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Assessing Goodness-of-Fit of Asset Pricing
Models: The Distribution of the Maximal R2
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ABSTRACT

The development of asset pricing models that rely on instrumental variables together
with the increased availability of easily-accessible economic time-series have re-
newed interest in predicting security returns. Evaluating the significance of these
new research findings, however, is no easy task. Because these asset pricing theory
tests are not independent, classical methods of assessing goodness-of-fit are inappro-
priate. This study investigates the distribution of the maximal R? when % of m
regressors are used to predict security returns. We provide a simple procedure that
adjusts critical R? values to account for selecting variables by searching among
potential regressors.

PERHAPS THE MOST ELUSIVE goal in finance is the ability to predict security
returns. Researchers have devoted no small amount of time and effort to
understanding the return generating process. Recent studies include investi-
gations of return anomalies and developments of conditional asset pricing
models with time-varying parameters. Some studies conclude that security
returns are predictable—a notion that historically would have been treated
with skepticism. While interesting, this research raises concerns about
whether these insights are real or whether we have simply become too familiar
with the available data.

This study adds to the debate about whether security returns are predict-
able. Our concern is that tests of predictive power are made using classical
statistical tests (where the implicit assumption is that only one test is made
with a particular data set), yet most research designs rely upon past work. If
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past work uses similar data (e.g., from a similar time period), questions of
predictability become especially nettlesome. While any single researcher is
unlikely to have completed an exhaustive search of a large set of potential
regressors in selecting an instrument set, the effect may be the same if the
researcher knows the results of related studies.!

To apply our insights, we consider tests of conditional asset pricing models.
By recognizing that model parameters may change through time, conditional
asset pricing models allow for more powerful tests. The implementation of
these tests, however, requires prediction of security returns using the instru-
mental variables that form the investors’ information set. Since the identity of
the instruments is unknown, researchers search available information and
select variables that best describe the data. The problem with the goodness-
of-fit approach is that it is usually evaluated using classical cutoff levels. If the
wrong instrument set (i.e., one that has no true predictive power) is chosen, the
conditional asset pricing test is misspecified.

The purpose of this article is to provide a simple procedure to test the null
hypothesis that all of the slope coefficients of an Ordinary Least Squares (OLS)
regression used to predict returns are equal to zero where we assume that (a)
only & of m potential regressors are used, (b) all possible regression combina-
tions are tried, and (c) only the regression with the highest R? is reported. The
alternative hypothesis is that at least one of the OLS slope coefficients is not
equal to zero (i.e., the regression has predictive power) given the same exhaus-
tive variable-selection procedure.

The article proceeds as follows. In Section I, we discuss the variable-selec-
tion problem and illustrate how an improper use of classical statistical infer-
ence can lead to erroneous conclusions. In Section II, we develop a test proce-
dure. Relying on the applied statistics literature, we start with the distribution
of the R? statistic under classical OLS assumptions. Next we discuss a bound
for the maximal R? distribution when the best % of m potential regressors are
selected. This bound represents a conservative test for determining whether a
model is statistically significant when the researcher has access to m explan-
atory variables and uses only % of them. We also solve numerically for the
maximal R? distribution. Finally, we consider an approximation developed by
Rencher and Pun (1980). In Section III, we discuss the implications of our work
for tests of monthly security return prediction. Section IV contains a summary.

I. The Variable-Selection Problem

Concern about overfitting data in tests of financial models is not new. Merton
(1987, p. 207) warns that researchers may find return anomalies because they
are too close to the data. Ross (1989) points out that, in searching return data
for anomalies, researchers will find patterns that are at odds with the current
paradigm. Lo and MacKinlay (1990, 1992) investigate data-snooping biases
and point out that grouping stocks into portfolios induces bias in statistical

1 See, for example, Denton (1985).
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tests. Black (1992) discusses a variety of other data-snooping biases and
highlights the relative roles of theory and data in understanding how one can
estimate expected security returns. Granger and Newbold (1974) show how
high R? statistics may result from a spurious regression problem.

In this study, we focus on a single potential source of inflated R? statistics—
choosing a subset k& of m possible explanatory variables. This potential for
overfitting is well known in the applied statistics literature. Freedman (1983,
p. 152), for example, states “. .. in a world with a large number of unrelated
variables and no clear a priori specification, uncritical use of standard methods
will lead to models that appear to have a lot of explanatory power.” Following
the applied statistics work of Rencher and Pun (1980), Miller (1984, 1990) and
Hjorth (1994), we demonstrate that the bias resulting from this form of
variable selection can be important.2

A. The OLS Model

To help formulate the variable-selection problem in an asset pricing theory
context, let y be a ¢ X 1 vector of security returns. To predict these returns, a
researcher chooses k2 of m (where £ < m) potential regressors. In studies
predicting monthly security returns, researchers typically choose five or six
regressors (k). The number of potential regressors (m), however, is virtually
without limit. Among the candidates are stock and bond prices and returns,
macroeconomic variables and accounting variables, not only from the domestic
economy but from all economies worldwide. In addition, there are limitless
possible linear and nonlinear transformations of these variables (e.g., the
difference between the long-term and short-term Treasury rates, the logarithm
of market capitalization, the square of market return).

The simplest way to choose among the regressors is to rely on the goodness-
of-fit as measured by the regression R? (or F-statistic). In the context of return
predictability, the m potential regressors are predetermined variables repre-
senting elements of past information sets. From the m variables, the re-
searcher chooses only % regressors. The regression equation is:

y=c¢+xB+e, (1)

where c is an intercept, x is a ¢ X k nonstochastic data matrix, Bisa k X 1
vector of coefficients and ¢ is a ¢ X 1 vector of independent disturbance terms
each distributed as N(0, 0®). The number of possible model regression specifi-
cations is ().

2 In our analysis, the number of regressors, &, is fixed. Choosing the number of regressors (i.e.,
“dimensionality selection”) also produces biases and is an interesting problem in its own right.
Breiman (1992) points out that there are a number of commonly-used ad hoc methods (e.g., F to
enter, F to delete, adjusted R?, and Mallows C,) for choosing the submodel dimension. He also
introduces a technique known as the “little bootstrap” that gives almost unbiased estimation for
submodel prediction errors and uses these for model selection. Other important work on this.
problem includes Breiman and Specter (1992) and Miller (1990).
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B. An Illustration

To illustrate the degree of possible bias in the R? from choosing the best % of
m regressors, consider the following simulation. First, we generate 250 obser-
vations for 51 variables—fifty potential regressors and one dependent vari-
able. The sample size of 250 was chosen to be about the same as those used in
monthly return prediction studies. Each generated variable is normally dis-
tributed with mean zero and unit variance, and is independent of all the
others. With independence, the regression is expected to fit poorly.

Next, using the generated sample, we perform the OLS regression (1). When
the dependent variable is regressed on all fifty independent variables, the
F-value is 1.172 (with a p-value of 0.22), the R? is 0.228, and the R? is 0.034.
The five most extreme ¢-statistics are 2.45, —2.24, 2.02, 1.92, and 1.83. With
fifty regressors, five (i.e., ten percent) should have ¢-statistics whose magni-
tude is 1.645 or higher through random chance. Based on these results, y and
x are unrelated, and hence the design of the data is revealed.

Finally, again using the generated sample, we search across all possible
combinations of five regressors to find that set that maximizes R2. The F-
statistic is 4.137 (with a p-value of 0.0013), the R? is 0.078, and the R? is 0.059.
The ¢-statistics of the five “best” regressors are 2.58, —2.21, 2.02, 2.68, and
1.73. Absent the knowledge that an exhaustive search had been performed, the
relation between y and x would be regarded as significant. Nothing is further
from the truth, however. The inference is wrong because the effects of selecting
the five “best” regressors from the set of fifty are ignored. We now demonstrate
techniques similar to an F-test that can be applied to censored regressions to
arrive at the same inference as the full regression.

II. The Distribution of the Maximal R?

The key to the analysis lies in the distribution of the maximal R? To
estimate the B coefficients in equation (1), we use their OLS values, b = (x'x) "}
x'y. With this definition of b, the proportion of the variation in y that is
explained by changes in x is the R?, and the R? is distributed as a

Et—(k+1)
Beta( 9 5 )
under the null hypothesis that 8 = 0.3 The significance of the regression can be
assessed with the R? statistic in the same manner as with the F-statistic.4 The
95 percent cutoff value of the R? from the single, five-variable regression is
0.044. Using this cutoff value for the censored regression in Section I, we
falsely infer that at least one of the B coefficients is not zero. The incorrect
inference arises because the classical testing procedure does not take into

8 For the distribution of R* with a null hypothesis other than g = 0, see Cramer (1987).
4 The significance of the regression can also be assessed _using the R? statistic since the
unadjusted value is simply RZ = 1 — {[t — (k + 1))/t — 11 — R?).
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account the amount of data used to select explanatory variables. We now show
how to adjust the cutoff value of R? assuming the researcher chooses the “best”
k of the m (where k < m) regressors by maximizing the regression RZ.

A. Bounding the Distribution

To begin, we consider the case where the regressions are independent (i.e.,
the x matrix and the y vector are independent between regressions). The
distribution function of the maximal RZ, Ug:(-), is:

Ug(r) =Pr(Ri<r,Ri=<r,..., R}, =r)=[Beta(r)]™?, (2)

where Beta(:) is the cumulative distribution function of the beta density func-
tion with %2/2 and [t — (2 + 1))/2 degrees of freedom. Expression (2) is the
standard order statistic argument that the probability that all R%s are less
than some cutoff is the product of the probabilities that each R? is less than the
cutoff.5 Because we have (') potential regressions, (') terms appear on the
right-hand side of equation (2).

Expression (2) is a relatively straightforward way to compute the distribu-
tion of the maximal R%; however, it cannot be used directly for our purposes. In
our regression experiment, the y does not change between regressions, the (;*)
x matrices have overlapping elements, and the regressors in the x matrix may
be correlated.6 Consequently, we cannot derive a general form for the joint
probability distribution of the R? and move to a weaker bound of the joint
distribution function based on the Bonferroni inequality:

Ups(r) =1 — {[1 - Beta(r)]<’}:>}. (3)

Expression (3) states that the upper tail probability of the univariate distri-
bution is scaled by the number of regressions performed. This bound holds for
general correlations among the regressions (i.e., both the effect of a shared y
vector and the correlations in the x matrix).

To develop a more intuitive understanding of the plausible implications of
expressions (2) and (3) for tests of monthly security return prediction, recon-
sider the illustration in Section I where m = 50, £ = 5, and ¢ = 250. The 95
percent cutoff values computed using equations (2) and (3) are both approxi-
mately 0.164. Since the R? of our “best” five-variable regression is only 0.078,
we cannot reject the hypothesis that the B are zero—the same inference as the
first regression when all fifty regressors were used.

The cutoff level of equation (3) is a bound and is therefore biased toward not
rejecting the null hypothesis. If an R2 exceeds equation (3), we can be confident

5 See David (1981).

8 If the x matrix does not have overlapping elements and there is no correlation among
regressors, Kimball (1951) shows that expression (2) is a bound on the distributional of the
maximal R2. Such circumstances would arise, for example, where only one regressor is selected.
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that the regression fit is not a result of exhaustive variable selection. If an R?
is less than equation (3), however, we are uncertain.

With added computational cost, we can be more precise in our testing.
Although we do not know the exact distribution of the maximal RZ, it can be
computed numerically using Monte Carlo simulation. To illustrate, we use the
parameters from the example in Section I. The simulation begins with gener-
ating 250 standard normal observations for fifty potential regressors and a
dependent variable that is uncorrelated (in population) with all of the regres-
sors. We then select the best five regressors from the fifty potential regressors
and record the R? from the regression fit. We repeat this exercise 100 times to
create a numerical distribution of the maximal R?. Under this procedure, we
find that the 95 percent cutoff RZ value is 0.117. Since this cutoff value exceeds
0.078, we cannot reject the null hypothesis that all B; are zero.

The numerically generated cutoff is the an approximation for the exact
distribution. Unlike equations (2) and (3), it is not biased towards the null.
Moreover, correlation among potential regressors does not appear to affect the
numerical distribution of the maximal R?. In separate simulations, we repeat
this analysis for low and high positive correlation among the potential regres-
sors and find similar cutoff values.”

B. An Approximation

Rencher and Pun (1980) use extreme value theory to derive an asymptotic
distribution of the maximal R2. They consider the same basic design, and, by
assuming independence between N = (') possible regression combinations,
they show that the y percent cutoff level of the maximum R? is

In
N (7)] ’

N (4)

R:Z=F 1[ 1
where F~1 is the inverse of the Beta cumulative distribution function. Expres-
sion (4) is analogous to equation (2).

Rencher and Pun go on to note that the independence assumption is unlikely
to apply. To correct for the dependence among possible regression combina-
tions, they adjust the value of N in expression (4). The adjusted N is smaller
and reflects the effects of using the same y vector and common columns in the
various x matrix combinations. Using simulated data, they choose the best
regressors using a step-wise procedure. Working with their numerical results,
they fit the functional form of In(\)? for N in expression (4). For the cutoff R?
values, they find ¢ = 1.8 and d = 0.04 are appropriate. The Rencher and Pun
approximation for the cutoff level (dubbed the “rule-of-thumb”) is therefore

In(y)
ln(N) 1.8N004 | -
7 This is not surprising since, in going from the uncorrelated to the correlated case, we simply

multiply the potential regressors by a constant matrix (the Cholesky half of the variance-covari-
ance matrix).

RﬁzF‘l[l + (5)
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The rule-of-thumb approximation works well for our illustration. Using
expression (5), the 95 percent cutoff for choosing the best five of fifty regressors
with 250 data points is 0.119, which is very close to our Monte Carlo value of
0.117.8 Because the rule-of-thumb is based on numerically generated densities
over a fairly narrow parameter space? and an assumed functional form, how-
ever, one must use it with care.

C. Applying the Techniques

To provide a general sense for the application of these techniques, we
compute the Bonferonni bound and the Rencher/Pun rule-of-thumb for param-
eter ranges typically found in studies of monthly security return prediction. In
Table I, for example, we assume that the researcher chooses the “best” five of
m potential regressors, where m ranges up to 500. The sample size (f) ranges
up to 1000, or approximately eighty years of monthly data. Table II contains
the 95 percent cutoff values when the researcher chooses the “best” & of m
potential regressors and the sample size ¢ is fixed at 250, or approximately
twenty years of monthly data.

The results shown in Table I reveal that, holding sample size constant, the
critical R? values increase with the number of potential regressors. With a
sample size of fifty and with ten potential regressors, the Bonferonni bound is
0.413. In other words, a regression R% must exceed 0.413 to be assured that an
exhaustive search of all possible regression combinations could not produce a
model that does a better job of predicting security returns. If the number of
potential regressors goes up to, say, 500, the critical R? as determined by the
Bonferonni bound is 0.780. The bound grows higher as the number of potential
regressors increases because, with each additional regressor, there is an in-
creased chance of finding significant results.

Holding the number of potential regressors constant, Table I shows that the
critical R? value decreases with sample size. With ten potential regressors and
fifty observations, the critical R2 value as determined by the Bonferonni bound
is 0.413. This value decreases to 0.224 at a sample size of 100, 0.094 at a
sample size of 250, and so on. As the number of observations increases, the
chance that an exhaustive search of all possible regression combinations will
produce a model that fits the data well becomes small.

8 We also compute numerically (using 1,000 repetitions to generate the numerical distributions)
the 95 percent cutoff levels for the cases where m = 10 and m = 25. For ten potential regressors,
the numerical R? cutoff is 0.067. As reported in Table I, the corresponding rule-of-thumb approx-
imation is 0.079, and the Bonferonni bound is 0.094. For 25 potential regressors, the numerical R2
cutoff is 0.096, the rule-of-thumb is 0.103, and the Bonferonni bound is 0.136.

® Indeed, Rencher and Pun (1980, p. 52) are careful to note that the approximation (5) should
only be used for values of 2, m, and n bracketed by the parameters used in deriving the functional
form’s parameters. In their words, “extrapolation beyond may be risky and needs further inves-
tigation.” The parameter ranges used in their work are as follows: the number of selected
regressors, £ = 2, ..., 10; the number of potential regressors, m = 5, . . ., 40; and, the number of*
observations, t = 5, ..., 60.
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Table 1

95 Percent Cutoff Values for the “Best” Five-Variable Regression
R-Squared Given Different Sample Sizes (#) and Different
Numbers of Potential Regressors (m)

This table reports the 95 percent confidence limit for R2 for the null hypothesis that all of the slope
coefficients of an Ordinary Least Squares (OLS) regression are equal to zero where (a) only five of
m potential regressors are used, (b) all possible regression combinations are tried, and (c) only the
regression with the highest R? is reported. The alternative hypothesis is that at least one of the
OLS slope coefficients is not equal to zero. The Bonferonni inequality is a bound and therefore
represents a conservative test. The Rencher/Pun (1980) rule-of-thumb is an approximation of the

exact distribution.

. . Sample Size (t)
Number of Potential

Regressors (m) 50 100 250 500 1000

Panel A: Bonferonni Bound

10 0.413 0.224 0.094 0.048 0.024
25 0.548 0.314 0.136 0.070 0.036
50 0.621 0.369 0.164 0.085 0.043
100 0.679 0.417 0.189 0.099 0.050
250 0.742 0.474 0.221 0.116 0.060
500 0.780 0.513 0.244 0.129 0.067

Panel B: Rencher/Pun Rule-of-Thumb

10 0.360 0.191 0.079 0.040 0.020
25 0.444 0.244 0.103 0.052 0.026
50 0.495 0.278 0.119 0.061 0.031
100 0.545 0.312 0.135 0.070 0.035
250 0.610 0.361 0.160 0.083 0.042
500 0.658 0.400 0.180 0.094 0.048

The Rencher/Pun rule-of-thumb results reported in Panel B of Table I are
uniformly lower than those of the Bonferonni bound. As noted earlier, the
Bonferonni test is conservative. If an R? exceeds equation (3), we can be
confident that the regression fit is not a result of exhaustive variable selection.
There is a region below the Bonferonni cutoff, however, where we are uncer-
tain. The rule-of-thumb approximates the exact distribution of the maximal
RZ?. The entry corresponding to a sample size of 250 and fifty potential regres-
sors is 0.119, the cutoff value discussed in the illustration of the Rencher/Pun
technique.

Table II offers some insights regarding the critical R? levels when the
number of selected regressors (k) and the number of potential regressors (m)
vary while the sample size (¢) remains fixed. Holding the number of potential
regressors constant, the critical R? value increases with the number of selected
variables. With each added explanatory variable, the amount of variation
explained by the regression increases. Consequently, the threshold for signif-
icance also increases.
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Table II

95 Percent Cutoff Values for the “Best” k-Variable Regression
R-Squared Given Different Numbers of Potential Regressors (m)
and a Fixed Sample Size of 250 (i.e., ¢ = 250)

This table reports the 95 percent confidence limit for R for the null hypothesis that all of the slope
coefficients of an Ordinary Least Squares (OLS) regression are equal to zero where (a) only 2 of m
potential regressors are used, (b) all possible regression combinations are tried, and (c) only the
regression with the highest R? is reported. The alternative hypothesis is that at least one of the
OLS slope coefficients is not equal to zero. The Bonferonni inequality is a bound and therefore
represents a conservative test. The Rencher/Pun (1980) rule-of-thumb is an approximation of the

exact distribution.

Number of Regressors Selected (k)

Number of Potential
Regressors (m) 1 2 3 4 5

Panel A: Bonferonni Bound

10 0.036 0.055 0.071 0.084 0.094
25 0.040 0.068 0.094 0.116 0.136
50 0.044 0.079 0.110 0.138 0.164
100 0.048 0.089 0.126 0.159 0.189
250 0.055 0.102 0.146 0.185 0.221
500 0.059 0.112 0.160 0.204 0.244

Panel B: Rencher/Pun Rule-of-Thumb

10 0.027 0.046 0.060 0.071 0.079
25 0.032 0.054 0.072 0.088 0.103
50 0.035 0.060 0.081 0.100 0.119
100 0.038 0.066 0.090 0.113 0.135
250 0.042 0.073 0.101 0.130 0.160
500 0.045 0.078 0.110 0.144 0.180

Together, Tables I and II provide a means of gauging the significance of
monthly return prediction tests. Generally speaking, past tests use less than
forty years of data and have five regressors or less. Where the sample size or
the number of potential regressors is not reported in the tables, interpolating
between the values reported in the tables will produce reasonably accurate
cutoff R? values.

ITI. Evaluation of Apparent Return Predictability

In Section I, we showed the potentially misleading inferences that can result
when % of m regressors are chosen, and, in Section II, we showed how the
classical cutoff R? levels may be adjusted to account for the variable-selection
bias. In this section, we discuss two interrelated issues. First, we discuss the
difficulties of designing an out-of-sample testing procedures to circumvent the
overfitting problem. Second, we use the results of past studies of return
predictability to illustrate the application of the Bonferroni bound and the.
Rencher/Pun rule-of-thumb.
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A. Out-of-Sample Predictions

Many investigators believe that the unfortunate consequences of data-min-
ing can be mitigated if not eliminated by out-of-sample tests. Some gain
comfort, for example, in knowing that the results extend to other markets
internationally, while others examine different sectors of the same market
(e.g., different industry and size portfolios). Whether or not this is effective
depends, of course, on the extent to which the new data is truly out-of-sample.
If returns in the other markets or sectors of the same markets are correlated
even slightly with those that have been previously mined, the investigator will
derive false confidence from tests of this nature. A simulation experiment
illustrates this point.

First, we generate samples of 250 “returns” for “country,” “industry,” and
“size” portfolios. The simulated portfolio returns are normally distributed with
mean zero and unit variance. Since the correlation structure between these
simulated portfolio returns will drive the results, we set the correlation struc-
ture using historical estimates. The country portfolio correlation structure, for
example, is based on the estimated correlations from monthly excess U.S.
dollar returns from February 1970 through December 1989, and the industry
portfolio correlation structure is formed using excess U.S. industry portfolio
returns from May 1959 through December 1986.10 The size portfolio correla-
tion structure is based on monthly excess returns of U.S. stocks from January
1926 through December 1984.

Table III reports the correlation structure used in generating the portfolio
returns. The first row of the table contains the base portfolio for each of the
three categorizations. The value of 0.48 reported for Australia is the assumed
correlation between the returns of the U.S. stock portfolio and the Australian
stock index portfolio used in the simulation. The country portfolio return
correlations range from 0.13 for Austria to 0.72 for Canada. The industry
portfolio return correlations are higher, ranging from 0.41 for textile/trade to
0.72 for finance/real estate. The size portfolio returns are the most highly
correlated, decreasing monotonically from 0.95 for the second smallest decile to
0.71 for the largest decile.

The simulated portfolio returns for the United States, the petroleum indus-
try, and the decile of the smallest capitalization firms are used as the base
portfolios. For each base case, we then generate return series for fifty regres-
sors. Each regressor is normally distributed with zero mean and unit variance,
and is independent of all others (and the base portfolio return series). From the
fifty regressors, we choose the “best” five by maximizing the regression RZ.
After recording the R? for the base portfolio, we use the five identified regres-
sors to compute the RZ values of the other portfolios in the category. We repeat
the procedure 100 times. In Table III, we report the ratio of the average RZ of
each correlated portfolio to the average RZ of the base portfolio and call this

10 We are grateful to Campbell Harvey for providing his estimates of the correlation matrices for
the industry and country portfolios.
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Table III

Variable-Selection Bias for Correlated Portfolios

This table reports the results of simulations designed to deduce the expected explanatory power of a set of factors
on the returns of a correlated portfolio given the amount of explanatory power of the same factors on the returns
of a base portfolio. Each simulation involves generating return series of length 250 for each of a number of
correlated portfolios formed on the basis of “country,” “industry,” and “size.” Although the returns are generated
to have zero mean and unit variance, the assumed correlation structures are based on actual correlations
computed using monthly historical return data and are reported below. Time series returns for fifty regressors
are also generated, assuming each regressor is independent of all others and of the correlated portfolios. Using
the base portfolio returns under each portfolio categorization (i.e., “United States” under “Country portfolios,”
“Petroleum” under “Industry portfolios,” and “Smallest” under “Size portfolios”), we select the best five of the
fifty potential regressors and record the level of R2. We then regress each of the correlated portfolio return series
on the five regressors identified for the base portfolio and record the R2. The simulation procedure is repeated
100 times. The ratio of the average R? of the correlated portfolio to the average R? of the base portfolio is
computed and is reported below as “Expected explanatory power.” If the five factors that best describe U.S.
portfolio returns produce an R? of twenty percent, for example, the same factors are expected to produce an R?
of eight percent for the Australian portfolio returns (i.e., the reported expected explanatory power of 0.40 times
20 percent).

Expected Expected Expected
Explan- Explan- Explan-
Country Assumed  atory Industry Assumed  atory Size Assumed  atory
Portfolios ~ Correlation Power Portfolios Correlation Power Portfolios Correlation Power

United States 1.00 1.00 Petroleum 1.00 1.00 Smallest 1.00 1.00
Australia 0.48 0.40 Finance/real estate 0.72 0.62 2 0.95 0.89
Austria 0.13 0.26 Consumer durables 0.56 0.49 3 0.92 0.85
Belgium 041 0.40 Basic industries 0.65 0.55 4 0.89 0.81
Canada 0.72 0.62 Foods/tobacco 0.54 0.47 5 0.87 0.78
Denmark 0.32 0.33 Construction 0.58 0.52 6 0.84 0.74
France 0.43 0.42 Capital goods 0.56 0.46 7 0.83 0.73
Germany 0.33 0.34 Transportation 0.56 0.49 8 0.79 0.68
Hong Kong 0.29 0.31 Utilities 0.57 0.46 9 0.77 0.67
Italy 0.23 0.29 Textile/trade 0.41 0.36  Largest 0.71 0.61
Japan 0.28 0.36  Services 0.54 0.48

Holland 0.56 0.52 Leisure 0.49 0.42

Norway 0.44 0.37

Singapore 0.46 0.40

Spain 0.25 0.32

Sweden 0.39 0.38

Switzerland 0.49 0.46

United Kingdom  0.50 0.43

value “expected explanatory power.” In the case of the Australian portfolio, for
example, the expected explanatory power ratio is 0.40, which means that, if we
find a set of five factors that explains twenty percent of the variation of U.S.
stock market returns, we should expect the same five factors to explain eight
percent of the variation of Australian stock market returns.

The expected explanatory power ratios reported for the various country
portfolios range from 0.26 for Austria to 0.62 for Canada. Not surprisingly,
these were the two country portfolios with the lowest and highest assumed
correlations with the U.S. portfolio. The assumed correlations for the industry
portfolios are higher than the country portfolios. Consequently, the expected
explanatory power ratios are higher. The ratios are highest for the size port-
folios. The second smallest size portfolio, for example, has correlation of 0.95.
with the smallest firm portfolio, and its expected explanatory power is 0.89. A



602 The Journal of Finance

set of factors that explain twenty percent of the variation of small stock
returns, therefore, is expected to explain about 18 percent of the variation of
the returns'of the second smallest size portfolio.

In summary, while out-of-sample prediction procedures may reduce the
variable-selection bias, the bias cannot be fully removed because the portfolio
return samples are almost surely to be correlated. And, the higher is the
correlation, the less effective are the out-of-sample procedures. Consequently,
the important task of determining meaningful inference when a wide array of
economic time series (and their transformations) are available remains.

B. Past Studies of Return Prediction

The focus now turns to the results of past studies of monthly return predict-
ability. We use the Bonferroni bound (3) and the Rencher/Pun rule-of-thumb
(5) to provide the reader with a better understanding of how the variable-
selection dilemma might affect standard significance tests. It is important to
stress that we are considering only one test procedure, based on the R? and
designed to correct the classical R? for the effects of exhaustive variable
selection. Many other factors go into testing any predictive model. The sign
and magnitude of the estimated coefficients and the restrictions across various
portfolios, for example, provide important information. Nevertheless, our test
of the null hypothesis that all of the B coefficients are zero is crucial.

To see whether at least one regressor in the prediction model has a coeffi-
cient different from zero, expressions (3) and (5) are used to compute 95
percent cutoff levels for m using the R values reported in past research. The
cutoff level, denoted m*, may be interpreted as the minimum number of
potential regressors required to achieve the reported R2 using unrelated data.
Naturally, these tests cannot tell us how variable selection was performed.
They simply answer the question, how many explanatory variables would have
to be examined to find an R? as high as the one reported five percent of the
time. In studies where a model is not significant using standard classical
R-squared values, the value of m* is reported to be zero. For some models, the
cutoff m* is so high that we could not compute a numerical value. In these
cases, we report the value of m* to be «. To assist the reader in comparing the
results of the various studies, Table IV provides a summary.?

Keim and Stambaugh (1986) Study

The first study that we consider is Keim and Stambaugh (1986). To predict
monthly returns, they use (a) the yield on under Baa-rated bonds less the
one-month T-bill yield; (b) the logarithm of the ratio given by the level of the
S&P 500 index (deflated by the consumer price index) and the average of the
year-end real S&P 500 index over the 45 prior years; and (¢) minus the natural
logarithm of share price, averaged equally across the quintile of smallest

11 All studies except Campbell (1987) report R? values. We find the corresponding R? using the
relation given by Footnote 4.
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Table IV

Minimum Number of Potential Regressors Required to Achieve
Reported R-Squared Values in Past Research

This table reports the 95 percent confidence limit for m*, the minimum number of regressors required to achieve
an R-squared at least as high as that reported in a number of recent empirical studies. If the researcher had
access to more than the listed m* potential regressors, their reported R-squared would occur at least five percent
of the time through random chance according to the test used. In cases where the model is not significant using
standard classical R-squared values, the value of m* is reported to be zero. In cases where we could not compute
the m* value because of constraints on numerical precision, the value of m* is reported to be . The table lists
the research studies, the number of instruments used in their models, the number and type of portfolios
examined, the number of observations in their data sets, their reported R-squared values, and the m* values
calculated using a Bonferroni bound and the Rencher/Pun (1980) rule-of-thumb approximation. All studies
except Campbell (1987) report R2. Campbell reports R2.

Reported 95% Confidence Limit for m*
No. of No. of Type of No. of R-Squared

Study Instruments Portfolios Portfolio Observations Values Bonferroni Rule-of-Thumb
Keim and 1 4 Bond 611 0.016 to 49 to 50 to o
Stambaugh 0.088
(1986, pp. 1 4 Bond 300 —0.001 to 0 to 0 to »
369-370) 0.097
1 4 Bond 311 0.007 to 0 to 0 to
0.069
1 3 Stock 611 0.001 to 0 to 25 0 to 26
0.014
1 3 Stock 300 —0.003 to 0to6 0to7
0.020
1 3 Stock 311 —0.003 to 0 0
0.003
Campbell (1987, 4 3 Bond 244 0.252, ©, 31,0 ©, 176, 0
p. 378) 0.126,
0.032
4 3 Bond 51 0.231, 0,0,0 0,0,0
0.199,
0.157
4 1 Stock 244 0.112 21 84
4 1 Stock 51 0.228 0 0
Harvey (1989, p. 5 10 Size 556 0.067 to 47 to 787 268 to 4273
298) 0.179
5 1 Value- 556 0.075 72 462
- weighted
Ferson and
Harvey (1991,
p. 51)
(with January 6 12 Industry 276 0.058 to 9to 35 11 to 146
dummy) 0.137
6 3 Size 276 0.196, o, 51, 18 o, 234, 51
0.153,
0.105
6 3 Bond 276 0.040, 0,9, 15 0, 10, 32
0.055,
0.092
(without 5 12 Industry 276 0.059 to 9 to 48 12 to 274
January 0.132
dummy) 5 3 Size 276 0.079, 13, 35, 26 28, 186,109
1 0.122
0.109
5 3 Bond 276 0.038, 6,9, 18 6, 12, 56
0.059,
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market value firms on the New York Stock Exchange (NYSE). They regress
‘each of these variables separately on four bond and three stock portfolios.
Their sample consists of monthly data during the period January 1928 through
November 1978. They examine the full period (611 observations), the subpe-
riod from January 1928 through December 1952 (300 observations), and the
subperiod from January 1953 through November 1978 (311 observations).
They report R? values that are scaled by the estimated first-order autocorre-
lation of the residuals. They also use weighted residuals in their computations.

In computing m*, we treat the scaled RZ values as if they were the usual R?
measures. One could argue that this approach is conservative in the sense
that, because the maximum autocorrelation is one, the values of R? are inflated
and the bias will be towards rejecting the null hypothesis. For the case of the
residual weighting, however, the effects on the distributional assumptions
underlying equation (3) are unclear.

Keim and Stambaugh use only one regressor in their models. With one
regressor, the various regression specifications have neither overlapping x
variables nor correlation among regressors. In such situations, expression (2)
is a bound on the joint distribution and is closely approximated by the Bon-
feronni bound equation (3). In the full sample, the worst fitting bond equation
has an R2 of 0.016 and generates a Remcher/Pun rule-of-thumb measure of m*
value equal to 50, indicating that with access to this number of regressors the
reported R? would be exceeded five percent of the time. On the other hand, the
best fitting bond equation with an RZ of 0.088 yields an m* of ®, which means
that the number of randomly chosen regressors needed to duplicate this result
is so large that we cannot compute precisely how many would be needed. The
stock return equations do not fit the data so well, and we find that, with R?
values ranging from 0.001 to 0.014, the associated m* values range from zero
to 26. In the subperiods, the stock return equations yield values from zero to
seven. A finding that m* is seven suggests that seven randomly chosen regres-
sors would generate a value of R? that exceeds the reported value of 0.228 at
least five percent of the time, whereas a value of zero implies that the equation
is not significant with standard cutoff R? values.

Campbell (1987) Study

Campbell (1987) uses (a) the one-month T-Bill rate; (b) the two-month less
one-month T-Bill rate; (c) the six-month less one-month T-Bill rate; and (d) one
lag of the two-month less one-month T-Bill rate as regressors. He has two
nonoverlapping samples (i.e., May 1959 through August 1979 and September
1979 through November 1983) and tests his model with three bond and one
stock portfolio return series.

Like in the Keim/Stambaugh study, the Campbell study shows that the best
fits are obtained using the bond portfolio return series. For the first subperiod,
Campbell reports R? values of 0.252, 0.126, and 0.032 for the three bond return
series (see Table IV). The corresponding Rencher/Pun rule-of-thumb m* values
are », 176, and 0. The best-fitting regression is for the two-month T-bill
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portfolio returns, which produces the R? value of 0.252. The associated m*
value is so large that we cannot compute it accurately. The bond portfolio
results in the second subperiod indicate that none of the equations are signif-
icant with standard cutoff R? values.

The R? value for the stock return regression is 0.112 in the first subperiod.
The corresponding rule-of-thumb m* value is 84. In other words, having access
to 84 randomly chosen regressors would generate R? values of 0.112 at least
five percent of the time. The reported R2 for the second subperiod is 0.228. The
corresponding m* value is zero, considerably less than the 84 reported for the
first subperiod. Among other things, this reflects smaller size—the smaller the
sample size, the greater the danger of over-fitting and consequently the lower
is the value of m*.

Harvey (1989) Study

Harvey (1989) predicts the returns of eleven stock portfolios (ten size decile
portfolios created from the Center for Research in Security Prices (CRSP)
monthly return file as well as one value-weighted index) using (a) the excess
return on equal-weighted market return; (b) the junk bond premium (Baa-Aaa
bond yields); (¢) the dividend-yield spread (yield on the S&P 500 stock index
minus yield on a one-month T-Bill); (d) the term premium (the difference in
returns for holding a 90-day bill and a 30-day bill for one month); and (e) a
January dummy variable.

For the sample period September 1941 through December 1987, Harvey
finds in-sample R? values for the ten size portfolios from 0.067 to 0.179, with
the R? increasing as firm size grows small. The smallest decile portfolio has an
R?0f0.179, which means the value of m* is 4,273. In other words, it would take
an exhaustive search across 4,273 randomly chosen regressors to generate a
value of R? that exceeds the reported value of 0.179 at least five percent of the
time. As firm size increases, the model fits the data less and less well. The
largest stock portfolio, for example, has an R? is 0.067, which implies a
rule-of-thumb value of 268. For the value-weighted portfolio, the R? is 0.075
and the rule-of-thumb m* is 462.

Ferson and Harvey (1991) Study

Ferson and Harvey (1991) report R? values for three bond portfolio and
fifteen stock portfolio return prediction models fitted using monthly data for
the period 1964 through 1986. As instruments, they use (a) the excess return
on equally weighted market return; (b) the junk bond premium (Baa-Aaa); (c)
the dividend yield (sum of the previous years dividends on the S&P 500 stock
index divided by the price level in a given month); (d) the term premium (the
difference in returns for holding a 90-day bill and a 30-day bill for one month);
(e) the one-month nominal T-bill rate; and (f) a January dummy variable.

For the twelve industry stock portfolios, the reported R? values range from
0.058 to 0.137. With six regressors and 276 observations, the corresponding .
rule-of-thumb m* values range from eleven to 146. Without the January
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dummy, the ITBf values range from twelve to 274. For the three size portfolios,

“the reported R? produces m* values of ®, 234, and 51 for the regressions
including the January dummy and 28, 186, and 109 for the regression exclud-
ing the January dummy. For only one of these stock portfolio regressions is the
critical number of randomly chosen regressors so high that it is impossible to
duplicate the result.

For the Treasury bond, corporate bond, and Treasury bill regressions, the
rule-of-thumb values are 0, 10, and 32 for the model including the January
dummy. Unlike the Keim/Stambaugh (1986) and Campbell (1987) studies, the
Ferson/Harvey bond portfolios do not fit the data so well. As few as 56
randomly chosen regressors will produce R? values as high as those reported
five percent of the time.

Overall, what the results summarized in Table IV indicate is that some
security return prediction models reject the null hypothesis that all B coeffi-
cients are zero. The number of randomly chosen regressors that are required
to duplicate the results is so large that an exhaustive search is implausible. On
the other hand, some models produce m* values that are noticeably lower. The
return prediction results for the large capitalization stocks, for example, can-
not reject the hypothesis that all coefficients are zero at the five percent
probability level if the number of potential regressors m exceeds, say, 250. Put
differently, as few as 250 randomly selected regressors together with an
exhaustive search of all possible regression combinations could find regres-
sions that would appear to do a better job of predicting security returns. Of
course, this is only one method to determine whether security returns are
predictable. Other, more detailed specification tests are sure to shed additional
light on this issue.

IV. Summary

This article proposes alternative techniques for assessing goodness-of-fit of
OLS regressions when a researcher has had access to many potential regres-
sors (or, equivalently, has read past research that suggested which regressors
to choose). Relying on the applied statistics literature, we provide two variants
of the conventional F-test to determine whether at least one of the regressors
used is nonzero. The Bonferroni test is conservative because it is based on the
examination of a bound on the joint distribution of the R? statistic across ()
regressions and will, at times, not reject the null hypothesis of all coefficients
being zero when it should. The Rencher/Pun (1980) rule-of-thumb is an ap-
proximation of the distribution of the maximal R? and appears reasonably
accurate for the numbers of parameters and observations typically used in
monthly return prediction tests. Of course, with added computational cost, we
can approximate the exact distribution of the maximal R? using Monte Carlo
simulation.

The fact that the same explanatory variables may appear to work well across
various country, industry, and size portfolios is not a validation of the use of
the explanatory variables. Our numerical analysis shows that, when fitting a
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number of portfolios simultaneously, high correlations between portfolios
means high R? values for predictive models that use the same instruments. As
a consequence, the use of other industry, size, or country data as a control to
guard against variable-selection biases can be misleading.

REFERENCES

Black, F., 1992, Estimating expected returns, Working paper, Goldman, Sachs & Co.

Breiman, L., 1992, The little bootstrap and other methods for dimensionality selection in regres-
sion: X-Fixed prediction error, Journal of the American Statistical Association 87, 738-754.

Breiman, L., and P. Spector, 1992, Submodel selection and evaluation in regression: The X-random
case, International Statistical Review 60, 291-319.

Campbell, J. Y., 1987, Stock returns and the term structure, Journal of Financial Economics 18,
373-399.

Cramer, J. S., 1987, Mean and variance of R? in small and moderate samples, Journal of Econo-
metrics 35, 253-266.

David, H. A., 1981, Order Statistics (John Wiley & Sons, New York).

Denton, F., 1985, Data mining as an industry, The Review of Economics and Statistics 67,
124-127.

Ferson, W., and C. Harvey, 1991, Sources of predictability in portfolio returns, Financial Analysts
Journal 47, 49-56.

Freedman, D. A., 1983, A note on screening regression equations, The American Statistician 37,
152-155.

Granger, C. W. J., and P. Newbold, 1974, Spurious regressions in econometrics, Journal of Econo-
metrics 2, 111-120.

Harvey, C. R., 1989, Time-varying conditional covariances in tests of asset pricing models, Journal
of Financial Economics 24, 289-317.

Hjorth, J. S. U., 1994, Computer Intensive Statistical Methods (Chapman & Hall, London).

Keim, D. B, and R. F. Stambaugh, 1986, Predicting returns in the stock and bond markets,
Journal of Financial Economics 17, 357-390.

Kimball, A., 1951, On dependent tests of significance in the analysis of variance, Annals of
Mathematical Studies 22, 600-602.

Lo, A., and A. C. MacKinlay, 1990, Data-snooping biases in tests of financial asset pricing models,
The Review of Financial Studies 3, 431-467.

Lo, A, and A. C. MacKinlay, 1992, Maximizing predictability in the stock and bond markets,
Working paper, Massachusetts Institute of Technology.

Merton, R., 1987, On the current state of the stock market rationality hypothesis, in R. Dornbusch,
S. Fisher, and J. Bossons, Eds.: Macroeconomics and Finance: Essays in Honor of Franco
Modigliani (M.I.T. Press, Cambridge).

Miller, A. J., 1984, Selection of subsets of regression variables (with discussion), Journal of the
Royal Statistical Society UL Series A, 147, 398-425.

Miller, A. J., 1990, Subset Selection in Regression (Chapman & Hall, London).

Rencher, A, and F. Pun, 1980, Inflation of R? in best subset regressions, Technometrics 22, 49-53.

Ross, S. A., 1989, Regression to the max, Working paper, Yale University.





