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Testing the Predictive Power of
Dividend Yields

WILLIAM N. GOETZMANN and PHILIPPE JORION*

ABSTRACT

This paper reexamines the ability of dividend yields to predict long-horizon stock
returns. We use the bootstrap methodology, as well as simulations, to examine the
distribution of test statistics under the null hypothesis of no forecasting ability.
These experiments are constructed so as to maintain the dynamics of regressions
with lagged dependent variables over long horizons. We find that the empirically
observed statistics are well within the 95% bounds of their simulated distributions.
Overall there is no strong statistical evidence indicating that dividend yields can be
used to forecast stock returns.

A NUMBER OF RECENT studies appear to provide empirical support for the
traditional use of the dividend-price ratio as a measure of expected stock
returns. Rozeff (1984), for instance, finds that the ratio of the dividend yield
to the short-term interest rate explains a significant fraction of movements in
annual stock returns. Fama and French (1988) use a regression framework to
show that the dividend yield predicts a significant proportion of multiple year
returns to the NYSE index. They further observe that the explanatory power
of the dividend yield increases in the time horizon of the returns; over
four-year horizons, R%’s range from a low of 19% to an astonishingly high
value of 64%. Similar results are reported by Flood, Hodrick, and Kaplan
(1987) and Campbell and Shiller (1988).

The apparent predictability of market returns from past values of dividend
yields is regarded by Rozeff (1984) as support for the rejection of the random
walk model of stock prices, and by Fama and French (1988) as support for the
cyclical behavior of expected returns. Flood, Hodrick, and Kaplan (1987)
interpret their results as support for time-varying expected returns to stocks.
The direct, and somewhat disturbing, implication of most of these studies is
that significant components of long-term stock returns may be predictable
using combinations of past returns and macroeconomic variables.

There are a number of reasons, however, why these results should be
regarded with caution. Given the persistent patterns of dividend payments,
movements in dividend yields are essentially dominated by movements in
prices. Therefore, the forecasting regressions suffer from biases due to the
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fact that the right-hand-side variables are correlated with lagged dependent
variables, instead of being predetermined as assumed in standard statistical
models. In addition, the usual GMM corrections to the standard errors are
only valid asymptotically, and there is some question as to whether “asymp-
totic” should be measured in terms of years, decades or even centuries,
especially for long-horizon forecasts.

Nelson and Kim (1992), in an independent study, analyze these biases in
simulations of a VAR system under the null hypothesis of no predictability of
returns. Using returns sampled annually, they report that the simulated
distribution of ¢-statistics is displaced upward, but they still find some
evidence of predictability at conventional significance levels. Hodrick (1992),
making full use of the information available in monthly data, extensively
simulates a VAR model applied to long-horizon returns, and also finds
evidence of predictability in stock returns.

While the VAR model addresses the endogeneity of the predictor, it does
not fully account for biases due to the fact that the regressor behaves like a
lagged dependent variable. Our research illustrates a case where this prob-
lem still biases tests toward rejection of the null. We use the bootstrap
methodology, as developed by Efron (1979), to model the distributions of
regression statistics under the null hypothesis that stock returns are inde-
pendently and identically distributed, and are not related to past dividends.
Our approach differs from previous VAR simulations in that we explicitly
incorporate the lagged price relation between returns and dividend yields. We
find that this explicit specification of the null makes a substantial difference
in hypothesis tests of the significance of the dividend yield regression.

In bootstrapped regressions of one- to four-year returns to the S & P stock
return index on the preceding dividend yield, we fail to reject the null
hypothesis that future returns are unrelated to past dividend yields at
conventional significance levels. In addition, we find that the observed ex-
planatory power of the model, as measured by the coefficient of determina-
tion, is only marginally significant when compared to bootstrapped distribu-
tions of R%’s; OLS ¢-statistics over 18 and R? over 38% for all multiple year
horizons are not unusual. Overall, when we explicitly model the null hypothe-
sis as a random walk, we find that the observed regressions of returns on
past dividend yields provide only marginal statistical evidence against the
random walk model.

This paper is organized as follows. The basic dividend yield regressions are
presented in Section I. Section II describes the modeling of the null hypothe-
sis in a numerical analysis framework. The bootstrapping tests and results
are presented in Section III. Finally, the last section contains some conclud-
ing observations.

I. Dividend Yields

Dividend yields have long been used to evaluate the expected return to
investment in common stocks. If the stock price represents a claim to the
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future stream of dividends, the price can be exactly determined assuming
constantly growing dividends and a known discount rate. This is the model
variously attributed to Williams (1938) or Gordon and Shapiro (1956). Camp-
bell and Shiller (1988) more recently refer to this model as the “dividend-ratio”
model in the absence of uncertainty:

Dt+1

P, = i=21 D,(1+g)/(1+r) = —

(1

where P is the stock price, D is the dividend, r is the discount rate, and g is
the constant growth rate of dividends. In the certainty model, the discount
rate is the expected return on the stock. Although the model is not directly
applicable to the case in which growth rates and discount rates vary through
time, the model suggests that dividend yields should capture variations in
expected stock returns.

If long-term market returns are predicted by the dividend yield, the
following regression should produce a significant coefficient and a non-trivial
RZ%:

R, yyr=oar+BrY, +€,.r (2)

where R,,,, is the compound total stock return from month ¢ to month
t + T, and Y, is the ratio D,/P,, the annual dividend up to time ¢ divided by
the stock price as of time ¢.

The null hypothesis is that there is no relation between R, , , and Y,, i.e.
that B = 0. Following Fama and French (1988), we perform all tests using
overlapping observations. As is well known, this procedure results in more
powerful tests but induces a moving average process in the errors, which
invalidates the usual OLS standard errors." The standard error corrections
are computed using the method proposed by Hansen and Hodrick (1980), in
which the autocovariances are estimated from the data, with a modifica-
tion due to White (1980) and Hansen (1982) that allows for conditional
heteroskedasticity. These will be referred to as “Generalized Method of
Moments” estimators. There are situations, however, where the variance-
covariance matrix of the estimated coefficients is not positive definite. There-
fore, standard errors are also reported using a correction due to Newey and
West (1987) that ensures that the matrix is positive definite.?

To investigate the predictive power of dividend yields, we use data on the
S & P 500 index over the period 1927 through 1990. Monthly total and income
returns were used to construct a price series P, exclusive of dividends, from
which monthly dividend payments were inferred. Because of seasonalities in
monthly dividends, an annual dividend series D was computed by reinvest-
ing the dividends at the monthly riskless rate. A price series P* was also
computed from the total returns R, assuming reinvestment of dividends; this
series represents the value of a fund invested in the S & P 500 stocks with

! See for instance Richardson and Smith (1991).
2 The covariances were weighted up to the number of overlaps.
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Table I
Long-Horizon Dividend Yield Regressions

Rt,t+T =ar + BrY, + € t+T

where R, ,, r is defined as the total stock return from time ¢ to time ¢ + T, Y, = D,/P, is the
annual dividend yield measured as of time ¢. The ¢-statistics presented are: t(OLS), from the
classical OLS regression, t(GMM), which adjusts for heteroskedasticity and the moving average
process induced by the overlapping observations (using the sample autocovariances), and ¢(NW),
which in addition uses the Newey and West adjustment to ensure that the variance-covariance
matrix of estimated coefficients is positive definite.

t-Statistic

Horizon
(Months) Beta OLS GMM NW R?
Period: 1927-1990
1 0.386 2.80 1.21 1.21 0.010
12 5.108 9.97 2.95 3.17 0.116
24 9.071 12.73 5,32 5.38 0.179
36 12.939 15.38 5.97 4.77 0.244
48 21.392 21.42 7.37 7.30 0.390
Period: 1927-1958
1 0.415 1.89 0.85 0.85 0.009
12 5.846 6.97 2.53 2.61 0.116
24 10.778 8.97 5.70 4.64 0.183
36 16.167 11.30 5.16 3.74 0.269
48 28.987 18.06 11.20 7.05 0.493
Period: 1959-1990
1 0.668 2.76 2.42 2.42 0.020
12 8.757 11.04 4.03 4.46 0.247
24 14.401 14.29 3.65 4.32 0.363
36 19.740 17.15 456 490 0.459
48 27911 20.26 4.68 5.19 0.551

reinvested dividends. The appendix contains a complete description of the
data.

Table I presents long-horizon forecasts for returns on the S & P index over
the period 1927 to 1990, and two subperiods of equal length, 1927 to 1958 and
1959 to 1990. Over the total 64-year period, the results seem to suggest
strong predictive ability for dividend yields. The slope coefficients increase
from 0.39 to 21.39 when the horizon lengthens from 1 month to 4 years.? The
OLS t-statistic also increases uniformly with the horizon, up to 21.42; since
the R? is a simple transformation of the OLS ¢-statistic, it increases to 39%,
which appears to be substantial. These OLS ¢-statistics and R?’s, however,

8 Part of this increase is explained by the fact that the variance of the dependent variable
increases over longer horizons. In line with most previous research, we have chosen not to adjust
returns for the length of the horizon.
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are seriously biased upward because of overlapping observations. This is
apparent from the much lower values of the GMM and Newey and West (NW)
t-statistics, which are 7.37 and 7.30 at the 4-year horizon. These values,
however, still indicate predictability.

The lower panels of the table reports estimates for the two subperiods. A
similar pattern emerges: high values of B, increasing with maturity up to
29.0 and 27.9, and high R?’s, going up to 49% and 55% in the two respective
subperiods. The fact that the predictive power is consistently stronger over
shorter sample periods to some extent suggests that the small-sample bias
may be enhancing the apparent significance of the results.

II. Testing Predictive Power

In fact, dividend yield regressions are similar to regressions on a lagged
dependent variable, which suffer from well-known biases. To illustrate this,
assume as before that dividends grow at a constant rate g. For illustration
purposes, it is slightly more convenient to use continuously compounded
returns, and the series with reinvested dividends. Dividends then grow as
In DE = InD¥ + gt, and regression (2) becomes:

In(P/ z/Pf) =a+BInDf — BIn PF + €ii+T
=a' +B(—1nPtR) +yt+ €, (3)

In this setup, all of the economic time variation in the dividend yield derives
from the time variation in the price level.

Equation (3) suffers from the classical bias due to the fact that a right-
hand-side variable is a lagged dependent variable. When T = 1, Kendall
(1973), for instance, shows that the OLS estimate, although consistent, is
centered at values less than zero in finite samples, even when the slope is
truly zero. Dickey and Fuller (1979) tabulate by simulations new values for
the OLS ¢-statistic under the null. The downward bias is shown to be
substantial in small samples, and is of the order of (—4/n), where n is the
sample size.

In overlapping regressions, however, it is harder to predict the extent of the
bias for the slope coefficient. While the GMM corrections to the standard
errors are valid asymptotically, even with 64 years of data, there are only
16 truly independent observations in the case of 4-year overlapping re-
turns. Econometric theory offers little guidance as to whether 16 observa-
tions qualify for asymptotic status. For these reasons, it seems prudent to
investigate the small-sample characteristics of these regressions by numerical
analysis.

A. The Bootstrap

The bootstrap was proposed by Efron (1979) as a nonparametric random-
ization technique that draws from the observed distribution of the data to
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model the distribution of a test statistic of interest. For example, suppose

= (X, ...X,) are i.i.d. random variables drawn from the unknown distribu-
tlon F. Deﬁne 0 as some parameter of the population, and 6(X) as an
estimator of 6. Let F be the sample distribution, from the observed X, that
assigns a mass 1/n to each X;. The bootstrap estimates the dlstrlbutlon of
6(F) by the sampling dlstrlbutlon 6(F). This procedure is carried out by the
following steps:

1. From the observed (X; ... X,), compute the test statistic 6(X).

2. Draw a bootstrap sample (X} ... X*), with replacement, from the empir-
ically observed distribution F.

3. Calculate 6* = 6(X*) from the pseudodata.

4. Repeat steps 2 and 3 K times, obtaining é,;", k=1,...,K.

The empirical distribution of (0k — ) can be used to approximate the
distribution of (6 — @). The asymptotic properties of the bootstrap for com-
monly used statistics such as the mean, median, variance, and distribution
‘quantiles have been studied by Bickel and Freedman (1981) and Freedman
(1981). Freedman (1981) demonstrates the validity of the bootstrap for the
regression model, showing that, under the assumptions of predetermined
variables and i.i.d. errors, the distribution of the coefficients converges to the
normal. As we shall see, the bootstrapped distributions of coefficients may
converge to a nonnormal distribution when these conditions are violated.

The bootstrap approach, it should be noted, has limitations. For small
sample sizes, the bootstrapped distribution O(F) may be a poor approxima-
tion to 6(F). Schenker (1985), for instance, shows a simple example where
the bootstrapped distribution of standard errors would lead the researcher to
underestimate the size of confidence intervals. For sufficiently large sample
sizes, however, an important advantage of the bootstrap is that it allows the
researcher to control for the presence of potentially biasing factors such as
the use of overlapping return intervals, the lagged correlation between
independent and dependent regression variables, and other idiosyncracies in
the distribution of the returns or in the error structure.

B. Bootstrapping Dividend Yields

We adapt the bootstrapping methodology to the dividend yield problem by
considering the following model. We want to specify a temporal relationship
between returns, dividends, and prices that is analogous to their historical
pattern. In particular, price levels—the denominator in the yield term—are
dependent upon the capital appreciation return history to that point, and
dividends are highly autocorrelated. To capture this. relationship in the
bootstrap model, we randomly sample total returns R* from their true
distribution, subtract off the contemporaneous income return R} to create a
pseudo-capital-appreciation-return series R%. We compound these to calcu-
late a pseudo-price-level series, P*, which in turn is used to create a
pseudo-dividend-yield, Y*, where Y,* = D,/P}, in which D, are the actual
annual dividend flows, and P* is the simulated price series.



Testing the Predictive Power of Dividend Yields 669

Because total returns have been randomized, there is no relationship
between returns and dividends. At the same time, the dividend series ex-
hibits the high degree of persistence actually observed. Therefore, this setup
introduces the possibility of autocorrelated errors in the regression, and
potential bias in the estimated coefficients. This is a desired feature of the
model, since it remains consistent with the null hypothesis.

Thus, our bootstrap procedure is the following:

1. Form the empirical distribution of monthly total stock returns and their
associated income returns from the observed vectors of S & P returns.

2. Draw 718 of these observations (R} ... R%;3), with replacement.

3. Compute the relevant statistics:

a. Form P* from R% = R* — R} as described above. Use this to form
Y*=D/P*

b. Construct multiple horizon return vectors R% for overlapping T-year
returns.

c. Perform the regressions of future returns on dividend yields, for each
horizon T, and save the resulting coefficients B, the R}* and the
t-statistics ¢7.

4. Repeat steps 2 through 3 five thousand times.

II1. Empirical Results

Table II reports the relevant quantiles, means, and standard deviations of
the bootstrapped distributions of regression coefficients, ¢-statistics and R%s
under the null hypothesis. The mean of the coefficient distribution increases
uniformly in the return horizon, from 0.15 to 9.59, and the median of the
coefficient differs increasingly from the mean, indicating right-skewed distri-
butions. The extent of the skewness is apparent from Figures 1 and 2, which
present histograms of the bootstrapped betas over 1-month and 4-year hori-
zons.* The critical value at the 5% level for the 4-year slope coefficient is
30.02, which is very high. Notice that the overlap is not the cause of the
skewness; skewness occurs at the 1-month horizon as well as at the 4-year
horizon.

The table also shows that all ¢-statistics increase in the time horizon. As
other researchers have noted, the OLS t-statistics are grossly misleading
since they fail to correct for the autocorrelated errors induced by the use of
overlapping returns, as well as for the bias in the slope coefficient. At the
4-year horizon, OLS t-statistics above 21.16 are observed in 5% of all
experiments. What is more worrisome, however, is the fact that the corrected
GMM and NW ¢-statistics also appear to be seriously biased upward. At
4-year horizons, GMM ¢-statistics above 5.49 are observed in 5% of the

4 Similar results are found in empirical tests of the random walk assumption for real exchange
rates, which involve regressions on lagged dependent variables. See for instance Abuaf and
Jorion (1990).
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Figure 1. Distribution of beta: 1-month horizon. Distribution of slope coefficient from
1-month horizon dividend yield regression under the null. The histogram describes the bootstrap
distribution, and the solid line describes the VAR distribution. The actual beta measured over
1927 to 1990 is also reported.

sample.’? The mean of the R?’s also increases uniformly in the return horizon,
from near zero to a mean value of 12% for 4-year forecasts. The 5% critical
level for the 4-year R? is above 38%.

The right-hand-side columns in Table II report the observed statistics from
the actual regressions of returns on lagged dividend yield. Note that, while
the slope coefficients all exceed the median values for their bootstrapped
distributions, none exceeds the relevant 95% fractile. Thus, it is difficult to
conclude that the regression statistics differ significantly from those obtained
under the null hypothesis as specified, using conventional significance levels.
While some of the t-statistics and the R? barely exceed the 95% fractiles,
these statistics may not be directly applicable in view of the asymmetry in
the distribution cf slope coefficients.

® There were a few instances where the GMM covariance matrix was not invertible (5 cases at
3-year horizons, 1 at 4-year); the frequencies reported are out of the total number of cases for
which GMM ¢-statistics could be calculated.
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-<—Bootstrap

= Actual Beta

Beta
Figure 2. Distribution of beta: 4-year horizon. Distribution of slope coefficient from
4-year horizon dividend yield regression under the null. The histogram describes the bootstrap
distribution, and the solid line describes the VAR distribution. The actual beta measured over
1927 to 1986 is also reported.

As noted in Richardson and Smith (1991) and Goetzmann (1990), it is
insufficient to examine the coefficients separately. Following Hodrick (1992),
we assess joint significance of all five slope coefficients by formulating a
statistic similar to the Hotelling T'2: BV( 3*)~'3, where V( *) is the covari-
ance matrix of all 5,000 jointly bootstrapped betas. The observed statistic of
11.40, compared to its bootstrapped distribution, is exceeded in 9.5% of the
experiments, which again indicates that the slope coefficients are only
marginally significant.

Table III presents the results of the bootstrap applied to the two subperi-
ods, 1927 to 1958 and 1959 to 1990. The empirical p-values of the actual
4-year slope coefficients are 0.130 and 0.317 in the two respective samples.
Therefore, there is little statistical evidence that the slope coefficients are
different from what could be expected under the null of no forecasting ability
for dividend yields.

While the previous analysis is distribution free, it may be of some interest
to investigate the sensitivity of the results to the distributional assumptions.
Therefore, the numerical analysis was also performed using total returns R*
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Table II1

Bootstrap on Total Returns: Actual Distribution
(Monthly Data: Subperiods)
The bootstrap uses 1000 replications. The “Observed Statistic” column reports the actual
statistic over the subsample. The empirical p-value is the proportion of times the observed
statistic was exceeded under the null.

Period: 1927-1958 ' Period: 1959-1990
Bootstrap Betas Bootstrap Betas
Std. Observed Empirical Std. Observed Empirical
Statistic Mean Dev. Statistic p-Value Mean Dev. Statistic p-Value
1-month
B 0.247 0.271 0.415 0.195 0.380 0.352 0.668 0.160
t(OLS) 1.219 0.933 1.888 0.239 1.411 0.843 2.761 0.044
t(GMM) 1.195 0.899 0.855 0.658 1.425 0.849 2.424 0.122
t(NW) 1.195 0.899 0.855 0.658 1.425 0.849 2.424 0.122
R? 0.00606  0.00680 0.00924 0.239 0.00698  0.00636 0.01956 0.044
12-month
B 3.030 3.436 5.846 0.158 4.768 4.148 8.757 0.137
t(OLS) 4.152 3.542 6.972 0.201 4.982 2.972 11.041 0.022
t(GMM) 1.424 1.244 2.530 0.170 1.686 1.079 4.028 0.021
t(NW) 1.644 1.405 2.614 0.224 1.976 1.236 4.456 0.024
R? 0.06750  0.07369 0.11586 0.201 0.07783  0.06669 0.24733 0.022
24-month
B 6.278 7.450 10.778 0.202 10.063 8.381 14.401 0.243
t(OLS) 5.838 5.305 8.970 0.265 7.170 4.479 14.291 0.057
t(GMM) 1.806 1.991 5.700 0.025 2.095 1.572 3.651 0.126
t(NW) 1.883 1.776 4.642 0.058 2.287 1.581 4.322 0.101
R? 0.12186  0.13017 0.18311 0.265 0.14600 0.11933 0.36259 0.057
36-month
B 9.757 12.150 16.167 0.205 15.657 12.758 19.740 0.309
t(OLS) 7.089 6.762 11.302 0.248 8.845 5.799 17.154 0.081
t(GMM) 1.772 7.805 5.163 0.111 2.337 6.092 4.562 0.145
t(NW) 2.142 2.151 3.740 0.185 2.609 1.952 4.904 0.105
R? 0.16414 0.17266 0.26908 0.249 0.20485  0.15875 0.45889 0.081
48-month
B 13.462 17.845 28.987 0.130 21.882 17.763 27911 0.317
t(OLS) 8.153 8.138 18.061 0.126 10.353 7.051 20.258 0.082
t(GMM) 2.605 7.862 11.204 0.040 2.459 10.371 4.677 0.218
t(NW) 2.445 2.695 7.049 0.055 2.976 2.388 5.188 0.149
R? 0.19912 0.20547 0.49333 0.126 0.25728 0.19112 0.55056 0.082

drawn from a normal distribution with mean and variance equal to those of
the original sample.® Table IV reports summary statistics for the simulation
under normally distributed returns. ’

The table is substantially in agreement with the results in Table II; none of
the slope coefficients is significant at the 5% level. The empirical p-values,
however, are systematically lower than those reported from the bootstrap.

5 Because a pair of total and income returns is not available in this setup, the dividend yield
DF is constructed from the total price series P®, as explained in the Appendix. The simulation
first generates total returns R*, from which the pseudoseries P%®* is obtained and combined
with the actual annual dividend series D, to form a pseudo-dividend-yield Y* = D /PE*,



674 The Journal of Finance

Table IV

Alternative Models
(Monthly Data: 1927 to 1990)

Five-thousand replications. Alternative models are: (1) a simulation assuming normally dis-
tributed returns, modelling the dependence between returns, prices and yields, (2) a bootstrap
experiment assuming predetermined yields, (3) a bootstrap experiment based on a VAR model
that allows for endogenous yields. For each model, the mean and standard deviation of the
statistic are reported, as well as the empirical p-value, which is the proportion of times the
observed statistic, reported in the second column, was exceeded under the null.

Simulations: Bootstrap: Bootstrap:
Normal Distribution Fixed Yield VAR
Bootstr. Betas Bootstr. Betas Bootstr. Betas
Observed Std. Empirical Std. Empirical Std. Empirical

Statistic Statistic Mean Dev. p-Value Mean . Dev. p-Value Mean Dev. p-Value
1-month

B 0.386 0.135 0.141  0.0628 0.003 0.145 0.0062  0.064 0.149 0.0322

t(OLS) 2.796 1.307 0.856  0.0356 0.018 0.992 0.0034 0.338 0.986 0.0068

t(GMM) 1.208 1.321 0.867  0.5628 0.017 1.003 0.1164  0.340 0.992 0.1908

t(NW) 1.208 1.321 0.867 0.5628 0.017 1.003 0.1164 0.340 0.992 0.1908

R? 0.0101 0.003 0.003 0.0356 0.0013 0.0019 0.0056 0.0014 0.0020 0.0070
12-month

B 5.108 1.738 1.856 0.0588 0.025 1.821 0.0052 0.779  1.792 0.0166

t(OLS) 9.969 4.500 3.103  0.0386 0.052  3.259 0.0026  1.202 3.191 0.0036

t(GMM) 2.948 1.447 1.039 0.0686 0.001 1.159 0.0088 0.434 1.117 0.0192
t(NW) 3.167 1.710 1.208 0.1064 -0.002 1.346 0.0116 0.496 1.291 0.0250
R? 0.1163 0.037 0.036  0.0386 0.0135 0.0189  0.0030  0.0147 0.0204  0.0038
24-month
B 9.071 3.722 4.006  0.0940 0.022 3.834 0.0114 1.610 3.647 0.0264
t(OLS) 12.730 6.320 4.553  0.0822 0.038 4.324 0.0024 1.729 4.228 0.0066
t(GMM) 5.319 1.618 1.286 0.0104 -0.010 1.245 0.0010 0.559 1.287 0.0022
t(NW) 5.379 1.836 1.383  0.0134 -0.021 1.391 0.0012  0.583 1.375 0.0018

R? 0.1791 0.070 0.068  0.0822 0.0235 0.0312  0.0028  0.0259 0.0349  0.0072
36-month
B 12.939 5.959 6.477  0.1230 0.023 6.074 0.0200 2.539 5.584 0.0338

t(OLS) 15.375 7.691 5.746  0.0908 0.027  4.969 0.0020 2.156 4.821 0.0046
t(GMM) 5.972 1.754 2.586  0.0172 ~-0.022 1.296 0.0004 0.616 3.505 0.0052
t(NW) 4.774 1.955 1.564  0.0442 -0.030 1.405 0.0016  0.669 1.438 0.0060

R? 0.2444 0.099 0.097 0.0908 0.0309 0.0396 0.0020 0.0344 0.0451 0.0050
48-month

B 21.392 8.534 9.363 0.0878 0.002 8.668 0.0092 3.606 7.621 0.0068

t(OLS) 21.419 8.842 6.787 0.0402 0.006 5.422 0.0000 2.526 5.152 0.0002

t(GMM) 7.367 1.958 2.483 0.0142 —-0.030 1.332 0.0000 0.382 7.412 0.0084

t(NW) 7.300 2.067 1.764 0.0110 —-0.033 1.404 0.0000 0.755 1.482 0.0006

R? 0.3895 0.126 90.122 0.0402 0.0368 0.0459 0.0000 0.0405 0.0522 0.0002

For instance, the 4-year p-value is 0.0878, instead of 0.1166 previously; the
1-month p-value is 0.0628, instead of 0.0920 previously. Differences appear
to be due to the fact that there are fewer extreme observations in the tails of
the normal distribution than actually observed over the sample; the bootstrap
more accurately reflects the actual distribution of stock returns. In spite of
these slight differences, the general conclusions are not affected by the
distributional assumptions behind the returns simulations.

To understand why these results are so different from traditional regres-
sions, consider another bootstrap experiment where the right-hand-side vari-
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ables are exogenous. In this setup, the independent variables are taken to be
the actual dividend yield Y = D /P, and monthly returns are randomized to
generate the dependent variables and multiple horizon returns. The middle
panel in Table IV reports information on the bootstrapped statistics in this
traditional regression framework. The table shows that the bootstrapped
GMM ¢-statistics correspond much more closely to their expected distribution
than in Table II. For instance, the empirical one-tailed 5% level for the GMM
t-statistic at the 4-year horizon is 2.13, which is close to what was expected
from traditional regression theory. Using the empirical distributions in Table
IV would lead to the misleading conclusion that all of the multiyear statistics
are strongly significant. This further indicates the need to specify a frame-
work allowing the right-hand-side variables to be endogenous.

As Nelson and Kim (1993) and Hodrick (1992) point out, the issue of
endogeneity could be analyzed by modelling a first-order VAR process,

Zi1=AZ, +us (4)

where the columns of Z represent monthly stock returns and dividend yields.
In order to simulate Z,, ; under the null, we set the slope coefficients in the
return equation equal to zero. Then we bootstrap the sample distribution of
errors.’

This procedure has two desirable features: it models the dividend yield as a
highly autocorrelated series, with a first-order autocorrelation of 0.96, and
also as an endogenous variable, with a contemporaneous correlation with
returns of —0.90. The bootstrapped distributions are summarized in the
right-hand-side panel of Table IV. The VAR approach corrects for the small-
sample bias due to the use of an endogenous variable, as well as for biases in
the ¢-statistics, but only indirectly models the serial dependence resulting
from the lagged price effect in dividend yield regressions.

As a result, the distributions of slope coefficients appear much closer to
normal than under the bootstrap. The curves labelled “VAR” in Figures 1 and
2 clearly show that the VAR model only partially capture the skewness in
slope coefficients. In terms of inference, Table IV might indicate predictabil-
ity in dividend yields: for all horizons, the empirical p-value for the observed
coefficient is below 5%. Our results suggest that these rejections may be
misleading, because they do not explicitly incorporate the dynamics of regres-
sions with lagged dependent variables.

The results of the dividend yield regressions, for which the price process is
endogenous, bear a close resemblance to the well-known simulations per-
formed by Granger and Newbold (1974) and further analyzed by Phillips
(1986). Granger and Newbold regressed two independent random walks, and
found rejection of the null the rule, rather than the exception. Indeed, their

7 Nelson and Kim (1993) randomize on the observed errors, while Hodrick (1992) generates the
errors from a multivariate distribution followinng a GARCH process.
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paper has frequently been cited as justification for the need to use differenced
price series in econometric studies (see Plosser and Schwert (1978), for
example). These results may help us understand the spuriously high R?’s
obtained in the preceding tests. The greater the overlap in the return series,
the more closely the return series resembles a price level series, rather than a
return series. Although each successive return may be independent (in fact,
the bootstrapped returns are independent by construction), the series com-
prised of a rolling sum of returns is not. Likewise, dividends also resemble
random walks. It would thus not be surprising to find that the combination of
these two series in a regression could result in spurious conclusions regarding
both significance and explanatory power.

To present another perspective on the results, Table V reports estimates of
equation (3), which explains returns by the logarithm of the lagged price plus
a time trend. As shown before, this specification assumes that dividends grow
at a constant rate. Table V shows that the R?’s obtained in this specification

Table V
Long Horizon Regressions on Lagged Prices and a Time Trend

In(P, ;. 7/P;) = ap + Br(—~InP,) + yT* + €t+T

where In(P,,, 7 / P,) is the continuously compounded total stock return from time ¢ to time
t + T, P, is the price as of time ¢, ¢ is a time trend. The #-statistics presented are: ¢(OLS), from
the usual OLS regression, :(GMM), which adjusts for heteroskedasticity and the moving average
process induced by the overlapping observations.

Horizon t-Statistic t-Statistic
(Month) Beta OLS GMM Gamma OLS GMM R?
Period: 1927-1990
1 0.0164 2.83 2.22 0.0001 2.90 2.34 0.011
12 0.2217 11.04 2.23 0.0011 11.37 1.96 0.147
24 0.4461 17.60 2.77 0.0022 18.44 2.53 0.315
36 0.6418 25.69 6.28 0.0033 27.38 7.17 0.507
48 0.7973 33.25 7.04 0.0041 35.94 9.08 0.643
Period: 1927-1958
1 0.0145 1.63 1.30 0.0001 1.97 1.96 0.011
12 0.2289 7.14 1.90 0.0011 741 141 0.155
24 0.4966 11.71 2.56 0.0023 12.46 1.96 0.351
36 0.7186 16.84 4.69 0.0036 20.21 6.93 0.584
48 0.8731 21.82 4.52 0.0046 29.04 9.35 0.749
Period: 1959-1990
1 0.0210 2.01 1.55 0.0001 2.19 1.93 0.012
12 0.2383 6.77 2.88 0.0012 7.72 3.27 0.012
24 0.3336 7.36 3.03 0.0017 9.41 3.55 0.207
36 0.3612 7.24 3.18 0.0020 10.67 3.47 0.280

48 0.3915 6.27 3.28 0.0024 11.02 3.69 0.342
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Figure 3. Comparison of 4-year returns and fitted values using yields and using
lagged prices. Total 4-year returns are compared with the fitted values from regressions of
returns on yields and on lagged prices plus a time trend.

range from 1.1% for a 1-month horizon to 64% for a 4-year horizon. These
values, as well as t-statistics, are typically higher than those found for the
equivalent dividend yield regressions. Figure 3 compares the 4-year returns
with fitted values of dividend yield and price regressions. Apparently, the
regression on lagged prices fits the returns even better than the regression on
dividend yield. These results imply that the economic time variation in the
ratio of dividends to past prices may be due primarily to the time variation in
the price series, and that long-term forecasting ability has little to do with
variation in dividends.

IV. Conclusions

Regression tests of long-horizon returns on dividend yields have previously
been interpreted as providing strong evidence of predictability in stock
returns. These studies, however, have failed to recognize the serious biases
arising from regressions on lagged dependent variables. To illustrate how
inference may be affected, we have used bootstrapping techniques, and have
modelled the null hypothesis that returns conform to a random walk while at
the same time preserving the actual patterns of dividends.
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The results of our tests show that, in a simple setting with no linear
relationship between future returns and the dividend-price ratio, the OLS
procedure, even with standard errors corrected for overlapping data, will
often yield results that suggest otherwise. Indeed the coefficients, #-statistics
and R%’s from such regressions are shown to be misleading in the sense that,
even when generated by data conforming to the null hypothesis, they yield
what might normally be interpreted as strongly significant results. The
biases are much stronger than previously thought. As an example, consider
the GMM ¢-statistics for 4-year returns measured over 64 years of monthly
data. In a conventional setting, the 5% upper tail critical value is 2.1; using a
VAR approach, this value increases to 3.9; our approach yields a value of 5.5.

Our findings argue for a different formulation of such tests, and caution
against drawing inferences from usual regression statistics without a thor-
ough understanding of their underlying distributions. The implications of
these results extend far beyond tests of the predictive power of dividend
yields. Time series studies of returns conditioned upon any ratio involving
price levels are also susceptible to the biases reported here. While GMM
adjustments and VAR simulations clearly help to adjust for overlaps and
small sample biases, this study shows that in some situations they may not
be adequate for the purposes of hypothesis testing.

Appendix: Data Construction

The data series were constructed as follows: monthly total, capital, and
income returns on the S & P 500 index were obtained from Ibbotson Associ-
ates. These are defined, respectively, as

Rt,t+1 =Rt)ft+1 +Rt1,t+1 = (Pt+1 _Pt)/Pt +dt+1/Pt,

where P, is a price series that excludes the reinvestment of dividends.
Setting P, at 100, we recursively compute P,, as well as the monthly
dividend d, from these series.

A monthly annualized dividend series was computed from compounding
twelve monthly dividends at the 1-month Treasury bill rate r,:

D, =d,+(1+r)d, ;+Q+r)Q+r,_)d,_5+...

Then annual dividend yield is then defined as Y, = D,/P,.

For the simulation using total returns, we computed a “total” price that
represents the value of a fund mimicking the index with monthly reinvest-
ment of dividends, as R,,,; = (P%, — PF)/PF, with P§ = 100. the actual
income on such a fund is computed recursively from R/, = df,,/PfF, and
DZ is computed from d? as explained above.
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