85 for the equal-weighted regression, using the residuals from
regressions ð1� 2Þ: Keeping in mind that in the case of highly serially correlated
residuals the distribution of the t=

ffiffiffiffi
T

p
statistic is sensitive to estimation errors in c

(Table 4), we need to find a precise estimate of that parameter.
Table 6 displays the median unbiased estimate, #cMUE; and 95%-centered

confidence intervals by inverting the distribution of the ADF test. A consistent
estimate of c; #cCONSISTENT; is also computed following the methods discussed in
Section 3.2 and Appendix B. Although #cMUE and #cCONSISTENT are similar in three of
the subsamples, there are some significant differences. Notice that three out of the
four confidence intervals around #cMUE include the explosive, unit-root case, which is
untenable from a theoretical perspective. It is hard to think of a theoretical reasoning
that might justify a unit root in the dividend yield and a unit-root component in
returns; see Campbell et al. (1997). In the most recent period, #cMUE is positive,
suggesting that log dividend yield is an explosive process. In contrast, #cCONSISTENT is
always negative and its 95% confidence intervals are always below (although barely)
the unit-root threshold. Moreover, the confidence intervals around #cCONSISTENT are
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extremely tight, suggesting the efficiency gains from using the information provided
by the dynamic Gordon growth model. In this application, I will use #cCONSISTENT;
given its superiority.
Table 7 presents the results from the long-horizon regressions for the value- and

equal-weighted excess returns, for different sample periods and different horizons.
The results are very familiar from the work of Fama and French (1988) and
Campbell et al. (1997). The difference in magnitude is because I work with returns
expressed as percentage points. The high slope estimates, the (Newey–West) t-
statistics that increase with the horizon, and the R2’s that increase with the horizon
should not come as a surprise, as argued in Section 2. Here, I focus on the
renormalized t=

ffiffiffiffi
T

p
test, since as proved in Theorem 2 above, it converges to a well-

defined distribution. The estimated values of the t=
ffiffiffiffi
T

p
statistic and the

corresponding p-value under the null b ¼ 0 (case 1, above) are shown in the last
two columns of each table. The distribution of t=

ffiffiffiffi
T

p
under the null is simulated with

the estimated values of ð#cCONSISTENT; #dÞ and l ¼ k=T ; where k is the horizon of the
regression. The results stand in stark contrast to those obtained with conventional
inference methods. Using the entire sample period, 1927–1999, we cannot reject the
null of no predictability at usual levels of significance for any of the horizons.

Table 6

Estimates of c and f in the dividend yield process

Samples

1927–1999 1927–1957 1957–1987 1957–1999

#cMUE �0.754 �36.243 �0.970 0.079

(�20.798,0.093) (�50.000,�0.908) (�35.196,0.009) (�1.375,0.525)
#f 0.9991 0.8993 0.9973 1.0002

(0.9759,1.0001) (0.8333,0.9975) (0.9022,1.0000) (0.9973,1.0010)

#cCONSISTENT �1.401 �0.728 �0.662 �0.206
(�1.606,�1.196) (�0.895,�0.560) (�0.798,�0.526) (�0.378,�0.034)

#f 0.9983 0.9977 0.9978 0.9995

(0.9978,0.9987) (0.9973,0.9980) (0.9975,0.9981) (0.9992,0.9999)

Notes: The first and second rows provide the point estimate and the 95% confidence interval, respectively,

of the parameters c and f; where Xt ¼ fXt�1 þ e2;t; f ¼ 1þ c=T ; and Xt is the dividend yield. The

median unbiased estimate of c; #cMUE; is obtained by inverting the 50th percentile of the augmented Dickey-
Fuller test (ADF) with 12 lags (Stock, 1991), chosen with sequential pre-testing. The 95% confidence

interval, displayed below the estimate, is obtained in a similar fashion, by inverting percentiles 2.5nd and

97.5th of the ADF test. The corresponding value of f and its confidence intervals are also displayed for

convenience. A consistent estimate of c; #cCONSISTENT; obtained by using the theoretical relation between

log returns and log dividend yields, its 95% confidence interval, and the corresponding values of f; are
displayed in the third and fourth rows. As discussed in the text, this estimator has theoretical advantages

over the median unbiased estimator. It also performs better in practice. Notice that three out of the four

confidence intervals around #cMUE include the unit root case, which is unappealing from a theoretical and

practical perspective, as discussed in the text. Moreover, in the last subsample, the MUE of c is positive,

suggesting that the log dividend yield is a non-stationary process. In contrast, the consistent estimates of c

are all negative and their confidence intervals are all below, although barely, the unit root threshold.
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Table 7

Excess returns/dividend yield predictive regressions

Excess VW returns Excess EW returns

Horizon #b tðNW Þ R2 t=
ffiffiffiffi
T

p
P-value #b tðNW Þ R2 t=

ffiffiffiffi
T

p
P-value

Period: 1927–1999

1 0.55 0.69 0.00 0.03 0.000 1.57 1.57 0.00 0.07 0.00

12 9.97 1.48 0.02 0.16 0.300 25.50 2.92 0.09 0.31 0.02

24 21.42 2.17 0.06 0.25 0.300 48.98 4.02 0.16 0.44 0.03

36 29.90 2.43 0.08 0.30 0.350 63.00 4.20 0.20 0.50 0.07

48 38.47 2.54 0.11 0.35 0.320 75.57 3.88 0.23 0.55 0.09

60 47.28 2.90 0.15 0.41 0.290 85.63 4.39 0.28 0.62 0.10

Period: 1927–1945

1 0.41 0.14 0.00 0.01 0.010 2.55 0.70 0.00 0.06 0.00

12 22.48 1.20 0.04 0.19 0.600 56.49 2.23 0.13 0.38 0.21

24 68.42 3.04 0.16 0.43 0.420 133.25 4.38 0.34 0.71 0.14

36 105.50 2.48 0.27 0.61 0.360 175.05 3.36 0.42 0.85 0.15

48 137.96 3.43 0.39 0.79 0.290 209.13 5.01 0.49 0.97 0.17

60 145.40 4.19 0.44 0.88 0.290 212.80 7.33 0.53 1.05 0.20

Period: 1946–1980

1 2.43 3.53 0.02 0.15 0.000 2.52 2.74 0.02 0.12 0.00

12 30.84 4.51 0.26 0.59 0.000 34.53 3.16 0.18 0.47 0.01

24 56.41 4.66 0.45 0.91 0.010 58.52 2.82 0.26 0.58 0.08

36 72.84 5.60 0.57 1.16 0.010 68.30 2.67 0.26 0.60 0.18

48 84.38 6.28 0.61 1.26 0.010 71.63 2.51 0.24 0.56 0.31

60 103.49 6.48 0.63 1.30 0.030 81.94 2.65 0.24 0.56 0.39

Period: 1946–1999

1 0.82 1.42 0.00 0.06 0.000 1.40 2.06 0.01 0.08 0.00

12 10.71 1.93 0.05 0.23 0.250 20.07 3.27 0.09 0.32 0.07

24 18.79 1.76 0.09 0.31 0.340 33.50 3.38 0.15 0.42 0.16

36 25.57 1.88 0.12 0.37 0.370 42.56 3.78 0.18 0.46 0.24

48 32.24 2.02 0.15 0.43 0.380 49.66 4.09 0.20 0.49 0.31

60 44.12 2.37 0.20 0.50 0.360 59.66 4.44 0.22 0.52 0.33

Notes: The regressor is the continuously compounded excess value- or equal-weighted return for different

periods, shown in the first column. The regressand is the lagged log dividend/price ratio. Results using

contemporaneous log dividend/price ratios are almost identical and hence omitted. All regressions are run

with a constant. The second column displays the OLS estimate of b: The Newey–West t-statistic and the

coefficient of determination, R2; are shown in columns 3 and 4. Column 5 displays the t=
ffiffiffiffi
T

p
statistic, and

the last column displays the p-value, using this normalized t-statistic under the null b ¼ 0: As discussed in
the test, the t=

ffiffiffiffi
T

p
statistic has a well-defined asymptotic distribution. Its distribution is simulated with the

consistent estimates of c; or c ¼ ð�1:40;�0:73;�0:66;�0:21Þ (see Table 6) for the corresponding sample

periods, using l ¼ k=T ; where k is the horizon of the regression. The correlation between the residuals is

set to equal the sample estimates, or �0:94 in the value-weighted regressions, and �0:85 for the equal-

weighted regressions. Approximate critical values of the t=
ffiffiffiffi
T

p
statistic can be obtained from Table 4, case

1, for c ¼ �1 and d ¼ �0:9: The results are very similar if we use median unbiased estimates of c; or
c ¼ ð�0:75;�36:20;�0:97; 0:08Þ (see Table 6). The 95% sup-bound (conservative) confidence interval for

t=
ffiffiffiffi
T

p
is: ½�0:316; 1:088	 for l ¼ 0:1 and the extreme values are taken over the range c ¼ ð0;�10Þ: The

coverage of the interval does not change significantly for other horizons.
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Looking at the various subsamples, the lack of predictability seems to come mainly
from the 1927–1945 and 1981–1999 periods. If there is any evidence of return
predictability, it is strongest during the 1946–1980 sample for the value-weighted
returns, a result that has also been pointed out by Viceira (1997). During that period,
the evidence of predictability is statistically significant at the 5% level. Moreover, the
statistics from the equal-weighted returns indicate that the forecasting relation
between the log dividend price ratio and returns (of mainly small companies) was
strongest during the 1927–1945 period and has been declining ever since. Viceira
conducts a more complete analysis of the changing excess returns/dividend yield
relation using Functional Central Limit Theory. The main conclusion to be retained
from Table 5 is that when appropriate testing procedures are employed, the evidence
of return predictability is not as strong as previously maintained.

5.2. Long-horizon Fisher effect

I focus on two of the most recent tests of the Fisher effect, namely the long-
horizon approaches of Mishkin (1992) and Boudoukh and Richardson (1993).
Neither paper can reject the null that long-horizon returns and long-horizon
inflation move one for one (this is known as the full Fisher effect), whereas previous
studies have often had trouble finding any positive correlation between short-
horizon returns and inflation. In light of the theoretical discussion above, could it be
that the results in those two studies are due to the fact that long-horizon returns and
long-horizon inflation are constructed by summing over short-horizon variables?

5.2.1. Nominal stock returns and inflation

Boudoukh and Richardson focus on the regression
P5

i¼1 Rtþi ¼ a5 þ
b5
P5

i¼1 ptþi þ et; where Rt is the stock return, pt is the inflation rate, and the null
is b5 ¼ 1: This long-horizon regression corresponds to case 4. The tests in the
original study are conducted with standard normal asymptotic critical values. To
remedy measurement problems that might arise from using ex post instead of ex ante
inflation, the authors also estimate the above regression using several instruments,
one of which is lagged long-horizon inflation,

P5
i¼1 pt�5þi: I revisit the OLS and the

instrumental variable (IV) calculations using the estimates from Boudoukh and
Richardson, Tables 1 and 2. The normalized t-statistic is computed by dividing the
reported t-statistic by the square root of the sample size and its p-value is obtained
from simulations. The results are presented in Panel A of Table 8 for the entire
sample and for two subsamples.
I obtain an estimate of #d ¼ 0:04 (see Table 5) using the data from Siegel (1992) and

Schwert (1990) and simulate the limiting distribution from Theorem 5. The estimates
of d for the subsamples are very close to the one from the entire sample. Since there is
no reasons to suspect variations in this parameter, I use the more precise estimate
from the 1802–1990 period. In this application, given that no appropriate model is
available to consistently estimate c; I use #cMUE: As discussed in the previous section,
when d is small (in absolute value), the limiting distribution of the t=

ffiffiffiffi
T

p
statistic will

vary little with c: I experimented with other values of the local-to-unity parameter,
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Table 8

Fisher’s equation

Horizon #b t t=
ffiffiffiffi
T

p
P-value

Panel A: stock returns

Period: 1802–1990

5 years 0.524 �2.736 �0.200 0.27

IV: Lagged 5 years 1.820 0.752 0.055 0.56

Period: 1870–1990

5 years 0.462 �2.093 �0.191 0.28

IV: Lagged 5 years 1.434 0.559 0.041 0.55

Period: 1914–1990

5 years 0.432 �11.360 �1.303 0.01

IV: Lagged 5 years 2.120 0.941 0.069 0.58

Panel B: interest rates

Period: 1953–1990

3 months 0.663 �5.507 �0.261 0.21

Period: 1953–1979

3 months 1.188 2.642 0.150 0.66

Period: 1979–1990

3 months 0.235 �3.027 �0.505 0.07

Period: 1982–1990

3 months 0.125 �5.573 �0.569 0.05

Notes: Panel A of Table 8 reports the OLS estimate of regressing the five-month nominal stock return on

the five-month inflation rate. The values in the first row of each table are taken from Boudoukh and

Richardson (1993), Table 1. The values in the second row labeled ‘‘IV: Lagged 5 years’’ are taken from

Boudoukh and Richardson (1993), Table 2, case ii. The third column is the appropriately normalized

t=
ffiffiffiffi
T

p
statistic. The last column reports the percentile of the t=

ffiffiffiffi
T

p
statistic, under the null of a full Fisher

effect (Mishkin, 1992; Gali, 1988), or b ¼ 1: This long-horizon regression corresponds to case 4. The

distribution of the normalized t-statistic is simulated with #d ¼ 0:04 and #cMUE ¼ ð�9;�12;�7Þ; where c is

estimated using Stock’s (1991) median unbiased estimator for each period. The test cannot reject the null

in two out of the three periods for the OLS case, contrary to the conclusions reached from the non-

normalized t-test. For the IV case, the null cannot be rejected in any period. The 95% sub-bound

confidence interval is ½�0:715; 0:712	 for the OLS case and ½�0:725; 0:718	 for the IV case. The first two

columns in Panel B of Table 8 report the OLS estimate of regressing the three-month inflation rate on the

three-month nominal interest rate and the t-statistic under the null b ¼ 1: The values are taken from

Mishkin (1992), Table 1. The last two columns present the normalized t=
ffiffiffiffi
T

p
statistic and its percentile

under the null of a full Fisher Effect. The nuisance parameters d and c are set to equal their corresponding

estimates, or #d ¼ 0:06 and #cCONSISTENT ¼ �1; where the last estimate is taken from Valkanov (1998). This

long-horizon regression corresponds to case 4. Unlike the t-statistic, the t=
ffiffiffiffi
T

p
statistic cannot reject the

null. However, the evidence for a full Fisher effect is less convincing for the last two subperiods. A similar

conclusion was reached by Mishkin (Tables 3–4) using Monte Carlo simulations. The 95% sup-bound

(conservative) confidence interval is ½�0:712; 0:711	:
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and the results were almost identical. In fact, the sup-bound intervals were very
similar to those obtained with #cMUE: The percentiles of the t=

ffiffiffiffi
T

p
statistic, computed

under the null b ¼ 1; are reported in column 4. Note that the statistics in the IV case
will have a slightly different asymptotic distribution because of the lags. The results
from Theorem 4 for the IV case are: Tð #b� bÞ ) s11=oF1ðW

m
1 ðs; lÞ; %W

m
2ðs �

l; sÞÞt #b=T1=2 ) F2ðW
m
1 ðs; lÞ; %W

m
2ðs � l; sÞÞ; and R2-p1:

Rejection would occur if the statistic fell in the tails of the distribution. Values
lower than 0.025 or higher than 0.975 indicate rejection at the 5% level. For the OLS
case, the null of a full Fisher effect cannot be rejected at the 5% level, except for the
1914–1990 subperiod, where it cannot be rejected at the 1% level. This conclusion
contradicts the one from the usual t-statistics, where the rejection seems to be
categorical in all periods. In the IV case, the null cannot be rejected for any period. I
also performed tests under the null b ¼ 0; corresponding to case 1. The null is
rejected at all levels of significance, thus providing an indirect indication of good
testing power. To conclude, a re-examination of the evidence in Boudoukh and
Richardson (1993) supports a Fisher effect in the OLS and IV case.

5.2.2. Inflation and nominal interest rates

Mishkin (1992) focuses on a similar regression using monthly macroeconomic
data described in Mishkin (1990). The regressor is the three-period interest rate,
whereas the regressand is the three-period inflation.4 Despite the relatively small
overlap in the creation of the new series, Monte Carlo simulations conducted by the
author (Tables 3–4) convinced me that my asymptotic approximations can
appropriately be used in this case. As mentioned above, Mishkin (1992) concludes
that the correct 5% critical value for the t-test is 14 for the entire sample, and 20 for
the 1953–1979 subsample. Recalling Fig. 1, those values are in accord with what one
would expect in case 4 when using the non-rescaled t-statistic. In fact, Mishkin
remarks that the ‘potential for a spurious regression result between the level of
interest rates and future inflation is thus very high’ (Mishkin, 1992, p. 203).
However, he fails to notice the possibility of rejecting the null of a full Fisher effect,
b ¼ 1; when it is true, as a direct result of creating long-horizon variables. Indeed,
b ¼ 1 is rejected using conventional critical values (Mishkin, 1992, Table 1).
We test the null b ¼ 1 by rescaling the t-statistic, reported in Mishkin (1992), and

simulating its limiting distribution according to Theorem 5. The results are reported
in Panel B of Table 8, for the period 1953–1990 and different subperiods. The last
column shows the percentile of the computed t=

ffiffiffiffi
T

p
statistic under the null, and for

d ¼ 0:06 (see Table 5). I take the estimate of #cCONSISTENT; obtained in Valkanov
(1998), for the same short interest rate process.5 The estimate is in the range ð�3;�1Þ
depending on the sample period. However, as pointed out in Section 4, the limiting

4Let pt ¼ logðPtÞ; where Pt is the price level at time t: The three-period inflation is computed as

p3t ¼ pt � pt�3 ¼ pt � pt�1 þ pt�1 � pt�2 þ pt�2 � pt�3 ¼ p1t þ p1t�1 þ p1t�2: More generally, ð1� LkÞYtþk ¼
ð1� LÞð1þ L þ?þ Lk�1ÞYtþk ¼

Pk
i¼1 DYtþi:

5Valkanov (1998) uses the expectations hypothesis of the term structure as a way of imposing a long-

horizon restriction.
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distribution of t=
ffiffiffiffi
T

p
will be ‘‘almost’’ invariant to different values of c due to the

small correlation d:
If inference is conducted using the t-statistic (column 2) and standard normal

critical values, the null would be rejected in all periods at usual significance levels.
Rejection occurs because the t-statistic does not converge asymptotically to a well-
defined distribution (Theorem 5). If we compute the t=

ffiffiffiffi
T

p
statistic, the null cannot

be rejected at the 5% level (two-sided test) for any of the subperiods. The evidence
for a full Fisher effect is weaker, but still significant, in the post-1979 period. Mishkin
(1992) reaches the same conclusion by conducting a series of Monte Carlo
simulations (his Table 4), even though he does not provide an econometric
explanation of the results.
The t=

ffiffiffiffi
T

p
tests of a long-horizon Fisher effect in the stock (Boudoukh and

Richardson, 1993) and bond (Mishkin, 1992) markets remarkably lead us to the
same conclusion. There is strong evidence of a full Fisher effect for the periods
before 1979. In the post-1979 era, the evidence is still present, but not as convincing.

6. Conclusion

I analyze four ways of conducting long-horizon regressions that have frequently
been used in empirical finance and macroeconomics. The least squares estimator of
the slope coefficient, its t-statistic, and the R2 have non-standard asymptotic
properties. I reach several conclusions. First, the coefficient is not always consistently
estimated. For reliable estimates, one must specify regressions by aggregating both
the regressor and the regressand (cases 2 and 4), i.e., running one long-horizon
variable against another. Second, the standard t-statistic does not converge
asymptotically to a well-defined distribution in any of the cases. The practical
implication is that an increase in the horizon of the regression will result in higher t-
values. Therefore, testing cannot be conducted using the customary standard normal
critical values, since it would most likely lead to rejecting the null very often, even
when it is true. In order to conduct asymptotically valid tests, I propose the t=

ffiffiffiffi
T

p
statistic, which has the virtue of being easily computed. Its limiting distribution,
although non-normal, is fast to converge, easy to simulate, and depends on only one
nuisance parameter that can be estimated consistently. Third, the R2 in long-horizon
regressions does not converge in probability under the null in three of the cases.
Therefore, it cannot be interpreted as a measure of the goodness of fit in the
regression. Fourth, I provide a precise and consistent estimate of the nuisance
parameter c; which plays a crucial role in all distributions, particularly when the
correlation between the residuals is high.
The above results are applicable whenever long-horizon regressions are used.

The tendency of long-run methods to produce ‘‘significant’’ results, no matter what
the null hypothesis, should neither come as a surprise, nor be taken as conclusive
evidence. In light of the present arguments, the tests in long-horizon studies must
be re-evaluated. The last section of this paper employs the proposed t=

ffiffiffiffi
T

p
statistic

to re-examine the predictability of returns in Fama and French (1988) using
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dividend yields and the dividend-price ratio. I find little predictability for the periods
before World War II. In the post-war period, the dividend-price ratio and
the dividend yield seem to have some predictive power, but the evidence is not as
striking as previously maintained. In another application, I re-visit the conclusions
from the long-run Fisher effect literature. While there is strong evidence for a full
Fisher effect during the periods before 1979, the post-1979 results are not entirely
convincing.

Appendix A

Proof of Lemma 1. Recall that 1=oT1=2Xt ) JcðsÞ; where from now on t ¼ ½sT 	 and
o2 ¼ s222=bð1Þ: Also, recall that Qk

t ¼
Pk�1

i¼0 Xtþi: Letting k ¼ ½lT 	; we can
write 1=oT3=2Qk

t ¼ 1=T
Pk�1

i¼0 Xtþi=oT1=2 )
R sþl

s
%JcðtÞ dt � %Jcðs; lÞ; using the

continuous mapping theorem (CMT) to prove part 1. Similarly, for part 2,
1=oT3=2 %Q

k ¼ 1=ðT � kÞ
PT�kþ1

t¼1 1=oT3=2Qk
t ) 1=ð1� lÞ

R 1�l
0

%Jcðs; lÞ ds; using the
CMT. Then, we can write, 1=oT3=2ðQk

t � %Q
kÞ ) %Jcðs; lÞ � 1=ð1� lÞ

R 1�l
0

%Jcðs; lÞ
ds � %J

m
c ðs; lÞ:

If b ¼ 0; then Yt ¼ e1;t: Recall that Zk
t ¼

Pk�1
i¼0 Ytþiþ1 and 1=s11T1=2Zk

t ¼
1=s11T1=2

Pk�1
i¼0 e1;tþiþ1 ¼ 1=s11T1=2f

Ptþk
i¼1 e1;i �

Pt
i¼1 e1;ig ) W1ðs þ lÞ � W1ðsÞ �

W1ðs; lÞ; finishing part 3. Similarly, 1=s11T1=2 %Z
k ¼ 1=ðT � kÞ

PT�k
t¼1 1=s11T1=2Zk

t )
1=ð1� lÞ

R 1�l
0 W1ðs; lÞ ds; and 1=s11T1=2ðZk

t � %Z
kÞ ) W1ðs; lÞ � 1=ð1� lÞ

R 1�l
0 W1

ðs; lÞ ds � W
m
1 ðs; lÞ; thus completing the proof of part 4.

When ba0; Yt ¼ bXt�1 þ e1;t: Therefore, 1=oT3=2Zk
t ¼ 1=oT3=2

Pk�1
i¼0 Ytþiþ1 ¼

b1=oT3=2
Pk�1

i¼0 Xtþi þ 1=oT3=2
Pk�1

i¼0 e1;tþi ) b %Jcðs; lÞ using part 1 and
1=oT3=2

Pk�1
i¼0 e1;tþi ¼ opð1Þ: Part 6 is proven in exactly the same fashion. &

Proof of Theorem 2. By definition,

#b ¼

PT�k
t¼1 ðZk

tþ1 � %Z
kÞðXt � %XÞPT�k

t¼1 ðXt � %XÞ2

¼
1=T

PT�k
t¼1 ððZk

tþ1 � %Z
kÞ=T1=2ÞððXt � %XÞ=T1=2Þ

1=T
PT�k

t¼1 ððXt � %XÞ=T1=2Þ2

)
s11
o

R 1�l
0 W

m
1 ðs; lÞJ

m
c ðsÞ dsR 1�l

0 ðJm
2 ðsÞÞ

2 ds

¼
s11
o

F1ðW
m
1 ðs; lÞ; J

m
c ðsÞÞ

using Lemma 1, part 4 and the CMT. Under the null, the t-statistic is

t ¼
ð #b�0Þð

PT�k

t¼1
ðXt� %XÞ2Þ1=2

s
:
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In our case,

t

T1=2
¼

#bð1=T
PT�k

t¼1 ððXt � %XÞ=T1=2Þ2Þ1=2

ðs2=TÞ1=2

)

R 1�l
0 W

m
1 ðs; lÞJ

m
c ðsÞ ds

½
R 1�l
0 ðWm

1 ðs; lÞÞ
2 ds

R 1�l
0 ðJm

c ðsÞÞ2 ds � ð
R 1�l
0 W

m
1 ðs; lÞJ

m
c ðsÞ dsÞ2	1=2

¼F2ðW
m
1 ðs; lÞ; J

m
c ðsÞÞ:

The coefficient of determination is defined as

R2 ¼ #b
PT�k

t¼1 ðXt � %XÞ2PT�k
t¼1 ðZk

tþ1 � %Z
kÞ2

)
ð
R 1�l
0 W

m
1 ðs; lÞJ

m
c ðsÞ dsÞ2R 1�l

0
ðWm

1 ðs; lÞÞ
2 ds

R 1�l
0

ðJm
c ðsÞÞ2 ds

¼F3ðW
m
1 ðs; lÞ;W

m
2 ðsÞÞ: &

Proof of Theorem 3. The OLS estimator is

#b ¼

PT�k
t¼1 ðZk

tþ1 � %Z
kÞðQk

t � %Q
kÞPT�k

t¼1 ðQk
t � %Q

kÞ2
:

Using the results in Lemma 1 and the CMT

Tð #b� 0Þ ¼
1=T

PT�k
t¼1 ððZk

tþ1 � %Z
kÞ=T1=2ÞððQk

t � %Q
kÞ=T2Þ

1=T
PT�k

t¼1 ððQk
t � %Q

kÞ=T3=2Þ2

)
s11
o

R 1�l
0 W

m
1 ðs; lÞ %J

m
c ðs; lÞ dsR 1�l

0 ð %Jm
c ðs; lÞÞ

2 ds

¼
s11
o

F1ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ

as required.
The t-statistic under the null is

t ¼
ð #b� 0Þð

PT�k
t¼1 ðQk

t � %Q
kÞ2Þ1=2

s
and

t

T1=2
¼

Tð #b� 0Þð1=T
PT�k

t¼1 ððQk
t � %Q

kÞ=T3=2Þ2Þ1=2

ðs2=TÞ1=2

)

R 1�l
0 W

m
1 ðs; lÞ %J

m
c ðs; lÞ ds

½
R 1�l
0 ðWm

1 ðs; lÞÞ
2 ds

R 1�l
0 ð %Jm

c ðs; lÞÞ
2 ds � ð

R 1�l
0 W

m
1 ðs; lÞ %J

m
c ðs; lÞ dsÞ2	1=2

¼F2ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ:
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In a similar fashion,

R2 ¼ #b
PT�k

t¼1t ðQ
k
t � %Q

kÞ2PT�k
t¼1 ðZk

tþ1 � %Z
kÞ2

)
ð
R 1�l
0

W
m
1 ðs; lÞ %J

m
c ðs; lÞ dsÞ2R 1�l

0 ðWm
1 ðs; lÞÞ

2 ds
R 1�l
0 ð %Jm

c ðs; lÞÞ
2 ds

¼F3ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ;

completing the proof. &

Proof of Theorem 4. The proofs follow exactly the same pattern. The OLS estimator
is

#b ¼

PT�k
t¼1 ðZk

tþ1 � %Z
kÞðXt � %XÞPT�k

t¼1 ðXt � %XÞ2
:

However, since ba0; we have ðZk
tþ1 � %Z

kÞ=T3=2 ) b %J
m
c ðs; lÞ from part 6 of Lemma 1.

Then,

b
T

¼
1=T

PT�k
t¼1 ððZk

tþ1 � %Z
kÞ=T3=2ÞððXt � %XÞ=T1=2Þ

1=T
PT�k

t¼1 ððXt � %XÞ=T1=2Þ2
) b

R 1�l
0

%J
m
c ðs; lÞJ

m
c ðsÞ dsR 1�l

0 ðWm
2 ðs; lÞÞ

2 ds
:

Under the null of b ¼ b0; the t-statistic is,

t ¼
ð #b� b0Þð

PT�k
t¼1 ðXt � %XÞ2Þ1=2

s
:

We have to normalize it by T1=2 to get

tffiffiffiffi
T

p ¼
ðð #b� bÞ=TÞð1=T

PT�k
t¼1 ððXt � %XÞ=T1=2Þ2Þ1=2

ðs2=T3Þ1=2

)

R 1�l
0

W
m
2 ðs; lÞ %J

m
c ðs; lÞ ds

½
R 1�l
0 ðWm

2 ðs; lÞÞ
2 ds

R 1�l
0 ð %Jm

c ðs; lÞÞ
2 ds � ð

R 1�l
0 W

m
2 ðs; lÞ %J

m
c ðs; lÞ dsÞ2	1=2

¼F2ðJm
c ðsÞ; %J

m
c ðs; lÞÞ:

Finally,

R2 ¼ ð #bÞ2
PT�k

t¼1t ðXt � %XÞ2PT�k
t¼1 ðZk

tþ1 � %Z
kÞ2

¼
#b
T

 !2
1=T

PT�k
t¼1t ððXt � %XÞ=T1=2Þ2

1=T
PT�k

t¼1 ððZk
tþ1 � %Z

kÞ=T3=2Þ2

)
ð
R 1�l
0

W
m
2 ðs; lÞ %J

m
c ðs; lÞ dsÞ2R 1�l

0 ðWm
2 ðs; lÞÞ

2 ds
R 1�l
0 ð %Jm

c ðs; lÞÞ
2 ds

¼F3ðJm
c ðsÞ; %J

m
c ðs; lÞÞ: &

Proof of Theorem 5. This case deserves more attention. First, notice that Zk
tþ1 �

%Z
k ¼ bðQk

t � %Q
kÞ þ Rt � %R; where Rt ¼

Pk�1
i¼0 etþiþ1 and %R ¼ 1=T

PT�k
t¼0 Rt: Also,
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ðRt � %RÞ=T1=2 ) W
m
1 ðs; lÞ: The OLS estimator is

#b ¼

PT�k
t¼1 ðZk

tþ1 � %Z
kÞðQk

t � %Q
kÞPT�k

t¼1 ðQk
t � %Q

kÞ2
¼ bþ

PT�k
t¼1 ðRk

t � %RÞðQk
t � %Q

kÞPT�k
t¼1 ðQk

t � %Q
kÞ2

:

Therefore,

Tð #b� bÞ ¼
1=T

PT�k
t¼1 ððRk

t � %RÞ=T1=2ÞððQk
t � %Q

kÞ=T3=2Þ

1=T
PT�k

t¼1 ððQk
t � %Q

kÞ=T3=2Þ2

)
s11
o

R 1�l
0

W
m
1 ðs; lÞ %J

m
c ðs; lÞ dsR 1�l

0 ð %Jm
c ðs; lÞÞ

2 ds

¼
s11
o

F1ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ:

Using similar steps, we can show that

tffiffiffiffi
T

p )

R 1�l
0 W

m
1 ðs; lÞ %J

m
c ðs; lÞ ds

½
R 1�l
0

ðWm
1 ðs; lÞÞ

2 ds
R 1�l
0

ð %Jm
c ðs; lÞÞ

2 ds � ð
R 1�l
0

W
m
1 ðs; lÞ %J

m
c ðs; lÞ dsÞ2	1=2

¼F2ðW
m
1 ðs; lÞ; %J

m
c ðs; lÞÞ:

Lastly,

R2 ¼
#b
2 PT�k

t¼1 ðQk
t � %QÞ2

b2
PT�k

t¼1 ðQk
t � %QÞ2 þ 2b

PT�k
t¼1 ðQk

t � %QÞðRk
t � %RÞ þ

PT�k
t¼1 ðRk

t � %RÞ2
:

Dividing the numerator and the denominator by b2
PT�k

t¼1 ðQk
t � %QÞ2; we obtain

R2 ¼
#b
2
=b2

1þ opð1Þ þ opð1Þ
-p1: &

Appendix B

Valkanov (1998) proposes to use information provided by an economic model in
order to consistently estimate c: The procedure in Valkanov (1998), although
yielding the most precise estimates, is conditioned upon having a model that
establishes a long-horizon restriction. Since Campbell and Shiller (1988) provide
such a relation in the excess returns/dividend yield case, I use their framework to
estimate c:
The model used to estimate c is the log-linearized dynamic Gordon model used in

Campbell and Shiller (1988), who show that the log stock return, rtþ1; can be written
as rtþ1Ek þ rptþ1 þ ð1� rÞdtþ1 � pt; with p and d denoting the log stock price and
log dividend, respectively, and k and r are parameters of the linearization.6 We
may rearrange this expression as rtþ1Ek � rxtþ1 þ xt þ Ddtþ1; where x � d � p

is the log dividend yield. Assuming the log dividend yield itself follows a

6In particular, k � �logðrÞ � ð1� rÞlogð1=r� 1Þ and r � 1=ð1þ expðd � pÞÞ:
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first-order autoregression

xtþ1 ¼ fxt þ utþ1

and substituting this into the previous expression, we have rtþ1Ek þ ð1� rfÞxt þ
etþ1; where etþ1 � Ddtþ1 � rutþ1 is a stationary variable. In other words, Etrtþ1Ek þ
b1xt; where b1 ¼ ð1� rfÞ; and the subscript under the b signifies that we are
using one-period returns. Using similar calculations, we can show that the
k-period continuously compounded return, rk

tþ1; defined as rk
tþ1 ¼

Pk
i¼0 rtþ1þi; can

be written as

rk
tþ1E *k þ ð1� rfÞ

Xk�1
i¼0

fi

" #
xt þ *etþ1E *k þ bkxt þ *etþ1 ð3Þ

where bk ¼ ð1� rfÞ
Pk�1

i¼0 fi: This is the long-horizon regression in Fama and
French (1988) and Campbell et al. (1997), and corresponds to my case 1. The
additional insight is that I have used the log-linearized model to impose the
restriction bk ¼ ð1� rfÞ

Pk�1
i¼0 fi; which links bk and f: Given that k ¼ ½lT 	; and r

is close to 1,

lim
T-N

b½lT 	 ¼ 1� ecl:

Since we can estimate bk consistently, we can also find a consistent estimate of c by
using the transformation #cCONSISTENT ¼ logð1� #bkÞ=l; where #bk is the least squares
estimate in (3). Moreover, we can use the delta method to find the asymptotic
distribution of cCONSISTENT: The estimator is super-consistent converging at rate T ;
and its asymptotic distribution is a mixture of normals (see Valkanov, 1998, for more
details). The central idea in the above estimation procedure is to use information
provided by a model in order to estimate c:
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