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Predictable Stock Returns: The Role
of Small Sample Bias

CHARLES R. NELSON and MYUNG J. KIM*

ABSTRACT

Predictive regressions are subject to two small sample biases: the coefficient esti-
mate is biased if the predictor is endogenous, and asymptotic standard errors in the
case of overlapping periods are biased downward. Both biases work in the direction
of making ¢-ratios too large so that standard inference may indicate predictability
even if none is present. Using annual returns since 1872 and monthly returns since
1927 we estimate empirical distributions by randomizing residuals in the VAR
representation of the variables. The estimated biases are large enough to affect
inference in practice, and should be accounted for when studying predictability.

THE PROPOSITION THAT STOCK returns are not predictable was until very
recently regarded as one of the most (some would say the only) firmly
established empirical results in economics. The extent to which the nonpre-
dictability result has been overturned in the last few years is reflected in the
opening sentence of a recent paper by Fama and French (1988): “There is
much evidence that stock returns are predictable.” Indeed, a recent series of
papers including Keim and Stambaugh (1986), Campbell and Shiller (1988),
Fama and French (1988) and Cutler, Poterba, and Summers (1991) report
that “fundamentals” such as dividend yield and price-earnings ratio explain
25% or more of the variation in stock returns measured over intervals of
several years. Further, Balvers, Cosimano, and McDonald (1990), Schwert
(1990), and Fama (1990) present evidence that economic indicators such as
industrial production also have predictive power for stock returns.

This paper focuses on the possibility that small sample bias could be
playing an important role in the inference that stock returns are predictable
from fundamentals and in estimates of the degree of predictability. A #-ratio
will be misleading if either the regression coefficient is biased or if the
standard error is biased. Small sample bias in asymptotic standard errors in
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the context of overlapping observations on multiperiod returns has received
attention in several recent papers which conclude that they are too small; see
Hodrick (1991), Kim, Nelson, and Startz (1991), Richardson and Smith
(1991), and Richardson and Stock (1989). However, the potential for small
sample bias in the regression coefficient has not received corresponding
attention, although it is well known that regression on lagged endogenous
variables is not unbiased in finite samples. The existence of small sample
bias in tests of predictability has been pointed out by Mankiw and Shapiro
(1986) and Stambaugh (1986) who showed that regression on predetermined
variables will reject the null hypothesis of nonpredictability too often. Never-
theless, those reporting predictability have not generally taken coefficient
bias into account. Indeed, Fama and French (1988) cite Stambaugh’s paper
but argue that “This bias arises only when yields track time-varying expected
returns. It does not bias the tests toward false conclusions that yields have
forecast power.”

Section I of the paper uses an approximation due to Stambaugh (1986) to
show that small sample bias in the regression coefficient may be large enough
to affect statistical inference in regressions where the log of dividend yield is
the predictor of stock returns. Section II presents estimates of the empirical
distributions of regression statistics for annual data on the S & P Index since
1872. Our methodology is based on simulation of the VAR approximation of
the present value model in which artificial sequences of return and dividend
yield are generated by randomization of the sample residuals. We also
stratify the sample to correspond to the high variance period 1929 to 1939 for
returns to explore the effect of heteroskedasticity on the sampling distribu-
tions. Results for the full sample period are also compared with those for the
period since World War II during which apparent predictability was much
higher. Section III studies the CRSP data set for monthly returns on NYSE
stocks from 1926 which offers a much larger number of observations though
for a shorter historical period. Section IV generalizes the methodology to
consider predictors such as the Index of Industrial Production which are not
explicit in the present value model but which are presumably endogenous in
the system which also generates dividends and therefore returns. Finally,
Section V offers some conclusions.

I. Small Sample Bias in the Regression of Stock Return on
Dividend Yield

Table I reports regressions of real and excess returns on the lagged value of
the log of the dividend yield using the annual data set of Campbell and
Shiller (1988) for the Standard and Poor’s Composite Index. Price is recorded
for January of the years 1871 to 1987 and dividend is the amount paid during
the year, so the sample period for one year total returns and lagged dividend
yield is 1872 to 1986. Real and excess returns are calculated using the PPI
and commercial paper rate respectively. Following Campbell and Shiller
(1988), one year returns are accumulated forward over horizons of three and
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Table I

Regressions of Total Return on Log of Dividend Yield S & P
Annual Returns, 1872 to 1986

Least squares regressions of the total real or total excess return on the S & P Composite Index on
the log of dividend yield observable. The data are annual and as described in Campbell and
Shiller (1988) and were obtained from them. They deflate the S & P index and dividends by the
Producer Price Index to calculate real total return and subtract from that the real return on 4 to
6 month commercial paper to obtain excess total return. In the case of overlapping three- and
ten-year returns, the ¢-ratio is calculated using the standard error suggested by Hansen and
Hodrick (1980) which recognizes the moving average structure of the regression error.

Return Sample Slope t-Ratio R?

One-Year Return

Real 1872-1986 0.12 2.14 0.039
1872-1946 0.10 1.25 0.021
1947-1986 0.25 2.79 0.170
Excess 1872-1986 0.08 1.34 0.016
1872-1946 0.04 0.43 0.002
1947-1986 0.25 3.09 0.200

Three-Year Return

Real 1872-1984 0.35 2.46 0.110
1872-1944 0.31 1.63 0.066
1947-1984 0.63 2.90 0.380
Excess 1872-1984 0.30 2.07 0.079
1872-1944 0.31 1.55 0.057
1947-1984 0.60 3.33 0.434
Ten-Year Return
Real 1872-1977 0.97 3.25 0.267
1872-1937 0.84 2.59 0.188
1947-1977 2.02 4.43 0.714
Excess 1872-1977 0.74 2.13 0.182
1872-1937 0.41 1.76 0.089
1947-1977 1.95 6.36 0.794

ten years to form overlapping multiyear returns. Standard errors for the
slope coefficient are adjusting for serial correlation induced by the overlap
following the methodology of Hansen and Hodrick (1980), as has been stan-
dard in the empirical literature. Results for the subperiods before and after
January 1947 are also reported. Kim, Nelson, and Startz (1991) report that
World War II represented a sharp breaking point in the mean reversion
properties of stock returns.

Key features of predictive regressions reported in the literature are appar-
ent in Table I. In particular, the slope coefficient is positive in every case,
implying that expected return is small when dividend yield is low. Further,
the ¢-ratio and R? increase with return horizon, suggesting that the strongest
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evidence for predictability is found at long horizons. For the full period, real
return is more predictable than excess return. However, when the sample is
split at 1947 it becomes clear that predictability is a post-World War II
phenomenon. In spite of the longer sample period there is little evidence of
predictability for the prewar period. In addition, excess return has apparently
been somewhat more predictable since 1947 than real return. The difference
here between predictability before and after World War II stands in contrast
to what has been reported in the literature on mean reversion in returns
where the pattern is the reverse. Long lag autocorrelation in returns is
apparent in prewar returns but seems to have disappeared after 1947; see
Kim, Nelson, and Startz (1991). While the reversal in pattern may seem to
present an inconsistency, Campbell (1991) shows that predictability condi-
tional on fundamentals does not necessarily imply predictability conditional
on past returns. We have also extended the data set through 1990 and find
that inclusion of the additional four annual returns makes no appreciable
difference in the regression results reported here (1987 was not an extraordi-
nary year on an annual basis). We retain the 1986 ending date to preserve
comparability of our results with published studies.

Taken at face value, these results lead to the inference that stock returns
have been predictable from dividend yields over the past century, particularly
since World War II, and that predictability increases with horizon. However,
there are a number of reasons to exercise caution. As mentioned in the
introduction, asymptotic standard errors in the case of overlapping returns
may be downward biased in small samples, and the regression coefficient will
also be biased if the predictor is jointly endogenous with the return, even if it
is predetermined. While the increase in R? with return horizon has been
emphasized in this literature as a strong and important feature of the
empirical evidence, Granger and Newbold (1974) caution against interpreting
high R? as evidence of a relationship when the data are positively autocorre-
lated as it is in the case of overlapping returns. Finally, the stability of
regression across the pre- and postwar periods raises the issue of choosing an
appropriate sample period for drawing inferences. All of these questions
warrant further investigation.

That the bias in the regression coefficient may be large enough to affect
inference is suggested by the work of Stambaugh (1986) and Mankiw and
Shapiro (1986) who both studied the system

y,=a+ Bx,_, +u; u~iid.(0,q?) (1)
X, =u+ dx,_; +v; v~ii.d.(0,q?) (2)

where u and v are white noise errors that are contemporaneously correlated
with covariance o,,. Although the predictive regression of y, on x, ; is
consistent asymptotically, it is not unbiased in finite samples because x is
not fixed in repeated samples. Stambaugh proves that the bias in the least
squares estimate of B in (1) is proportional to the bias in the least squares
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estimate of ¢ in (2), in particular

E(B-B)=(0,/0)E(d— o). (3)

To see the intuition behind this, note that in the special case that the
predictor is y,_, then B and ¢ are the same parameter and will have the
same bias. In general, x,_; may be a proxy for y,_, and the factor (g,,/0,%)
reflects both the correlation between the innovations of the two processes and
their relative scales. Kendall (1954) showed that the bias in least squares
estimate of ¢ is

E(¢—¢)=—(1+3d)/n+0(n?). (4)

Thus, the lagged value of x may appear to be a predictor of y even though it
has no predictive power. This effect will be stronger the more autocorrelated
is x, the stronger is the contemporaneous relation between the innovations,
and the smaller is the sample size.

The relevance of this result in the case of dividend yields predicting stock
returns becomes clear from the linear approximation to the present value
model (PVM) due to Campbell and Shiller (1988). They show that in the case
of constant expected real return the PVM can be written as

r,=268,—pé,., + Ad, + const (5)

8= — Y p’E[Ad,,;] + const (6)
Jj=0

where r, is total real return during year ¢ defined as In[(P,,, + D,)/P,]
where P is the real price at the beginning of period ¢ and D is the real
dividend paid during period ¢, 6, is the log of the dividend price ratio
observable at the beginning of year ¢, d, is the log of the real dividend paid
during year ¢, and p is a discount factor. The same representation holds
whether it is real or excess return that has constant expectation. To put the
model in vector ARMA form we assume that the vector of information, say z,,
used by the market to forecast dividend growth at the beginning of period ¢
has a VAR representation, say z, = Az,_; + w,, where w, is a serially
random vector of forecast errors. The list of variables in z, includes Ad, as
the first element, but we do not need to be specific about the other variables.
Substituting for the forecasted future Ad, in the equation for d, one obtains

rp=a+e[l - PA]_lel (7)
8,1 =c —e[l - pA]l " A[l - AL] 'w,,, (8)

where ¢’ is the vector (1,0,...) which selects the first element of a column
vector, ¢ is a constant which is a function of the parameters, and L is the lag
operator. Note that the return during period ¢ is a linear combination of only
new information w,,; revealed during t. Further, the innovation in the MA
process for 8 is e[l — pA] 'Aw,,,; which is also a linear combination of the
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innovations in the information process but not the same combination as the
return. Thus the innovations in the processes for r, and §,,; will be
contemporaneously correlated but not at leads or lags.

In the case that expected excess return is constant, r, represents the
difference between the total return on stocks and the return on an alternative
asset and Campbell and Shiller show that Ad,, ; is replaced in (5) and (6) by
[Ad,,; — ra,,;]l where ra, is return on the alternative asset during period ¢.
The rest of the analysis follows with [Ad, . ; — ra,, ;] playing the role of Ad,, ;
leading to a representation of the form of (7) and (8).

If the dividend yield series 8, is AR1 then the linearized PVM corresponds
to the bivariate process studied by Stambaugh and by Mankiw and Shapiro.
For the annual S&P data 1872 to 1986 an AR1 specification for §, is a
reasonable one with ¢ = 0.71 and the sample value of (o, /0,?) is —0.68 for
real returns and —0.72 for excess. The implied coefficient bias in the regres-
sion of one year returns on §, is 0.02. Multiperiod returns correspond to
observing the dividend yield process at three- and ten-year intervals. If the
observations were nonoverlapping the implied coefficient bias for three-year
returns would be 0.05 and for ten-year returns 0.11. Clearly these are not
large enough to explain away the point estimates in Table I, but they are
sufficient to influence statistical inference. For one-year real returns, reduc-
ing the coefficient by 0.02 reduces the ¢-statistic from 2.14 to 1.78. The
potential to alter inferences is indicated by the fact that none of the excess
return regressions for the full sample period would remain significant at the
0.05 level if such an adjustment is appropriate.

The next section of the paper studies the statistical issues suggested by
this discussion using simulation based on the VAR representation of return
and yield. In particular, we are interested in the small sample distribution of
the coefficient bias in the case of overlapping observations, the properties of
asymptotic standard errors and ¢-ratios, the distribution of R%, and the effect
of the high variance period 1929 to 1939 on these sampling distributions.

II. Empirical Sampling Distributions for Regression Statistics:
Annual Returns on the S & P Composite, 1872 to 1986.

A number of strategies exist for estimating sampling distributions. Monte
Carlo requires that we assume a distribution function for the disturbances,
usually the Normal. In the case of stock returns the distribution is known to
be non-Normal and heteroskedastic. In this paper we simulate artificial
histories of the pair (r,, §,) using the fitted VAR approximation to the present
value model and random drawings of the residual pair (&,,v,). The initial
observation on §, is drawn from a normal distribution with mean equal to the
historical mean and variance ¢,?/(1 — ¢?) implied by its AR(1) representa-
tion. The resulting artificial return and yield data are consistent with the
present value model under the restriction that returns are not predictable,
but will also have serial correlation and dispersion similar to the historical
time series; see Cogley (1991). We draw residual pairs without replacement
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which is called randomization; see Noreen (1989) for extensive discussion.
Randomization differs from bootstrapping only in that sampling is without
replacement and it is an attractive strategy in situations where the popula-
tion distribution is unknown and the null hypothesis involves absence of a
relationship. In the first experiment reported here all the residual pairs are
put in a single urn to generate the full sample under homoskedasticity.
Following Kim, Nelson, and Startz (1991), we then stratify the sample in a
second experiment, placing the residuals from the high variance period 1929
to 1939 in a separate urn and then drawing from the low or high variance urn
according to position in the sequence. This stratified randomization gives us
information about the sensitivity of sampling distribution to the particular
pattern of heteroskedasticity that occurred historically; see Schwert (1989).
In each case the simulations were repeated 1000 times. The sampling distri-
butions are summarized in the tables which follow by their mean, median if
the mean is sometimes undetermined, fractiles, and the estimated probability
of obtaining a statistic at least as large as the historical value. The latter are
denoted “One tail p-value” and allow readers to draw their own conclusions
in regard to statistical significance.

Table II summarizes the estimated sampling distribution for the slope
coefficient, R?, and t-ratios in regressions of annual total returns for the
S & P Composite Index on the lagged log of dividend yield for the period 1872
to 1986. The bias in the slope coefficient is consistent with Stambaugh’s
approximation at all horizons if one takes the relevant number of observa-
tions to be the number of possible nonoverlapping observations rather than
the number of actual overlapping observations used in the regression.

The sampling distribution of R? is tabulated in the second panel of Table
II. Upward bias in R? for regressions of returns on fundamentals has been
previously noted by Kandel and Stambaugh (1989). In spite of bias, the
sample values of R? are seen to be large relative to their sampling mean. It is
important to note, however, that the upper tail of the distribution of R? does
not correspond to large deviations of the #-ratio from its mean because the
t-ratio is not centered around zero due to bias in the slope coefficient. Thus,
the usual correspondence between large values of R? and the rejection region
under the null hypotheses of no relationship breaks down in this situation.

In the case of overlapping multiperiod returns authors have generally
adopted the method of Hansen and Hodrick (1980), hereafter HH, which
adjusts standard error for induced autocorrelation recognizing that if one
period returns are serially random then the implied structure of the regres-
sion error is MA(K — 1) where K is the return horizon. We denote the
resulting ¢-ratio by HHtl. Positive definiteness of the covariance matrix is
not guaranteed so the HH standard error may not exist for a given sample.
Further, the returns data show clear heteroskedasticity which should be
taken into account in standard errors. Newey and West (1987), hereafter NW,
study a class of autocorrelation and heteroskedasticity consistent variance
estimators which are positive semidefinite. The key to positive definiteness is
the weighting of the sample autocorrelations and they show that the scheme
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Table 11

Randomization Estimate of Distributions of Slope, R2, and
t-Ratio: S & P Annual Returns, 1872 to 1986

Least squares regressions of the real or excess total return for the S & P Composite Index on the
log of dividend yield. The data are annual and as described in Campbell and Shiller (1988) and
were obtained from them. They deflate the S & P index and dividends by the Producer Price
Index to calculate real total return and subtract from that the real return on 4 to 6 month
commerical paper to obtain excess total return. OLSt denotes ordinary least squares t-ratio. In
the case of overlapping three- and ten-year returns, t-ratios are calculated using alternative
standard errors designed to take into account serial correlation in the regression error: that
suggested by Hansen and Hodrick (1980) denoted HHt1, the positive semidefinite and het-
eroskedasticity-consistent standard error of Newey and West (1987) with lag alternatively set at
the data overlap less one, denoted NWt1, and twice that lag, denoted NWt2, and finally HHt2,
which is a heteroskedasticity-consistent version of HH. Mean, median, and fractiles of the
sampling distributions and the one tail p-value for the historical statistic are estimated from
1000 artificial histories of return and log of dividend yield generated by randomization of
historical residuals from the estimated VAR approximation to the present value model under the
null hypothesis of constant expected return as described in Section I.

Slope Coefficient

0.025 0.975 One Tail
Return Historical Mean Fractile Fractile p-Value

One-Year Return

Real 0.12 0.02 -0.09 0.14 0.040
Excess 0.08 0.02 —0.09 0.15 0.158

Three-Year Return

Real 0.35 0.05 -0.23 0.36 0.027
Excess 0.30 0.05 -0.23 0.38 0.052

Ten-Year Return

Real 0.97 0.13 —-0.59 0.80 0.006
Excess 0.74 0.14 -0.61 0.78 0.040
RZ
0.95 Fractile

One-Year Return

Real 0.039 0.009 0.032 0.032
Excess 0.016 0.009 0.035 0.181

Three-Year Return

Real 0.110 0.021 0.079 0.020
Excess 0.079 0.022 0.077 0.049

Ten-Year Return

Real 0.267 0.042 0.159 0.004
Excess 0.182 0.043 0.157 0.035




Predictable Stock Returns 649

Table II—Continued

t-Ratio

0.025 0.975 One Tail
Return  Type Historical Mean Median Fractile Fractile p-Value

One-Year Return

Real OLSt 2.14 0.22 0.24 —-1.76 2.13 0.024
Excess OLSt 1.34 0.24 0.25 ~1.81 2.21 0.131

Three-Year Return

Real HHt1 2.46 0.29 0.30 -1.74 2.52 0.027
HHt2 2.75 0.35 0.31 —1.94 2.84 0.029
NWt1 3.09 0.37 0.35 -2.17 3.03 0.025
NWt2 2.83 0.37 0.34 —2.09 2.98 0.036
Excess HHt1 2.07 0.30 0.28 -1.72 2.52 0.051
HHt2 2.26 0.35 0.31 —-1.74 2.98 0.055
NWwtl 2.52 0.37 0.35 —2.00 3.18 0.051
NWt2 2.34 0.37 0.34 -1.98 3.17 0.061

Ten-Year Return

Real HHt1 3.25 0.50 0.41 —1.60 3.02 0.018
HHt2 3.51 * 0.57 —2.22 10.31 0.089
NWt1 3.41 0.62 0.53 —-2.05 3.83 0.042
NWt2 4.25 0.69 0.57 —2.28 4.25 0.026
Excess HHt1 2.13 0.55 0.45 —1.47 3.11 0.095
HHt2 3.10 h 0.56 o 5.59 0.103
NWt1 3.35 0.71 0.59 -2.17 4.18 0.063
NwWt2 3.26 0.78 0.63 —-2.26 4.60 0.081

* Negative variance in 29 out of 1000 samples.
** Negative variance in 27 out of 1000 samples and consequently estimate of 0.025 fractile not
available.

where lag j is given weight w(j,m) =1 —[j/m + 1], where m is the maxi-
mum lag, has this property. Consistency requires that m increase with
sample size, so m is not to be identified with the order of the moving average.
As Newey and West point out, “The specification of an appropriate growth
rate for m(T') gives little guidance concerning the choice of m in practice.”
Since the weights are less than one and decline with lag it has been
suggested setting m larger than the known order of the MA may be attrac-
tive; Cochrane (1991) suggests using 2(K — 1). We experiment with m = (K
— 1) and m = 2(K — 1). The resulting ¢-ratios are denoted here by NWt1 and
NWt2 respectively. Setting all the weights equal to one and m equal to
(£ — 1) gives a heteroskedastic-consistent version of HH which we call HHt2.

The sampling distribution seen in the third panel of Table II suggests the
following generalizations: The ¢-ratios are biased upward by an amount that
increases with return horizon. For overlapping returns, the spread of the
distribution is also too large. In the case of three-year returns the distance
between the 0.025 and 0.975 fractiles is about 4.5 for HHt1, 4.75 for HHt2,
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Table III

Stratified Randomization Distribution of Slope, RZ, and
t-Ratio: S & P Annual Returns, 1872 to 1986

Least squares regressions of the real or excess total return for the S & P Composite Index on the
log of dividend yield. The data are annual and as described in Campbell and Shiller (1988) and
were obtained from them. They deflate the S & P index and dividends by the Producer Price
Index to calculate real total return and subtract from that the real return on 4 to 6 month
commercial paper to obtain excess total return. OLSt denotes ordinary least squares ¢-ratio. In
the case of overlapping three- and ten-year returns, ¢-ratios are calculated using alternative
standard errors designed to take into account serial correlation in the regression error: that
suggested by Hansen and Hodrick (1980) denoted HHt1, the positive semidefinite and het-
eroskedasticity-consistent standard error of Newey and West (1987) with lag alternatively set at
the data overlap less one, denoted NWt1, and twice that lag, denoted NWt2, and finally HHt2,
which is a heteroskedasticity-consistent version of HH. Mean, median, and fractiles of the
sampling distributions and the one tail p-value for the historical statistic are estimated from
1000 artificial histories of return and log of dividend yield generated by stratified randomization
of historical residuals from the estimated VAR approximation to the present value model under
the null hypothesis of constant expected return as described in Section I in which residuals from
the high variance period 1929 to 1939 are treated as a separate population.

Slope Coefficient

0.025 0.975 One Tail
Return Historical Mean Fractile Fractile p-Value

One-Year Return

Real 0.12 0.04 -0.07 0.17 0.104
Excess 0.08 0.04 -0.07 0.19 0.264

Three-Year Return

Real 0.35 0.11 -0.16 0.43 0.065
Excess 0.30 0.11 -0.19 0.42 0.218

Ten-Year Return

Real 0.97 0.24 —-0.53 0.81 0.009
Excess 0.74 0.22 -0.41 0.77 0.040
RZ
0.95 Fractile

One-Year Return

Real 0.039 0.011 0.042 0.061
Excess 0.016 0.012 0.048 0.240

Three-Year Return

Real 0.110 0.027 0.098 0.037
Excess 0.079 0.027 0.098 0.088

Ten-Year Return

Real 0.267 0.051 0.173 0.008
Excess 0.182 0.047 0.175 0.004
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Table III—Continued

t-Ratio

0.025 0.975 One Tail
Return  Type Historical Mean Median Fractile Fractile p-Value

One-Year Return

Real OLSt 2.14 0.59 0.56 —1.31 2.48 0.058
Excess OLSt 1.34 0.63 0.60 —-1.21 2.61 0.226

Three-Year Return

Real HHt1 2.46 0.74 0.67 -1.13 2.87 0.054
HHt2 75 0.82 0.72 -1.23 3.18 0.052
NWt1 3.09 0.87 0.80 —1.38 3.36 0.042
NWt2 2.83 0.87 0.78 -1.33 3.34 0.065
Excess HHt1 2.07 0.73 0.68 —1.24 2.86 0.111
HHt2 2.26 0.79 0.70 -1.33 3.20 0.098
NWt1 2.52 0.83 0.76 —145 3.29 0.083
NWt2 2.34 0.84 0.76 —1.45 3.26 0.107
Ten-Year Return
Real HHt1 3.25 0.90 0.86 -1.35 3.36 0.030
HHt2 3.51 * 1.11 —1.46 * 0.158
NWt1 3.41 1.15 1.03 -1.62 4.56 0.082
NWt2 4.25 1.27 1.13 —-1.60 5.06 0.055
Excess HHt1 2.13 0.84 0.77 -1.22 3.15 0.128
HHt2 3.10 o 0.98 -1.63 23.85 0.161
NWt1 3.35 1.08 0.93 -151 4.18 0.071
NWt2 3.26 1.19 0.97 —1.65 4.75 0.114

* Negative variance in 29 out of 1000 samples, therefore 0.975 fractile not available.
** Negative variance in 27 out of 1000 samples.

and 5 for both versions of NW compared with about 4 for a ¢ distribution. At
the ten-year horizon the spread has widened to about 4.6 for HHt1, about 6
for NWt1, and more than 6 for NWt2. The spread for HHt2 is not reliably
estimated because the variance failed to be positive in about 3% of the runs.
Perhaps surprisingly, this problem was not encountered in the case of HHt1.
The original HH ¢-ratio seems to have a less distorted sampling distribution
than the heteroskedasticity-consistent versions, however these artificial his-
tories are homoskedastic. Doubling the lag length used in calculating NW
makes no practical difference except that at horizon ten years the longer lag
length has larger bias and greater dispersion. The combined effect of the two
biases in the ¢-ratio is that the tabulated p-values for the historical regres-
sions are much larger than would be implied if one assumed #(115) to be
appropriate distributions. Correspondingly, correct upper tail critical values
are much larger than under #(115). For example, to do a two tail test at the
0.05 level of significance using ten-year returns the critical value is about 3
for HHt1 and about 4 for NW instead of about 2.



652 The Journal of Finance

Table IV

Randomization Distributions of Slope Coefficient, R2, and
t-Ratio: Postwar S & P Annual Returns, 1947 to 1986

Least squares regressions of the real or excess total return for the S & P Composite Index on the
log of dividend yield. The data are annual and as described in Campbell and Shiller (1988) and
were obtained from them. They deflate the S & P index and dividends by the Producer Price
Index to calculate real total return and subtract from that the real return on 4 to 6-month
commercial paper to obtain excess total return. OLSt denotes ordinary least squares ¢-ratio. In
the case of overlapping three- and ten-year returns, ¢-ratios are calculated using the standard
error suggested by Hansen and Hodrick (1980), denoted HHt1, designed to take into account
serial correlation in the regression error. Mean, median, and fractiles of the sampling distribu-
tions and the one tail p-value for the historical statistic are estimated from 1000 artificial
histories of return and log of dividend yield generated by randomization of historical residuals
from the estimated VAR approximation to the present value model under the null hypothesis of
constant expected return as described in Section I.

Slope Coefficient

0.025 0.975 One Tail
Return Historical Mean Fractile Fractile p-Value

One-Year Return

Real 0.25 0.09 -0.12 0.41 0.116
Excess 0.25 0.08 -0.11 0.37 0.088

Three-Year Return

Real 0.63 0.23 -0.30 0.87 0.190
Excess 0.60 0.19 -0.31 0.78 0.094

Ten-Year Return

Real 2.02 0.59 -0.80 1.77 0.007
Excess 1.95 0.50 -0.78 1.62 0.003
RZ

0.95 Fractile

One-Year Return

Real 0.170 0.033 0.126 0.019
Excess 0.200 0.032 0.123 0.006

Three-Year Return

Real 0.380 0.079 0.294 0.016
Excess 0.434 0.077 0.283 0.006

Ten-Year Return

Real 0.714 0.197 0.649 0.011
Excess 0.794 0.182 0.550 0.003
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Table IV—Continued

t-Ratio

0.025 0.975 One Tail
Return  Type Historical Mean Median Fractile Fractile p-Value

One-Year Return

Real OLSt 2.79 0.60 0.57 —1.28 2.64 0.015
Excess OLSt 3.09 0.56 0.57 —1.34 2.61 0.006

Three-Year Return

Real HHt1 2.90 0.79 0.73 -1.35 3.45 0.050
Excess HHt1 3.33 0.75 0.66 —1.48 3.27 0.025

Ten-Year Return

Real HHt1 4.43 1.44 1.19 -1.39 5.61 0.050
Excess HHt1 6.36 1.28 1.11 —1.38 4.70 0.009

To see what effect heteroskedasticity has on the sampling distributions, the
annual data have been stratified according to whether an observation falls
within the high variance period 1929 to 1939 or not, as described above. In
Table III, we see that the resulting heteroskedasticity in the data roughly
doubles the positive bias in the slope coefficient and ¢-ratios, and this is
reflected in higher values of R2 The dispersion of the t¢-ratios does not
change substantially. Surprisingly the NW versions, which are heteroskedas-
ticity consistent, do not perform better than the original HHtl. Again,
doubling the number of lags used in NW has little effect except at horizon ten
years and in that case the smaller number is preferred. Taking into account
the effect of heteroskedasticity on sampling distributions clearly weakens the
evidence for predictability, and that which remains is stronger for real
returns than for excess, and at longer horizons.

It was clear from Table I that returns have been more predictable since
World War II, particularly so for excess returns. Fama and French (1988)
reported similar results for annual real returns on the CRSP value-weighted
NYSE protfolio for sample periods 1941 to 1986 and 1957 to 1986. Should
World War II be treated as a breaking point and inference carried out
separately for the postwar period? A Chow test on the equality of parameters
in pre- and postwar one-year return regressions gives mixed results: the
significance level is 0.08 for excess returns but real returns are consistent
with unchanged coefficients. It should be noted that the significance level in
the case of excess returns is sensitive to the specific year chosen as the
breaking point. Rather than judging this issue, we have done a parallel
analysis of the 1947 to 1986 returns and present the results in Table IV. We
do not stratify the postwar sample.

Comparing Table IV with Table II we see that the bias in the slope
coefficient is about four times as large under homoskedasticity for the post-
war period as for the full period. The bias is larger because of the smaller
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sample size and also because of greater persistence of the log dividend yield
process during the postwar period (the AR coefficient is 0.83 compared with
0.71) and a stronger relation between the innovations ((o,,/,?) = —0.98 for
real returns and —0.78 for excess returns). The bias is also about twice as
large as for the stratified full sample. Since the point estimates of the slope
are also considerably larger for the postwar period, the changes in p-values
from Table II to Table IV are mixed. The #-ratios reported in Table IV for
overlapping returns include only the HHt1 formulation to save space, since it
is the HHt1 version that departs least from the ¢-distribution. Although the
small sample bias in the t-ratios is also much larger for this shorter period,
the p-values imply stronger evidence for predictability in the postwar period,
particularly for excess returns.

The simulations take as given the AR coefficient for the dividend yield
process, ¢. However, our simulations use the least squares estimate, ¢,
which is known to be biased downward. Since the estimated bias in the slope
coefficient, B, varies directly with the assumed value of ¢, our procedure
provides conservative estimates of the bias in the regression slope. For the
relatively small number of 40 postwar observations the bias in ¢ is roughly
—0.1. Using the augmented Dickey-Fuller test we find that the point esti-
mate is not significantly different from one (the #-ratio for the unit root
hypothesis is only —1.84); see Dickey and Fuller (1979). Taking the unit
value for ¢ as a worst case possibility for underestimation of bias, we have
repeated the randomization of the postwar data and find that the means of
the t-ratios roughly double; for example, the mean of OLSt for one-year
returns increases from 0.60 to 1.4 and the historical ¢-ratio is no longer
significant. This confirms that we have been conservative in estimating the
bias towards finding predictability.

II1. Predictability of Monthly NYSE Returns, 1926 to 1986

Fama and French (1988) reported regressions of monthly real returns for
value-weighted and equally weighted portfolios based on the CRSP files for
NYSE stocks 1926 to 1986 on dividend yield. This is a particularly interesting
data set for our purposes because we would like to see whether more frequent
observation of returns, resulting in a much larger number of observations, is
sufficient to render small sample bias negligible. For one-month returns the
only issue is coefficient bias since regression errors are serially uncorrelated
under the null hypothesis. Since Fama and French reported only the results
for real returns, noting that results for excess returns are very similar, we
follow suit.

Table V presents historical regressions and estimates of the sampling
distributions for the full sample period under homoskedasticity and under
heteroskedasticity using stratification as with the annual data. For each
regression statistic the unstratified sampling distribution is reported in the
first row and the stratified in the second row. We find that bias is not small
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relative to historical point estimates, and stratification results in roughly a
doubling of the estimated bias. As a point of reference, a ¢-statistic needs to
be greater than about 3.1 rather than 2 to be significant at the 0.05 level,
based on stratified sampling. The estimated p-values for the historical slopes
and t-ratios do not represent strong evidence of predictable returns.

Note that the bias estimates for the #-ratio reported in Table V are
comparable to those of Tables II and III for annual data. (The slope coeffi-
cients are not directly comparable because we follow Fama and French in not
taking the log of dividend yield.) It may seem surprising that the very much
larger number of monthly observations (roughly seven times as many) does
not result in greatly reduced bias. Recalling Stambaugh’s approximation, the

Table V

Randomization Distributions of Slope, R?, and #-Ratio:
Monthly NYSE Real Returns, 1927 to 1986

Least squares regressions of real total return for value-weighted and equally weighted portfolios
of NYSE stocks on dividend yield using data from the CRSP files. The data are monthly and total
return is adjusted by the Consumer Price Index to obtain real return. Dividend yield is the
running total of prior 12 months. Mean and fractiles of the sampling distributions and the one
tail p-value for the historical statistic are estimated from 1000 artificial histories of return and
dividend yield generated by randomization of historical residuals from the estimated VAR
approximation to the present value model under the null hypothesis of constant expected return
described in Section ITI. In a companion experiment the residuals are stratified according to
whether they belong to the high variance period 1929 to 1939 and those are treated as a separate
population, 1927 to 1986.

Slope Coefficient
0.025 0.975 One Tail
Return Historical Mean Fractile Fractile p-Value
Value-weighted 0.27 0.09 -0.19 0.45 0.14
stratified 0.19 -0.21 0.72 0.33
Equally weighted 0.18 0.12 -0.26 0.67 0.34
stratified 0.31 -0.22 0.96 0.64
t-Ratio
Value-weighted 1.70 0.40 —1.46 2.21 0.09
stratified 0.87 —-1.47 3.08 0.23
.
Equally weighted 0.92 0.43 -1.53 2.40 0.30
stratified 1.14 -1.24 3.16 0.40
R 2
0.95 Fractile
Value-weighted 0.004 0.001 0.005 0.11
stratified 0.003 0.010 0.25
Equally weighted 0.001 0.002 0.006 0.42

stratified 0.004 0.012 0.67
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bias will diminish with sample size, but it also depends on the AR coefficient
of the predictor as well as on the relation between the innovations. Since
monthly observations on the dividend yield process are much smoother than
annual observations they have a larger AR coefficient (¢ is 0.97 for both
value- and equally weighted portfolios) and the innovations are also more
strongly cross-correlated in the monthly data. When observations are made
at finer intervals the effects of larger sample size and greater smoothness
tend to be offsetting, so bias depends primarily on the length of the time
period covered by the sample. This point has been made by Perron (1989) and
Pierse and Snell (1992) in the context of testing for a unit root. Intuitively,
inference about B is directly related to inference about the degree of station-
arity in the predictor series and that will be little influenced by having more
frequent observations but will be influenced by having a longer historical
record.

When the sample period is restricted to the postwar years 1947 to 1986 in
Table VI, both slope coefficients and ¢-ratios are substantially larger as in the
case of the annual data. Evidence of predictability is quite strong for value-
weighted returns. In spite of upward bias, the ¢-ratio of 2.50 corresponds to a
one tail p-value of 0.03.

Table VI

Randomization Distributions of Slope, R2, and ¢-Ratio:
Postwar Monthly NYSE Real Returns, 1947 to 1986

Least squares regressions of real total return for value-weighted and equally weighted portfolios
of NYSE stocks on dividend yield using data from the CRSP files. The data are monthly and total
return is adjusted by the Consumer Price Index to obtain real return. Dividend yield is the
running total of prior 12 months. Mean and fractiles of the sampling distributions and the one
tail p-value for the historical statistic are estimated from 1000 artificial histories of return and
dividend yield generated by randomization of historical residuals from the estimated VAR
approximation to the present value model under the null hypothesis of constant expected return
described in Section III. Postwar period 1947 to 1986.

Slope Coefficient

0.025 0.975 One Tail
Return Historical Mean Fractile Fractile p-Value
Value-weighted 0.41 0.18 -0.17 0.77 0.16
Equally weighted 0.28 0.22 -0.19 0.86’ 0.33

t-Ratio
Value-weighted 2.50 0.66 -1.19 2.60 0.03
Equally weighted 1.59 0.72 -1.17 2.60 0.20

R 2
0.95 Fractile

Value-weighted 0.013 0.003 0.011 0.03

Equally weighted 0.005 0.003 0.011 0.22
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IV. Macroeconomic Variables as Predictors of Stock Returns

The presence of small sample bias is not limited to regressions of return on
financial variables such as dividends or earnings which are directly related to
share valuation. Regression of return on the lagged value of any variable that
is endogenous to the system which determines return will in general be
biased, even if the true conditional expectation of return does not depend on
the lagged predictor. The assumptions of the Gauss-Markov theorem are not
met in such cases; the OLS coefficient is a ratio of random variables and its
expected value is not in general equal to the true slope coefficient. Macroeco-
nomic variables are presumably determined jointly with stock returns since
shocks such as innovations in monetary policy or oil prices will affect both.
While we may not know the details of the system in which return and other
variables are determined, we can estimate the vector process which summa-
rizes the joint distribution of return and its prospective predictor and simu-
late the empirical distribution of regression statistics.

Economic activity has been reported to be a predictor of stock returns in
three recent papers cited in the Introduction. For example, Balvers, Cosi-
mano, and McDonald (1990) reported that the log of the Index of Industrial
Production (IP) along with a time trend explain about 20% of the variation in
annual one-year real returns during the period 1947 to 1987. The slope
coefficient for IP is negative and has a t-ratio of greater than 3 in absolute
value (see their Tables I and II). To estimate the bias in this regression we
look for a VAR representation of stock returns and IP which can be used to
summarize their joint distribution.

Our data set consists of the annual returns on the S & P used above and IP
for November since, following Balvers et al., that number is known to market
participants at the end of the year. We find that IP exhibits little serial
correlation in first differences during this period and that the unit root
hypothesis is accepted using a Dickey-Fuller test. We therefore model IP as a
random walk with drift. The log first differences of IP are only weakly
correlated with the annual return on the S & P Index in the same year, but
the correlation between return and the growth rate of IP in the following year
is +0.55. Under the restriction that IP does not predict stock returns, a
simple VAR representation which captures the leading indicator property of
stock returns is

IP,=1IP,_, + 0.037 + z,; ¢, = 0.004 9

K4

r,=0.08 +u,; o2=0.026 (10)

where the covariance between u, and z,,, is 0.0055. This representation
corresponds to equations (1) and (2) with IP,, ; playing the role of x, and 2, ,
the role of v,. The predictor is then x,_, rather than x,_;.

Table VII presents results for the predictive regression

r, = a+ BIP,_,(+ytime) (11)
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Table VII

Regression of S & P Annual Real Return on Industrial
Production, 1948 to 1986

Least squares regressions of annual real returns for the S & P Composite Index on the Index of
Industrial Production for the prior year, alternatively without and with time included. Annual
returns are from Campbell and Shiller (1988) and Industrial Production is for November of the
prior year. Mean, fractiles, and one tail p-value for the historical statistics are estimated from a
sample of 1000 regressions using artificial histories generated by randomizing the VAR repre-
sentation described in Section IV under the null hypothesis that returns are not predictable. The
t-ratio reported for one-year returns uses the OLS formula. In the case of three- and ten-year
returns the ¢-ratio uses the standard error of Hansen and Hodrick (1980).

Slope Coefficient
0.025 0.975 One Tail
Time Trend Historical Mean Fractile Fractile p-Value

One-Year Return

Without time —-0.094 -0.01 -0.14 0.11 0.11

With time -1.14 -0.28 —-0.90 0.25 0.003
Three-Year Return

Without time -0.312 -0.03 —-0.41 0.36 0.08

With time —1.66 -0.71 —2.28 0.83 0.11

Ten-Year Return

Without time —-1.38 —-0.03 —-1.44 1.60 0.03
With time -3.10 -1.16 —4.26 "+ 2.26 0.13
t-Ratio

One-Year Return

Without time -1.62 -0.24 —2.26 1.70 0.08
With time -3.64 -0.99 —3.08 0.89 0.003

Three-Year Return

Without time —2.04 -0.26 —2.86 2.04 0.08
With time -2.60 -1.26 —4.56 1.22 0.14

Ten-Year Return

Without time —3.67 —0.52 —-8.74 5.70 0.12
With time -1.90 —-1.54 -5.75 2.06 0.38

where we alternatively include time as a regressor or leave it out to see the
effect that detrending has on bias and inference. The historical point esti-
mates of B are all negative and larger in absolute value when time is
included. We estimated the empirical distribution of these statistics from
artificial histories of r and IP generated by randomizing residuals in the
constrained VAR representation. Note that the coefficient bias is also larger
in absolute value when time is included. The negative sign of the bias is
predicted by Stambaugh’s approximation, since the VAR innovations are
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positively correlated in this case (the additional lag in the predictor does not
change the sign).

The fact that the bias is smaller in absolute value when time is excluded is
related to the bias in estimating the unit root of the IP process. Evans and
Savin (1984) showed that the downward bias in the least squares estimate of
the unit root diminishes with the ratio of the drift to the standard deviation
of the innovation, and that ratio is large enough in the case of IP to reduce
the bias in 4; and therefore, given (1), the bias in B. If IP were a driftless
random walk the bias in ,é would be about —0.12 for one-year returns, but
the substantial upward drift in IP relative to its standard deviation has the
effect of shrinking this bias to —0.01 as seen in Table VII. In contrast,
including time in the regression is seen to magnify the bias in 8 to —0.24. It
is straightforward to show that the bias in this regression is again given by
(1) but where ¢ is interpreted as the least squares estimate of the AR
coefficient for the detrended predictor and ¢ as the AR coefficient in the
original predictor series. Nelson and Kang (1981) show that E(¢ — ¢) in the
random walk case is approximately —10/n where n is sample size. This
accounts for the empirical bias of —0.28 reported in Table VII.

Only the HHt1 t-ratios are reported for overlapping returns because that
was again the version which departed least from a ¢-distribution. The
strongest evidence for predictability comes from the one-year return regres-
sion with time included, where the ¢-ratio for IP is —3.64. In spite of an
estimated bias of —0.99, this statistic remains in the extreme tail of the
sampling distribution with a one tail p-value of 0.003. Going to three- and
ten-year returns the bias increases due to smaller effective sample size, and
so does the spread of the sampling distribution since estimated standard
errors are again too small. Reflecting the combined effect of these two biases
0.025 fractile falls at —4.56 for three-year returns and —5.75 for ten-year
returns. Thus the ¢-ratio of —2.60 for predicting three-year returns has a
p-value of 0.14.

V. Summary and Conclusions

The t-ratios from predictive regressions of stock returns on the lagged
values of financial fundamentals or macroeconomic indicators are subject to
two small sample biases that both work in the direction of indicating that
returns are more predictable than they in fact are. First, the slope coefficient
is biased if the predictor is endogenous in the system that generates returns,
even if it is predetermined. Stambaugh (1986) showed that the bias is a
decreasing function of the sample size and an increasing function of the
autocorrelation in the predictor and of the contemporaneous correlation
between innovations in the two variables. Second, in the case of overlapping
multiperiod returns, standard errors based on asymptotic theory tend to be
too small in finite samples.

Our methodology for studying these biases is to model the variables as a
VAR under the null hypothesis, and then generate artificial histories of them
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using the estimated VAR and randomized sequences of the historical residu-
als. The sequence is also stratified according to periods of high and low
variance in order to simulate the historical pattern of heteroskedasticity.
Repeated regressions for the artificial histories give us an empirical sampling
distribution. We investigate four versions of standard errors designed to
account for serial correlation in regression errors introduced by overlapping
of multiperiod returns, three of which accommodate heteroskedasticity.

The main finding of the paper is that both sources of small sample bias are
important, and are large enough to mitigate evidence that the lagged value of
the dividend yield is a predictor of stock returns. Using annual returns for
1872 to 1986 we find that one tail p-values estimated from the empirical
distributions are substantially larger than what would be implied if the
¢-distribution were appropriate. Stratification of the sample suggests larger
biases and less significant results. Perhaps surprisingly, heteroskedastic
consistent versions of the standard error do not perform better than simpler
versions. Indeed for all four versions, the spread of the distribution of the
t-ratio is much in excess of that of the #-distribution, suggesting that simula-
tion is essential to proper assignment of significance levels.

When the sample is shortened to include only the period since 1947 it
becomes apparent that predictability of returns from fundamentals has been
primarily a phenomenon of the post-World War II era. If it is appropriate to
treat this as a separate period, then the observed predictability is highly
significant in spite of larger small sample bias associated with a smaller
sample size.

Monthly returns data offers far larger sample size than annual data, but,
perhaps surprisingly, the regression bias is not mitigated by this. The impor-
tant factor in determining small sample bias is not the number of observa-
tions per se, but the length of the historical record.

Finally, predicting returns using detrended industrial production provides
a more general example of regression on lagged values of macroeconomic
variables. Modeling the variables in a VAR in which return is not predictable,
we find that detrending substantially increases the bias. Nevertheless, re-
gressions predicting one-year returns remain highly significant although
there is not strong evidence of predictability at longer horizons.

The conclusion which we draw from these experiments is that valid infer-
ences cannot be drawn from predictive regressions using conventional tables
that are appropriate in the case of classical regression. The investigator
would seem to be obliged to develop the empirical distribution of the statistic
under the null hypotheses using simulations methods before drawing infer-
ences.
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