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ABSTRACT

Even though stock returns are not highly autocorrelated, there is a spurious
regression bias in predictive regressions for stock returns related to the clas-
sic studies of Yule (1926) and Granger andNewbold (1974). Data mining for pre-
dictor variables interacts with spurious regression bias. The two e¡ects
reinforce each other, because more highly persistent series are more likely to
be found signi¢cant in the search for predictor variables. Our simulations sug-
gest that many of the regressions in the literature, based on individual predic-
tor variables, may be spurious.

PREDICTIVE MODELS FOR COMMON STOCK RETURNS have long been a staple of ¢nancial
economics. Early studies, reviewed by Fama (1970), used such models to examine
market e⁄ciency. Stock returns are assumed to be predictable, based on lagged
instrumental variables, in the current conditional asset pricing literature. Stan-
dard lagged variables include the levels of short-term interest rates, payout-to-
price ratios for stock market indexes, and yield spreads between low-grade and
high-grade bonds or between long- and short-term bonds.Manyof these variables
behave as persistent, or highly autocorrelated, time series.

This paper studies the ¢nite sample properties of stock return regressions
with persistent lagged regressors.We focus on two issues. The ¢rst is spurious
regression, analogous toYule (1926) and Granger and Newbold (1974).These stu-
dies warned that spurious relations may be found between the levels of trending
time series that are actually independent. For example, given two independent
random walks, it is likely that a regression of one on the other will produce a
‘‘signi¢cant’’ slope coe⁄cient, evaluated by the usual t-statistics.

In this paper, the dependent variables are asset rates of return, which are
not highly persistent. Thus, one may think that spurious regression problems
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are unlikely. However, the returns may be considered to be the sum of an unob-
served expected return, plus unpredictable noise. If the underlying expected
returns are persistent time series, there is still a risk of spurious regression.
Because the unpredictable noise represents a substantial portion of the variance
of stock returns, the spurious regression results will di¡er from those in the
classical setting.

The second issue is ‘‘data mining’’as studied for stock returns by Lo and Mac-
Kinlay (1990), Foster, Smith, and Whaley (1997), and others. If the standard in-
struments employed in the literature arise as the result of a collective search
through the data, they may have no predictive power in the future. Stylized
‘‘facts’’ about the dynamic behavior of stock returns using these instruments
(e.g., Cochrane (1999)) could be artifacts of the sample. Such concerns are natur-
al, given the widespread interest in predicting stock returns.

We focus on spurious regression and the interaction between data mining and
spurious regression bias. If the underlying expected return is not predictable
over time, there is no spurious regression bias, even if the chosen regressor is
highly autocorrelated. In this case, our analysis reduces to pure data mining as
studied by Foster et al. (1997).

When expected returns are persistent, spurious regression bias calls some of
the evidence of previous studies into question. We examine univariate regres-
sions for the Standard and Poors 500 (S&P 500) excess return using 13 popular
lagged instruments over the sample periods of the original studies.We ¢nd that 7
of 26 t-ratios or regression R-squares, signi¢cant by the usual ¢ve percent criter-
ia, are consistent with the null hypothesis of a spurious regression.

The spurious regression and data mining e¡ects reinforce each other. If
researchers have mined the data for regressors that produce high ‘‘R-squares’’
in predictive regressions, the mining is more likely to uncover the spurious,
persistent regressors.The standard regressors in the literature tend to be highly
autocorrelated, as expected if the regressors result from a spurious mining
process. For reasonable parameter values, all the regressions that we review from
the literature are consistent with a spurious mining process, even when only a
small number of instruments are considered in the mining.

This paper contributes to a substantial literature that studies the sampling
properties of predictive regressions for stock returns. Goetzmann and
Jorion (1993), Nelson and Kim (1993), Bekaert, Hodrick, and Marshall (1997),
and Stambaugh (1999) study biases due to dependent stochastic regressors.
Kim, Nelson, and Startz (1991) study structural-change-induced misspeci¢ca-
tion. Campbell and Shiller (1988) consider dependent regressors with unit roots.
Fama and French (1988a), Kandel and Stambaugh (1990), and Hodrick (1992)
focus on autocorrelation for long-horizon stock returns. Lanne (2001) and
Valkanov (2001) develop statistical inference methods in the presence of near
unit roots. Pesaran andTimmermann (1995), Bossaerts and Hillion (1999), Goyal
and Welch (2002), and Simin (2002) examine model selection and out-of-sample
validity. Boudoukh and Richardson (1994) provide an overview of econometric
issues. Schwert (2002) reviews anomalies and trading strategies based on predict-
ability.
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The rest of the paper is organized as follows. Section I describes the data. Sec-
tion II presents the models used in the simulation experiments. Section III pre-
sents the simulation results. First, we study the pure spurious regression issue in
isolation.Thenwe consider the interactionbetween spurious regression and data
mining biases. Section IVo¡ers concluding remarks.

I. The Data

Table I surveys nine of the major studies that propose instruments for predict-
ing stock returns. The table reports summary statistics for monthly data, cover-
ing various subperiods of 1926 through 1998.The sample size and period depends
on the study and the variable, and the table provides the details.We attempt to
replicate the data series that were used in these studies as closely as possible.
The summary statistics are from our data. Note that the ¢rst-order autocorrela-
tions frequently suggest a high degree of persistence. For example, the short-term
Treasury bill yields, monthly book-to-market ratios, the dividendyield of the S&P
500, and some of the yield spreads have sample ¢rst order autocorrelations of 0.97
or higher.

Table I also summarizes regressions for the monthly return of the S&P 500
stock index, measured in excess of the one-month Treasury bill return from
Ibbotson Associates, on the lagged instruments. These are OLS regressions
using one instrument at a time. We report the slope coe⁄cients, their t-ratios,
and the adjusted R-squares. The R-squares range from less than one percent
to more than seven percent, and 8 of the 13 t-ratios are larger than 2.0.
The t-ratios are based on the OLS slopes and Newey^West (1987) standard
errors, where the number of lags is chosen based on the number of statistically
signi¢cant residual autocorrelations.1

The small R-squares in Table I suggest that predictability represents a tiny
fraction of the variance in stock returns. However, even a small R-squared can
signal economically signi¢cant predictability. For example, Kandel and Stam-
baugh (1996) and Fleming, Kirby, and Ostdiek (2001) ¢nd that optimal portfolios
respond by a substantial amount to small R-squares in standard models. Studies
combining several instruments in multiple regressions report higher R-squares.
For example, Harvey (1989), using ¢ve instruments, reports adjustedR-squares as
high as 17.9 percent for size portfolios. Ferson and Harvey (1991) reportR-squares
of 5.8 percent to 13.7 percent for monthly size and industry portfolio returns.
These values suggest that the ‘‘true’’ R-squared, if we could regress the stock
return on its time-varying conditional mean, might be substantially higher than
we see inTable I.To accommodate this possibility, we allow the trueR-squares in
our simulations to vary over the range from 0 to 15 percent. For exposition we
focus on an intermediate value of 10 percent.

1Speci¢cally, we compute 12 sample autocorrelations and compare the values with a cuto¡
at two approximate standard errors: 2/

ffiffiffiffi
T

p
, where T is the sample size. The number of lags

chosen is the minimum lag length at which no higher order autocorrelation is larger than
two standard errors. The number of lags chosen is indicated in the far right column.
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Table I
Common InstrumentalVariables: Sources, Summary Statistics, and OLS Regression Results

This table summarizes variables used in the literature to predict stock returns.The ¢rst column indicates the published study.The second column
denotes the lagged instrument.The next two columns give the sample (Period) and the number of observations (Obs) on the stock returns. Columns
5 and 6 report the autocorrelation (rZ) and the standard deviation of the instrument (sZ), respectively.The next three columns report regression
results for S&P 500 excess return on a lagged instrument.The slope coe⁄cient is b, the t-statistic is t, and the coe⁄cient of determination isR2.The
last column (HAC) reports the method used in computing the standard errors of the slopes. The method of Newey^West (1987) is used with the
number of lags given in parentheses. MA ( � ) refers to the number of moving average terms used in the covariance matrix. The abbreviations in
the table are as follows.TB1y is the yield on the one-month Treasury bill.Two-one, Six-one, and Lag(two)-one are computed as the spreads on the
returns of the two- and one-month bills, six- and one-month bills, and the laggedvalue of the two-month and current one-month bill.The yield on all
corporate bonds is denoted as ALLy.The yield on AAA rated corporate bonds is AAAy, and UBAAy is the yield on corporate bonds with a below
BAA rating.The variable‘‘Cay’’ is the linear function of consumption, asset wealth, and labor income.The book-to-market ratios for the DowJones
Industrial Average and the S&P 500 are respectivelyDJBM and SPBM.

(1) Reference (2) Predictor (3) Period (4) Obs (5) rz (6) sz (7) b (8) t (9) R2 (10) HAC

Breen, Glosten, & Jagannathan (1989) TB1y 5404^8612 393 0.97 0.0026 � 2.49 � 3.58 0.023 NW(5)
Campbell (1987) Two^one 5906^7908 264 0.32 0.0006 11.87 2.38 0.025 NW(0)

Six^one 5906^7908 264 0.15 0.0020 2.88 2.13 0.025 NW(0)
Lag(two)� one 5906^7908 264 0.08 0.0010 9.88 2.67 0.063 NW(6)

Fama (1990) ALLy^AAAy 5301^8712 420 0.97 0.0040 0.88 1.46 0.005 MA(0)
Fama & French (1988a) Dividend yield 2701^8612 720 0.97 0.0013 0.40 1.36 0.007 MA(9)
Fama & French (1989) AAAy^TB1y 2601^8612 732 0.92 0.0011 0.51 2.16 0.007 MA(9)
Keim & Stambaugh (1986) UBAAy 2802^7812 611 0.95 0.0230 1.50 0.75 0.002 MA(9)

UBAAy^TB1y 2802^7812 611 0.97 0.0320 1.57 1.48 0.007 MA(9)
Kothari & Shanken (1997) DJBM 1927^1992 66 0.66 0.2270 0.28 2.63 0.078 MA(0)
Lettau & Ludvigson (2001) ‘‘Cay’’ 52Q4^98Q4 184 0.79 0.0110 1.57 2.58 0.057 MA(7)
Ponti¡ & Schall (1998) DJBM 2602^9409 824 0.97 0.2300 2.96 2.16 0.012 MA(9)

SPBM 5104^9409 552 0.98 0.0230 9.32 1.03 0.001 MA(5)

T
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To incorporate data mining, we compile a randomly selected sample of 500
potential instruments, throughwhich our simulated analyst sifts to mine the data
for predictor variables.We select the 500 series randomly from a much larger sam-
ple of 10,866 potential variables. The speci¢cs are described in the Appendix.
Essentially, the procedure is to generate uniformly distributed random numbers,
order the series from 1 to 10,866 and randomly extract 500 series. The 500 series
are randomly ordered, and permanently assigned numbers between 1 and
500. When a data miner in our simulations searches through, say 50 series, we
use the sampling properties of the 50 series to calibrate the parameters in the
simulations.

We also use our sample of potential instruments to calibrate the parameters
that govern the amount of persistence in the‘‘true’’expected returns in the model.
On the one hand, if the instruments we see in the literature, summarized in
Table I, arise from a spurious mining process, they are likely to be more highly
autocorrelated than the underlying ‘‘true’’ expected stock return. On the other
hand, if the instruments in the literature are a realistic representation of
expected stock returns, the autocorrelations in Table I may be a good proxy for
the persistence of the true expected returns.2 The mean autocorrelation of our
500 series is 15 percent and the median is 2 percent. Eleven of the 13 sample auto-
correlations inTable I are higher than 15 percent, and the median value is 95 per-
cent.We consider a range of values for the true autocorrelation based on these
¢gures, as described below.

II. The Models

Consider a situation in which an analyst runs a time-series regression for the
future stock return, rtþ1, on a lagged predictor variable:

rtþ1 ¼ aþ dZt þ vtþ1: ð1Þ

The data are actually generated by an unobserved latent variable, Z n
t , as

rtþ1 ¼ mþ Z n
t þ utþ1; ð2Þ

where utþ1 is white noise withvariance, s2u.We interpret the latent variable, Zn
t as

the deviations of the conditional mean return from the unconditional mean, m,
where the expectations are conditioned on an unobserved ‘‘market’’ information
set at time t.The predictor variables follow an autoregressive process:

Z n
t ;Ztð Þ0 ¼ rn 0

0 r

� �
Zn

t�1;Zt�1
� �0 þ ent ; et

� �0 ð3Þ

2 There are good reasons to think that expected stock returns may be persistent. Asset pri-
cing models like the consumption model of Lucas (1978) describe expected stock returns as
functions of expected economic growth rates. Merton (1973) and Cox, Ingersoll, and Ross
(1985) propose real interest rates as candidate state variables, driving expected returns in
intertemporal models. Such variables are likely to be highly persistent. Empirical models for
stock return dynamics frequently involve persistent, autoregressive expected returns (e.g.,
Conrad and Kaul (1988), Fama and French (1988b), Lo and MacKinlay (1988), or Huberman
and Kandel (1990)).
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The assumption that the true expected return is autoregressive follows previous
studies such as Conrad and Kaul (1988), Fama and French (1988b), Lo and Mac-
Kinlay (1988), and Huberman and Kandel (1990).

To generate the arti¢cial data, the errors ðe nt ; etÞ are drawn randomly as a nor-
mal vector with mean zero and covariance matrix, S.We build up the time-series
of the Z and Zn through the vector autoregression equation (3), where the initial
values are drawn froma normalwithmean zero andvariances,Var(Z) andVar(Zn).
The other parameters that calibrate the simulations are {m, s2u, r, r n, and S}.

We have a situation in which the ‘‘true’’ returns may be predictable, if Z n
t could

be observed.This is captured by the trueR-squared,Var(Zn)/[Var(Zn)þ s2u].We set
Var(Zn) to equal the sample variance of the S&P 500 return, in excess of a one-
month Treasury bill return, multiplied by 0.10.When the true R-squared of the
simulation is 10 percent, the unconditional variance of the rtþ1 that we generate
is equal to the sample variance of the S&P 500 return, and the ¢rst-order auto-
correlation is similar to that of the actual data.Whenwe choose other values for
the true R-squared, these determine the values for the parameter s2u.We set to
equal the sample mean excess return of the S&P 500 over the 1926 through 1998
period, or 0.71percent per month.

The extent of the spurious regression bias depends on the parameters r
and r n, which control the persistence of the measured and the true regressor.
These values are determined by reference to Table I and from our sample of 500
potential instruments.The speci¢cs di¡er across the special cases, as described
below.

While the stock return could be predicted if Z n
t could be observed, the analyst

uses the measured instrument Zt. If the covariance matrix S is diagonal, Zt and
Z n
t are independent, and the true value of d in the regression (1) is zero.

A. Pure Spurious Regression

To focus on spurious regression in isolation, we specialize equation (3) as fol-
lows.The covariance matrix S is a 2� 2 diagonal matrix with variances (s2

n
, s2).

For a given value of rn the value of s2
n
is determined as s2

n
¼ (1� r2

n
)Var(Zn). The

measured regressor hasVar(Z)¼Var(Zn).The autocorrelation parameters, rn¼ r
are allowed to vary over a range of values. (We also allow r and rn to di¡er from
one another, as described below.)

Following Granger and Newbold (1974), we interpret a spurious regression
as one in which the ‘‘t-ratios’’ in regression (1) are likely to indicate a signi¢cant
relation when the variables are really independent. The problem may come
from the numerator or the denominator of the t-ratio: The coe⁄cient or its
standard error may be biased. As in Granger and Newbold, the problem lies
with the standard errors.3 The reason is simple to understand.When the null

3 While Granger and Newbold (1974) do not study the slopes and standard errors to identify
the separate e¡ects, our simulations, designed to mimic their setting (not reported in the
tables), con¢rm that their slopes are well behaved, while the standard errors are biased.
Granger and Newbold use OLS standard errors, while we focus on the heteroskedasticity
and autocorrelation-consistent standard errors that are more common in recent studies.
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hypothesis that the regression slope d¼ 0 is true, the error term utþ1 of regression
Equation (1) inherits autocorrelation from the dependent variable. Assuming sta-
tionarity, the slope coe⁄cient is consistent, but standard errors that do not ac-
count for the serial dependence correctly are biased.

Because the spurious regression problem is driven by biased estimates
of the standard error, the choice of standard error estimator is crucial. In our
simulation exercises, it is possible to ¢nd an e⁄cient unbiased estimator, since
we know the ‘‘true’’model that describes the regression error. Of course, this will
not be known in practice.To mimic the practical reality, the analyst in our simu-
lations uses the popular autocorrelation-heteroskedasticity-consistent (HAC)
standard errors from Newey and West (1987), with an automatic lag selection
procedure. The number of lags is chosen by computing the autocorrelations
of the estimated residuals and truncating the lag length when the sample auto-
correlations become ‘‘insigni¢cant’’ at longer lags. (The exact procedure is
described in Footnote 1, and modi¢cations to this procedure are discussed
below.)

This setting is related to Phillips (1986) and Stambaugh (1999). Phillips derives
asymptotic distributions for the OLS estimators of the regression (1), in the case
where r¼1, utþ1�0, and fe nt ; etg are general independent mean zero processes.
We allow a nonzero variance of utþ1 to accommodate the large noise component
of stock returns. We assume ro1 to focus on stationary, but possibly highly
autocorrelated, regressors.

Stambaugh (1999) studies a case where the errors fe nt ; etg are perfectly cor-
related, or equivalently, the analyst observes and uses the correct lagged stochas-
tic regressor. A bias arises when the correlation between utþ1 and e ntþ1 is not zero,
related to the well-known small sample bias of the autocorrelation coe⁄cient
(e.g., Kendall (1954)). In the pure spurious regression case studied here, the
observed regressor Zt is independent of the true regressor Z7

n , and utþ1 is inde-
pendent of e ntþ1. The Stambaugh bias is zero in this case. The point is that there
remains a problem in predictive regressions, in the absence of the bias studied by
Stambaugh, because of spurious regression.

B. Spurious Regression and DataMining

We consider the interaction between spurious regression and data mining,
where the instruments to be mined are independent as in Foster et al. (1997).
There areLmeasured instruments over which the analyst searches for the ‘‘best’’
predictor, based on the R-squares of univariate regressions. In Equation (3) Zt

becomes a vector of length L, where L is the number of instruments through
which the analyst sifts. The error terms ðe nt ; etÞ become an Lþ1 vector with a
diagonal covariance matrix; thus, e nt is independent of et.

The persistence parameters in Equation (3) become an (Lþ1)-square, diagonal
matrix, with the autocorrelation of the true predictor equal to r n.The value of r n

is either the average from our sample of 500 potential instruments, 15 percent, or
the median value from Table I, 95 percent. The remaining autocorrelations,
denoted by the L-vector r, are set equal to the autocorrelations of the ¢rst L
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instruments in our sample of 500 potential instruments, when r n¼15 percent.4

When r n¼ 95 percent, we rescale the autocorrelations to center the distribution
at 0.95 while preserving the range in the original data.5 The simulations match
the unconditional variances of the instruments,Var(Z), to the data.The ¢rst ele-
ment of the covariance matrix S is equal to s2

n
. For a typical ith diagonal element

of S, denoted by si, the elements of r(Zi) andVar(Zi) are given by the data, andwe
set s2i ¼ [1� r(Zi)

2]Var(Zi).

III. Simulation Results

We ¢rst consider spurious regression in isolation. Then we study spurious re-
gression with data mining.

A. Pure Spurious Regression

Table II summarizes the results for the case of pure spurious regression.We
record the estimated slope coe⁄cient in regression (1), its Newey^West t-ratio,
and the coe⁄cient of determination at each trial and summarize their empirical
distributions. The experiments are run for two sample sizes, based on the
extremes inTable I.These areT¼ 66 andT¼ 824 in Panels A and B, respectively.
In Panel C, we match the sample sizes to the studies inTable I. In each case, 10,000
trials of the simulation are run; 50,000 trials produces similar results.

The rows of Table II refer to di¡erent values for the true R-squares.The smal-
lest value is 0.1 percent, where the stock return is essentially unpredictable, and
the largest value is 15 percent. The columns of Table II correspond to di¡erent
values of r n, the autocorrelation of the true expected return, which runs from
0.00 to 0.99. In these experiments, we set r¼ r n. The subpanels labeled Critical
t-statistic and Critical estimated R2 report empirical critical values from the
10,000 simulated trials, so that 2.5 percent of the t-statistics or ¢ve percent of
the R-squares lie above these values.

The subpanels labeled Mean d report the average slope coe⁄cients over the
10,000 trials. The mean estimated values are always small, and very close to the
truevalue of zero at the larger sample size.This con¢rms that the slope coe⁄cient
estimators are well behaved, so that bias due to spurious regression comes from
the standard errors.

4We calibrate the true autocorrelations in the simulations to the sample autocorrelations,
adjusted for ¢rst-order ¢nite-sample bias as: r̂r þ (1þ3r̂r)/T, where r̂r is the OLS estimate of
the autocorrelation and T is the sample size.

5 The transformation is as follows. In the 500 instruments, the minimum bias-adjusted
autocorrelation is � 0.571, the maximum is 0.999, and the median is 0.02. We center the
transformed distribution about the median in Table I, which is 0.95. If the original autocorre-
lation r is less than the median, we transform it to

:95þ ðr� 0:02Þfð0:95þ 0:571Þ=ð0:02þ 0:571Þg:

If the value is above the median, we transform it to

:95þ ðr� 0:02Þfð0:999� 0:95Þ=ð0:999� 0:02Þg:
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When r n¼ 0, and there is no persistence in the true expected return, the spur-
ious regression phenomenon is not a concern. This is true even when the mea-
sured regressor is highly persistent. (We con¢rm this with additional
simulations, not reported in the tables, where we set r n¼ 0 and vary r.) The logic
is that when the slope in Equation (1) is zero and r n¼ 0, the regression error
has no persistence, so the standard errors are well behaved. This implies
that spurious regression is not a problem from the perspective of testing the
null hypothesis that expected stock returns are unpredictable, even if a highly
autocorrelated regressor is used.

Table II shows that spurious regression bias does not arise to any serious
degree, provided r n is 0.90 or less, and the trueR2 is one percent or less. For these
parameters, the empirical criticalvalues for the t-ratios are 2.48 (T¼ 66, Panel A),
and 2.07 (T¼ 824, Panel B). The empirical critical R-squares are close to their
theoretical values. For example, for a ¢ve percent test withT¼ 66 (824) the F dis-
tribution implies criticalR-squared values of 5.9 percent (0.5 percent).The values
in Table II when r n¼ 0.90 and true R2¼1 percent, are 6.2 percent (0.5 percent);
thus, the empirical distributions do not depart far from the standard rules of
thumb.

Variables like short-term interest rates and dividend yields typically have ¢rst-
order sample autocorrelations in excess of 0.95, as we saw inTable I.We ¢nd sub-
stantial biases when the regressors are highly persistent. Consider the plausible
scenario with a sample of T¼ 824 observations where r¼ 0.98 and true R2¼10
percent. In view of the spurious regression phenomenon, an analyst who was
not sure that the correct instrument is being used and who wanted to conduct a
5 percent, two-tailed t-test for the signi¢cance of the measured instrument would
have to use a t-ratio of 3.6.The coe⁄cient of determination would have to exceed
2.2 percent to be signi¢cant at the 5 percent level.These cuto¡s are substantially
more stringent than the usual rules of thumb.

Panel C of Table II revisits the evidence from the literature in Table I. The
critical values for the t-ratios and R-squares are reported, along with the
theoretical critical values for the R-squares implied by the F distribution.
We set the true R-squared value equal to 10 percent and r n¼ r in each case.We
¢nd that 7 of the 17 statistics inTable I that would be considered signi¢cant using
the traditional standards, are no longer signi¢cant inviewof the spurious regres-
sion bias.

While Panels A and B of Table II show that spurious regression can be a pro-
blem in stock return regressions, Panel C ¢nds that accounting for spurious
regression changes the inferences about speci¢c regressors that were found to
be signi¢cant in previous studies. In particular, we question the signi¢cance of
the term spread in Fama and French (1989), on the basis of either the t-ratio or the
R-squared of the regression. Similarly, the book-to-market ratio of the DowJones
index, studied by Ponti¡ and Schall (1998) fails to be signi¢cant with either sta-
tistic. Several other variables are marginal, failing on the basis of one but not
both statistics. These include the short-term interest rate (Fama and Schwert
(1977), using the more recent sample of Breen, Glosten, and Jagannathan
(1989)), the dividend yield (Fama and French (1988a)), and the quality-related
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yield spread (Keim and Stambaugh (1986)). All of these regressors would be con-
sidered signi¢cant using the standard cuto¡s.

It is interesting to note that the biases documented in Table II do not always
diminish with larger sample sizes; in fact, the critical t-ratios are larger in the
lower right corner of the panels whenT¼ 824 thanwhenT¼ 66.The mean values
of the slope coe⁄cients are closer to zero at the larger sample size, so the larger
critical values are driven by the standard errors. A sample as large asT¼ 824 is
not by itself a cure for the spurious regression bias. This is typical of spurious
regression with a unit root, as discussed by Phillips (1986) for in¢nite sample
sizes and nonstationary data.6 It is interesting to observe similar patterns, even
with stationary data and ¢nite samples.

Phillips (1986) shows that the sample autocorrelation in the regression studied
by Granger and Newbold (1974) converges in limit to 1.0. However, we ¢nd only
mildly in£ated residual autocorrelations (not reported in the tables) for stock
return samples as large asT¼ 2000, even when we assume values of the true R2

as large as 40 percent. Even in these extreme cases, none of the empirical critical
values for the residual autocorrelations are larger than 0.5. Since utþ1 ¼ 0 in the
cases studied by Phillips, we expect to see explosive autocorrelations only when
the true R2 is very large. When R2 is small, the white noise component of the
returns serves to dampen the residual autocorrelation. Thus, we are not likely
to see large residual autocorrelations in asset pricing models, even where spur-
ious regression is a problem.The residuals-based diagnostics for spurious regres-
sion, such as the Durbin^Watson tests suggested by Granger and Newbold, are
not likely to be very powerful in asset pricing regressions. For the same reason,
naive application of the Newey^West procedure, where the number of lags is
selected by examining the residual autocorrelations, is not likely to resolve the
spurious regression problem.

Newey andWest (1987) show that their procedure is consistent when the num-
ber of lags used grows without bound as the sample size T increases, provided
that the number of lags grows no faster thanT1/4.The lag selection procedure in
Table II examines 12 lags. Even though nomore than nine lags are selected for the
actual data inTable I, more lags would sometimes be selected in the simulations,
and an inconsistency results from truncating the lag length.7 However, in ¢nite
samples, an increase in the number of lags can make things worse.When ‘‘too
many’’ lags are used, the standard error estimates become excessively noisy,
which thickens the tails of the sampling distribution of the t-ratios.This occurs

6Phillips derives asymptotic distributions for the OLS estimators of equation (1), in the
case where r¼1, utþ1�0. He shows that the t-ratio for d diverges for large T, while t(d)/

ffiffiffiffi
T

p
,

d, and the coe⁄cient of determination converge to well-de¢ned random variables. Marmol
(1998) extends these results to multiple regressions with partially integrated processes, and
provides references to more recent theoretical literature. Phillips (1998) reviews analytical
tools for asymptotic analysis when nonstationary series are involved.

7At very large sample sizes, a huge number of lags can control the bias. We verify this by
examining samples as large asT¼ 5000, letting the number of lags grow to 240.With 240 lags,
the critical t-ratio when the true R2¼10 percent and r¼ 0.98 falls from 3.6 in Panel B of
Table II to a reasonably well-behaved value of 2.23.
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Table II
The Monte Carlo Simulation Results for Regressions with a Lagged

PredictorVariable
The table reports the 97.5 percentile of the Monte Carlo distribution of 10,000 Newey^West t-
statistics, the 95 percentile for the estimated coe⁄cients of determination, and the average es-
timated slopes from the regression

rtþ1 ¼ aþ dZt þ ntþ1;

where rtþ1 is the excess return, Zt is the predictor variable, and t¼1,y,T. The parameter r n is
the autocorrelation coe⁄cient of the predictors, Zt

n and Zt.The R
2 is the coe⁄cient of determi-

nation from the regression of excess returns rtþ1 on the unobserved, true instrument Zt
n. Panel

A depicts the results forT¼ 66 and Panel B forT¼ 824. Panel C gives the simulation results for
the number of observations and the autocorrelations inTable I. In Panel C, the true R2 is set to
0.1.The theoretical criticalR2 is from the F-distribution.

Panel A: 66 Observations

R2/r n 0 0.5 0.9 0.95 0.98 0.99

Mean d

0.001 � 0.0480 � 0.0554 � 0.0154 � 0.0179 � 0.0312 � 0.0463
0.005 � 0.0207 � 0.0246 � 0.0074 � 0.0088 � 0.0137 � 0.0193
0.010 � 0.0142 � 0.0173 � 0.0055 � 0.0066 � 0.0096 � 0.0129
0.050 � 0.0055 � 0.0075 � 0.0029 � 0.0037 � 0.0040 � 0.0042
0.100 � 0.0033 � 0.0051 � 0.0023 � 0.0030 � 0.0026 � 0.0021
0.150 � 0.0024 � 0.0040 � 0.0020 � 0.0026 � 0.0020 � 0.0012

Critical t-statistic

0.001 2.1951 2.3073 2.4502 2.4879 2.4746 2.4630
0.005 2.2033 2.3076 2.4532 2.5007 2.5302 2.5003
0.010 2.2121 2.3123 2.4828 2.5369 2.5460 2.5214
0.050 2.2609 2.3335 2.6403 2.7113 2.7116 2.6359
0.100 2.2847 2.3702 2.8408 2.9329 2.9043 2.7843
0.150 2.2750 2.3959 3.0046 3.1232 3.0930 2.9417

Critical estimated R2

0.001 0.0593 0.0575 0.0598 0.0599 0.0610 0.0600
0.005 0.0590 0.0578 0.0608 0.0607 0.0616 0.0604
0.010 0.0590 0.0579 0.0619 0.0623 0.0630 0.0612
0.050 0.0593 0.0593 0.0715 0.0737 0.0703 0.0673
0.100 0.0600 0.0622 0.0847 0.0882 0.0823 0.0766
0.150 0.0600 0.0649 0.0994 0.1032 0.0942 0.0850

Panel B: 824 Observations

Mean d

0.001 0.0150 0.0106 0.0141 0.0115 0.0053 � 0.0007
0.005 0.0067 0.0049 0.0069 0.0055 0.0021 � 0.0011
0.010 0.0048 0.0035 0.0052 0.0040 0.0014 � 0.0012
0.050 0.0021 0.0017 0.0029 0.0021 0.0003 � 0.0014
0.100 0.0015 0.0013 0.0023 0.0016 0.0001 � 0.0014
0.150 0.0012 0.0011 0.0021 0.0014 � 0.0000 � 0.0014
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for the experiments in Table II. For example, letting the procedure examine 36
autocorrelations to determine the lag length (the largest number we ¢nd men-
tioned in published studies), the critical t-ratio in Panel A, for true R2¼10 per-
cent and r n¼ 0.98, increases from 2.9 to 4.8. Nine of the 17 statistics fromTable I
that are signi¢cant by the usual rules of thumb now become insigni¢cant. The
results calling these studies into question are even stronger than before. Thus,
simply increasing the number of lags in the Newey^West procedure does not re-
solve the ¢nite sample, spurious regression bias.8

Critical t-statistic

0.001 1.9861 2.0263 2.0362 2.0454 2.0587 2.0585
0.005 1.9835 2.0297 2.0429 2.1123 2.1975 2.2558
0.010 1.9759 2.0279 2.0655 2.1479 2.3578 2.4957
0.050 1.9878 2.0088 2.2587 2.5685 3.1720 3.7095
0.100 1.9862 2.0320 2.3758 2.7342 3.6356 4.4528
0.150 2.0005 2.0246 2.4164 2.8555 3.8735 4.9151

Critical estimated R2

0.001 0.0046 0.0047 0.0047 0.0047 0.0049 0.0049
0.005 0.0046 0.0047 0.0048 0.0051 0.0056 0.0059
0.010 0.0046 0.0047 0.0050 0.0054 0.0065 0.0073
0.050 0.0046 0.0047 0.0066 0.0085 0.0132 0.0183
0.100 0.0047 0.0049 0.0084 0.0125 0.0220 0.0316
0.150 0.0046 0.0050 0.0104 0.0166 0.0308 0.0450

Panel C: Table I simulation

Obs r n CriticalTheoretical R2 Critical t-statistic Critical Estimated R2

393 0.97 0.0098 3.2521 0.0311
264 0.32 0.0146 2.0645 0.0151
264 0.15 0.0146 2.0560 0.0151
264 0.08 0.0146 2.0318 0.0146
420 0.97 0.0092 3.2734 0.0304
720 0.97 0.0053 3.2005 0.0194
732 0.92 0.0053 2.3947 0.0103
611 0.95 0.0063 2.8843 0.0167
611 0.97 0.0063 3.2488 0.0219
66 0.66 0.0586 2.4221 0.0656
184 0.79 0.0209 2.2724 0.0270
824 0.97 0.0047 3.1612 0.0173
552 0.98 0.0070 3.6771 0.0293

Table IIFContinued

Panel B: 824 Observations

R2/r n 0 0.5 0.9 0.95 0.98 0.99

8We conduct several experiments letting the number of lags examined be 24, 36, or 48, when
T¼ 66 andT¼ 824.WhenT¼ 66, the critical t-ratios are always larger than the values in Table
II. When T¼ 824, the e¡ects are small and of mixed sign. The most extreme reduction in a
critical t-ratio, relative to Table II, is with 48 lags, true R2¼15 percent, and r n¼ 0.99, where
the critical value falls from 4.92 to 4.23.
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We draw several conclusions about spurious regression in stock return regres-
sions. Given persistent expected returns, spurious regression can be a serious
concern well outside the classic setting of Yule (1926) and Granger and Newbold
(1974). Stock returns, as the dependent variable, are much less persistent than the
levels of most economic time series.Yet, when the expected returns are persistent,
there is a risk of spurious regression bias. The regression residuals may not be
highlyautocorrelated, evenwhen spurious regression bias is severe. Given incon-
sistent standard errors, spurious regression bias is not avoided with large sam-
ples. Accounting for spurious regression bias, we ¢nd that 7 of the 17 t-statistics
and regressionR-squares from previous studies that would be signi¢cant by stan-
dard criteria are no longer signi¢cant.

B. Spurious Regression and DataMining

Wenowconsider the interaction between spurious regression and data mining.
Table III summarizes the results.The columns of Panels A through D correspond
to di¡erent numbers of potential instruments, throughwhich the analyst sifts to
¢nd the regression that delivers the highest sample R-squared.The rows refer to
the di¡erent values of the true R-squared.

The cases with true R2¼ 0 refer to data mining only, similar to Foster et al.
(1997).The columns where L¼1 correspond to pure spurious regression bias.We
hold ¢xed the persistence parameter for the true expected return, r n, while
allowing r to vary depending on the measured instrument.When L¼1, we set
r¼ 15 percent.We consider two values for r n, 15 percent or 95 percent.

Panels A and B of Table III show that when L¼1 and r n¼15 percent, there is
no data mining, and, consistent withTable II, there is no spurious regression pro-
blem. The empirical critical values for the t-ratios and R-squared statistics are
close to their theoretical values under normality. For larger values of L and
r n¼ 15 percent, there is data mining, and the critical values are close to the va-
lues reported by Foster et al. (1997) for similar sample sizes.9 There is little di¡er-
ence in the results for the various true R-squares. Thus, with little persistence,
there is no spurious regression problem, and no interaction with data mining.

Panels C and D of Table III tell a di¡erent story.When the underlying expected
return is persistent (r n¼0.95), there is a spurious regression bias.WhenL¼1, we
have spurious regression only.The critical t-ratio in Panel C increases from 2.3 to
2.8 as the true R-squared goes from 0 to 15 percent. The bias is less pronounced
here than inTable II, with r¼ r n¼ 0.95, which illustrates that for a givenvalue of
r n, spurious regression is worse for larger values of r.

Spurious regression bias interacts with data mining. Consider the extreme
corners of Panel C.Whereas withL¼1, the critical t-ratio increases from 2.3 to 2.8
as the true R-squared goes from 0 to 15 percent, with L¼ 250, the critical t-ratio
increases from 5.2 to 6.3 as the true R-squared is increased. Thus, data mining
magni¢es the e¡ects of the spurious regression bias. When more instruments

9Our sample sizes, T, are not the same as in Foster et al. (1997). When we run the experi-
ments for their sample sizes, we closely approximate the critical values that they report.
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Table III
The Monte Carlo Simulation Results of Regressions with Spurious

Regression and Data Mining, with Independent Regressors
The table reports the 97.5 percentile of the Monte Carlo distribution of 10,000 Newey^West
t-statistics, the 95 percentile for the estimated coe⁄cients of determination, and the average
estimated slopes from the regression

rtþ1 ¼ aþ dZt þ ntþ1;

where rtþ1 is the excess return, Zt is the predictor variable, and t¼1,y,T. The R2 is the coe⁄-
cient of determination from the regression of excess returns rtþ1 on the unobserved, true instru-
ment Z�

t , which has the autocorrelation r n. The parameter L is the number of instruments
mined, where the onewith the highest estimatedR2 is chosen. Panels A and B depict the results
for T¼ 66 and T¼ 824, respectively, when the autocorrelation of the true predictor, r n¼0.15.
Panels C and D depict the results forT¼ 66 andT¼ 824, respectively, when the autocorrelation
of the true predictor, r n¼0.95, the median autocorrelation inTable I. In Panel E, the true R2 is
set to 0.1 and the original distribution of instruments is transformed so that their median auto-
correlation is set at 0.95.The left-hand side of Panel E gives the criticalL for the given number of
observations and autocorrelation that is su⁄cient to generate critical t-statistics or R2s in
excess of the corresponding statistics inTable I.The right-hand side of Panel E gives the critical
L that is su⁄cient to generate critical t-statistics orR2s in excess of the corresponding statistics
inTable I when r n¼ 0.95.

Panel A: 66 Observations; r n¼ 0.15

R2/L 1 5 10 25 50 100 250

Mean d

0 � 0.0004 0.0002 � 0.0002 0.0004 � 0.0001 0.0001 0.0005
0.001 � 0.0114 0.0044 � 0.0069 0.0208 � 0.0078 0.0012 0.0162
0.005 � 0.0050 0.0017 � 0.0017 0.0113 � 0.0014 � 0.0031 0.0109
0.010 � 0.0035 0.0008 � 0.0014 0.0076 � 0.0002 � 0.0011 0.0098
0.050 � 0.0014 0.0004 � 0.0004 0.0018 � 0.0023 � 0.0013 0.0063
0.100 � 0.0009 0.0006 � 0.0004 0.0014 � 0.0013 � 0.0007 0.0044
0.150 � 0.0007 0.0007 � 0.0002 0.0009 � 0.0010 � 0.0010 0.0035

Critical t-statistic

0 2.2971 3.2213 3.5704 4.1093 4.4377 4.8329 5.2846
0.001 2.2819 3.2105 3.5418 4.1116 4.4351 4.8238 5.2803
0.005 2.2996 3.2250 3.5466 4.1190 4.4604 4.7951 5.2894
0.010 2.2981 3.2109 3.5492 4.1198 4.4728 4.7899 5.2900
0.050 2.2950 3.2416 3.5096 4.0981 4.4036 4.8803 5.2527
0.100 2.3175 3.2105 3.5316 4.1076 4.4563 4.8772 5.2272
0.150 2.3040 3.2187 3.5496 4.0644 4.5090 4.8984 5.2948

Critical estimated R2

0 0.0594 0.0974 0.1153 0.1387 0.1548 0.1738 0.1944
0.001 0.0589 0.0969 0.1149 0.1386 0.1546 0.1739 0.1944
0.005 0.0591 0.0972 0.1151 0.1383 0.1545 0.1734 0.1948
0.010 0.0592 0.0967 0.1158 0.1386 0.1544 0.1733 0.1950
0.050 0.0596 0.0970 0.1163 0.1390 0.1557 0.1738 0.1955
0.100 0.0608 0.0969 0.1165 0.1392 0.1570 0.1738 0.1954
0.150 0.0612 0.0975 0.1165 0.1397 0.1577 0.1745 0.1967
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Panel B: 824 Observations; r n¼ 0.15

R2/L 1 5 10 25 50 100 250

Mean d

0 0.0000 0.0000 0.0000 0.0000 � 0.0001 � 0.0002 0.0000
0.001 � 0.0004 0.0032 � 0.0017 0.0000 � 0.0028 � 0.0058 0.0015
0.005 � 0.0002 0.0012 � 0.0004 0.0000 � 0.0020 � 0.0031 0.0007
0.010 � 0.0001 0.0009 � 0.0004 � 0.0003 � 0.0015 � 0.0020 0.0004
0.050 � 0.0001 0.0005 0.0000 � 0.0005 � 0.0006 � 0.0009 0.0004
0.100 0.0000 0.0005 � 0.0001 � 0.0003 � 0.0001 � 0.0002 0.0003
0.150 0.0000 0.0003 � 0.0003 � 0.0003 0.0001 � 0.0002 0.0002

Critical t-statistic

0 2.0283 2.5861 2.8525 3.1740 3.3503 3.5439 3.8045
0.001 2.0369 2.6000 2.8534 3.1785 3.3616 3.5443 3.7928
0.005 2.0334 2.6043 2.8565 3.1769 3.3625 3.5440 3.7906
0.010 2.0310 2.6152 2.8694 3.1782 3.3544 3.5477 3.7917
0.050 2.0272 2.6229 2.8627 3.1846 3.3450 3.5552 3.8039
0.100 2.0115 2.6304 2.8705 3.1807 3.3648 3.5673 3.8041
0.150 2.0044 2.6327 2.8618 3.1766 3.3691 3.5723 3.7965

Critical estimated R2

0 0.0047 0.0079 0.0096 0.0116 0.0130 0.0145 0.0166
0.001 0.0047 0.0079 0.0096 0.0116 0.0130 0.0145 0.0166
0.005 0.0047 0.0080 0.0096 0.0116 0.0129 0.0145 0.0166
0.010 0.0047 0.0080 0.0096 0.0115 0.0129 0.0145 0.0166
0.050 0.0047 0.0081 0.0096 0.0116 0.0130 0.0145 0.0167
0.100 0.0047 0.0081 0.0097 0.0117 0.0131 0.0146 0.0168
0.150 0.0047 0.0082 0.0096 0.0117 0.0130 0.0146 0.0168

Panel C: 66 Observations; r n¼ 0.95

Mean d

0 � 0.0005 0.0002 0.0006 � 0.0001 � 0.0006 � 0.0003 0.0017
0.001 � 0.0140 0.0069 0.0212 � 0.0105 � 0.0134 � 0.0112 0.0557
0.005 � 0.0060 0.0042 0.0082 � 0.0068 � 0.0024 � 0.0033 0.0240
0.010 � 0.0042 0.0031 0.0051 � 0.0029 � 0.0018 � 0.0027 0.0145
0.050 � 0.0016 0.0006 0.0035 � 0.0023 � 0.0016 � 0.0019 0.0012
0.100 � 0.0010 � 0.0002 0.0021 � 0.0013 � 0.0017 � 0.0005 0.0028
0.150 � 0.0007 � 0.0005 0.0015 � 0.0008 � 0.0011 � 0.0001 0.0013

Critical t-statistic

0 2.3446 3.3507 3.6827 4.1903 4.4660 4.9412 5.2493
0.001 2.3641 3.3547 3.6776 4.1756 4.5157 4.9201 5.2441
0.005 2.4030 3.3864 3.7013 4.1984 4.5625 4.9381 5.2760
0.010 2.3939 3.4197 3.7308 4.1952 4.6039 4.9718 5.3083
0.050 2.5486 3.5482 3.9676 4.4703 4.9512 5.2027 5.5539
0.100 2.6955 3.7336 4.1899 4.7485 5.2335 5.5027 5.9006
0.150 2.8484 3.9724 4.4329 4.9748 5.5547 5.8256 6.2563

Table IIIFContinued
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Critical estimated R2

0 0.0579 0.0974 0.1140 0.1374 0.1515 0.1689 0.1885
0.001 0.0587 0.0981 0.1143 0.1376 0.1518 0.1692 0.1884
0.005 0.0596 0.0987 0.1153 0.1385 0.1530 0.1699 0.1895
0.010 0.0604 0.1002 0.1166 0.1402 0.1543 0.1711 0.1910
0.050 0.0691 0.1113 0.1307 0.1552 0.1711 0.1859 0.2057
0.100 0.0802 0.1265 0.1508 0.1774 0.1952 0.2099 0.2307
0.150 0.0911 0.1451 0.1728 0.2021 0.2209 0.2370 0.2587

Panel D: 824 Observations; r n¼ 0.95

Mean d

0 � 0.0001 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001
0.001 � 0.0027 � 0.0016 � 0.0007 0.0005 0.0015 0.0072 0.0039
0.005 � 0.0012 � 0.0004 0.0003 0.0006 � 0.0008 0.0029 0.0026
0.010 � 0.0009 � 0.0005 0.0000 0.0003 � 0.0008 0.0013 0.0006
0.050 � 0.0004 � 0.0005 0.0001 � 0.0002 0.0007 � 0.0006 0.0001
0.100 � 0.0003 � 0.0002 � 0.0001 � 0.0003 0.0000 0.0001 � 0.0004
0.150 � 0.0003 0.0000 0.0000 � 0.0002 0.0001 0.0002 � 0.0002

Critical t-statistic

0 1.9807 2.6807 2.8535 3.1579 3.3640 3.5673 3.8103
0.001 1.9989 2.6876 2.8758 3.1745 3.3702 3.5792 3.8252
0.005 2.0406 2.7588 2.9269 3.2218 3.4497 3.6493 3.9075
0.010 2.1108 2.8538 3.0150 3.3500 3.5548 3.7836 4.0351
0.050 2.4338 3.3118 3.6292 4.1202 4.3685 4.6795 4.9741
0.100 2.6274 3.6661 4.0003 4.5660 4.9129 5.2567 5.6937
0.150 2.7413 3.8720 4.2048 4.8481 5.2200 5.5846 6.0420

Critical estimated R2

0 0.0045 0.0080 0.0096 0.0113 0.0129 0.0145 0.0164
0.001 0.0046 0.0082 0.0097 0.0115 0.0130 0.0146 0.0167
0.005 0.0048 0.0086 0.0102 0.0121 0.0137 0.0153 0.0176
0.010 0.0050 0.0092 0.0108 0.0131 0.0146 0.0163 0.0187
0.050 0.0077 0.0145 0.0173 0.0216 0.0244 0.0273 0.0314
0.100 0.0113 0.0216 0.0264 0.0331 0.0374 0.0421 0.0482
0.150 0.0151 0.0293 0.0356 0.0446 0.0508 0.0568 0.0647

Panel E: Table I Simulation

Obs r n

Critical L
(t-statistic)

Critical L
(R2) r n

Critical L
(t-statistic)

Critical L
(R2)

393 0.97 2 1 0.95 4 2
264 0.32 2 5 0.95 1 1
264 0.15 2 5 0.95 1 1
264 0.08 5 4500 0.95 1 10
420 0.97 1 1 0.95 1 1
720 0.97 1 1 0.95 1 1
732 0.92 1 1 0.95 1 1

Table IIIFContinued

Panel C: 66 Observations; r n¼ 0.95

R2/L 1 5 10 25 50 100 250
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are examined, the more persistent ones are likely to be chosen, and the spurious
regression problem is ampli¢ed.The slope coe⁄cients are centered near zero, so
the bias does not increase the average slopes of the selected regressors. Again,
spurious regression works through the standard errors.

We can also say that spurious regression makes the data mining problem
worse. For a given value of L, the critical t-ratios and R2 values increase moving
down the rows of Table III. For example, with L¼ 250 and true R2¼ 0, we can
account for pure data mining with a critical t-ratio of 5.2. But when the true
R-squared is 15 percent, the critical t-ratio rises to 6.3. The di¡erences moving
down the rows are even greater whenT¼ 824, in Panel D.Thus, in the situations
where the spurious regression bias is more severe, its impact on the data mining
problem is ampli¢ed.

Finally, Panel E of Table III revisits the studies from the literature in view of
spurious regression and data mining.We report critical values for L, the number
of instruments mined, su⁄cient to render the regression t-ratios and R-squares
insigni¢cant at the ¢ve percent level.We use two assumptions about persistence
in the true expected returns: (1) r n is set equal to the sample values from the stu-
dies, as in Table I, or (2) r n¼ 95 percent. With only one exception, the critical
values of L are 10 or smaller.The exception is where the instrument is the lagged
excess return on a two-monthTreasury bill, following Campbell (1987).This is an
interesting example because the instrument is not very autocorrelated, at 8 per-
cent, and when we set r n¼ 8 percent there is no spurious regression e¡ect. The
critical value of L exceeds 500. However, when we set r n¼ 95 percent in this
example, the critical value of L falls to 10, illustrating the strong interaction
between the data mining and spurious regression e¡ects.

IV. Conclusions

We study regression models where lagged variables predict stock returns, fo-
cusing on the issues of data mining and spurious regression.The spurious regres-
sion problem is related to the classic studies of Yule (1926) and Granger and
Newbold (1974). Unlike the regressions in those papers, asset pricing regressions
use rates of return, which are not highly persistent, as the dependent variables.
However, asset returns are the expected returns plus unpredictable noise. If the
expected returns are persistent, there is a risk of ¢nding a spurious relation be-
tween the return and an independent, highly autocorrelated lagged variable.

611 0.95 1 1 0.95 1 1
611 0.97 1 1 0.95 1 1
66 0.66 2 2 0.95 1 2
184 0.79 2 7 0.95 1 3
824 0.97 1 1 0.95 1 2
552 0.98 1 1 0.95 1 1

Table IIIFContinued

Obs r n

Critical L
(t-statistic)

Critical L
(R2) r n

Critical L
(t-statistic)

Critical L
(R2)
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When there is no persistence in the true expected return, the spurious regres-
sion phenomenon is not a concern.This is true evenwhen the measured regressor
is highly persistent.This implies that spurious regression is not a problem from
the perspective of testing the null hypothesis that expected stock returns are
unpredictable, even if a highly autocorrelated regressor is used. The evidence
that expected stock returns vary over time is therefore not overturned by
spurious regression bias.

Given persistent expected returns, we ¢nd that spurious regression can be a
serious concern.The problem for stock returns gets worse as the autocorrelation
in the expected return increases, and as the fraction of the stock return variance
attributed to the conditional mean increases. Assuming that expected returns
are as persistent as the median instrument in the samples of nine classic studies,
we ¢nd that 7 of the 17 statistics that would be considered signi¢cant using tradi-
tional standards are no longer signi¢cant in viewof the spurious regression bias.
We therefore call into question the validity of speci¢c instruments identi¢ed in
the literature, such as the term spread, book-to-market ratio, and dividend yield.

Data mining, in the form of a search through the data for high-R2 predictors,
results in regressions whose apparent explanatory power occurs by chance. Con-
sistent with Foster et al. (1997), if between 10 and 500 instruments are examined,
depending on the study, all of the univariate regression results summarized in
Table I become insigni¢cant. In the presence of spurious regression, persistent
variables are likely to be mined, and the two e¡ects reinforce each other. As a
result, the critical values needed for signi¢cant t-statistics and regression
R-squares increase. If the expected return accounts for 10 percent of the stock
return variance, mining among 5 to 10 instruments has as much impact as 50 to
100 instruments with no spurious regression. Assuming we sift through only 10
instruments, all of the regressions from the previous studies in Table I appear
consistent with a spurious mining process.

Our results have distinct implications for tests of predictability and model
selection. In tests of predictability, the researcher chooses a lagged instrument
and regresses future returns on the instrument. The null hypothesis is that the
slope coe⁄cient is zero. Spurious regression presents no problem from this per-
spective, because under the null hypothesis, the expected return is not persis-
tent. In model selection, the researcher chooses a lagged instrument to model
time variation in expected returns, for purposes such as implementing or testing
an asset pricingmodel. Here is where the spurious regression problem is the most
pernicious.

The pattern of evidence for the instruments in the literature is similar to what
is expected under a spurious mining process with an underlying persistent
expected return. In this case we would expect instruments to arise, then fail to
work out of sample.With fresh data, new instruments would arise, then fail.The
dividend yield rose to prominence in the 1980s, but fails to work in post-1990 data
(e.g., Goyal andWelch (2002) and Schwert (2002)).The book-to-market ratio seems
to have weakened in recent data.With fresh data, new instruments appear to
work (e.g., Lettau and Ludvigson (2001) and Lee, Myers, and Swaminathan,
(1999)). There are two implications. First, we should be concerned that these
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new instruments are likely to fail out of sample. Second, any stylized facts based
on empirically motivated instruments and asset pricing tests based on such
instruments should be viewed with skepticism.

Appendix:The Sample of 500 Instruments

All the data come from the web site Economagic.com: Economic Time Series
Page, maintained byTed Bos.The sample consists of all monthly series listed on
the main homepage of the site, except under the headings of LIBOR, Australia,
BankofJapan, and Central Bankof Europe. From the Census Bureau, we exclude
Building Permits by Region, State, and Metro Areas (more than 4,000 series).
From the Bureau of Labor Statistics, we exclude all Noncivilian Labor Force data
and State, City, and International Employment (more than 51,000 series).We use
the Consumer Price Index (CPI) measures from the city average listings, but in-
clude no ¢ner subcategories. The Producer Price Index (PPI) measures include
the aggregates and the two^digit subcategories. From the Department of Energy,
we exclude data in Section 10, the International Energy series.

We ¢rst randomly select (using a uniform distribution) 600 out of the 10,866
series that were left after the above exclusions. From these 600, we eliminated
series that mixed quarterly and monthly data and extremely sparse series, and
took the ¢rst 500 fromwhat remained.

Because many of the data are reported in levels, we tested for unit roots using
an augmented Dickey^Fuller test (with a zero order time polynomial).We could
not reject the hypothesis of a unit root for 361 of the 500 series, and we replaced
these series with their ¢rst di¡erences.

We estimate a sample correlation matrix of the 500 instruments as follows.We
take each pair of instruments and compute the sample correlation between the
two series, using all of the periods in which our data for the two series overlap.
For some pairs, there is no overlapping data. For these cases we substitute the
average of all the sample correlations that we can compute.
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