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Abstract

When a rate of return is regressed on a lagged stochastic regressor, such as a dividend
yield, the regression disturbance is correlated with the regressor's innovation. The OLS
estimator's "nite-sample properties, derived here, can depart substantially from the
standard regression setting. Bayesian posterior distributions for the regression para-
meters are obtained under speci"cations that di!er with respect to (i) prior beliefs about
the autocorrelation of the regressor and (ii) whether the initial observation of the
regressor is speci"ed as "xed or stochastic. The posteriors di!er across such speci"ca-
tions, and asset allocations in the presence of estimation risk exhibit sensitivity to those
di!erences. ( 1999 Elsevier Science S.A. All rights reserved.
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1There are many examples, including Fama and Schwert (1977), Roze! (1984), Keim and
Stambaugh (1986), Campbell (1987), and Fama and French (1988). See Kothari and Shanken (1997)
and Ponti! and Schall (1998) for recent examples.

2A few examples include Shiller et al. (1983), Fama (1984a), Keim and Stambaugh (1986), and
Fama and Bliss (1987).

3Early examples include Bilson (1981) and Fama (1984b).

1. Introduction

Many empirical studies in economics and "nance investigate regressions of
the form

y
t
"a#bx

t~1
#u

t
, (1)

where y
t
re#ects a change in an asset's price during period t, x

t~1
is a lagged

variable related to asset prices at the end of period t!1, and u
t

is
the regression's disturbance. Examples of such a regression occur when y

t
is

the return on a portfolio of common stocks and x
t~1

is a dividend yield,
book-to-price ratio, or a function of interest rates.1 A regression as in (1)
also arises in studies of "xed-income markets, where y

t
is the excess return

on a bond portfolio or a change in an interest rate and x
t~1

is an interest
rate, yield spread, or forward rate.2 Investigations of the foreign-exchange
market often include a regression as in (1), where y

t
is the change in the spot rate

of exchange and x
t~1

is the spread between the forward and spot exchange
rates.3

A standard regression-model assumption maintained here is that u
t
is serially

uncorrelated and has zero expectation conditional on Mx
t~1

, x
t~2

,2N. An
assumption that typically fails to hold in the examples noted above is that u

t
has

zero expectation conditional on M2, x
t~1

, x
t
, x

t`1
,2N, and this is the assump-

tion used to obtain "nite-sample results in the standard setting. In particular, if
x
t~1

depends on asset prices at the end of period t!1, then the value of that
regressor at the end of period t re#ects changes in asset prices during period t, as
does y

t
, so E(u

t
D x

t
, x

t~1
)O0. More generally,

E(u
t
D x

s
, x

w
)O0, s(t)w, (2)

since a price change during period t is correlated with the change in the regressor
over an interval that includes period t.

A consequence of (2) is that "nite-sample estimation and inference become less
straightforward, for at least two reasons. First, the ordinary least squares (OLS)
estimators of the coe$cients in (1), although consistent, are biased and have
sampling distributions that di!er from those in the standard setting, and
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4Early demonstrations of this point include Mankiw and Shapiro (1986) and Stambaugh (1986).
Monte Carlo or bootstrap simulations have been used for "nite-sample inference in this problem by
a number of studies, including Nelson and Kim (1993), in an investigation of stock-return predicta-
bility, Bekaert et al. (1997), in an investigation of the expectations hypothesis of the term structure,
and Mark (1995), in an investigation of exchange-rate predictability.

a classical or &frequentist' approach must account for such departures.4 Second,
di!erences between classical and Bayesian methods become more apparent in
the presence of (2), whereas those approaches are distinguished less often in the
standard regression setting. In the standard setting, classical con"dence inter-
vals correspond to Bayesian highest-posterior-density regions under di!use
priors, and the p-value for a positive one-tailed test of b"0 is identical to the
posterior probability that b)0 (see Box and Tiao, 1973). That correspondence
no longer obtains in the current setting, wherein a Bayesian could, for example,
assign low probability to b)0 at the same time the frequentist accepts that
hypothesis because its associated p-value is large. Such an example is provided
in this study, which addresses both classical and Bayesian issues.

The example chosen for illustration is one in which y
t

is the return on the
aggregate stock market portfolio and x

t~1
is that portfolio's dividend yield.

Such a regression has received substantial attention in the "nance literature, but
an additional motivation for selecting this example highlights another distinc-
tion sometimes made in contrasting classical and Bayesian approaches: data
description versus decision making. On one hand, a classical p-value or con"-
dence region conveys information about the data in an objective fashion, and
one might argue that the dependence on prior beliefs makes Bayesian analysis
less e!ective in communicating a description of the data (e.g., Stock, 1991). On
the other hand, one might argue that reporting implications for decisions
describes the data in a more relevant manner, and a Bayesian framework is
better suited to that purpose. Kandel and Stambaugh (1996), for example, use
a Bayesian framework to explore the implications for a stocks-versus-cash
allocation associated with a regression as in (1), where y

t
is the excess stock

return. They "nd that such a characterization of the data often communicates
a di!erent message than that delivered by p-values for the hypothesis b"0. The
regression of stock return on dividend yield a!ords an exploration of the study's
Bayesian methods in an asset-allocation context.

The article proceeds as follows. Sections 2}4 underscore the "nite-sample
nature of the regression problem along several dimensions. In Section 2, the
sampling distribution and moments of the OLS estimator of b are derived
analytically and computed for the regression of excess return on dividend yield.
The exact moments and p-values can exhibit large di!erences from their
counterparts in the standard regression setting. For example, in the overall 70-yr
period from 1927}1996, the bias equals one-third of the OLS estimate for that
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period, and the correct p-value for the hypothesis b"0 is roughly three times
the value based on the usual t-statistic.

Section 3 analyzes Bayesian posterior distributions for the regression coe$-
cients and "nds that those distributions exhibit sensitivity to what some might
view as minor di!erences in the prior or the likelihood function. For example,
treating the initial observation x

0
as stochastic and drawn from the regressor's

stationary distribution, as opposed to treating x
0

as a "xed value, can produce
a substantial di!erence in the posterior mean of b and in the maximum-
likelihood estimate, even in a 45-yr sample. The posterior distribution of b is
also sensitive to speci"cation of the prior, even when the di!erent speci"cations
are all intended to represent &noninformative' beliefs.

Section 4 considers an asset-allocation problem for an investor whose
perceived distribution of future returns is given by the predictive distribution
arising from one of the Bayesian speci"cations analyzed in Section 3. For
both short and long investment horizons, the optimal stock allocation of a buy-
and-hold investor exhibits sensitivity to the alternative speci"cations of the
prior and the likelihood. Also observed is the possibility that, at long
horizons, the investor might actually allocate more to stocks at lower levels of
the current dividend yield (i.e., at lower expected returns). That behavior arises
due to conditional skewness in the predictive distribution of long-horizon
returns. The skewness can be traced to e!ects of "nite-sample parameter
uncertainty or &estimation risk', particularly uncertainty about the regressor's
persistence.

The analyses in Sections 2}4 focus on settings in which a single independent
variable appears on the right-hand side of the predictive regression in (1).
This simplest setting proves useful in developing analytical results as well as
insights, but much of the methodology can be extended to a setting with
multiple predictive variables, as discussed in Section 5. Section 6 reviews the
conclusions.

2. Ordinary least squares in 5nite samples

It is assumed throughout that x
t

obeys a "rst-order autoregressive (AR(1))
process,

x
t
"h#ox

t~1
#v

t
. (3)

The vector (u
t
v
t
)@ is assumed to be normally distributed, independently across t,

with mean zero and covariance matrix

cov A C
u
t

v
t
D, [ut v

t
]B"R"C

p2
u

p
uv

p
uv

p2
v
D. (4)
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This distributional assumption permits exact "nite-sample results, both
classical and Bayesian. In this section, it is also assumed that DoD(1. The
latter assumption implies stationarity of the regressor, although, as in the
regression of return on dividend yield, the value of o can be close to one.
Asymptotic approaches to inferences about b are developed under weaker
distributional assumptions in Elliott and Stock (1994) and Cavanagh et al.
(1995), where o is entertained as &local to unity' in the sense that it approaches
one as the sample size grows. The OLS estimators of the coe$cients in (1) are
given by

C
a(

bK D"(X@X)~1 X@y, (5)

where y"(y
1
,2, y

T
)@, X"[n

T
x
(l)

], x
(l)
"(x

0
,2, x

T~1
)@, and n

T
denotes

a ¹]1 vector of ones.
Before proceeding to a more formal treatment of "nite-sample properties, it is

useful to understand how bK is biased under the simplest possible setting in which
the estimator is de"ned. That is, consider repeated samples of only two observa-
tions, (x

0
, y

1
) and (x

1
, y

2
), so bK in each sample is simply the slope of the line

connecting those points. For this purpose let b"0, o+1, and p
uv
(0. First

consider the samples in which x
1
'x

0
, or essentially v

1
'0 (since o+1). On

average across such samples, y
2
"E(y

t
) (since b"0), y

1
(E(y

t
) (since p

uv
(0

implies u
1

is on average negative when v
1
'0), and therefore bK is positive (since

y
2
'y

1
and x

1
'x

0
). On average across the samples in which x

1
(x

0
, or

v
1
(0, y

2
"E(y

t
) as before, but now y

1
'E(y

t
), so again bK is positive (since

y
2
(y

1
and x

1
(x

0
). Thus, on average across all samples, bK '0, i.e., bK is

upward biased. Note that if p
uv
'0, the same analysis leads to a downward bias

in bK . Note also that the bias disappears as p
uv

approaches zero, since the sign of
v
1

then has no association with that of u
1
. Finally, note that the bias shrinks as

o approaches zero, since the sign of x
1
!x

0
is then linked less tightly to the sign

of v
1

and, thereby, to the sign of y
2
!y

1
(although even with o"0 there is still

some association and hence some bias). As shown below, p
uv

and o play similar
roles in a more general setting with ¹ observations. Of course, as ¹ increases,
the scatter of points essentially becomes a horizontal cloud of these two-point
clusters (with b"0), and the bias in the "tted slope approaches zero.

The "nite-sample properties of bK can be derived by "rst recognizing that the
estimator can be represented as a ratio of quadratic forms.

Proposition 1. The xnite-sample distribution of bK !b depends on o and R but not on
a, b, or h, and

bK !b"
w@Aw

w@Bw
, (6)
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where w"(u@ x@
(l)
!k

x
n@
T
)@, u"(u

1
,2, u

T
)@, k

x
"E(x

t
), E(w)"0,

cov(w, w@)")"¸¸@"C
p2
u
I
T

p
uv

G

p
uv

G@ p2
v
H D, (7)

G is a ¹]¹ matrix whose (i, j) element is oj~i~1 for i(j and zero otherwise, H is
a ¹]¹ matrix whose (i, j) element is [1/(1!o2)]o@i~j@,

A"

1

2 C
0 F

F 0D, B"C
0 0

0 FD, (8)

F"I
T
!(1/¹)n

T
n@
T
, and I

T
denotes the ¹]¹ identity matrix.

Proof. See the appendix.

The representation of bK !b in (6) allows the distribution and moments of bK to
be derived analytically using results from the literature on quadratic forms. It
should be noted that the distribution and moments are unconditional, incorpor-
ating variability in x

t
, whereas sampling results in the standard setting are

typically conditioned on X. The cumulative distribution of bK , given by the
following proposition, relies on a result by Imhof (1961) for the distribution of
a quadratic form.

Proposition 2. For any xxed b
0
,

Prob(bK 'b
0
)"

1

2
#

1

pP
=

0

q~1
M
<
i/1

(1#t2
i
q2)~ni @4

]sin A
1

2

M
+
i/1

n
i
tan~1(t

i
q)B dq, (9)

where t
i
, i"1,2, M, denote the M distinct nonzero eigenvalues of

¸@[A!(b
0
!b)B]¸, and n

i
is the multiplicity of t

i
.

Proof. See the appendix.

The "nite-sample moments of bK , given in the following proposition, are
obtained by applying a result from Magnus (1986) to the representation given
in (6).

Proposition 3. For each integer s, 1)s((¹!1),

m@
s
"E([bK !b]s)"s2s+

i

c
s
(l

i
)P

=

0

qs~1D*D
s

<
j/1

(tr Rj)nij dq, (10)
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where the summation is over all vectors l
i
"(n

i1
, n

i2
,2, n

is
) whose s elements are

non-negative integers satisfying +s
j/1

jn
ij
"s,

c
s
(l

i
)"

s
<
j/1

[n
ij
!(2j)nij]~1, (11)

and where the 2¹]2¹ matrices * and R are constructed as follows. Let P be
a 2¹]2¹ matrix such that P@P"I

2T
and P@¸@B¸P"K, a diagonal matrix. Then

*"(I
2T

#2qK)~1@2 and R"*P@¸@A¸P*.

Proof. See the appendix.

The moments in Proposition 3 are noncentral, since E(bK )Ob, but the central
moments are easily obtained using standard relations between central and
noncentral moments (e.g., Kendall and Stuart, 1977, p. 58).

Corollary. Let m
s

denote the central moment E([bK !m
1
]s), where

m
1
"E(bK )"m@

1
#b. For 1(s((¹!1),

m
s
"

s
+
j/0
A

s

jB m@
s~j

(!m@
1
)j (12)

and, in particular,

m
2
"m@

2
!m@2

1
, (13)

m
3
"m@

3
!3m@

1
m@

2
#2m@3

1
, (14)

m
4
"m@

4
!4m@

1
m@

3
#6m@2

1
m@

2
!3m@4

1
. (15)

Table 1 reports "nite-sample properties of bK , under the normality assumption,
for a regression in which y

t
is the continuously compounded excess return

during month t on the value-weighted portfolio of NYSE stocks and x
t~1

is that
portfolio's dividend yield, de"ned as dividends paid during months t!12
through t!1 divided by the portfolio's value at the end of month t!1. The
portfolio's &excess' return is its rate of return minus the rate on a one-month
Treasury bill, where both returns are continuously compounded. Results are
shown across four sample periods. Part A of Table 1 reports the "nite-sample
bias, standard deviation, skewness (m

3
/m3@2

2
), and kurtosis (m

4
/m2

2
) of bK , as well

as the p-value for a test of b"0 versus b'0. The moments are computed using
Proposition 3, and the &true' p-value is computed as the probability in Proposi-
tion 2 with b set to zero and b

0
set equal to the sample value of bK . The required

integrals are computed using standard numerical integration methods. Comput-
ing the quantities in Part A requires the true (unknown) values of o and R. For
each sample period, o is set equal to that period's least-squares estimate from
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Table 1
Finite-sample properties of bK

The table reports "nite-sample properties of the ordinary least squares (OLS) estimator bK in the
regression

y
t
"a#bx

t~1
#u

t
.

The sampling properties are computed under the assumption that x
t
obeys the process

x
t
"h#ox

t~1
#v

t
,

where o2(1 and [u
t
v
t
]@ is distributed N(0, R), identically and independently across t. The true bias

and higher-order moments depend on o and R (with distinct elements p2
u
, p2

v
, and p

uv
). For each

sample period, those parameters are set equal to the estimates obtained when y
t
is the continuously

compounded return in month t on the value-weighted NYSE portfolio, in excess of the one-month
T-bill return, and x

t
is the dividend}price ratio on the value-weighted NYSE portfolio at the end of

month t. The moments in the standard setting are conditioned on x
0
,2, x

T~1
and ignore any

dependence of u
t
on those values. The p-values are associated with a test of b"0 versus b'0

Sample period

1927}1996 1927}1951 1952}1996 1977}1996

A. True properties
Bias 0.07 0.18 0.18 0.42
Standard deviation 0.16 0.33 0.27 0.45
Skewness 0.71 0.83 0.98 1.29
Kurtosis 3.84 4.14 4.62 5.83
p-value for b"0 0.17 0.42 0.15 0.64

B. Properties in the standard regression setting
Bias 0 0 0 0
Standard deviation 0.14 0.27 0.20 0.30
Skewness 0 0 0 0
Kurtosis 3 3 3 3
p-value for b"0 0.06 0.22 0.02 0.26

C. Sample characteristics and parameter values
bK 0.21 0.21 0.44 0.19
¹ 840 300 540 240
o 0.972 0.948 0.980 0.987
p2
u
]104 30.05 54.46 16.42 17.50

p2
v
]104 0.108 0.247 0.029 0.033

p
uv

]104 !1.621 !3.360 !0.651 !0.715

Eq. (3), and R is set equal to the sample covariance matrix of the least-squares
residuals from (1) and (3). Those values for o and &, as well as the sample size
¹ and the realized sample value of bK , are given in Part C of Table 1. Part B of the
table reports the corresponding moments and p-values implied by the standard
regression model. The standard deviations in Part B depend on p2

u
and are
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conditioned on the sample values of x
t~1

, which are assumed to be held "xed in
repeated samples in the standard setting.

The results in Table 1 reveal marked di!erences between the true "nite-
sample properties of bK and those implied by the standard setting. In this
application, bK is biased upward, positively skewed, and has higher variance and
kurtosis than the (normal) sampling distribution of the OLS estimator in the
standard setting. Even for the overall 70-yr period (¹"840), the bias (0.07) is
about one-third of the OLS estimate (0.21), and the skewness and kurtosis are
0.7 and 3.8. For the shortest and most recent period, still 20 years long
(¹"240), bK has a bias (0.42) nearly as large as its standard deviation (0.45) and
more than twice its realized value (0.19). When computed using the t-statistic for
the standard regression model, the one-tailed p-values for the hypothesis b"0
are equal to 0.06 for the overall 70-yr period and 0.02 for the 45-yr period from
1952}1996, whereas the true p-values for those periods are equal to 0.17 and
0.15.

The bias in bK is related to the bias in o( , the sample "rst-order autocorrelation
of x

t
. De"ne

C
hK
o( D"(X@X)~1X@x, (16)

where x"(x
1
,2, x

T
)@.

Proposition 4

E(bK !b)"
p
uv

p2
v

E(oL !o). (17)

Proof. See the appendix.

The bias in o( is negative, and since price appears in the denominator of
dividend yield, the unexpected return, u

t
, is negatively correlated with the

innovation in dividend yield, v
t
. In the regressions of return on dividend yield

used to construct Table 1, the value of p
uv

/p2
v
ranges between!13.6 and !22.3

across the four sample periods. Thus, from (17), the magnitude of the positive
bias in bK is many times that of the negative bias in o( . At the same time, b can be
of the same or smaller magnitude as o: the values of bK in Table 1 are all less than
0.5, whereas the values of o( range between 0.94 and 0.99. As a result, the bias in
o( can be only a small fraction of o, but the bias in bK can be a substantial fraction
of b. Exact "rst and second "nite-sample moments of o( , when DoD(1 and v

t
is

normal, are derived and analyzed by Sawa (1978) and Nankervis and Savin
(1988). The latter study reports, for example, that when ¹"200 and o"0.99,
the bias in o( is equal to !0.024, or only about 2.4% of o. With p

uv
/p2

v
"!15,
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Eq. (17) gives the corresponding bias in bK as 0.36, which can be a substantial
fraction of b. For both o( and bK in this example, the standard deviations of the
OLS estimators are of similar magnitudes to their biases, so the biases in o( and
bK are more comparable when viewed in that sense.

Under the normality assumption, a well-known approximation for the bias in
o( , to order 1/¹, is given by !(1#3o)/¹, as shown by Marriott and Pope (1954)
and Kendall (1954). Thus, Proposition 4 yields a similar approximation for the
bias in bK :

Corollary

E(bK !b)"!

p
uv

p2
v
A
1#3o

¹ B#O(1/¹2). (18)

The results in (17) and (18) appear in Stambaugh (1986). The error in the
approximation in (18) can be nontrivial, even for values of ¹ that seem large for
many purposes. In the regression of return on dividend yield, the true bias in bK is
equal to 0.42 for the 1977}1996 period (¹"240), as reported in Table 1,
whereas (18) gives a value of 0.35, which understates the bias by roughly 16%.
The relative error in the approximation is decreasing in ¹, and (18) understates
the true bias by about 4% for the example based on the 1927}1996 period
(¹"840).

As explained previously, the exact "nite-sample moments and p-values in
Table 1 depend on o and R. The true values of those parameters are unknown in
practice, so in any given application one cannot know precisely the exact
"nite-sample moments of bK . The "nite-sample properties in Table 1 are com-
puted using the values of o and R obtained in the OLS estimation. Many of
those computations are relatively insensitive to small changes in the parameters.
For example, if the value of o is increased from o( to o(#(1#3o( )/¹, a bias
correction of order (1/¹), the p-values and the biases of bK reported for the "rst
three sample periods in Part A of Table 1 are changed by no more than 0.01. The
standard deviations decline slightly, by 10% or less, whereas the skewness and
kurtosis both increase, typically by around 10%.

In the fourth subperiod, increasing o( by the bias in o( (conditional on o"o( )
produces a value greater than one, so that bias-adjusted estimate cannot be used
as a value of o in applying Propositions 2 and 3. Such an outcome illustrates
a potentially unappealing aspect of estimating b and o by applying bias correc-
tions. Suppose one assumes DoD(1 and estimates o by adding the bias correc-
tion to the OLS estimator o( . This procedure can produce a value greater than
one, as illustrated here, and there might be reluctance to accept such an estimate
as a sensible value of o, even with the knowledge that this bias-corrected
estimator would have the correct average across hypothetical repeated samples.
Given the link in (17) between the biases in o( and bK , applying the corresponding
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bias correction to bK might then also be unappealing. Alternative approaches for
obtaining estimates of b and o from the sample at hand are pursued in the next
section.

3. Bayesian approaches

Finite-sample inferences about the parameters in (1) can also be pursued in
a Bayesian setting. The results of the previous section indicate that, based on
correctly computed p-values, the hypothesis that dividend yields fail to predict
monthly stock returns would not be rejected at conventional signi"cance levels.
As mentioned earlier, in the standard Bayesian regression model with di!use
priors, the one-tailed p-value for the hypothesis b"0 is identical to the poste-
rior probability that b)0. In the presence of (2), that "nite-sample equivalence
between p-values and posterior tail probabilities no longer obtains. In the
standard setting, b is the mean of the sampling distribution of bK , and bK is the
mean of the posterior distribution of b. In the current setting, b is no longer the
sampling mean of bK , as discussed in the previous section, although bK is still the
posterior mean of b for a particular speci"cation of the prior and likelihood, as
will be explained below. In general, however, the estimates and inferences
delivered by a Bayesian approach to the regression problem considered here
depart from their classical counterparts.

3.1. Methodology

Let b"(a b h o)@. A posterior density for b and R is computed as

p(b, RDD)Jp(b, R)¸(b, R; D), (19)

where p(b, R) denotes the prior density, ¸ denotes the likelihood function, and
D denotes the available data, which consist of z"(y@x@)@ and the initial observa-
tion of the regressor, x

0
. The marginal posterior p(bDD) is obtained by integrat-

ing (19) with respect to R and the other elements of b. The mean of the posterior
density is commonly proposed as an estimator in a Bayesian setting, and values
of E(bDD) are reported here for several alternative speci"cations of the prior and
the likelihood. The posterior mean has minimum posterior expected loss under
a squared-error loss function (see Berger, 1985). In addition, the posterior
density yields probabilities for composite hypotheses, such as prob(b)0), and,
as will be observed, the inferences associated with such probabilities can con-
trast with those provided by frequentist p-values.

Recall that the disturbance vector (u
t
v
t
)@ is assumed to obey a bivariate

normal distribution. It is well known that the OLS estimators in (5) and (16) are
then also maximum-likelihood estimators (MLEs) when the initial observation
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of the regressor, x
0
, is assumed to be nonstochastic. The likelihood function

under the latter assumption, the &conditional' likelihood, is given by

¸
#
(b, R; D)"p(zDx

0
, b, R)

"(2pDRD)~(T@2) expM!1
2
(z!Zb)@(R~1?I

T
)(z!Zb)N, (20)

where Z"I
2
?X, and (20) is maximized at

bK "(a( bK hK o( )@"(Z@Z)~1Z@z. (21)

As explained below, bK is also the posterior mean of b when the likelihood
function is given by (20) and p(b, R) follows the standard speci"cation for
a noninformative prior in a multivariate regression model.

A common approach to specifying a noninformative or &di!use' prior
follows from Je!reys (1961). If d denotes a vector containing the unknown
parameters, then an application of Je!reys's invariance arguments leads to the
speci"cation

p(d)JK!EA
L2 log ¸(d; D)

LdLd@ B K
1@2

, (22)

where the expectation is with respect to p(DDd). The likelihood function in (20)
also arises in the standard multivariate regression model, wherein Z is essen-
tially viewed as nonstochastic. In that model, the prior is derived under the
assumption p(b, R)"p(b)p(R), and (22) is then applied separately for b and R.
That procedure leads to the di!use prior

p(b, R)JDRD~3@2. (23)

If the prior in (23) is combined with the conditional likelihood function in (20),
then the resulting posterior density for b, a matrix t distribution, is given by
standard results for the Bayesian multivariate regression model. That posterior
has the property that E(bDD)"bK even though, as discussed in the previous
section, E(bK )Ob, where p(DDb, R) is used to take the latter expectation. For
a Bayesian analysis of the standard multivariate regression model, including
a discussion of the Je!reys prior and the resulting posterior densities, see Zellner
(1971, pp. 41}53 and 224}233.).

Although bK emerges as the posterior mean of b with the likelihood in (20) and
the prior in (23), that speci"cation has several potentially objectionable charac-
teristics. The likelihood function in (20) is subject to the criticism that treating
the initial observation x

0
as nonstochastic can be inappropriate. If x

0
is

nonstochastic, then that observation provides essentially no information about
the unknown parameters of the model, but additional information can be
provided by x

0
if it is instead a realization of the same stochastic process
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generating x
1
,2, x

T
. The latter scenario seems more likely in "nance and

economics, where x
t
is often a dividend yield, interest rate, or similar economic

variable. If, for example, DoD(1 and the process for x
t

has run for a subst-
antial time prior to the sample period, then x

0
is a realization of a normal

variate with mean h/(1!o) and variance p2
v
/(1!o2), so x

0
provides informa-

tion about h, o, and p
v
. In essence, if x

0
is stochastic, then p(b, RDx

0
) can di!er

from p(b, R), so using the latter prior with the conditional likelihood in (20) can
be inappropriate. When it is assumed that DoD(1, the density of x

0
given b and

R is given by

p(x
0
Db, R)"A

1!o2

2pp2
v
B

1@2
expG!

1!o2

2p2
v
Ax0

!

h
1!oB

2

H. (24)

The resulting &exact' likelihood function, which re#ects the stochastic nature of
x
0
, is

¸
%
(b, R; D)"p(z, x

0
Db, R)"p(zDx

0
, b, R)p(x

0
Db, R), (25)

where p(zDx
0
, b, R) is given in (20). Box and Jenkins (1970) derive &exact' likeli-

hood functions that incorporate the stochastic nature of the initial observations
for moving-average and autoregressive processes.

A possible objection to the prior in (23) is that nonstationary processes for
x
t

are entertained, i.e., a nonzero prior probability is assigned to DoD*1.
Stationarity of the predictive variable is a property that one might wish to
impose a priori in many applications. In (23), the implied prior density on o is
&#at', i.e., p(o) doJdo, so each "xed-length interval for o is assigned equal prior
mass. A #at prior is one speci"cation for noninformative beliefs about o, and the
analysis below considers an alternative to (23) that preserves a #at marginal
prior on o but simply con"nes that parameter to the stationary region, i.e.,
p(o)"1/2, o3(!1, 1). If the marginal priors on the remaining parameters
remain as in (23), then the joint prior is simply restated as

p(b, R)JDRD~3@2, o3(!1, 1). (26)

The priors in both (23) and (26) are #at with respect to o. The issue of #at
versus non-#at priors has received substantial attention in the context of the
AR(1) model in (3). Sims (1988) and Sims and Uhlig (1991) observe that,
conditional on x

0
, a #at prior for o and a normal likelihood imply a posterior

for o that is symmetric around o( , whereas the sampling distribution of o( is not
symmetric around o. Sims and Uhlig (1991) use such a framework to demon-
strate contrasts between Bayesian posterior tail probabilities and frequentist
p-values. Phillips (1991) argues that a #at prior for o does not appropriately
represent ignorance and suggests using a Je!reys prior instead. (Phillips explores
the use of a Je!reys prior for models in which stationarity is not imposed.) Box
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and Jenkins (1970) also suggest the use of Je!reys priors in Bayesian estimation
of time-series models. Citing earlier work by Perks (1947) and Welch and Peers
(1963), Phillips notes that one characterization of a Je!reys prior as representing
&ignorance' is that it assigns higher density to regions of the parameter space
where asymptotic con"dence regions have lower anticipated volume. These
priors also possess a well-known invariance property, as noted by Je!reys
(1961). That is, if an alternative set of parameters is obtained as a one-to-one
transformation of the original set, a Je!reys prior on the alternative set results in
a posterior density that is equivalent, under the change of variables, to the
posterior resulting from a Je!reys prior on the original set.

Recall that, in using (22) to derive (23), in which the prior on o is #at, the
regressors in Z are treated as "xed. As Phillips (1991) explains, this conditioning
is innocuous for the standard regression model but not for a time-series model,
in which the expectation in (22) should re#ect the stochastic nature of Z. For the
two-equation model considered here, as in the AR(1) model, an exact Je!reys
prior depends on the sample size ¹ and is complicated. As ¹ grows large and
DoD(1, the limiting form of the Je!reys prior is given by

p(b, R)J(1!o2)~1p2
v
DRD~5@2, o3(!1, 1), (27)

as shown in the appendix. For cases in which it is assumed that DoD(1 and the
exact likelihood in (25) is used to obtain posterior distributions, the limiting or
&approximate' Je!reys prior in (27) is entertained as an alternative to the #at
prior in (26).

Whether or not a Je!reys prior appropriately represents ignorance has long
been a point of contention in Bayesian statistics, and this study has nothing to
add in that regard. In any event, though, the prior in (27) assigns greater
probability to values of o near one than does the #at prior on o in (26). Since
o2 appears in (27), greater prior probability is also assigned to values of o near
!1. In the application considered here, modifying that prior with the restriction
0)o(1 has essentially no e!ect on the results, since the values of the
likelihood function are extremely small for o near !1. When x

t
is believed

a priori to be highly autocorrelated, which is perhaps a reasonable belief for
variables such as dividend yields and interest rates, the prior in (27) might be
favored over one that is #at with respect to o. Leamer (1991), for example,
discusses how aspects of such a non-#at prior can be appealing, even without the
usual justi"cations for Je!reys priors.

In the empirical analysis below, posterior distributions are computed for
various combinations of the prior densities in (23), (26) and (27) and the
likelihood functions in (20) and (25). The bounded #at prior in (26) can be
combined with both the conditional likelihood in (20) and the exact likelihood in
(25), whereas the unbounded #at prior in (23) is used only with the conditional
likelihood, since the exact likelihood requires DoD(1. The prior in (27) is
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5For a, b, h, and R set to any values (with R positive de"nite), let M̧ denote the minimum value of
the right-hand side of (20) for o3[!1, 1]. (Since the likelihood, given the other parameters, is
proportional to a normal density in o, M̧ occurs at one of the endpoints). Then the integral of the
product of the right-hand sides of (27) and (20), with respect to o3(!1, 1), is bounded below by
p2
v
DRD~5@2 M̧ :1

~1
(1!o2)~1 do"R. An integrable posterior density can (in principle) be obtained by

instead using the conditional likelihood to obtain the exact (and more complicated) Je!reys prior,
which depends on x

0
and ¹.

combined only with the exact likelihood, since combining that prior with the
conditional likelihood results in a nonintegrable posterior density.5

3.2. Results

Table 2 reports moments of the posterior distributions for b obtained under
the various combinations of priors and likelihoods described above. Also
reported for each speci"cation is the posterior probability that b)0. Results
are reported for the same four sample periods used in constructing Table 1.
Details of the calculations are provided in the appendix.

For the speci"cation in Part A, which combines the prior in (23) with the
conditional likelihood in (20), the posterior mean of b is equal to bK , and the
posterior probability that b)0 is virtually identical to the p-value in Table 1
computed in the standard regression setting. (There is a minor di!erence in the
degrees of freedom.) In other words, even though the frequentist sampling
moments and p-values computed under the standard assumptions depart sub-
stantially from the correct values, they nevertheless admit the standard Bayesian
interpretation when the prior and likelihood are given by (23) and (20). Thus, for
example, although the correct p-value for the hypothesis b"0 is equal to 0.17
for the 1927}1996 period (Table 1), the posterior probability that b)0 is only
0.06. This observation is analogous to a similar point made by Sims (1988) for
the AR(1) model.

The posterior probability that b)0 can di!er across the speci"cations in
Parts A}D of Table 2. For example, those probabilities range from 0.05 to 0.28
in Part D, whereas three of the four probabilities are 0.05 or less in Part C. In the
1977}1996 period, the posterior probability that b)0 is 0.26 in Part A but only
0.05 in Part C. Recall from Table 1, however, that the frequentist p-value for that
period is 0.64. In general, although di!erences in the Bayesian posterior tail
probabilities are clearly evident across the alternative speci"cations, none of
those probabilities are nearly as large as the p-value for the same period.

The posterior means of b range between 0.19 and 0.23 for the overall 70-yr
period, but those di!erences seem modest, at least when compared to that
period's bias in bK (0.07). Larger di!erences emerge in the shorter periods. For
example, in the 45-yr period from 1952 to 1996, the posterior mean in Part A
exceeds that in Part D by 0.16 (0.44 versus 0.28), which is about the same as the
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Table 2
Posterior distributions for b

The table reports Bayesian posterior moments for the slope coe$cient in the regression

y
t
"a#bx

t~1
#u

t
,

where y
t
is the continuously compounded return in month t on the value-weighted NYSE portfolio,

in excess of the one-month T-bill return, and x
t
is the dividend}price ratio on the value-weighted

NYSE portfolio at the end of month t. Also reported is the posterior probability that b)0. It is
assumed that x

t
obeys the process

x
t
"h#ox

t~1
#v

t
,

where [u
t
v
t
]@ is distributed N(0, R), identically and independently across t. The method in

Part A permits all elements of b"(a b h o)@ to take values in the interval (!R, R), whereas the
methods in Parts B}D restrict o to the interval (!1, 1). The methods in Parts A and B are based on
the &conditional' likelihood, which treats the initial observation x

0
as "xed. The methods in Parts

C and D are based on the &exact' likelihood, which treats x
0

as a realization from its unconditional
distribution.

Sample period

1927}1996 1927}1951 1952}1996 1977}1996

A. Conditional likelihood; p(b, R)JDRD~3@2, o3(!R, R)
Mean 0.21 0.21 0.44 0.19
Std. Dev. 0.14 0.28 0.20 0.30
Skewness 0 0 0 0
Kurtosis 3.01 3.02 3.01 3.03
Prob(b)0) 0.06 0.22 0.02 0.26

B. Conditional likelihood; p(b, R)JDRD~3@2, o3(!1, 1)
Mean 0.21 0.21 0.44 0.27
Std. Dev. 0.14 0.27 0.20 0.25
Skewness 0.02 0.04 0.12 0.45
Kurtosis 2.98 2.96 2.90 3.04
Prob(b)0) 0.06 0.22 0.01 0.13

C. Exact likelihood; p(b, R)JDRD~3@2, o3(!1, 1)
Mean 0.23 0.26 0.38 0.38
Std. Dev. 0.14 0.26 0.18 0.24
Skewness 0.03 0.08 0.24 0.36
Kurtosis 2.97 2.95 2.93 3.02
Prob(b)0) 0.05 0.16 0.01 0.05

D. Exact likelihood; p(b, R)J(1!o2)~1p2
v
DRD~5@2, o3(!1, 1)

Mean 0.19 0.17 0.28 0.24
Std. Dev. 0.14 0.28 0.18 0.24
Skewness 0.00 0.04 0.37 0.53
Kurtosis 2.95 2.90 2.84 3.18
Prob(b)0) 0.10 0.28 0.05 0.16
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bias in bK for that period (0.18). In the 20-yr period from 1977 to 1996, although
the di!erences across methods are not as large as the bias in bK for that period
(0.42), the posterior mean of b in Part C is twice the posterior mean in Part
A (0.38 versus 0.19).

The posterior means of b obey a simple relation to the posterior means of
o within a period. For all four Bayesian speci"cations,

E(bDo, R, D)"bK #
p
uv

p2
v

(o!o( ), (28)

as shown in the appendix. Taking expectations of (28) with respect to o and
R gives

E(bDD)+bK #E A
p
uv

p2
v
K DB [E(oDD)!o( ]. (29)

The approximation error, which is equal to the posterior covariance between
(p

uv
/p2

v
) and o, is small for the samples used here, and the posterior mean of p

uv
/p2

v
is very similar across methods within a given sample period. For the regression of
stock return on dividend yield, the posterior mean of p

uv
/p2

v
ranges roughly

between !14 and !22 across the four sample periods. The negative relation in
(28) produces a strong negative posterior correlation between b and o: that
correlation ranges from !0.89 to !0.94 across the various methods and periods.

The relation in (29) links di!erences across methods in the posterior means of
b to di!erences in the posterior means of o, and the latter di!erences can be
traced to the alternative speci"cations of priors and likelihoods. For example,
one regularity in Table 2 is that the posterior mean of b in Part C exceeds that in
Part D in every period. Therefore, from (29), the posterior mean of o is lower for
the speci"cation in Part C than in Part D, and that ordering is consistent with
the fact that the #at prior in Part C assigns less mass to regions near o"1 than
does the approximate Je!reys prior used in Part D. Another regularity sugges-
ted by (29) is that the posterior mean of b in Part B should be no less than that in
Part A. Those speci"cations essentially di!er only in that Part B rules out values
of o above 1.0, so the posterior mean of o is lower than when such values are
permitted in Part A. Given (29), the posterior mean of b should then be higher in
Part B. In the "rst three sample periods, the di!erences between the posterior
means in Parts A and B are neglibible, although consistent with the prediction.
In the 1977}1996 period, the posterior mean in Part B exceeds that in Part A by
about 40% (0.27 versus 0.19).

The ordering of the posterior means in Parts B and C varies across sample
periods. Those speci"cations share the same prior but have di!erent likelihoods.
The conditional likelihood used in Part B is multiplied by the density of the
initial observation x

0
in (24) to obtain the exact likelihood in Part C. Including

the density of x
0
, which contains the parameters o, h, and p

v
, a!ects the
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posterior mean of o, and thereby the posterior mean of b, in an unpredictable
direction. As a result, the overall ordering of the posterior means of b di!ers
across subperiods. For example, the posterior mean in Part A is greater than or
equal to the other three posterior means in the 1952}1996 period, but it is less
than the other three in the 1977}1996 period.

Fig. 1 plots, for each sample period, the posterior mean of b versus the
posterior mean of o based on the four speci"cations for the prior and likelihood
used in Table 2. Also plotted are the MLEs of b and o based on the exact
likelihood in (25) as well as bias-corrected OLS estimates. The latter are
constructed by adjusting bK for its bias, using Proposition 3, and then adjusting
o( for its bias, using Proposition 4. (As before, the values of o and R used in those
calculations are set equal to the quantities obtained in the OLS estimation for
each period.) Observe that, within a sample period, the six alternative estimates
of b plot as a nearly perfect linear relation to the corresponding estimates of o.
This result is predicted by (29) as well as two similar relations that govern the
bias-corrected OLS estimates and the MLEs. The "rst of these follows directly
from (17), which implies

bM "bK #
p
uv

p2
v

(oN !o( ), (30)

where &!' denotes a bias-corrected OLS estimator. The second relation, gov-
erning the MLEs based on the exact likelihood function ¸

%
, is given by

b[ "bK #
p\
uv

p\ 2
v

(o\ !o( ), (31)

where &[' denotes an exact-likelihood MLE. (The appendix contains a deriva-
tion.) The MLE for p

uv
/p2

v
in (31) is close to the posterior mean for that quantity

in (29) as well as the OLS-based estimate of that quantity used in applying (30).
Thus, Eqs. (29)}(31) all represent essentially the same linear relation between
estimates of b and o across methods. Also note that the point (o( , bK ) obeys all
three equations.

As illustrated in Fig. 1, di!erences across the methods in estimates of b can be
ascribed to di!erences in estimates of o. The latter di!erences, often less than
0.01, might be viewed as negligible for many purposes, but when they are
multiplied by p

uv
/p2

v
, whose estimates range between !14 and !22 across the

sample periods, the resulting di!erences in the estimates of b can be substantial.
In 1952}1996 period, for example, the posterior means of o lie between 0.980 and
0.988, while the posterior means of b range from 0.28 to 0.44. Similarly, in the
1977}1996 period, the posterior means of o lie between 0.978 and 0.985, while
the posterior means of b range from 0.19 to 0.38.

Observe also from Fig. 1 that, in all four sample periods, the bias-corrected
OLS estimate of b (point F) is less than any of the Bayesian posterior means
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Fig. 1. Estimates of b and o. The "gure plots, for various methods and subperiods, the estimate of
b versus the estimate of o for a two-equation model,

y
t
"a#bx

t~1
#u

t
,

x
t
"h#ox

t~1
#v

t
,

where y
t
is the continuously compounded return in month t on the value-weighted NYSE portfolio,

in excess of the one-month T-bill return, and x
t
is the dividend-price ratio on the value-weighted

NYSE portfolio at the end of month t. It is assumed [u
t
v
t
]@ is distributed N(0, R), identically and

independently across t. De"ne b"(a b h o)@. The estimation methods are denoted as follows:
A. Bayesian posterior mean based on the conditional likelihood and p(b, R)JDRD~3@2,

o3(!R, R); also the ordinary least squares estimator; also the maximum-likelihood
estimate (MLE) based on the conditional likelihood (treating x

0
as "xed).

B. Bayesian posterior mean based on the conditional likelihood and
p(b, R)JDRD~3@2, o3(!1, 1).

C. Bayesian posterior mean based on the exact likelihood (x
0

stochastic and drawn from its
unconditional distribution) and p(b, R)JDRD~3@2, o3(!1, 1).

D. Bayesian posterior mean based on the exact likelihood and p(b, R)J(1!o2)~1p2
v
DRD~5@2,

o3(!1, 1).
E. MLE based on the exact likelihood (which assumes DoD(1 and x

0
is drawn from the

unconditional distribution)
F. OLS estimates corrected for bias, where the bias is evaluated using o and R obtained from the

OLS estimation.
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(points A}D). The linear relation between estimates of b and o therefore implies
that the bias-corrected estimate of o is greater than any of the posterior means of
o. Even for the Bayesian speci"cation in which DoD(1 but much of the prior
mass is assigned to values near unity (point D), the posterior mean of o is still
less than the OLS estimate adjusted upward for its bias, which is also derived
assuming DoD(1. As noted in the previous section, the bias-corrected estimate of
o in the last subperiod exceeds one, while such an outcome is impossible for the
posterior mean of o under any of the four Bayesian speci"cations entertained.
The posterior mean under speci"cation D is closest to the bias-corrected value
in the 1952}1996 sample period, which is the period used in the next section to
analyze the asset-allocation decision.

The higher-order posterior moments in Table 2 reveal further characteristics
of the wedge separating classical and Bayesian results in the current regression
setting. Recall from Table 1 that the "nite-sample distribution of bK exhibits
marked positive skewness and excess kurtosis in the regression of stock return
on dividend yield. In contrast, although the posterior distribution of b has
skewness in the 1952}1996 and 1977}1996 periods as high as 0.37 and 0.53
(part D), those values are still only one-third to one-half of the corresponding
values in Table 1. Similarly, the kurtosis values for b in Table 2 all lie between
2.84 and 3.18, whereas the kurtosis values for bK in Table 1 range from 3.84 to 5.83.
In brief, the higher-order moments of the Bayesian posterior distributions in Parts
B}D depart only modestly from the standard Bayesian regression model values
(which are virtually identical to those in Part A), whereas the higher-order
sampling moments of bK depart substantially from their standard values.

4. Predictive distributions and asset allocation

4.1. Framework

A posterior distribution for the parameters in (1) and (3) implies a &predictive'
distribution for future excess returns. Recall that y

T
is the sample's most recent

one-month excess return (continuously compounded), so the excess return over
the K following periods is

y
T`K,(K)

"

K
+
k/1

y
T`k

. (32)

The predictive distribution of the K-period excess return is given by

p(y
T`K,(K)

DD)"P
b,R

p(y
T`K,(K)

Db, R, D)p(b, RDD) db dR, (33)

where p(b, RDD) is the posterior density of b and R. In other words, p(y
T`K,(K)

DD)
gives the probability distribution for the K-period excess return perceived by an
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investor at the end of period ¹. If the investor knew b and R, then the only
relevant item from the sample would be x

T
, the most recent observation of the

predictive variable. When b and R are unknown, however, the investor uses all of
the sample information to update his beliefs about those parameters, and the
remaining parameter uncertainty, known as &estimation risk', is re#ected in the
predictive distribution of y

T`K,(K)
.

This section explores the posterior distributions of b and R in terms of their
implied predictive distributions. Implications for asset allocation provide an
economic perspective on the predictive distributions. For each posterior distri-
bution, predictive distributions are obtained for hypothetical samples that have
di!erent values of x

T
but produce the same posterior distribution for b and R as

the actual sample. For each such hypothetical sample, the predictive distribu-
tion is unique. Varying the hypothetical samples in this manner and calculating
the optimal asset allocation for each sample gives an economic characterization
of the sample evidence on return predictability. (The appendix discusses details
of the calculations involving the predictive distributions.)

Consider a hypothetical buy-and-hold investor who allocates invested wealth
between stocks and cash (where cash earns a riskless interest rate). The investor
faces one of the predictive distributions obtained here and is assumed to
maximize the expected utility of wealth at the end of K periods. Utility is given
by the iso-elastic function,

;(=
T`K

)"
1

c
=c

T`K
, (34)

with cO0. Kandel and Stambaugh (1996) suggest that the sensitivity of such an
investor's stock allocation to a set of predictive variables provides an economi-
cally relevant metric by which to assess the strength of the empirical evidence on
predictability. Kandel and Stambaugh con"ne their analysis to a single-period
investment horizon, while Barberis (1999) extends their framework to analyze
long-horizon asset allocations. The Bayesian econometric model used in both
studies corresponds to the "rst of the speci"cations entertained here, in which
the prior in (23) is combined with the conditional likelihood function in (20).
(Both studies also include cases in which x

t
is a vector of regressors, an extension

discussed in the next section.) The asset allocations computed here for invest-
ment horizons of various lengths provide an economic perspective on the
di!erences across the alternative Bayesian speci"cations.

For simplicity, the continuously compounded riskless return on cash in
each future month is assumed to be known and equal to i

T
, the current rate.

The optimal stock allocation, u, as a fraction of current wealth =
T
, is the

solution to

max
u

E(;(=
T`K

)DD), (35)
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where

=
T`K

"=
T

[u expMy
T`K,(K)

#Ki
T
N#(1!u) expMKi

T
N]. (36)

The expectation is taken with respect to the predictive distribution in (33). The
stock allocation u is con"ned to the interval (0, 1), i.e., short sales of stock or the
riskless asset are precluded. The coe$cient of relative risk aversion, 1!c, is set
equal to seven. This value is chosen simply because it yields substantial alloca-
tions to stock while avoiding an excessive number of corner solutions at
u"100%.

4.2. Results

Table 3 reports the optimal stock allocations implied by predictive distribu-
tions based on the 45-yr period from 1952 to 1996. The buy-and-hold invest-
ment horizons range from one month (K"1) to 20 years (K"240), and
optimal stock allocations are computed for "ve di!erent values of the most
recent dividend yield, x

T
, ranging from 1% to 6%. (The average dividend yield

for the 1952}1996 period is 3.8%.) Results are shown for three of the four
speci"cations analyzed in Table 2. The results in Parts A and B of Table 2 are
virtually identical for the 1952}1996 period, so only the results using the
speci"cation in Part A are reported here. Also reported are optimal allocations
for the case in which b and R are assumed to be known with certainty and set
equal to the MLEs from the conditional likelihood (i.e., based on the OLS
estimation). This last case, provided for comparison, ignores estimation risk.
Ignoring estimation risk has a substantial impact on the optimal stock alloca-
tion of a buy-and-hold investor at longer horizons, as observed previously by
Barberis (1999). Note that, at a 20-yr horizon, an investor with relative risk
aversion equal to seven who ignores estimation risk allocates 100% to stocks at
all dividend yields, whereas an investor with the same risk aversion who
incorporates estimation risk allocates at most 65% to stocks.

At horizons of one year or less, the stock allocation is increasing in the
dividend yield for all methods that incorporate estimation risk, although there
are substantial di!erences across methods. For example, at a current dividend
yield of 5%, the one-year stock allocation is 100% in Part A but only 70% in
Part C. The di!erences across methods can be nontrivial at the longer horizons
as well. For example, when the current dividend yield is 5%, the stock allocation
for a 10-yr horizon is 76% in Part B but only 60% in Part C. At low values of the
dividend yield, the stock allocation is generally increasing in the investment
horizon, whereas that allocation is generally decreasing in the horizon at higher
dividend yields. This e!ect, also noted by Barberis, re#ects the expected long-run
reversion of the conditional expected return to its unconditional mean. A result
not previously reported is that, when estimation risk is incorporated, the
optimal stock allocation is not monotonically increasing in the dividend yield at
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Table 3
Optimal stock allocation (in percent) in a buy-and-hold strategy for various investment horizons
and current dividend yields

The table reports optimal stock allocations implied by the predictive distribution for long-horizon
returns. The investor is assumed to maximize the expected value of an iso-elastic utility function of
terminal wealth with a coe$cient of relative risk aversion equal to seven. The predictive distribution
is obtained using a two-equation model

y
t
"a#bx

t~1
#u

t
,

x
t
"h#ox

t~1
#v

t
,

where y
t
is the continuously compounded return in month t on the value-weighted NYSE portfolio,

in excess of the one-month T-bill return, and x
t
is the dividend}price ratio on the value-weighted

NYSE portfolio at the end of month t. It is assumed [u
t
v
t
]@ is distributed N(0, R), identically and

independently across t. De"ne b"(a b h o)@. The method in Parts A and D, based on the &condi-
tional' likelihood, treat the initial observation x

0
as "xed. The methods in Parts B and C, based on

the &exact' likelihood, restrict o to the interval (!1, 1) and treat x
0

as a realization from its
unconditional distribution

Investment horizon Current dividend yield (x
T
)

2% 3% 4% 5% 6%

A. Conditional likelihood; p(b, R)JDRD~3@2, o3(!R, R)
1 month 0 22 61 97 100
1 yr 0 27 65 100 100
5 yr 11 50 81 86 81
10 yr 37 69 71 63 55
20 yr 63 58 52 44 38

B. Exact likelihood; p(b, R)JDRD~3@2, o3(!1, 1)
1 month 0 15 46 79 100
1 yr 0 18 51 82 100
5 yr 4 37 67 83 85
10 yr 27 57 73 76 71
20 yr 57 65 62 59 54

C. Exact likelihood; p(b, R)J(1!o2)~1p2
v
DRD~5@2, o3(!1, 1)

1 month 0 21 45 68 91
1 yr 1 24 48 70 86
5 yr 13 37 57 68 69
10 yr 29 51 60 60 56
20 yr 50 55 52 47 42

D. Conditional MLEs as true parameters (ignore estimation risk)
1 month 0 22 60 98 100
1 yr 0 27 68 100 100
5 yr 7 55 100 100 100
10 yr 45 92 100 100 100
20 yr 100 100 100 100 100
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longer investment horizons. The various patterns in the optimal stock alloca-
tions can be understood to some degree by examining moments of the predictive
distributions of y

T`K,(K)
.

Tables 4}6 report the "rst three moments of the predictive distributions of
y
T`K,(K)

. The means and standard deviations in Tables 4 and 5 are expressed on
an &annualized' basis. Speci"cally, the values in Table 4 are equal to (12/K) times
the mean of y

T`K,(K)
, and the values reported in Table 5 are equal to

J12/K times the standard deviation of y
T`K,(K)

. Observe that the expected
returns in Table 4 are increasing in the most recent dividend yield, x

T
. Because

the degree of predictability of returns in more distant future months is less than
in nearby months, the e!ect of the current dividend yield on future expected
returns diminishes as the investment horizon grows. Even for 20-yr returns,
though, the di!erences between expected returns for x

T
"3% and x

T
"5% are

typically 200 basis points per annum. That is, the persistence in dividend yield is
su$ciently high as to make the current dividend yield informative about
expected returns well into the future. The patterns in the mean returns, by
themselves, tend to make the optimal allocation increase in the dividend yield,
with less sensitivity at longer horizons. As noted above, however, the optimal
allocation need not increase in dividend yield at the longer horizons. A more
complete explanation involves skewness, which will be discussed later.

The various methods that incorporate estimation risk produce di!erent
expected returns, although the di!erences are larger at the shorter investment
horizons. At short horizons, the expected returns in Part C of Table 4 exhibit the
least sensitivity to dividend yield, and those in Part A exhibit the greatest
sensitivity. The lower sensitivity in Part C essentially re#ects the lower posterior
mean of b for that method in the 1952}1996 period, as reported in Table 2. Even
in that case, however, di!erences in the current dividend yield produce large
di!erences in expected returns: increasing the dividend yield from 3% to 5%
raises the expected one-year return from 2.1% to 8.2%. Dividend yield
a!ects even the 20-yr expected return, as noted above, but the di!erences
across methods are smaller than at shorter horizons. This closer agreement
across methods at long horizons re#ects in part the fact that future expected
returns revert to their long-run unconditional mean, but it also re#ects
the negative relation between the posterior means of b and o discussed in
the previous section. A lower value of b reduces the importance of x

T
at all

horizons, but a higher value of o increases the importance of x
T

at longer
horizons. Therefore, the negative association between the posterior means of
b and o tends to mitigate the expected-return di!erences across methods at
longer horizons.

The conditional likelihood function is used to obtain the predictive expected
returns in Part A of Table 4, and that same conditional likelihood is used
to obtain the MLEs used in constructing Part D. Comparing the results in
Parts A and D reveals that estimation risk plays a negligible role in determining
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Table 4
Expected excess return (in percent) for various investment horizons and current dividend yields

The table reports the mean of the predictive distribution for the long-horizon excess stock return,
y
T`K,(K)

"+K
k/1

y
T`k

, where K is the length of the investment horizon (in months). The predictive
distribution is obtained using a two-equation model

y
t
"a#bx

t~1
#u

t
,

x
t
"h#ox

t~1
#v

t
,

where y
t
is the continuously compounded return in month t on the value-weighted NYSE portfolio,

in excess of the one-month T-bill return, and x
t
is the dividend}price ratio on the value-weighted

NYSE portfolio at the end of month t. It is assumed [u
t
v
t
]@ is distributed N(0, R), identically and

independently across t. De"ne b"(a b h o)@. The method in Parts A and D, based on the &condi-
tional' likelihood, treat the initial observation x

0
as "xed. The methods in Parts B and C, based on

the &exact' likelihood, restrict o to the interval (!1, 1) and treat x
0

as a realization from its
unconditional distribution

Investment horizon Current dividend yield (x
T
)

2% 3% 4% 5% 6%

A. Conditional likelihood; p(b, R)JDRD~3@2, o3(!R, R)
1 month !3.2 2.0 7.3 12.5 17.7
1 yr !2.3 2.4 7.0 11.6 16.2
5 yr 0.4 3.2 6.1 9.0 11.9
10 yr 1.9 3.7 5.6 7.4 9.3
20 yr 3.1 4.1 5.2 6.2 7.2

B. Exact likelihood; p(b, R)JDRD~3@2, o3(!1, 1)
1 month !3.5 1.0 5.5 10.0 14.5
1 yr !2.7 1.4 5.4 9.4 13.5
5 yr !0.2 2.4 5.1 7.8 10.4
10 yr 1.3 3.1 4.9 6.7 8.5
20 yr 2.7 3.7 4.7 5.8 6.8

C. Exact likelihood; p(b, R)J(1!o2)~1p2
v
DRD~5@2, o3(!1, 1)

1 month !1.4 1.9 5.2 8.5 11.9
1 yr !0.9 2.1 5.2 8.2 11.2
5 yr 0.7 2.8 5.0 7.1 9.2
10 yr 1.8 3.3 4.8 6.3 7.8
20 yr 2.9 3.8 4.7 5.6 6.5

D. Conditional MLEs as true parameters (ignore estimation risk)
1 month !3.2 2.0 7.3 12.5 17.8
1 yr !2.4 2.3 7.0 11.7 16.4
5 yr 0.0 3.1 6.1 9.2 12.3
10 yr 1.6 3.6 5.6 7.6 9.6
20 yr 2.9 4.0 5.1 6.2 7.3
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Table 5
Standard deviation of the excess return (in percent) for various investment horizons and current
dividend yields

The table reports the standard deviation of the predictive distribution for the long-horizon excess
stock return, y

T`K,(K)
"+K

k/1
y
T`k

, where K is the length of the investment horizon (in months). The
predictive distribution is obtained using a two-equation model

y
t
"a#bx

t~1
#u

t
,

x
t
"h#ox

t~1
#v

t
,

where y
t
is the continuously compounded return in month t on the value-weighted NYSE portfolio,

in excess of the one-month T-bill return, and x
t
is the dividend}price ratio on the value-weighted

NYSE portfolio at the end of month t. It is assumed [u
t
v
t
]@ is distributed N(0, R), identically and

independently across t. De"ne b"(a b h o)@. The method in Parts A and D, based on the &condi-
tional' likelihood, treat the initial observation x

0
as "xed. The methods in Parts B and C, based on

the &exact' likelihood, restrict o to the interval (!1, 1) and treat x
0

as a realization from its
unconditional distribution

Investment horizon Current dividend yield (x
T
)

2% 3% 4% 5% 6%

A. Conditional likelihood; p(b, R)JDRD~3@2, o3(!R,R)
1 month 14.1 14.1 14.1 14.1 14.2
1 yr 13.5 13.1 13.0 13.2 13.7
5 yr 11.4 10.7 10.5 10.7 11.4
10 yr 10.2 9.6 9.3 9.4 9.9
20 yr 10.8 9.7 9.1 9.2 9.9

B. Exact likelihood; p(b, R)JDRD~3@2, o3(!1, 1)
1 month 14.2 14.2 14.1 14.2 14.2
1 yr 13.6 13.3 13.2 13.4 13.8
5 yr 11.4 10.9 10.8 11.1 11.7
10 yr 9.9 9.6 9.5 9.7 10.2
20 yr 8.9 8.7 8.7 8.8 9.1

C. Exact likelihood; p(b, R)J(1!o2)~1p2
v
DRD~5@2, o3(!1, 1)

1 month 14.2 14.1 14.1 14.2 14.2
1 yr 13.9 13.5 13.5 13.7 14.1
5 yr 12.5 11.8 11.6 12.0 12.9
10 yr 11.4 10.7 10.6 10.9 11.8
20 yr 10.5 10.1 9.9 10.2 10.9

D. Conditional MLEs as true parameters (ignore estimation risk)
1 month 14.0 14.0 14.0 14.0 14.0
1 yr 12.8 12.8 12.8 12.8 12.8
5 yr 9.6 9.6 9.6 9.6 9.6
10 yr 7.8 7.8 7.8 7.8 7.8
20 yr 6.5 6.5 6.5 6.5 6.5
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Table 6
Skewness of the excess return for various investment horizons and current dividend yields

The table reports the skewness of the predictive distribution for the long-horizon excess stock return,
y
T`K,(K)

"+K
k/1

y
T`k

, where K is the length of the investment horizon (in months). The predictive
distribution is obtained using a two-equation model

y
t
"a#bx

t~1
#u

t
,

x
t
"h#ox

t~1
#v

t
,

where y
t
is the continuously compounded return in month t on the value-weighted NYSE portfolio,

in excess of the one-month T-bill return, and x
t
is the dividend}price ratio on the value-weighted

NYSE portfolio at the end of month t. It is assumed [u
t
v
t
]@ is distributed N(0, R), identically and

independently across t. De"ne b"(a b h o)@. The method in Parts A and D, based on the &condi-
tional' likelihood, treat the initial observation x

0
as "xed. The methods in Parts B and C, based on

the &exact' likelihood, restrict o to the interval (!1, 1) and treat x
0

as a realization from its
unconditional distribution

Investment horizon Current dividend yield (x
T
)

2% 3% 4% 5% 6%

A. Conditional likelihood; p(b, R)JDRD~3@2, o3(!R, R)
1 month 0.0 0.0 0.0 0.0 0.0
1 yr 0.1 0.0 0.0 0.0 !0.1
5 yr 0.4 0.2 0.0 !0.2 !0.4
10 yr 0.8 0.5 0.1 !0.3 !0.7
20 yr 6.1 3.1 0.6 !2.2 !6.1

B. Exact likelihood; p(b, R)JDRD~3@2, o3(!1, 1)
1 month 0.0 0.0 0.0 0.0 0.0
1 yr 0.0 0.0 0.0 0.0 !0.1
5 yr 0.3 0.1 0.0 !0.2 !0.3
10 yr 0.3 0.2 0.0 !0.2 !0.4
20 yr 0.3 0.2 !0.1 !0.2 !0.4

C. Exact likelihood; p(b, R)J(1!o2)~1p2
v
DRD~5@2, o3(!1, 1)

1 month 0.0 0.0 0.0 0.0 0.0
1 yr 0.0 0.0 0.0 0.0 !0.1
5 yr 0.3 0.1 0.0 !0.2 !0.4
10 yr 0.5 0.2 !0.1 !0.4 !0.6
20 yr 0.6 0.3 !0.1 !0.5 !0.8

D. Conditional MLEs as true parameters (ignore estimation risk)
1 month 0.0 0.0 0.0 0.0 0.0
1 yr 0.0 0.0 0.0 0.0 0.0
5 yr 0.0 0.0 0.0 0.0 0.0
10 yr 0.0 0.0 0.0 0.0 0.0
30 yr 0.0 0.0 0.0 0.0 0.0
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predictive expected returns. In contrast, a comparison of Parts A and D
in Table 5, which reports predictive standard deviations, reveals non-
trivial estimation risk, particularly at longer horizons. For example, when
the current dividend yield x

T
is 4%, the annualized standard deviation

of the 20-yr rate of return is more than 9% in Part A but only 6.5% in Part D.
Moreover, in Part A, the e!ects of estimation risk are greater as the current
dividend yield assumes extreme values. Extreme values of x

T
magnify the e!ects

of uncertainty about the relation between x
T

and the conditional expected
return.

Comparing the standard deviations in Part A of Table 5 to those in Parts B
and C reveals another e!ect of di!erences in prior beliefs about whether DoD(1.
In Parts B and C, where it is assumed that DoD(1, the predictive distribution of
future returns is stationary, and the annualized standard deviation decreases
with the investment horizon. In Part A, the predictive distribution of future
returns is nonstationary, because the posterior density of o assigns positive mass
to DoD'1. Moreover, for the sample analyzed, su$cient posterior mass is
assigned to o'1 as to make the e!ects of nonstationarity evident at the 20-yr
horizon. Observe in Part A that, for some values of x

T
, the standard deviations

for the 20-yr horizon are higher than for the 10-yr horizon, in contrast to the
results in Parts B and C.

Recall that when estimation risk is incorporated, the stock allocation is often
decreasing in dividend yield at the 20-yr horizon, even though the expected 20-yr
return is monotonically increasing in dividend yield. The standard deviations in
Table 5 do not appear to resolve this seeming contradiction, since the 20-yr
standard deviations are U-shaped with respect to dividend yield. That is, in all
three methods that incorporate estimation risk, the stock allocation at a divi-
dend yield of 3% is higher than the allocation at a yield of 5%, even though the
latter value is associated with a higher mean and, in Parts B and C, a lower
standard deviation of y

T`K,(K)
.

4.3. Skewness and the role of uncertainty about o

The skewness coe$cients in Table 6 provide a clue to the patterns in the
long-horizon stock allocations. Observe that, at the longer horizons, the predic-
tive skewness of y

T`K,(K)
is positive at low dividend yields and negative at high

yields. In Part C, for example, the 20-yr return has skewness equal to 0.6 at a 2%
dividend yield and !0.8 at a 6% dividend yield. A similar pattern occurs in
Parts A and B, except that the magnitudes are larger in Part A, where values of
DoD greater than one are permitted.

Positive skewness in y
T`K,(K)

can lead to a higher stock allocation than that
obtained with negative skewness, holding other moments constant. If r denotes
the continuously compounded return on the investor's overall portfolio, so
=

T`K
"=

T
exp(r), then a third-order approximation for expected utility is
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given by

E(;(=
T`K

))"
=c

T
c

exp(cr6 ) A1#
c
2

var(r)#
c2
6

E(r!r6 )3#E(O[(r!r6 )4])B,
(37)

where r6"E(r). Thus, expected utility is increasing in the skewness of r. For
a given stock allocation u, the skewness in y

T`K,(K)
does not necessarily

translate to skewness in r. In the current problem, it appears from numerical
investigation that, for a given value of x

T
, the skewness of r at long horizons is

decreasing in u. With low values of x
T
, for which y

T`K,(K)
has positive skewness,

the skewness of r is positive at all levels of u but largest at the smallest u values.
With high values of x

T
, for which y

T`K,(K)
is negatively skewed, the skewness of

r is also positive for small values of u but then becomes negative as u increases.
In general, the pattern in the skewness of y

T`K,(K)
in Table 6 tends to work in

opposition to the pattern in the expected return, and the result is an optimal
stock allocation that can actually be higher at lower values of the current
dividend yield, i.e., at lower expected returns.

The skewness in y
T`K,(K)

can be traced to estimation risk. For a given value of
x
T
, a draw from the predictive distribution of y

T`K,(K)
can be written as

y
T`K,(K)

"c#d(x
T
!x6 )#sg, (38)

where x6 denotes the sample mean of x
t
("(1/¹)n@

T
x
(l)

) and g is a standard
normal (0, 1) variate that is independent of b, R, and D. The coe$cients c, d, and
s are functions of the unknown parameters b and R, which are drawn from the
posterior distribution p(b, RDD), and c also depends on the known sample
quantity x6 . (Expressions for c, d, and s are provided in the appendix.) Denote the
conditional mean of y

T`K,(K)
given b, R, and x

T
as

e"c#d(x
T
!x6 ) (39)

and de"ne that quantity's deviation from its posterior mean as

eJ"[c!E(cDD)]#[d!E(dDD)](x
T
!x6 )

"e!E(eDD). (40)

The predictive third moment of y
T`K,(K)

can then be written as

E([y
T`K,(K)

!E(y
T`K,(K)

DD)]3DD)"E(eJ 3DD)#3E(eJ s2DD), (41)

relying on the properties of g stated above. Since each skewness value reported
in Table 6 is simply the third moment in (41) divided by the predictive variance
to the power 3/2, the sign of the skewness is the same as that of (41).

Uncertainty about o plays a key role in explaining the skewness patterns.
Consider the speci"cation in Part A of Table 6, where skewness and its e!ects on
asset allocation (in Table 3) are most pronounced. Fig. 2 displays the marginal
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Fig. 2. The role of o in the posterior distributions of long-horizon parameters. The upper left graph
displays the posterior density of o, the slope coe$cient in the relation x

t
"h#ox

t~1
#v

t
, where

x
t
is the dividend yield in month t and v

t
has zero mean conditional on x

t~1
. The remaining "ve

graphs display plots based on 100,000 draws from the joint posterior distribution of the model
parameters. Each graph plots o versus one of the quantities in the relation

y
T`K,(K)

"c#d(x
T
!x6 )#sg,

where g is a normal (0, 1) variate,

e"c#d(x
T
!x6 ),

y
T`K,(K)

is the K-month excess return through month ¹#K, and x6 is the sample mean of x
t
. The

sample period is 1952}1996, the return horizon is K"240 (20 years), and the posteriors are
obtained under the prior speci"cation in which p(o)J1, o3(!R, R). The return quantities are
annualized, so that c, d, and e are multiplied by (12/K) and s is multiplied by (12/K)1@2. The scales are
decimal values (not percents).
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posterior density of o (upper left graph) as well as graphs that plot draws of
o versus draws of the various quantities in Eqs. (38) and (39) for K"240
(20 years). The draws are obtained from the joint posterior distribution
p(b, RDD). As before, the quantities are annualized, so that c, d, and e are
multiplied by (12/K) and s is multiplied by J12/K (but the scales are decimal
values, not percents). For relatively high draws of o, especially those greater than
one, observe that d takes large negative values (middle left graph). As a result, for
high draws of o, e takes large positive values for low values of x

T
and large

negative values for high values of x
T
, by Eq. (39). Fig. 2 illustrates these two

scenarios for x
T
"2% (bottom left graph) and x

T
"6% (bottom right graph).

In other words, E(e8 3DD), the "rst term on the right-hand side of (41), is positive
for low x

T
's and negative for high x

T
's, and this pattern is the same as that

observed for the predictive skewness in Table 6. The use of x6 (about 3.8%) as the
reference value in (38) is somewhat arbitrary, but with this simple choice the
intercept c exhibits only minor skewness for large values of o, thereby allowing
the slope coe$cient d to isolate the main e!ect of uncertainty about o.

The posterior uncertainty about o can be su$cient to assign small but
nontrivial probability to high values of o, even values above one in the speci"ca-
tion used to construct Fig. 2. An extreme value of o implies that x

T
has

a persistent, or even explosive, e!ect on mean returns long into the future, so the
absolute value of d for a long horizon is then larger, given b. To understand why
the extreme d values are typically negative, as illustrated in Fig. 2, recall that the
posterior correlation between o and b is strongly negative, equal to !0.94 in
this example. Hence, if o is high, b is likely to be low, negative in fact, so the
extreme values of d tend to be negative. Of course, d has a positive posterior
mean, which is computed by averaging over all posterior draws of o and b. Thus,
when x

T
is low, the predictive mean of y

T`K,(K)
is also low, as demonstrated in

Table 4. If there is a chance, however, that the value of o is higher than, say, its
posterior mean, there is also a chance that the true mean e of the long-horizon
return is substantially higher than its (low) posterior mean, so e is positively
skewed. Similarly, when x

T
is high, there is a chance that e is substantially lower

than its (high) posterior mean, so e is negatively skewed.
Also observe in Fig. 2 (middle right graph) that high values of o produce large

values of s in (38), where s is the standard deviation of y
T`K,(K)

conditional on
b, R, and x

T
. When x

T
is low, high values of o produce high volatility accom-

panied by large positive values of the conditional mean, thereby adding to the
positive skewness in the predictive distribution. In other words, a low x

T
pro-

duces a positive value for E(e8 s2DD), which is proportional to the second term on
the right-hand side of (41). Similarly, a high x

t
produces a negative value for

E(e8 s2DD). Thus, the positive association between o and the conditional volatility
ampli"es the skewness e!ect produced by the behavior of the conditional mean.

The explanation for the skewness patterns in Parts B and C of Table 6 follows
the same lines as detailed above for Part A. Precisely the same reasoning applies,
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except that o cannot exceed 1 in Parts B and C. The e!ects are hence weaker but
nevertheless present. (Note that truncating the graphs in Fig. 2 at o"1 still
leaves some of the patterns.) In general, uncertainty about o produces positive
skewness for low values of dividend yield and negative skewness for high values.

5. Extensions to multiple predictive variables

The predictive regressions considered in the preceding sections contain
a single independent variable, but much of the analysis can be generalized to
settings in which x

t
in (1) is a vector instead of a scalar. A tractable model for

such a generalization assumes the N]1 vector h
t

follows a "rst-order vector
autoregression (VAR),

h
t
"/

0
#Uh

t~1
#e

t
, (42)

where e
t
is an independent realization from a multivariate normal distribution

with mean zero and covariance matrix R (now N]N). With multiple predictive
variables, the excess return y

t
is simply the "rst element of h

t
, so the vector of

predictive variables, in general, can contain the lagged value of y
t
. The "rst row

of U contains the slope coe$cients in the regression of y
t
on the N predictive

variables. Note that E(e
t
Dh

t~1
, h

t~2
,2)"0 but E(e

t
Dh

s
, h

w
)O0 for s(t)w,

and the latter condition corresponds to (2). The two-equation model comprising
(1) and (3) can be represented as a special case of (42) in which
h
t
"(y

t
x
t
)@, e

t
"(u

t
v
t
)@, /

0
"(a h)@, and U has zeros in the "rst column and (1, 2)

and (2, 2) elements equal to b and o.
The "rst Bayesian speci"cation, in which the prior in (23) is combined with the

conditional likelihood in (20), extends immediately to the above VAR with the
quantities appropriately rede"ned. Speci"cally, let

z"vec([h
1

h
22

h
T
]), (43)

X"[n
T

(h
0

h
12

h
T~1

)@], (44)

b"vec([/
0

U]@), (45)

and

Z"(I
N
?X), (46)

where vec( ) forms a column vector by stacking successive columns of the
matrix. The right-hand side of (20) is then the conditional likelihood for
the VAR in (42), under the assumption that the vector of initial observations
h
0

is nonstochastic. A model with lagged dependent variables (such as the
VAR) can be analyzed as a standard Bayesian multivariate regression model if
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the &pre-sample' observations are assumed to be deterministic (see, e.g., Hamil-
ton, 1994, p. 358). When modi"ed for the case of N equations, the prior in (23)
becomes

p(b, R)JDRD~(N`1)@2. (47)

This Bayesian VAR speci"cation with multiple predictive variables is used in the
analyses of asset allocation by Kandel and Stambaugh (1996) and Barberis
(1999) and in an analysis of currency hedging by Bauer (1998). In this speci"ca-
tion, the prior for each element of U is #at over the real line, as is the prior for
o under the corresponding speci"cation in the single-variable setting. That is,
the prior in (47) does not impose covariance-stationarity, since that condition
requires the eigenvalues of U to lie inside the unit circle (e.g., Hamilton, 1994,
p. 259). The latter condition, represented here by the notation D DUD D(1, is
equivalent to requiring DoD(1 with a single predictive variable.

Recall that in the single-variable setting in Section 3, two alternative Bayesian
speci"cations are considered, each of which imposes covariance-stationarity and
uses the exact likelihood in (25). In the N-variable setting, the exact likelihood is
de"ned by the assumption that h

0
is drawn from its unconditional distribution.

From (42), that distribution has mean

k
h
"(I

N
!U)~1/

0
(48)

and variance}covariance matrix <
h

satisfying <
h
"U<

h
U@#R, which can be

solved in terms of b and R (Hamilton, 1994, p. 265) to yield

vec(<
h
)"[I

N
2!(U?U)]~1vec(R). (49)

The exact likelihood in the N-variable case is

¸
%
(b, R; D)"p(z, h

0
Db, R)"p(zDh

0
, b, R)p(h

0
Db, R), (50)

where p(zDh
0
, b, R) is given by the right-hand side of (20) and

p(h
0
Db, R)"(2p)~1@2D<

h
D~1@2 exp M!1

2
(h

0
!k

h
)@<~1

h
(h

0
!k

h
)N. (51)

The prior in (26), which keeps a #at prior on o but simply imposes the
stationarity restriction on the prior on (23), can be similarly adapted here. That
is, the prior in (47) can be applied to the regions of the parameter space in which
DDUDD(1, so that the prior density is zero elsewhere. The approximate Je!reys
prior in (27), when generalized to the N-variable setting, becomes

p(b, R)JD<
h
DN@2DRD~(N`1), (52)

as shown in the appendix. The techniques described in the appendix for obtain-
ing the posterior and predictive distributions in the single-variable case extend
in a straightforward manner to the N-variable case.
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Extending the analytical results for the "nite-sample properties of the OLS
estimator is less straightforward, since Propositions 1}4 do not appear to
generalize easily to N lagged stochastic variables. The problem in the N-variable
case can be characterized as analyzing the "nite-sample distribution of the OLS
estimator

[/K
0

UK ]@"(X@X)~1X@H, (53)

where H"[h
1

h
2 2 h

T
]@. Note that the "rst row of UK contains the OLS

estimates of the slope coe$cients in a multiple regression of the return (y
t
) on the

N lagged predictive variables. When DDUDD(1 and e
t
obeys the normal distribu-

tion as above, Nicholls and Pope (1988) show that an approximation to the bias
in UK is given by

E(UK )!U"R C(IN!U)~1#U(I
N
!U2)~1

# +
j|s(U)

j(I
N
!jU)~1D<~1

h
#O(¹~3@2), (54)

where the notation +j|s(U) denotes summation over the eigenvalues of U, with
each term repeated as many times as the multiplicity of the eigenvalue j.

6. Conclusions

When the innovation in a lagged stochastic regressor is correlated with the
regression disturbance, the OLS estimator can exhibit "nite-sample properties
that deviate sharply from those in the standard regression setting. One example
of such a regression occurs when the aggregate stock portfolio's excess rate of
return is regressed on its lagged dividend yield. In that application, the bias in
the OLS slope coe$cient ranges from one-third of the OLS estimate in the
1927}1996 period to more than three times the OLS estimate in the 1977}1996
period. The "nite-sample p-values for a one-tailed test of the zero-slope hypothe-
sis range between 0.17 and 0.64 across the various periods considered, and those
p-values are substantially larger than the p-values computed incorrectly using
the standard regression model.

In the results obtained here for the dividend-yield regression, the p-value for
the zero-slope hypothesis exceeds the Bayesian posterior probability that the
regression slope is less than or equal to zero. In the 1952}1996 period, for
example, the p-value equals 0.15, so a classical test would accept the zero-slope
hypothesis at conventional signi"cance levels. In contrast, the posterior prob-
ability that the slope is less than or equal to zero ranges between 0.01 and 0.05,
depending on the speci"cation of the likelihood and prior. The potential con#ict
between frequentist and Bayesian inference assumes greater prominence with
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a lagged stochastic regressor, since the p-value and the posterior tail probability
coincide in the standard regression setting.

Bayesian posterior distributions for the parameters of the regression model
exhibit sensitivity to whether (i) the initial observation of the regressor is viewed
as "xed or stochastic, (ii) the regressor is assumed to be stationary, and (iii)
a &#at' prior or a Je!reys prior is employed. The OLS estimator of the regression
coe$cient vector is also the posterior mean when the initial observation is "xed
and the prior for the autoregressive coe$cient of the regressor is #at over the
real line (allowing nonstationarity). One alternative speci"cation employs a Jef-
freys prior and assumes that the initial observation is a stochastic realization
from a stationary process for the regressor. The Je!reys prior, also intended to
be noninformative, assigns higher posterior density to autoregressive coe$-
cients near unity. In the 1952}1996 period, the posterior mean of the regression
slope is more than 50% higher with the "rst speci"cation than with the second.
Such sensitivity underscores the "nite-sample nature of the regression problem
considered here. Moreover, this sensitivity is not limited to a Bayesian setting. In
the same 1952}1996 period, for example, the OLS slope estimate is 27% higher
than the maximum-likelihood estimate computed under the assumption that the
initial observation of the regressor is a stochastic realization from a stationary
process.

The regression of excess stock returns on dividend yield is used as an
illustration here in part because the posterior distributions for the parameters
can be used to compute predictive distributions for future excess stock returns.
The predictive distribution, which incorporates &estimation risk' arising from
parameter uncertainty, can then be used to compute the optimal portfolio for
a buy-and-hold investor facing a stocks-versus-cash allocation decision. These
computations provide an economic setting for comparing the various econo-
metric speci"cations, and the di!erences across speci"cations can be economi-
cally important. In an example using the 1952}1996 period, if the most recent
dividend yield is 5%, an investor with a "ve-year horizon and relative risk
aversion equal to seven chooses a stock allocation between 68% and 86%,
depending on the speci"cations of the prior and the likelihood.

The asset-allocation results also reveal a new insight into the potential role of
estimation risk in long-horizon investing. In particular, at longer investment
horizons, the optimal buy-and-hold stock allocation can be higher at low values
of the current dividend yield than at high values, even though the long-horizon
stock return has a lower mean at the low dividend yield and can have at least as
high a variance. This result can be traced to skewness in long-horizon stock
returns arising from uncertainty about parameters, particularly the autoregres-
sive coe$cient of dividend yield. The skewness in the predictive distribution of
returns is positive at low dividend yields and negative at high yields, and the
e!ect of this skewness can be strong enough to produce a negative association
between the optimal stock allocation and dividend yield.
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Appendix A

A.1. Proof of Proposition 1

De"ne x6 "(1/¹)n@
T
x
(l)

, and observe that

bK "
(x

(l)
!n

T
x6 )@y

(x
(l)
!n

T
x6 )@(x

(l)
!n

T
x6 )

"

x@
(l)

Fy

x@
(l)

Fx
(l)

"b#
x@
(l)

Fu

x@
(l)

Fx
(l)

"b#
(x

(l)
!k

x
n
T
)@Fu

(x
(l)
!k

x
n
T
)@F(x

(l)
!k

x
n
T
)

"b#
w@Aw

w@Bw
. (A.1)

The second equation uses the property F2"F, and the fourth equation uses the
property n@

T
F"0. Clearly E(w)"0, and it is straightforward to verify that

cov(w, w@)"), as de"ned in the proposition. Note that a, b, and h do not a!ect
the distribution of bK !b, since those parameters do not enter ), A, or B.

A.2. Proof of Proposition 2

From (3) and the de"nition of w in Proposition 1, normality of (u
t
v
t
)@ for all

t implies normality of w. Observe, using (6), that

Prob(bK 'b
0
)"ProbAb#

w@Aw

w@Bw
'b

0B
"Prob(w@Aw'(b

0
!b)w@Bw)

"Prob(w@Cw'0), (A.2)

where C"A!(b
0
!b)B. Imhof (1961) gives a method, based on inversion of

the characteristic function, for computing Prob(w@Cw'c), where w obeys
a multivariate normal distribution, possibly with nonzero mean, and C is an
inde"nite matrix. The result in (9) is a direct application of Imhof's Eq. (3).

A.3. Proof of Proposition 3

Magnus (1986, Theorem 6) derives E([w@Aw/w@Bw]s), where A is a symmetric
matrix, B is a nonnegative de"nite matrix of rank r*1, and the n]1 vector
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w obeys a normal distribution with mean k and positive de"nite covariance
matrix X"¸¸@. His theorem is as follows. Let P be an orthogonal n]n matrix
and K a diagonal n]n matrix such that P@¸@B¸P"K and P@P"I

n
. Then,

provided the expectation exists (see below), for s"1, 2,2,

EA C
w@Aw

w@BwD
s

B"s2s exp M!1
2
k@)kN+

i

c
s
(l

i
)

]P
=

0

qs~1 D*D exp M1
2
mm@N

s
<
j/1

(tr Rj#jm@Rjm)nij dq, (A.3)

where *"(I
n
#2qK)~1@2, R"*P@¸@A¸P, m"DP@¸~1k, and the summation is

over all vectors l
i
"(n

i1
, n

i2
,2, n

is
) whose s elements are nonnegative integers

satisfying +s
j/1

jn
ij
"s, with

c
s
(l

i
)"

s
<
j/1

[n
ij
!(2j)nij]~1. (A.4)

The result in (10) then follows directly from Proposition 1, with n"2¹ and
k"0.

If r)n!1 and Q is an n](n!r) matrix of full column rank n!r such that

¸@B¸Q"0, (A.5)

then E([w@Aw/w@Bw]s) exists for 0)s(r under the condition Q@¸@A¸Q"0 as
in Magnus (1986, Theorem 7). Magnus's theorem contains an alternative condi-
tion for moments to exist for s*r as well, but that condition is not satis"ed
here. In this application, the rank of B equals ¹!1 (the rank of F), so Q is
a 2¹](¹#1) matrix. Let ¸@"[¸@

1
¸@

2
], where ¸

1
and ¸

2
are both ¹]2¹

matrices. From (8), ¸@B¸"¸@
2
F¸

2
so (A.5) implies ¸@

2
F¸

2
Q"0, and since

¸
2

has full row rank,

F¸
2
Q"0. (A.6)

From (8),

¸@A¸"(1/2)(¸@
1
F¸

2
#¸@

2
F¸

1
), (A.7)

so (A.6) implies Q@¸@A¸Q"0.

A.4. Proof of Proposition 4

Let b
1
"(a b)@, b

2
"(h o)@, bK

1
"(a( bK )@, and bK

2
"(hK o( )@. Eqs. (5) and (16) imply

bK
1
!b

1
"(X@X)~1X@u (A.8)
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and

bK
2
!b

2
"(X@X)~1X@v, (A.9)

where u is de"ned previously and v"(v
1
,2, v

T
)@. Decompose u as

u"
p
uv

p2
v

v#e, (A.10)

with E(eDv)"0 implied by the i.i.d. normality assumption, so

E(eDX)"E(eDx
0
, v

1
,2, v

T~1
)"0. (A.11)

Substituting from (A.10) into (A.8) gives

bK
1
!b

1
"

p
uv

p2
v

(X@X)~1X@v#(X@X)~1X@e

"

p
uv

p2
v

(bK
2
!b

2
)#(X@X)~1X@e, (A.12)

where the second equality uses (A.9). Taking expectations, using (A.11), gives

E(bK
1
!b

1
)"

p
uv

p2
v

E(bK
2
!b

2
), (A.13)

and (17) is the second row of the vector equation in (A.13).

A.5. Derivation of the Jewreys prior in (27)

For the stationary AR(1) model, Zellner (1971, pp. 216}220) obtains an
approximate Je!reys prior by retaining only the terms that are of the highest
order of ¹ when applying (22) to the exact likelihood; see Uhlig (1994) for exact
Je!reys priors for the AR(1) model. Zellner's approach is equivalent to comput-
ing the Je!reys prior for the conditional likelihood and taking the expectation in
(22) with the initial observation x

0
assumed to be stochastic and drawn from its

unconditional distribution. The same equivalence occurs for the two-equation
model analyzed here. In implementing the latter approach, it is convenient to
derive the joint prior p(b, R~1) and then make the transformation from R~1 to
R. The log-likelihood for (20) is given by

l"log ¸
#
(b, R; z, x

0
)"!

¹

2
log DRD!1

2
(z!Zb)@ (R~1?I

T
) (z!Zb).

(A.14)
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Let f"(p11 p12 p22)@, where pij denotes the (i, j) element of R~1. Following (22),

p(b,R~1)JK!E A
L2l

LbLb@
L2l

LbLf@
L2l

LfLb@
L2l
LfLf@B K

1@2

. (A.15)

Observe

Ll
Lb

"1
2

Z@(R~1?I
T
) (z!Zb)

"1
2
Z@(R~1?I

T
) C

u

vD, (A.16)

L2l
LbLb@

"!1
2

Z@(R~1?I
T
)Z

"!1
2
(R~1?X@X) (A.17)

and

L2l
LbLf@

"1
2

(I
2
?X@) C

u v 0

0 u vD. (A.18)

Taking the expectations of (A.17) and (A.18) with respect to p(z, x
0
Db, R) gives

E A
L2l

LbLb@B"!

¹

2
(R~1?W), (A.19)

where

W"

1

¹

E(X@X)"C
1 h/(1!o)

h/(1!o) p2
v
/(1!o2)#h2/(1!o)2D (A.20)

and

E A
L2l

LbLf@B"0. (A.21)

Also observe

E A
L2l

LfLf@B"
L2l
LfLf@

"!

¹

2

L2 logDRD
LfLf@

. (A.22)
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Substituting from (A.19), (A.21) and (A.22) into (A.15) gives

p(b, R~1)JK
R~1?W 0

0
L2 log DRD

LfLf@ K
1@2

JDR~1?WD1@2 K
L2 log DRD

LfLf@ K
1@2

"(DRD~2DWD2)1@2 (DRD3)1@2

"DWDDRD1@2

"(1!o2)~1p2
v
DRD1@2. (A.23)

The Jacobian of the transformation from R~1 to R is DRD~3, and multiplying
(A.23) by that quantity gives (27). The Jacobian of the transformation from
R~1 to R, as well as the determinant of the derivative matrix for log DRD in (A.23),
follow from results in Box and Tiao (1973, pp. 474}475).

In a standard multivariate regression setting, a common practice is to apply
(22) separately for b and R (e.g., Zellner, 1971, Chapter 8), following the
suggestion by Je!reys (1961) to treat location and scale parameters separately in
multiparameter settings. As Je!reys notes, treating location and scale para-
meters jointly can result in unappealing degrees-of-freedom properties, such as
the observation that, in the simplest i.i.d. normal univariate setting, the number
of degrees of freedom in the posterior for the variance is una!ected by whether
the mean is known or unknown (see, for example, Bernardo and Smith, 1994,
Chapter 5). In a time-series setting, the dichotomy between location and scale
parameters is blurred. For example, o a!ects the conditional mean as well as the
unconditional variance of x

t
. Phillips (1991) argues that, in the AR(1) model, the

usual degrees-of-freedom criticism does not apply to the multiparameter Je!reys
prior. In the current setting, applying (22) separately for b and R results in the
prior

p(b, R)J(1!o2)~1DRD~3@2 (A.24)

and the use of this alternative prior produces only negligible changes from the
results obtained using (27), which has the same marginal prior on o.

A.6. Calculation of the posterior distributions

With the likelihood in (20) and the prior in (23), the posterior distribution for
b and R follows from standard results for the multivariate regression model (e.g.,
Zellner, 1971, Chapter 8). Speci"cally, R~1 obeys a Wishart distribution with
¹!2 degrees of freedom and parameter matrix S, where S"(>!XBK )@
(>!XBK ), >"[y x], B is a 2]2 matrix with "rst row (a h) and second row

414 R.F. Stambaugh / Journal of Financial Economics 54 (1999) 375}421



(b o), and BK is the same reshaping of bK . The conditional distribution of b given
R is normal with mean bK and covariance matrix R?(X@ X)~1. Those distribu-
tions are used to generate 100,000 independent draws of b and R, which are in
turn used in generating draws from the predictive distribution of multiperiod
returns (explained below). The marginal posterior distribution for b is Student's
t with ¹!3 degrees of freedom,

E(bDD)"bK , (A.25)

var(bDD)"
1

¹!5

p( 2
u

p( 2
x

, (A.26)

skewness equal to zero, and kurtosis equal to 3[1#2/(¹!7)], where
p( 2
x
"(1/¹)+T

t/1
(x

t~1
!x6 )2 and p( 2

u
"(1/¹) +T

t/1
(y

t
!a(!bK x

t~1
)2. The values

in Part A of Table 2 are based on the latter results.
With the likelihood in (20) and the prior in (26), the joint posterior density for

b and R is proportional to the joint density described in the "rst case above
multiplied by an indicator function equal to one if DoD(1 and zero otherwise.
Draws of (R~1, b) are generated from the Wishart and conditional normal
distributions described above and then retained only if DoD(1. The values in
Part B of Table 2 are based on 100,000 retained draws.

With the likelihood in (25) and the prior in (26), the joint posterior density for
b and R is given by

p(b, RDD)JDRD~(T`5)@2 exp M!1
2

(z!Zb)@ (R~1?I
T
) (z!Zb)N

]A
1!o2

p2
v
B

1@2
exp G!

1!o2

2p2
v
Ax0

!

h
1!oB

2

H, o3(!1, 1).

(A.27)

Integrating (A.27) analytically to obtain the marginal posterior density p(bDD)
does not appear to be feasible. Instead, that posterior density is obtained using
the Metropolis}Hastings (MH) algorithm, a Markov chain Monte Carlo pro-
cedure introduced by Metropolis et al. (1953) and generalized by Hastings
(1970). Chib and Greenberg (1995) and Gilks et al. (1996) provide an introduc-
tion to the MH algorithm. A sequence of values for (b, R) is constructed by
making &candidate' draws from a &proposal' density and then accepting a new
candidate or retaining the previous value based on the MH rule that assures the
resulting sequence for (b, R) forms a Markov chain whose invariant distribution
is the &target' posterior density in (A.27).

The MH algorithm is implemented with b and R drawn in separate blocks.
For each step in the chain, a new b is drawn from a proposal density that
depends on R, and that draw is accepted according to the MH rule applied to
the target density p(bDR, D). A new R is then drawn from a proposal density that
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depends on b and accepted according to the MH rule applied to the target
density p(RDb, D). The conditional density p(bDR, D) is obtained by rewriting
(A.27) and retaining factors involving only b:

p(bDR, D)Jexp M!1
2

(b!b) )@ (R~1?X@X) (b!b) )N

](1!o2)1@2 exp G!
1!o2

2p2
v
Ax0

!

h
1!oB

2

H, o3(!1, 1).

(A.28)

The proposal density for b is speci"ed as multivariate normal with mean bK and
covariance matrix R?(X@X)~1. In drawing R, it is more convenient to work
with the conditional density of R~1 than R, and the Jacobian of that transforma-
tion is DRD3. Multiplying (A.27) by that quantity, rewriting the result, and then
retaining factors involving only R~1 gives

p(R~1Db, D)J(p11)~1@2 DR~1D(T~2)@2

]exp M!1
2

tr[S#(B!BK )@X@X ((B!BK )]R~1N

]exp G!
(1!o2)DR~1D

2p11 Ax0
!

h
1!oB

2

H. (A.29)

The relation p2
v
"p11DR~1D~1 is used in obtaining (A.29). The proposal density

for R~1 is speci"ed as Wishart with ¹#1 degrees of freedom and parameter
matrix [S#(B!BK )@X@X(B!BK )]~1. The derivations of the conditional densit-
ies from the joint density in (A.27) are aided by the observations that

(z!Zb)@ (R~1?I
T
) (z!Zb)

"(b!bK )@ (R~1?X@X) (b!bK )#terms without b (A.30)

"tr(>!XB)@ (>!XB)R~1

"tr[S#(B!BK )@X@X(B!BK )]R~1, (A.31)

where (A.30) is used in obtaining (A.28), and (A.31) is used in obtaining (A.29).
With the likelihood in (25) and the prior in (27), the joint posterior density for

b and R is given by

p(b, RDz, x
0
)Jp

v
DRD~(T`5)@2 exp M!1

2
(z!Zb)@ (R~1?I

T
) (z!Zb)N

](1!o2)~1@2 exp G!
1!o2

2p2
v
Ax0

!

h
1!oB

2

H,
o3(!1, 1). (A.32)

Draws from the posteriors are again obtained using the MH algorithm.
The proposal densities are identical to those used above, and the conditional
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densities are given by

p(bDR, z, x
0
)Jexp M!1

2
(b!bK )@ (R~1?X@X) (b!bK )N

](1!o2)~1@2 exp G!
1!o2

2p2
v
Ax0

!

h
1!oB

2

H.
o3(!1, 1) (A.33)

and

p(R~1Db, z, x
0
)J(p11)1@2 DR~1D(T~2)@2

]exp M!1
2

tr[S#(B!BK )@X@X(B!BK )]R~1N

]exp G!
(1!o2)DR~1D

2p11 Ax0
!

h
1!oB

2

H. (A.34)

All of the results based on the MH algorithms discussed above re#ect 100,000
draws of b and R, obtained by retaining every 200th draw from a total of
20,000,000 draws after discarding an initial 40,000 &burn-in' draws. The accept-
ance rates for b range from 35% to 88%, depending on the sample period, while
the acceptance rates for R are 94% or more. The 100,000 draws are used to
compute the results in parts C and D of Table 2, and those same draws are used
in generating draws from the predictive distribution of multiperiod returns
(explained below).

A.7. Derivations of Eqs. (28) and (31)

If b
2

and R are set equal to their MLEs, then maximizing (25) with respect to
b
1

gives the MLE for that quantity. Observe from (20) that the value of b
1

that
maximizes (25) must also minimize the left-hand side of (A.30), given b

2
and R set

equal to their MLEs. The "rst term on the right-hand side of (A.30) can be
rewritten as

(b!bK )@ (R~1?X@X) (b!bK )

"Cb1!bK
1
!

p
uv

p2
v

(b
2
!bK

2
)D

@
(p11X@X) Cb1!bK

1
!

p
uv

p2
v

(b
2
!bK

2
)D

#terms without b
1
, (A.35)

using the relation p12/p11"!p
uv

/p2
v
. The result in (31) then follows immedi-

ately.
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From the joint posteriors for b and R in (A.27) and (A.32), the conditional
mean of b

1
given b

2
and R is normal with mean

E(b
1
Db

2
, R, D)"bK

1
#

p
uv

p2
v

(b
2
!bK

2
), (A.36)

which is obtained by again making use of (A.30) and (A.35). The same result
follows for the posterior obtained by combining the likelihood in (20) and the
priors in (23) and (26), since the di!erences in the joint posteriors, involving
b
2

and R, drop out in the conditional posterior for b
1
. Eq. (28) is the second row

of the above vector equation (noting that h, the "rst element of b
2
, does not enter

the conditional mean for b).

A.8. Calculations involving the predictive distribution of y
T`K,(K)

Conditional on b, R, and x
T
, it follows from (1), (3) and (32), and the i.i.d. joint

normality assumption for (u
t
v
t
) that the distribution of y

T`K,(K)
is normal with

mean and variance as follows. If oO1, then the mean is given by

E(y
T`K,(K)

Db, R, x
T
)"a

K
#d

K
x
T
, (A.37)

where

a
K
"Ka#bh C

K(1!o)!(1!oK)

(1!o)2 D (A.38)

and

d
K
"b

1!oK

1!o
. (A.39)

The variance is given by

var(y
T`K,(K)

Db, R, x
T
)

"Kp2
u
#A

b
1!oB

2

CK!1!
2o(1!oK~1)

1!o
#

o2(1!o2(K~1))

1!o2 Dp2
v

#2
b

1!o CK!1!
o(1!oK~1)

1!o Dpuv
. (A.40)

If o"1 (an event with zero posterior measure), then

a
K
"Ka#bh

K(K!1)

2
, (A.41)

d
K
"Kb (A.42)
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and

var(y
T`K,(K)

Db, R, x
T
)"Kp2

u
#(1/6)K(K!1) (2K!1)b2p2

v

#bK(K!1)p
uv

. (A.43)

In (38), d"d
K
, c"a

K
#dx6 , and s equals the square root of the right-hand side

of (A.40) or (A.43).
To compute the optimal stock allocation for a given K and x

T
, one million

draws from the predictive distribution of y
T`K,(K)

are generated by using (38) to
draw 10 values of y

T`K,(K)
for each of the 100,000 values of b and R drawn from

the posterior distribution (as explained previously). The average utility for these
one million draws is computed for values of u ranging from zero to one in
increments of 0.005, and the maximizing value of u is reported in Table 3.

The moments in Tables 4}6 are computed using the 100,000 draws from the
posterior distribution of b and R. The mean of y

T`K,(K)
is the average of the

right-hand side of (A.37). The variance of y
T`K,(K)

is computed as the average of
the right-hand side of (A.40) plus the variance of the right-hand side of (A.37).
The third moment is computed by averaging the quantities appearing in the
expectations on the right-hand side of (41).

A.9. Derivation of the Jewreys prior in (52)

Since the conditional likelihood function remains in the same form as in the
single-variable case, the earlier derivation of (27) requires only minor changes.
The derivation proceeds virtually identically up to the "rst line of (A.23). That is

p(b, R~1)JK
R~1?W 0

0
L2 logDRD

LfLf@ K
1@2

, (A.44)

except that W in (A.20) becomes

W"

1

¹

E(X@XDb, R)"C
1 k@

h
k
h
<

h
#k

h
k@
h
D. (A.45)

Proceeding as before, taking account of the fact that R is now N]N and W is
(N#1)](N#1), gives

p(b, R~1)JDR~1?WD1@2 K
L2 logDRD

LfLf@ K
1@2

"(DRD~(N`1)DWDN)1@2 (DRDN`1)1@2

"DWDN@2

"D<
h
DN@2. (A.46)

R.F. Stambaugh / Journal of Financial Economics 54 (1999) 375}421 419



The last equality follows from the formula for the determinant of a partitioned
matrix (e.g., Anderson, 1984, Theorem A.3.2). The Jacobian of the transforma-
tion from R~1 to R is DRD~(N`1), and multiplying (A.46) by that quantity gives
(52). If (22) is applied separately for b and R, as discussed at the end of Section
A.5, then the prior for b is simply the "rst factor in the second line of (A.46), with
DRD~(N`1)@2 absorbed in the proportionality constant. In that case, the approxim-
ate Je!reys prior is instead

p(b, R )JD<
h
DN@2DRD~(N`1)@2. (A.47)
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