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ABSTRACT

We study asset allocation when the conditional moments of returns are partly
predictable. Rather than first model the return distribution and subsequently char-
acterize the portfolio choice, we determine directly the dependence of the optimal
portfolio weights on the predictive variables. We combine the predictors into a
single index that best captures time variations in investment opportunities. This
index helps investors determine which economic variables they should track and,
more importantly, in what combination. We consider investors with both expected
utility ~mean variance and CRRA! and nonexpected utility ~ambiguity aversion
and prospect theory! objectives and characterize their market timing, horizon ef-
fects, and hedging demands.

THERE IS BY NOW AMPLE EVIDENCE in the literature that the means, variances,
covariances, and higher order moments of stock and bond returns are time-
varying and predictable. However, it has proven difficult to translate this evi-
dence of predictability into practical portfolio advice because the different
moments of returns, which in turn determine the optimal portfolio weights,
are typically predicted by different sets of economic variables. Perhaps
because of this difficulty with modeling the conditional return distribution,
most professional investment advice is given solely on the basis of variables
that forecast expected returns, such as the dividend yield or the slope of the
term structure.1

Looking beyond expected returns, it is difficult to decide which selection
or combination of predictive variables the investor should focus on. ~As a
result, the empirical literature on portfolio choice has relied on a predeter-
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1 It is quite natural, of course, to focus on the first moment of the return distribution when
making a conditional portfolio choice. First, expected returns are the most intuitive and argu-
ably the most important input to the investor’s objective function; second, the dependence of the
optimal portfolio choice on the first moment of the return distribution is monotonic for most
preferences, unlike the dependence on higher order moments; and third, even with relatively
simple preferences, the dependence of the optimal portfolio choice on the whole return distri-
bution is so complex that it can usually only be solved numerically.
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mined choice of one or at most two concurrent state variables. In a single-
period context, Avramov ~1999! uses the dividend yield, book-to-market ratio,
earnings yield, Treasury bill yield, and term spread; and Kandel and Stam-
baugh ~1996! use the dividend yield. In a multiperiod setting, Balduzzi and
Lynch ~1999!, Barberis ~2000!, and Campbell and Viceira ~1999! use the divi-
dend yield; Brandt ~1999! uses the dividend yield, default spread, term spread,
and lagged return; Brennan, Schwartz, and Lagnado ~1997! use the divi-
dend yield, bond yield, and Treasury bill yield; Campbell and Viceira ~1998!
use the Treasury bill yield; Chacko and Viceira ~1999! use the observed re-
turns variance; and Lynch ~2000! uses the dividend yield and term spread.!
This is true even in the few special cases where we have an explicit asset
allocation formula, such as for mean-variance utility where the optimal allo-
ation is proportional to the ratio of the conditional mean to the conditional
variance of returns. In this mean-variance case, it is clear that we want to
find variables that best predict the ratio of the first two conditional mo-
ments. Choosing variables that best predict the mean and variance sepa-
rately is likely to be counterproductive. Indeed, what should we do if a variable
has a positive effect on both means ~which the investor likes! and variances
~which are detrimental to the investor!? What should we do if this variable
is highly significant for one of the moments but less so for the other? How do
we capture the relative importance that the investor’s preferences place on
the different moments? These questions all suggest that in a portfolio choice
context, we should select variables to directly predict optimal portfolio weights,
rather than first select variables to predict separate features of the return
distribution and then explore later their implications for asset allocation.

It is also intuitively clear that different objective functions place different
emphases on the various features of the conditional return distribution. For
example, a mean-variance investor wants to predict means and variances,
while a loss-averse investor may be more concerned about forecasting the
size of the left tail of the return distribution.2 Since, again, the means, vari-
ances, and size of the tails are not always predicted by the same variables,
these two investors may choose different predictors for their conditional port-
folio choice. Furthermore, investors may also disagree about the variable
selection because, at the optimal choice, they are holding different portfolios
of risky securities.3

2 If returns are normally distributed, a loss-averse investor cares effectively about the ratio
of the mean to the standard deviation of returns, which measures the size of the tail of a
Gaussian density, rather than the ratio of the mean to the variance that a mean-variance
investor cares about.

3 Consider two investors in the same class of preferences, one who is relatively risk averse
and holds mostly bonds and another who is less risk averse and holds primarily stocks. Since
different variables help predict the moments of bond and stock returns, these two investors may
also choose different predictors for their conditional portfolio choice. Naturally, these effects are
further compounded when we compare investors with different objective functions and different
portfolio holdings, such as a mean-variance investor who holds stocks and a loss-averse inves-
tor who holds bonds.
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In this paper, we show how to select and combine variables to best predict
an investor’s optimal portfolio weights, both in single-period and multi-
period contexts. Rather than first model the various features of the condi-
tional return distribution and subsequently characterize the portfolio choice,
we focus directly on the dependence of the portfolio weights on the predic-
tors. We do so by solving sample analogues of the conditional Euler equa-
tions that characterize the portfolio choice, as originally suggested by Brandt
~1999!. However, unlike the existing literature, we determine endogenously,
for a given set of utility preferences, which of the candidate predictors are
important for the optimal portfolio weights ~rather than important for sep-
arate moments of the return distribution!.

The advantage of focusing directly on the optimal portfolio weights is
that we bypass the estimation of the conditional return distribution. This
intermediate estimation step is the Achilles’ heel of conditional portfolio
choice because although the moments of returns are predictable, this pre-
dictability is for some moments quite tenuous. In particular, in the litera-
ture on predicting returns, an R2 of 10 percent is hailed, rightly so, as a
great success. Our approach is based on the hope that the relationship be-
tween the portfolio weights, which are complicated functions of the return
distribution, and the predictors is less noisy than the relationship between
the individual moments and the predictors. Even if it is not, we avoid intro-
ducing additional noise and potential misspecifications through the inter-
mediate, but unnecessary, estimation of the return distribution.

We form a linear combination or index of the conditioning variables that
best predicts the investor’s optimal portfolio weights and then judge the
importance of each individual variable by the role it plays in this index. We
make no further assumptions about the relationship between the optimal
portfolio weights and the predictors for two reasons. First, the dependence of
the portfolio choice on the predictors can be highly nonlinear, even when the
conditional moments are approximately linear; and second, the particular
form of the nonlinearities not only varies greatly with the investor’s prefer-
ences but also cannot generally be determined explicitly. This leads us to a
semiparametric approach, where the optimal portfolio weights depend non-
parametrically on a parametric index of the predictors.

We study investors with both expected utility ~mean variance and con-
stant relative risk aversion ~CRRA!! and nonexpected utility ~ambiguity aver-
sion and prospect theory! objectives in order to see how the optimal index
composition depends on the characteristics of the investor’s preferences. From
a normative perspective, our results can help investors with any one of these
preferences determine which economic variables they should track and, more
importantly, in what single combination. Our index is a parsimonious way
to describe the current state of the investor’s investment opportunities, just
as in different economic contexts indices summarize high-dimensional state
vectors ~the index of leading economic indicators, the business cycle index,
the consumer confidence index, etc.!. Macroeconomic indices are country
specific, since different countries have different characteristics, and analo-
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gously our investment opportunities index is investor specific because dif-
ferent investors have different preferences.

For the purpose of giving portfolio advice, one advantage of our index
approach is that it helps investors understand their conditional asset allo-
cation in a more intuitive manner. For instance, it delivers simple rules
like “if the index increases, the allocation to stocks should increase”. By
contrast, it is generally difficult to represent graphically variables in more
than two dimensions, let alone develop economic intuition about their
interactions.

We characterize the market timing, horizon effects, and hedging demands
of different types of investors, where we disentangle the effects due to the
time-varying return distribution from those due to the specific preference
structure. Specifically, we show how the portfolio choice of both expected
and nonexpected utility investors varies as a function of the predictors, in-
vestment horizon, and rebalancing frequency. We explain also how the source
of these variations differs across the preference specifications.

The remainder of the paper is organized as follows. We motivate the vari-
able selection problem in Section I with individual moment regressions.
Section II explains our econometric approach of predicting optimal portfolio
weights with an index that captures the current state of investment oppor-
tunities. In Section III we discuss four parameterizations of the investor’s
preferences, which we then use in Section IV for our empirical work. There
we characterize the optimal index composition and portfolio rules for differ-
ent types of investors, different horizons, and different rebalancing frequen-
cies. We conclude in Section V.

I. Predicting Individual Moments

A. Data

We collect monthly, quarterly, semiannual, and annual returns on the
Standard and Poors ~S&P! 500 index, an equal-weighted portfolio of non-
callable government bonds with more than 10 years to maturity, and a
maturity-matched Treasury bill from CRSP. The returns are sampled monthly
from January 1954 through December 1997. The sample consists of 528
observations.

An ever-growing set of economic variables has been shown to partly pre-
dict the means, variances, and covariances of returns. ~The following is a
partial list of academic papers that document various degrees of mean predict-
ability and the variables they use: Campbell ~1987!, term spread; Campbell
and Shiller ~1988a, 1988b!, dividend yield; Cochrane ~1991!, investment-to-
capital ratio; Fama and Schwert ~1977!, Treasury bill yield; Fama and French
~1988, 1989!, default spread, dividend yield, term spread; Ferson and Har-
vey ~1991!, default spread, dividend yield, lagged returns, term spread, Trea-
sury bill yield; Keim and Stambaugh ~1986!, default spread, trend;
Lamont ~1998!, dividend-to-earnings ratio; Lettau and Ludvigson ~2000!,

1300 The Journal of Finance



consumption-to-wealth ratio; and Pontiff and Shall ~1998!, book-to-market
ratio. Studies on variance predictability include: Bollerslev ~1986!, lagged
squared return, lagged variance; Campbell ~1987!, term spread; Engle ~1982!,
lagged squared return; French, Schwert, and Stambaugh ~1987!, lagged
squared return, lagged variance; Harvey ~1991!, default spread, dividend
yield, lagged squared return, lagged variance, term spread, Treasury bill
yield; Schwert ~1989!, debt-to-equity ratio, default spread, lagged variance,
volume; and Whitelaw ~1994!, default spread, lagged variance, paper spread,
Treasury bill yield. Finally, representative papers on predicting covariances
are: Bollerslev, Engle, and Wooldridge ~1988!, lagged covariances, lagged cross-
products of returns; Campbell ~1987!, term spread; and Harvey ~1989!, de-
fault spread, dividend yield, term spread.! We collect monthly data on four
popular predictors: the default spread, the log dividend-to-price ratio of the
S&P index, the term spread, and an S&P index trend ~or momentum! vari-
able. The default spread is the yield difference between Moody’s Baa- and
Aaa-rated corporate bonds. The dividend yield is the sum of dividends paid
on the S&P index over the past 12 months divided by the current level of the
index. The term spread is the yield difference between the 10- and 1-year
government bonds. The trend is the difference between the log of the current
S&P index level and the log of the average index level over the previous 12
months. Fama and French ~1988, 1989! show that the first three predictors
capture cyclical time variations in excess stock and bond returns, and Keim
and Stambaugh ~1986! use a variable very similar to our trend to predict
returns. The data for the predictors is from the DRI0Citibase database.

Table I and Figure 1 describe the data. Panel A of Table I presents uni-
variate descriptive statistics for the monthly returns, annual returns, and
predictors. We omit the quarterly and semiannual returns to preserve space.
Panel B shows pairwise correlations of the predictors with each other and
with excess stock and bond returns, their squares, and their cross-products.
Figure 1 plots the time-series and autocorrelations of the predictors.

B. Predictive Regressions

We first verify that the variables we identified as potential predictors
indeed capture time variations in at least the first and second moments of
excess bond and stock returns. For that purpose, we set up the following
regressions:

EtF rt11
b

rt11
s G 5 F Zt

'gb

Zt
'gs

G and VartF rt11
b

rt11
s G5 F Zt

'dbb Zt
'dbs

Zt
'dss

G, ~1!

where rt11
b and rt11

s denote bond and stock returns in excess of the Treasury
bill return and the vector Zt contains subsets of the four predictors. We
demean and standardize the data to eliminate the intercepts and then esti-
mate g and d using Hansen’s ~1982! generalized method of moments ~GMM!
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Table I

Description of Returns and Predictors
Panel A of this table shows annualized descriptive statistics of monthly and annual returns on the S&P 500 index, a portfolio of long-term government bonds, and
a maturity-matched Treasury bill. The panel also shows descriptive statistics of four predictors: the default spread Def, the log dividend-to-price ratio of the S&P
index LnDP, the term spread Term, and the S&P index momentum variable Trend. Panel B shows correlations of the predictors and their first differences with the
predictors, with excess stock returns r s, excess bond returns r b, their squares, and cross-products. The data is sampled monthly from January 1954 through December
1997. There are 528 observations.

Panel A: Descriptive Statistics

Autocorrelations

Mean Median StdDev Skew Kurtosis Min Max r1 r3 r6 r12

One-Month Horizon

T-Bill 0.053 0.049 0.008 1.043 4.437 0.000 0.013 0.972 0.920 0.874 0.784
Bonds 0.069 0.040 0.085 0.784 6.796 20.079 0.141 0.111 20.085 0.035 0.007
Stocks 0.128 0.161 0.144 20.403 5.338 20.225 0.166 0.056 20.002 20.062 0.030

One-Year Horizon

T-Bill 0.053 0.050 0.026 0.895 3.728 0.008 0.141 0.998 0.987 0.954 0.852
Bonds 0.069 0.050 0.095 1.060 4.793 20.153 0.454 0.933 0.785 0.566 0.048
Stocks 0.126 0.143 0.147 20.487 3.466 20.505 0.532 0.921 0.736 0.422 20.230

Predictors

Def 0.961 0.810 0.442 1.332 4.689 0.320 2.690 0.973 0.910 0.832 0.687
LnDP 1.275 1.247 0.251 20.157 3.335 0.476 1.844 0.990 0.958 0.904 0.792
Term 0.562 0.630 1.286 20.185 3.539 23.950 3.960 0.968 0.867 0.752 0.616
Trend 0.018 0.022 0.039 20.680 3.837 20.164 0.106 0.886 0.657 0.306 20.116

Panel B: Correlations

One-Month Horizon One-Year Horizon

Def LnDP Term Trend r b r s ~r b !2 ~r s !2 r br s r b r s ~r b !2 ~r s !2 r br s

Def 1.00 0.54 20.07 20.08 0.14 0.08 0.37 0.15 0.23 0.20 0.11 0.38 0.17 0.27
LnDP 1.00 20.35 20.32 20.00 20.03 0.22 0.13 0.12 20.07 0.16 0.28 0.17 20.02
Term 1.00 0.26 0.14 0.18 20.07 20.09 20.03 0.29 0.29 0.10 20.10 0.12
Trend 1.00 20.12 0.01 20.01 20.19 20.14 20.13 20.12 20.05 20.24 20.13

D Def 20.11 0.11 20.21 20.22 0.12 20.16 0.09 0.20 0.04 0.12 0.06 0.10 0.04 0.07
D LnDP 20.13 20.03 20.18 0.01 20.29 20.53 20.02 0.08 20.10 20.05 20.36 20.07 20.15 20.05
D Term 0.15 0.11 20.13 20.17 0.31 20.04 0.14 0.09 0.12 0.15 0.12 20.00 0.14 0.02
D Trend 0.12 0.06 0.09 20.24 0.29 0.95 0.05 20.05 0.25 0.03 0.31 0.05 0.19 0.06
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Figure 1. Predictors. This figure shows time-series plots and autocorrellograms of four predictors: the default spread, the log dividend-to-price
ratio of the S&P 500 index, the term spread, and the S&P index trend variable. The data is sampled monthly from January 1954 through
December 1997. There are 528 observations.
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for all one-, two-, three-, and four-dimensional subsets of the four predictors.
Whenever we use overlapping returns we compute autocorrelation-adjusted
asymptotic standard errors using the procedure of Hodrick ~1992!.

Panel A of Table II presents the regression results. For each security ~bonds
and stocks!, moment ~mean, variance, and covariance!, and return horizon
~monthly and annual!, the panel presents the best one-, two-, and three-
variable partial regressions. It also shows the full regression with all four
predictors. The best partial regressions are chosen according to the Akaike
information criterion ~AIC!.4

The following facts emerge from Panel A of Table II:

• The default spread relates positively to the variances and covariance of
both monthly and annual stock and bond returns. The regression coef-
ficients are both statistically and economically significant ~recall the
data is demeaned and standardized, so the magnitude of the coeffi-
cients is meaningful!, except for the stock return variance at the annual
horizons. The default premium also relates positively, but not always
significantly, to expected bond and stock returns.

• The log dividend-to-price ratio relates positively and significantly ~at
the 10 percent level! to expected stock returns at the annual horizon but
not at the monthly horizon.5 The log dividend yield also relates posi-
tively to the variance of bond returns and negatively to the covariance
between stock and bond returns at the annual horizon.

• The term spread is by far the most important predictor for expected
returns. It relates positively to expected bond and stock returns at both
horizons.6 The coefficients are statistically and economically signifi-
cant, especially for stock returns. In addition, the term spread relates
negatively to stock and bond variances.

• The trend variable relates negatively and significantly to expected bond
returns at both horizons. It also relates negatively to the variance of
stock returns, with regression coefficients that increase in magnitude
and statistical significance with the horizon.

• Except for the covariance, the adjusted R2s of the regressions increase
with the horizon, meaning that returns and squared returns are more
predictable at long horizons than at short horizons. This pattern is due

4 Since the data is demeaned and standardized, the AIC criterion and the adjusted R2 of the
regressions are virtually identical. To save space, we only report the adjusted R2 of the regres-
sions in Panel A of Table II.

5 Because the dividend-to-price ratio does not appear to predict dividend growth, it must, on
the basis of the present value formula, forecast returns. In fact, as pointed out by Cochrane
~1999!, “price divided by anything sensible” has this forecasting power. Since most price ratios
are variables with very slow mean reversion ~see Figure 1! they forecast long-term returns
better than short-term returns.

6 Fama and French ~1989! document that the slope of the yield curve moves in tandem with the
business cycle. The yield curve is inverted at the peak of the cycle, where expected returns are
low, and upward sloping when a recession turns into a recovery, where expected returns are high.
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Table II

Individual Moment Predictability
Panel A of this table presents predictive regressions for expected excess bond returns Et @rt11

b # , ex-
pected excess stock returns Et @rt11

s # , the variance of excess bond returns Vart @rt11
b # , the variance

of excess stock returns Vart @rt11
s # , and the covariance between excess bond and stock returns

Covt @rt11
b , rt11

s # . The predictors are the default spread Def, the log dividend-to-price ratio of the S&P
500 index LnDP, the term spread Term, and the S&P index momentum variable Trend. The predictors
are demeaned and standardized. The return horizon is one month or one year. For each moment, the
table presents the best one-, two-, and three-variable partial regressions, selected based on the Akaike
information criterion, and the full regression with all four predictors. Panel B summarizes the choice
of the best one or two predictors for each moment, based on the Akaike information criterion, at the
1-, 3-, 6-, and 12-month horizon.

Panel A: Predictive Regressions

One-Month Horizon One-Year Horizon

Def LnDP Term Trend R2 Def LnDP Term Trend R2

Et @rt11
b #

0.142* 0.02 0.286** 0.08
0.185** 20.166*** 0.04 0.218 0.301** 0.13

0.137 0.192** 20.158** 0.06 0.206 0.353** 20.208** 0.17
0.189 20.104 0.165** 20.180** 0.07 0.317** 20.217 0.296** 20.254*** 0.19

Et @rt11
s #

0.177** 0.03 0.292** 0.09
0.092* 0.183*** 0.04 0.305* 0.400*** 0.16
0.090* 0.191*** 20.029 0.04 0.268* 0.423*** 20.142 0.18
0.110* 20.040 0.180*** 20.038 0.04 0.022 0.281* 0.426*** 20.140 0.18

Vart @rt11
b #

0.370*** 0.14 0.366*** 0.13
0.366*** 20.057 0.14 0.276** 0.167* 0.15
0.368*** 20.068 0.045 0.14 0.248** 0.239* 0.159 0.17
0.359*** 0.019 20.063 0.050 0.14 0.245** 0.247* 0.155 0.025 0.17

Vart @rt11
s #

20.190* 0.04 20.272** 0.07
0.120** 20.181* 0.05 20.097 20.247** 0.08
0.117** 20.066 20.164* 0.05 0.146 20.122 20.305** 0.09
0.121* 20.008 20.068 20.166* 0.05 0.160 20.163 20.127 20.286** 0.10

Covt @rt11
b , rt11

s #

0.220*** 0.05 0.220** 0.05
0.212** 20.110 0.06 0.327*** 20.198** 0.07
0.238*** 20.050 20.124* 0.06 0.345*** 20.248*** 20.127 0.09
0.243*** 20.062 20.032 20.120* 0.06 0.357*** 20.280*** 20.080 20.116 0.09

Panel B: Variable Selection

One-Month
Horizon

Three-Month
Horizon

Six-Month
Horizon

One-Year
Horizon

Et @rt11
b # Term, Trend Term, Trend Term, Trend Term, Trend

Et @rt11
s # Term LnDP, Term LnDP, Term LnDP, Term

Vart @rt11
b # Def Def Def Def

Vart @rt11
s # Def, Trend Def, Trend Trend Trend

Covt @rt11
b , rt11

s # Def Def, Trend Def, Trend Def, LnDP

***, **, and * denote statistical significance at the 1, 5, and 10 percent levels, respectively.
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to the slowly mean-reverting nature of the predictors ~see Figure 1! and
is more pronounced for expected returns than for return variances. Stock
and bond returns are about equally predictable at both horizons. Squared
bond returns, however, are substantially more predictable than squared
stock returns.

The most important finding for motivating our approach is the fact that if
we had to restrict attention to only one or two predictors, the variable se-
lection would depend on the conditional moments of returns that we most
wanted to predict ~bonds vs. stocks and first vs. second moments! as well as
on the return horizon. This result is best illustrated in Panel B of Table II,
which lists for all four return horizons the best one or two predictors for
each moment. The problem with selecting variables in the portfolio choice
context lies in the fact that the moments of returns ~or functions of them!
that we want to predict are endogenous to the investor’s preferences. For
example, an investor who is very risk averse and holds mostly bonds may
want to focus on predicting the variance of bond returns with the default
spread, while another investor who is less risk averse and holds mostly stocks
may want to focus on predicting expected stock returns with the log dividend-
to-price ratio and term spread. It is this endogeneity of the variable selection
in the portfolio choice context that motivates our emphasis on predicting
optimal portfolio weights, rather than individual moments.

II. Predicting Optimal Portfolio Weights

A. Investor’s Problem

Consider a single-period investor who maximizes the conditional expectation
of an objective function v~Wt11! of next period’s wealth Wt11.7 The expectation
is conditional on a vector of state variables Zt . The maximization is over the
portfolio weights at under the budget constraint Wt11 5 Wt ~at

'Rt11!, where
Rt11 is a vector of gross returns on the securities the investor can buy and
sell. Formally, the portfolio choice problem is:

max
at

E@v~Wt ~at
'Rt11!!6Zt # , ~2!

subject to the adding-up constraint at
' i 5 1, where i denotes a vector of ones.

Although the portfolio weights sum to one, not all wealth must be invested
in risky securities because one of the securities may be riskless. Further-
more, the portfolio choice may be subject to a set of constraints a # c~at ! # b,
such as short-sale or borrowing constraints.

7 We describe our econometric approach for a single-period portfolio choice to keep the no-
tation simple. However, our estimator extends readily to a multiperiod portfolio choice by re-
placing the single-period objective function and its derivative with a multiperiod “value function”
and its derivative ~see Brandt ~1999!!. In fact, we apply our approach to the multiperiod port-
folio choice in Section IV.C.3.
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The solution to the investor’s problem is the mapping from the state vec-
tor Zt to the portfolio weights at . Assuming that this mapping is time in-
variant, we denote it8:

at [ a~Zt !, ~3!

and refer to it as the investor’s portfolio choice, policy, weight, or rule.
The relation between the portfolio policy and the predictability of individ-

ual moments of the returns Rt11 given the predictors Zt obviously depends
on the specification of the objective function v~Wt11!. To illustrate this point,
consider an investor with standard mean-variance preferences. The inves-
tor’s objective function is:

E@v~Wt11!6Zt # 5 E@Wt116Zt # 2
g

2
Var@Wt11

2 6Zt #, ~4!

with the coefficient of absolute risk aversion g $ 0. The investor’s portfolio
policy is:

at 5 St
21 i

gWt 2 i'St
21 mt

gWt i'St
21 i

1
St

21 mt

gWt
, ~5!

where St 5 Var@Rt116Zt # and mt 5 E@Rt116Zt # . This analytical expression for
the portfolio weight illustrates two facts. First, even with this most simple
preference specification, there is no straightforward link between predict-
ability in first and second moments and the portfolio policy that allows the
investor to identify which predictors are important for the portfolio choice.
Second, even if the conditional moments are approximately linear in the
state variables, the ratio form of the portfolio policy implies that it can be a
highly nonlinear and even nonmonotonic function.

If the portfolio choice includes a risk-free rate, it simplifies to allocating a
fraction at

tgc of wealth to the mean-variance efficient tangency portfolio, with
excess return rt11

tgc , and to invest the remainder in the risk-free asset, where:

at
tgc 5

1

gWt

E@rt11
tgc 6Zt #

Var@rt11
tgc #

. ~6!

In other words, the mean-variance portfolio choice is proportional to the
conditional mean-variance ratio of the tangency portfolio. Therefore, in se-
lecting variables for the mean-variance portfolio choice, which is a norma-
tive issue, we equivalently select variables for predicting the mean-variance
ratio of the tangency portfolio, which is a generic descriptive statistic of the
conditional return distribution.

8 With time-invariant objective function v~Wt11!, this assumption only requires that the con-
ditional distribution of the returns Rt11 given the predictors Zt is time homogenous.
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B. Indices for the Conditional Portfolio Choice

Brandt ~1999! shows how to estimate the optimal portfolio policy a~Zt !
without further assumptions about the return dynamics or functional form
of the decision rule by replacing the conditional expectation in the investor’s
problem ~2! with a consistent estimator. For a given realization of the state
vector Zt , we define the fully nonparametric estimator [a~Zt ! of the true a~Zt !
as the portfolio weights that solve the investor’s problem when the conditional
expectation E@{6Zt # is replaced with a consistent estimator ZE@{6Zt # , such that

ZE@v~Wt ~at
'Rt11!!6Zt # r E@v~Wt ~at

'Rt11!!6Zt # as T r `, ~7!

for all portfolio weights at and state vector realizations Zt . In particular,
Brandt ~1999! suggests estimating the conditional expectation with a stan-
dard nonparametric regression.

Unfortunately, this fully nonparametric approach does not allow us to ad-
dress the issue of which predictors are important for the portfolio choice
because nonparametric estimators typically cannot handle a large number of
regressors. As the number of predictors increases, the convergence rate of
most nonparametric estimators to their asymptotic distribution deteriorates
exponentially. This feature of the estimators is commonly referred to as the
“curse of dimensionality”. Realistically, given our relatively short sample, we
cannot reliably estimate the conditional expectation for more than two
predictors.

To overcome this econometric problem, we adopt a semiparametric ap-
proach that explicitly recognizes the endogeneity of the variable selection.
We assume that the investor’s optimal portfolio weights depend on the pre-
dictors Zt only through a single linear index or factor Zt

'b with unknown
parameters b.9 The dependence of the portfolio weights on this index, how-
ever, is left completely unrestricted. We classify our approach as semipara-
metric because the index is parametric but the portfolio policy is not.

Formally, we rewrite the investor’s problem ~2! as:

max
at

E@v~Wt ~at
'Rt11!!6Zt

'b# , ~8!

which implies that the optimal at depend on Zt only through the index Zt
'b:10

at [ a~Zt
'b;b!. ~9!

9 We can relax the assumption of a linear index by introducing nonlinearities in Zt . Our
experimentations with nonlinear indices suggest, however, that in the portfolio choice context,
the incremental expected utility loss from combining the predictors linearly, as opposed to non-
linearly, is minimal.

10 The optimal portfolio choice at depends on the index coefficients b not only through the
index realization Zt

'b, but also through the functional form of the policy function a~{!. For
example, consider two indices b and Nb 5 2b. In this case, a~x;b! Þ a~x; Nb!, but instead a~x;b! 5
a~2x; Nb! for all index realizations x.
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From a statistical perspective, the index avoids the curse of dimensionality
because it allows us to reduce the multivariate problem to one where we can
implement the nonparametric approach described above in a univariate set-
ting ~since Zt

'b is univariate!. From an economic standpoint, the index offers
a convenient univariate summary statistic that describes the current state
of the time-varying investment opportunities.

The economic cost of collapsing the multidimensional information con-
tained in Zt into a linear index Zt

'b is that the expected utility from the
unconstrained problem ~2! exceeds that from the constrained problem ~8!,
unless our assumption about the index structure of the investor’s problem is
true ~as opposed to just an approximation for econometric purposes!. The
magnitude of the expected utility loss due to the index depends on the ap-
plication and can ultimately only be measured empirically. For our applica-
tion, we present evidence in Section IV.C.1 that the expected utility loss is
minor.

We estimate the index coefficients b through the conditional Euler equa-
tions of the investor’s unrestricted problem. Specifically, we substitute the
parametric restriction ~9! into the first-order conditions of the problem ~2! to
obtain the following set of conditional moment conditions:

E@mt11~b!6Zt # [ E@v '~Wt ~a~Zt
'b;b!'Rt11!!Rt116Zt # 5 0, ~10!

where a~Zt
'b;b! solves the investor’s restricted problem ~8!. Multiplying these

moment conditions by predetermined functions g~Zt ! of the forecasting vari-
ables, taking unconditional expectations, and then applying the law of iter-
ated expectations yields a standard GMM inference problem ~see Hansen
~1982!!:11

min
b

E@mt11~b! J g~Zt !#
'W E@mt11~b! J g~Zt !# ~11!

with optimal weighting matrix W 5 Cov@mt11 J g~Zt !#
21. The final step in

the construction of our estimator is to replace both the unconditional expec-
tations and the optimal weighting matrix with consistent sample analogues.

The main difference between our estimator and standard GMM is that the
portfolio weights in the conditional moments ~10! are only defined implicitly
through the investor’s portfolio optimization. To evaluate the GMM criterion

11 Notice that we need the instruments g~Zt ! to identify b. The index coefficients are
unconditionally not identified because a~Zt

'b;b! satisfies E @mt11~b!6Zt
'b# 5 0 and hence

E@mt11~b!# 5 0 for any b.
This setup can be used not only for estimation, but also for testing whether a second set of

predictors should be included in the index. With the instruments g~Zt ,Yt !, the minimized GMM
objective is an asymptotically x2-distributed test for the hypothesis that the index has zero
loadings on the predictors Yt .
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for a candidate b, we first estimate the sequence of optimal portfolio weights
$a~Zt

'b;b!%t51
T by replacing the conditional expectation in the investor’s prob-

lem ~8! with nonparametric regressions, as in expression ~7!.
The estimator and its asymptotic distribution are described in more detail

in a technical appendix that is available on request. The main results are
that the estimator is consistent, asymptotically normal, and, although it has
a nonparametric component, achieves the parametric convergence rate of
!T irrespective of the number of predictors.12

The GMM estimator ~11! treats the choice of b as an inference problem
under the null that the unconstrained portfolio policy a~Zt ! has the index
form a~Zt

'b;b!. Under the alternative that the index form is suboptimal,
a more natural way to choose b is through the unconditional utility
maximization:

max
b

EFmax
at

E@v~Wt ~at
'Rt11!!6Zt

'b#G 5 max
b

E@v~Wt ~a~Zt
'b;b!'Rt11!!# , ~12!

where the equality follows from the law of iterated expectations and the
restriction ~9!. In words, the index defined by this maximization generates a
sequence of conditional portfolio choices that is unconditionally optimal or,
equivalently, that minimizes the unconditional expected utility loss from solv-
ing the constrained problem ~8! as opposed to the unconstrained problem ~2!.

The expected utility maximization in equation ~12! is nested by the GMM
estimator ~11! through an optimal ~in an expected utility not statistical sense!
set of instruments g~Zt !. Specif ically, the first-order conditions of the
maximization:

EFv1 ~Wt ~a~Zt
'b;b!'Rt11!!Rt11

?a~Zt
'b;b!

?b
G 5 0 ~13!

show that the maximization problem ~12! is equivalent to the minimization
problem ~11! with instruments:

g~Zt ! 5
?a~Zt

'b;b!

?b
~14!

and an arbitrary weighting matrix W ~since the parameters are exactly
identified!.

12 Because the index composition is estimated and the investor’s portfolio choice depends on
the estimated index, our subsequent estimates of the portfolio weights automatically incorpo-
rate the fact that ex ante predictability is uncertain. The standard errors of the estimated
indices and portfolio policies are larger in a small sample but not asymptotically, since in
sufficiently large samples, there is no uncertainty about predictability. Of course, the appro-
priate approach to fully address the issue of parameter uncertainty is a Bayesian framework
~see Barberis ~2000! and Kandel and Stambaugh ~1996!!.
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However, just because these instruments are optimal in theory, they do
not necessarily result in more reliable estimates of the index coefficients in
practice for two reasons. First, to construct the instruments we need consis-
tent estimates of the derivatives ?a~Zt

'b;b!0?b. A nonparametric estimator
of these derivatives converges at a slower rate then a nonparametric esti-
mator of the function a~Zt

'b;b! ~see Härdle ~1990!! and thus may introduce
substantial noise. Second, since the functional form of the portfolio policy
may depend on the index composition in a highly nonlinear and irregular
way ~even if the policy is well-behaved in the index for a given index com-
position!, the derivatives ?a~Zt

'b;b!0?b may cause the GMM objective func-
tion to be less well behaved. This makes the numerical minimization more
difficult and increases the risk of ending up with a local instead of global
minimum.

Given estimates of the optimal index composition, we judge the impor-
tance of each predictor in the conditional portfolio choice through the rela-
tive weight the predictor receives in the index. In other words, the relative
weights the estimated index coefficients Zb place on the different variables,
and their statistical significance, tell us which variables, and more impor-
tantly in what combination, are relevant for the investor’s conditional port-
folio choice.

III. Objective Functions

To see how the variable selection varies across investors with different
preferences, we consider four parameterizations of the objective function
v~Wt11!. The first two, mean-variance and constant relative risk aversion
~CRRA! preferences, are standard expected utility objectives and result in
fairly similar indices for the conditional portfolio choice. The second two,
ambiguity aversion and prospect theory preferences, are generalized or non-
expected utility objectives. They produce indices that are quite different from
those of expected utility investors, demonstrating the endogeneity of the vari-
able selection problem in the portfolio choice context. In effect, different in-
vestors focus on different aspects of the returns distribution, which different
variables help predict.

A. Expected Utility

A.1. Mean-Variance Preferences

We already introduced the objective function of an investor with mean-
variance preferences in equation ~4!, where g measures the investor’s absolute
risk aversion ~?2v~W !0?W 2 !0~?v~W !0?W !.13 An appealing feature of mean-
variance preferences, and the reason we consider them here, is that the

13 For the empirical work we normalize Wt 5 1, so relative risk aversion @Wt ~?
2v~W !0?W 2 !#0

?v~W !0?W also equals g.
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optimal portfolio weights depend exclusively and analytically on the first
two moments of returns ~see equation ~5!!. Thus, we can directly compare
our semiparametric estimates of the portfolio policy to parametric estimates
based on individual moment forecasts.

A.2. Constant Relative Risk Aversion Preferences

We also consider an investor with CRRA or power utility:

v~Wt11! 5 5
Wt11

12g

1 2 g
if g . 1

ln Wt11 if g 5 1

, ~15!

where g now measures relative risk aversion @Wt ~?
2v~W !0?W 2 !#0~?v~W !0?W !.

CRRA preferences are by far the most popular objective function in the port-
folio choice literature. This is largely because the investor’s portfolio ~and
consumption! policy is proportional to wealth and the value function is homo-
thetic in wealth. In a multiperiod setting, these features of CRRA prefer-
ences imply that wealth is not a state variable in the investor’s problem.

B. Nonexpected Utility

B.1. Ambiguity Aversion

Expected utility theory assumes that the investor can compute expecta-
tions with respect to the return distribution, which requires that the agent
knows the parametric structure of the return distribution and either knows
its parameters or can form Bayesian beliefs about them. The investor is only
exposed to the “risk” inherent in the returns and trades off this risk against
expected rewards through the expected utility maximization. Knight ~1921!
and Ellsberg ~1961! argue, however, that the investor may not have all of the
information required to form such expectations. For example, an agent may
not be able or willing to assign probabilities to a set of alternative param-
eterizations of the return distribution. Thus, the investor faces additional
“ambiguity” that is not captured in the expected utility framework. Ambi-
guity aversion preferences formalize the idea that the investor dislikes not
only risk but also this more vague uncertainty about the world ~called Knight-
ian uncertainty!. There is an extensive experimental literature confirming
that individuals indeed dislike ambiguity, both in gambling ~e.g., Becker and
Brownson ~1964! or Curley and Yates ~1985, 1989!! and in financial markets
~e.g., Camerer and Kunreuther ~1989! or Sarin and Weber ~1993!!.

Consider again an investor with CRRA preferences, except that now the
agent is uncertain about whether the return distribution is Sp ~the empirical
distribution, for example! or some other distribution p [ P in the neighbor-
hood of Sp. The crucial difference between ambiguity aversion and expected
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utility theory with model uncertainty is that with ambiguity aversion the
investor cannot or does not want to assign probabilities to the set of alter-
native return distributions. Following Gilboa and Schmeidler ~1989! and Dow
and Werlang ~1992!, the investor’s portfolio choice problem in this case is
given by:

max
at

min
p[P

Ep @v~Wt ~at
'Rt11!!6Zt # , ~16!

where v~{! is the CRRA utility function in equation ~15!. This maxmin cri-
terion is quite intuitive. Given the complete ambiguity about the return dis-
tribution, the investor considers the worst case outcome ~in the neighborhood
of Sp! through the interior minimization. The exterior maximization then
achieves the usual risk versus expected reward trade-off.

To implement this form of ambiguity aversion, we need to characterize the
set of possible return distributions P. We adopt the following «-contamination
parameterization:

P 5 $~1 2 «! Sp 1 «p : p [ P%, ~17!

where P denotes the s-algebra generated by the support of the return dis-
tribution. The assumption of «-contamination is informally introduced by
Ellsberg ~1961! and is now common in the literature on ambiguity aversion.
It is used, for example, by Epstein and Wang ~1994! and Liu ~1998, 1999!.
The parameter « ref lects the investor’s degree of ambiguity.14 With « 5 0,
the investor’s objective function reduces to that with standard CRRA pref-
erences and return distribution Sp.

The advantage of this parameterization is that the investor’s problem sim-
plifies to:

max
at

~1 2 «! E Sp @v~Wt ~at
'Rt11!!6Zt # 1 « infP v~Wt ~at

'Rt11!!, ~18!

where we assume that the support of the return distribution is independent
of the predictors. Thus, to implement the notion of ambiguity aversion we
only need to choose a value for the parameter « and specify the support of
the return distribution to evaluate the infimum.

Ambiguity aversion relates to the recent literature on robustness ~e.g.,
Anderson, Hansen, and Sargent ~1999!, Hansen, Sargent, and Tallarini ~1999!,
and Maenhout ~1999!!. Although the formalizations differ slightly, the be-
havioral motivation of the two theories is the same. Agents are uncertain

14 Alternatively, one can interpret the portfolio choice as the investor playing a two-stage
game against nature. In the first stage, nature replaces with probability « the return distribu-
tion Sp with an arbitrary distribution p [ P. In the second stage, nature then draws a set of
returns from the return distribution.
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about the true model and are unable or unwilling to assign probabilities to
the set of alternative models. Not too surprisingly, robustness also results in
maxmin policies. We focus on the «-contamination version of ambiguity aver-
sion because it captures the essence of the theory and is more tractable for
our empirical application.

B.2. Prospect Theory and Loss Aversion

In another literature on decisions under uncertainty, Kahneman and Tversky
~1979! argue that humans systematically violate the axioms of expected utility
theory in two important ways. First, experimental subjects tend to over-
weight outcomes that are considered certain, relative to outcomes that are
merely probable, which is referred to as the “certainty effect”. In financial
markets, this certainty effect makes an investor risk averse in the case of
gains, as a small certain gain is preferred to a probable risky gain, but risk
seeking in the case of losses, as a probable risky loss is preferred to a small
certain loss. In addition, subjects tend to simplify decisions by disregarding
components common to the alternative choices and focusing on components
that differentiate the choices, which is called the “isolation effect”. Since the
decomposition of alternative choices into common and differentiating com-
ponents is nonunique, however, the outcome of the decision problem depends
on the investor’s perspective in the simplification process.

Motivated by this experimental evidence, Kahneman and Tversky ~1979!
formulate prospect theory, which consists of an editing stage, where alter-
natives are put into perspective, and a choice stage. ~Finance applications of
prospect theory preferences include Shefrin and Statman ~1994!, Benartzi
and Thaler ~1995!, Shumway ~1997!, Barberis, Huang, and Santos ~2001!,
and Barberis and Huang ~2001!.! Utility is defined over gains and losses
relative to a reference point ~such as the result of an all-cash investment
strategy or last period’s wealth! rather than over the level of wealth as in
expected utility theory. To capture the differential risk preferences over gains
and losses generated by the certainty effect, Tversky and Kahneman ~1992!
propose the following objective function for the choice stage:

v~Wt11! 5 H 2l~ RW 2 Wt11!b if Wt11 , RW

~Wt11 2 RW !b otherwise
, ~19!

where RW is a reference wealth level determined in the editing stage. For
example, RW could be the initial wealth Wt or its future value Rt

tb Wt , depend-
ing on the investor’s perspective. The parameter l measures the investor’s
loss aversion and the parameter b captures the degree of risk seeking over
losses and risk aversion over gains.15 The kink at the origin introduced by
l . 1 makes losses ~relatively! more painful than gains are pleasurable.

15 Tversky and Kahneman cite experimental evidence that suggests b 5 0.88 and l 5 2.25.
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In addition, in Tversky and Kahneman’s ~1992! formalization of prospect
theory the investor does not evaluate outcomes on the basis of true proba-
bilities, but rather, as predicted by the certainty effect, on the basis of dis-
torted probabilities. That is, instead of maximizing the true expectation of
the objective function, the investor maximizes:

EFv~Wt11!
p~ p~Wt116Zt !!

p~Wt116Zt !
*ZtG 5E

2`

1`

v~Wt11! p~ p~Wt116Zt !! dWt11,

where p~{! represents a subjective distortion of the objective probabilities
p~{!. Tversky and Kahneman ~1992! suggest parameterizing this probability
distortion as ~see also Tversky and Wakker ~1995!!:

p~ p~Wt116Zt !! 5
p~Wt116Zt !

c

$ p~Wt116Zt !
c 1 ~1 2 p~Wt116Zt !!

c %10c , ~20!

where c determines the degree of “irrationality”. When c 5 1, the decision
weights p~{! reduce to the objective probabilities p~{!. Notice also that when
0 , c , 1, the weights are not a proper probability measure ~hence they are
called weights, not subjective probabilities! because they sum to less than
one.

A special case of prospect theory is loss aversion, when b 5 1, c 5 1, and
l . 1. In this case, the investor is risk neutral over gains and is risk neutral
over losses, but realizes a greater incremental utility penalty for a loss than
for an equally large gain. This results in unconditional risk aversion. Fur-
thermore, since with c 5 1 the decision weights reduce to the objective prob-
abilities, this investor simply maximizes expected utility. Interestingly,
Benartzi and Thaler ~1995! find that the main aspect of prospect theory
relevant for portfolio choice is loss aversion and that the concavity ~con-
vexity! of the value function on the upside ~downside!, as well as the sub-
jectivity of the probability distortions, are only of second-order importance.
Sharpe ~1998! argues, however, that the local risk-neutrality property of loss
aversion results in portfolio choices that are too extreme.16

A literature that is somewhat related to loss aversion involves Value-at-
Risk ~VaR! constraints that ensure that with probability of at least q, the
investor’s wealth next period ~or some other target horizon! does not fall
below some specified level.17 The extremes q 5 0 and q 5 1 correspond to an
unconstrained investor and a portfolio insurer ~e.g., Basak ~1995! and Gross-

16 The problem with loss aversion is that the iso-expected utility curves are straight lines in
mean versus standard deviation of returns space, which means that in a stylized portfolio
choice between a single stock and cash the optimal portfolio choice is either 100 percent cash or
100 percent stock, depending on whether the iso-expected utility curves are more or less steep
than the mean-variance frontier ~see Sharpe ~1998!!.

17 VaR is the de facto standard measure of risk because of its simplicity and its popularity
with regulators.
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man and Zhou ~1996!!. Unfortunately, VaR preferences have two faults. First,
Artzner et al. ~1998! show that VaR measures have difficulties aggregating
individual risks, even risks that are cross-sectionally independent, and some-
times discourage diversification. Second, Basak and Shapiro ~1998! find that
in a multiperiod setting, a VaR-constrained investor frequently chooses, quite
paradoxically, a larger exposure to risky assets than an otherwise equivalent
unconstrained investor.18 As a fix to this problem, they propose an alterna-
tive risk management constraint that incorporates the expected value of the
loss. Similar in spirit to this extended VaR constraint, loss aversion prefer-
ences penalize for both the probability and magnitude of losses.

IV. Empirical Results

A. Unconditional Portfolio Choice

We begin our empirical work by characterizing the unconditional portfolio
choice of investors with expected and nonexpected utility preferences. The
unconditional portfolio choices are useful for understanding the optimal in-
dex compositions in Section IV.B and serve as a benchmark for the condi-
tional asset allocations in Section IV.C.

A.1. Expected Utility Preferences

A.1.1. Mean-variance Investors. Panel A of Table III presents estimates of
the unconditional portfolio choice of investors with mean-variances prefer-
ences and absolute risk aversion ~and relative risk aversion since Wt 5 1! of
g equal to 2, 5, 10, and 20.19 The investment horizon is one month or one
year. The entries in the Without Risk-free Rate section of the panel are for
a portfolio choice between stocks and bonds. The entries in the With Risk-
free Rate section are for a portfolio choice between stocks, bonds, and Treasury
bills. We assume that Treasury bills are risk free and fix the Treasury bill
rate at its historical average. We impose the short-sale constraints 0 # x # 1
to prohibit unrealistic leveraging and short selling. In brackets below each
estimate are autocorrelation adjusted asymptotic standard errors.20

Figure 2 helps visualize the mean-variance portfolio choice. The two graphs
plot the expected return on wealth against the standard deviation of wealth
for the estimated portfolio weights in Panel A of Table III. The two lines in

18 The intuition is that the VaR-constrained investor finds it optimal to insure against losses
in states where insurance is relatively cheap ~because losses are relatively small!, but accepts
the possibility of losses ~up to probability 1 2 q! in states where insurance is expensive ~because
losses are potentially large!.

19 We checked that our method of moments estimates are virtually identical to the results of
plugging the unconditional moments from Table I into the analytic expression ~5! for the opti-
mal portfolio weights.

20 Whenever the short-sale constraints are binding, we compute the asymptotic standard
errors using the results of Moran ~1971! and Andrews ~1999!, who derive the asymptotics of an
extremum estimator of a parameter that is located at the boundary of a closed parameter space.
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Table III

Unconditional Portfolio Choice with Expected Utility Preferences
This table shows estimates of the unconditional portfolio choice of investors with single-period objectives:

Panel A: max
a
SE@Wt11# 2

g

2
Var@Wt11#D Panel B: max

a
EFWt11

12g

1 2 g
G,

where Wt11 is next period’s wealth and a 5 @a s, ab, a tb # are the fractions of current wealth Wt 5 1 invested in stocks, bonds, and Treasury bills, respectively.
The investment horizon is one month or one year. The Without Risk-Free Rate estimates are for a portfolio choice between stocks and bonds ~i.e., a tb 5 0!
and the With Risk-Free Rate estimates are for a portfolio choice between stocks, bonds, and Treasury bills. In both cases, the optimization is subject to the
short-sales constraints 0 # a # 1. In brackets are autocorrelation adjusted asymptotic standard errors.

Without
Risk-Free Rate With Risk-Free Rate

Without
Risk-Free Rate With Risk-Free Rate

a s ab a s ab a tb

a s

a s 1 ab a s ab a s ab a tb

a s

a s 1 ab

One-Month Horizon One-Year Horizon

Panel A: Mean-Variance Investors

g 5 2 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
@0.45# @0.45# @0.73# @0.74# @0.37# @0.73# @0.36# @0.36# @0.55# @0.44# @0.31# @0.44#

g 5 5 0.73 0.27 0.70 0.11 0.19 0.86 0.68 0.32 0.62 0.07 0.31 0.90
@0.23# @0.23# @0.37# @0.38# @0.24# @0.42# @0.22# @0.22# @0.31# @0.24# @0.24# @0.32#

g 5 10 0.45 0.55 0.35 0.06 0.60 0.86 0.43 0.57 0.31 0.03 0.66 0.90
@0.12# @0.12# @0.19# @0.19# @0.12# @0.42# @0.14# @0.14# @0.15# @0.12# @0.12# @0.32#

g 5 20 0.31 0.69 0.17 0.03 0.80 0.86 0.31 0.69 0.15 0.02 0.83 0.90
@0.06# @0.06# @0.09# @0.10# @0.06# @0.42# @0.10# @0.10# @0.08# @0.06# @0.06# @0.32#

Panel B: Constant Relative Risk-Averse Investors

g 5 2 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
@0.40# @0.40# @0.75# @0.74# @0.43# @0.74# @0.30# @0.30# @0.57# @0.64# @0.20# @0.61#

g 5 5 0.69 0.31 0.66 0.16 0.18 0.81 0.55 0.45 0.54 0.08 0.37 0.87
@0.21# @0.21# @0.38# @0.38# @0.22# @0.39# @0.19# @0.19# @0.32# @0.32# @0.19# @0.45#

g 5 10 0.43 0.57 0.33 0.08 0.59 0.81 0.31 0.69 0.28 0.04 0.68 0.87
@0.11# @0.11# @0.19# @0.19# @0.11# @0.40# @0.11# @0.11# @0.16# @0.16# @0.10# @0.43#

g 5 20 0.30 0.70 0.17 0.04 0.79 0.81 0.22 0.78 0.14 0.02 0.84 0.87
@0.06# @0.06# @0.09# @0.09# @0.05# @0.40# @0.06# @0.06# @0.08# @0.08# @0.05# @0.43#
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each graph represent the mean-variance frontier with a risk-free rate ~straight
line! and without a risk-free rate ~hyperbola!. The stars and circles repre-
sent the corresponding optimal portfolios. As a reference point, we also plot
a portfolio of 60 percent stocks, 20 percent bonds, and 20 percent Treasury
bills, which happens to resemble the optimal portfolio of a mean-variance
investor with g 5 5.

Several well-known but nevertheless interesting features of the mean-
variance optimal portfolios emerge. Consider the portfolio choice with a risk-
free rate. Except when g 5 2, in which case the short-sale constraints are
binding, all mean-variance investors hold the same risky position of 86 or
90 percent stocks and 14 or 10 percent bonds, depending on the horizon but
irrespective of risk aversion. Risk aversion only affects how much wealth the
investor allocates to risky securities instead of to risk-free Treasury bills.
This allocation ranges from 100 percent for g 5 2 to about 20 percent for
g 5 20.

Graphically, the fact that all mean-variance investors hold the same risky
position, which is the portfolio at the tangency of the two mean-variance
frontiers, but allocate different fractions of wealth to it implies that the
optimal portfolios are all arranged on a straight line in the expected return
versus standard deviation space. Also, we notice from Figure 2 that the
optimal standard deviation of wealth is inversely proportional to g. This
happens because the decision of how much wealth to invest in the risky
tangency portfolio is inversely proportional to the investors’ absolute risk
aversion ~see equation ~6!!.

Figure 2. Unconditional portfolio choice with mean-variance preferences. This figure
plots the expected return on wealth against the standard deviation of wealth for the uncondi-
tional portfolio choice of investors with mean-variance preferences. The investment horizon is
one month or one year. The straight line and hyperbola are the mean-variance frontiers with
and without a risk-free rate, respectively. The stars ~*! represent the portfolio choice with a
risk-free rate. The circles ~+! represent the portfolio choice without a risk-free rate. The cross
~1! is a portfolio of 60 percent stocks, 20 percent bonds, and 20 percent Treasury bills.
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These portfolio choice patterns are the direct consequence of two-fund sep-
aration and have important implications for the variable selection.21 Recall
our example of two investors, one who is very risk averse, holds mostly bonds,
and wants to predict variances, and another who is less risk averse, holds
mostly stocks, and wants to predict means. We argued, based on this exam-
ple, that the variable selection may differ across investors for two reasons:
the investors’ preferences for predicting the various moments of returns and
their portfolio holdings. The implication of two-fund separation is that all
mean-variance investors hold the same risky position, unless the borrowing
constraints are binding or there is no risk-free rate, which means their vari-
able selection can only differ due to different preferences for predicting means,
variances, covariances, and higher order moments.

The conclusion that different investors hold the same risky position does
not apply to the portfolio choice without a risk-free rate, although two-fund
separation holds nevertheless ~only now with two risky portfolios!. Without
a risk-free rate, the investors’ stock holdings decrease and the bond holdings
increase with the level of risk aversion. Also, the standard deviation of
wealth decreases less than proportionally with g, which means that rela-
tive to the portfolio choice with a risk-free rate the investors are taking on
more risk.

A.1.2. Constant Relative Risk-averse Investors. Panel B of Table III presents
estimates of the unconditional portfolio choice of investors with CRRA pref-
erences and relative risk aversion of 2, 5, 10, and 20. The results are similar
to those for mean-variance preferences, except that CRRA investors tend to
hold less stocks ~up to seven percent less! and more bonds ~up to five percent
more!, relative to equally risk-averse mean-variance investors. These differ-
ences in the portfolio choices are attributed to the negative skewness in
stock returns and the positive skewness in bond returns that we document
in Panel A of Table I.22

Given these differences in the optimal portfolio weights, it is interesting
that the implications of two-fund separation for the mean-variance portfolio
choice with a risk-free rate apply as well to CRRA preferences. This is an
empirical result, not a theoretical one. In theory, the risky position of a CRRA
investor can depend on relative risk aversion, since the investor’s prefer-
ences for higher order moments, which differentiate a CRRA investor from

21 We use the notion of two-fund separation to refer to the fact that two mean-variance
efficient portfolios span the mean-variance frontier. With a risk-free rate, these two portfolios
are the Treasury bill and tangency portfolio. It is important, however, to realize that in the
literature, two-fund separation is typically an equilibrium statement that refers to the “market
portfolio” being mean-variance efficient.

22 We observe the greatest differences between the optimal portfolio weights of mean-
variance and CRRA investors at the three-month horizon, where stock returns exhibit the most
negative skewness. The three- and six-month estimates are not reported in Table III to con-
serve space.
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an equally risk-averse mean-variance investor, are a function of relative risk
aversion. In the data, however, the effect of the higher order moments is
apparently not strong enough to be noticeable in the stock holdings of CRRA
investors with different degrees of risk aversion, although it is clearly a
factor in explaining the different stock holdings of equally risk-averse CRRA
and mean-variance investors.23

A.2. Nonexpected Utility Preferences

A.2.1. Ambiguity-averse Investors. The results for investors with ambiguity-
aversion preferences are in Panel A of Table IV. We consider the cases g 5
$5,10% and « 5 $0.001,0.005,0.010% .24 Recall that the case « 5 0 corresponds
to the CRRA portfolio choices in Panel B of Table III. We parameterize the
worst-case returns on stocks and bonds, which we need to evaluate the in-
fimum in the objective function ~18! as the empirical univariate minimums
from Panel A of Table I.

Ambiguity aversion has two effects on the portfolio choice. First, an in-
crease in ambiguity aversion leads investors to substitute Treasury bills for
risky securities or bonds for stocks, depending on whether or not a risk-free
security is available. This effect of an increase in ambiguity aversion paral-
lels that of an increase in risk aversion, which is an observational equiva-
lence formalized recently by Liu ~1999! and Maenhout ~1999!. Second, in the
case with a risk-free rate, the investor does not take a position ~positive or
negative! in bonds for « $ 0.005, even if we relax the short-sale constraints.
This tendency to not hold a position in some securities, which happens be-
cause the expected returns are not sufficiently positive or negative to justify
taking on the associated ambiguity, is the subject of Dow and Werlang’s
~1992! paper. It also motivates Liu’s ~1998! attempt to explain the limited
participation of U.S. households in financial markets ~see Mankiw and Zeldes
~1991!! with ambiguity-aversion preferences. For the variable selection, the
tendency of investors with ambiguity aversion to not hold a position in some
securities has the same effect as two-fund separation. It causes different
investors to hold similar portfolios.

23 To be precise, the effects of higher order moments on the relative stock holdings of CRRA
investors with different levels of risk aversion are not strong enough to be noticeable after
rounding the estimates to the second decimal. They are actually noticeable, but, of course, not
statistically significant at the third decimal.

Lynch ~2000! reports analogous results for the multiperiod portfolio choice of CRRA and
mean-variance investors under the assumption of joint log-normality of returns.

24 The choice of « is admittedly ad hoc. Camerer ~1995! cites attempts to calibrate ambiguity
aversion preferences to gambling experiments. Since it is unclear, however, how these experi-
mental results relate to ambiguity aversion in financial markets, we present estimates for a
relatively generous range of «.
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A.2.2. Prospect-theory Investors. Panel B of Table IV presents estimates of
the unconditional portfolio choice of prospect theory investors.25 We set c 5 1
and, guided by the experimental calibrations of Tversky and Kahneman ~1992!,
consider the parameter values b 5 $0.8,0.9,1.0% and l 5 $2.0,2.5,3.0% , where
b 5 1 corresponds to pure loss aversion.26 We set the wealth reference level
RW, which is chosen in the editing stage of prospect theory, to the initial

wealth Wt 5 1.
By far the most striking feature of the prospect theory results are the

strong horizon effects ~which is why we report results for all four investment
horizons here!.27 Consider the portfolio choice with a risk-free rate. At the
one-month horizon the optimal allocation consists of more than 90 percent
Treasury bills, while at the one-year horizon it is 100 percent stocks, ir-
respective of the preference parameters. This is in obvious contrast to the
results for the other three sets of preferences, which exhibit only minimal
horizon effects.

Benartzi and Thaler ~1995! explain that the more often a loss-averse in-
vestor evaluates his or her portfolio, the less attractive are high expected
return but high variance investments because losses of these investments
are realized more often at short horizons than at long horizons. Loss aver-
sion effectively causes short-term investors to be extremely risk averse, since
the return distribution straddles the kink of the utility function, but long-
term investors to be almost risk neutral, as the mass of the return distri-
bution moves away from the kink. In contrast, Merton ~1969! and Samuelson
~1969! show that as long as returns form a martingale, the portfolio choices
of mean-variance and CRRA investors are independent of the horizon.28 Even
if we relax the martingale assumption, the mean-variance and CRRA port-
folio choices do not exhibit nearly the magnitude of horizon effects that we
observe with loss aversion.

25 To compute the standard errors, which requires first and second derivatives of the objec-
tive function with respect to a, we smooth the kink in the objective function at zero with a
polynomial in-between the contact points 20.005 and 1 0.005 with continuous first and second
derivatives at the contact points.

26 Like Barberis, Huang, and Santos ~2001!, who use c 5 1, b 5 1, and l 5 2.25, we abstract
from the probability distortions. When c 5 1, the weights p~{! reduce to the objective proba-
bilities p~{!. We checked, however, that our results are qualitatively robust to using Tversky
and Kahneman’s ~1992! value of c 5 0.65.

27 In a single-period context, we define horizon effects as differences in the portfolio policies
of investors with different buy-and-hold horizons. An alternative definition, and one that we
employ in Section IV.C.3, refers to differences in the portfolio policies of multiperiod investors
with the same rebalancing frequency but different numbers of rebalancing periods.

The behavioral finance literature distinguishes between the investor’s rebalancing period
when securities are traded and the “evaluation period” when gains and losses are realized
mentally ~as opposed to financially! ~Benartzi and Thaler ~1995! or Barberis and Huang ~2001!!.
For simplicity, we assume that the rebalancing and evaluation periods are the same.

28 This horizon irrelevance result breaks down if the returns are mean reverting or if the
returns are contemporaneously correlated with innovations to the investment opportunity set
~see Barberis ~2000! and Campbell and Viceira ~1999!!.
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Table IV

Unconditional Portfolio Choice with Nonexpected Utility Preferences
This table shows estimates of the unconditional portfolio choice of investors with single-period objectives:

Panel A: max
a
S~1 2 «!EFWt11

12g

1 2 gG1 « infR

Wt11
12g

1 2 gD Panel B: max
a

EF 2l~ RW 2 Wt11!b if Wt11 , RW

~Wt11 2 RW !b if Wt11 $ RW
G,

where Wt11 denotes next period’s wealth, RW 5 1 is a subjective wealth reference level, and a 5 @a s, ab, a tb # are the fractions of current wealth
Wt 5 1 invested in stocks, bonds, and Treasury bills, respectively. The investment horizon is 1, 3, 6, or 12 months. The Without Risk-Free Rate
estimates are for a portfolio choice between stocks and bonds ~i.e., a tb 5 0! and the With Risk-Free Rate estimates are for a portfolio choice
between stocks, bonds, and Treasury bills. In both cases, the optimization is subject to the short-sales constraints 0 # a # 1. In brackets are
autocorrelation adjusted asymptotic standard errors.

Without
Risk-Free Rate With Risk-Free Rate

Without
Risk-Free Rate With Risk-Free Rate

a s ab a s ab a tb
a s

a s 1 ab a s ab a s ab a tb
a s

a s 1 ab

Panel A: Ambiguity-Averse Investors

One-Month Horizon One-Year Horizon

g 5 5 « 5 0.1% 0.66 0.34 0.61 0.11 0.28 0.85 0.52 0.48 0.53 0.05 0.42 0.91
@0.20# @0.20# @0.36# @0.38# @0.21# @0.46# @0.17# @0.17# @0.29# @0.31# @0.18# @0.49#

« 5 0.5% 0.52 0.48 0.48 0.00 0.52 1.00 0.43 0.57 0.47 0.00 0.53 1.00
@0.18# @0.18# @0.32# @0.37# @0.19# @0.76# @0.13# @0.13# @0.24# @0.29# @0.16# @0.62#

« 5 1.0% 0.38 0.62 0.32 0.00 0.68 1.00 0.35 0.65 0.41 0.00 0.59 1.00
@0.16# @0.16# @0.29# @0.36# @0.17# @1.12# @0.11# @0.11# @0.21# @0.29# @0.15# @0.70#

g 5 10 « 5 0.1% 0.40 0.60 0.31 0.05 0.64 0.86 0.27 0.73 0.27 0.03 0.70 0.91
@0.10# @0.10# @0.18# @0.19# @0.11# @0.46# @0.08# @0.08# @0.15# @0.15# @0.09# @0.48#

« 5 0.5% 0.29 0.71 0.24 0.00 0.76 1.00 0.17 0.83 0.24 0.00 0.76 1.00
@0.09# @0.09# @0.16# @0.18# @0.09# @0.78# @0.06# @0.06# @0.12# @0.15# @0.08# @0.61#

« 5 1.0% 0.18 0.82 0.16 0.00 0.84 1.00 0.11 0.89 0.21 0.00 0.79 1.00
@0.07# @0.07# @0.15# @0.18# @0.09# @1.12# @0.05# @0.05# @0.11# @0.14# @0.08# @0.68#
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Panel B: Prospect-Theory Investors

One-Month Horizon Three-Month Horizon

b 5 0.8 l 5 2.00 0.43 0.57 0.03 0.02 0.95 0.60 0.65 0.35 0.10 0.02 0.88 0.83
@0.20# @0.20# @0.19# @0.19# @0.11# @4.27# @0.26# @0.26# @0.11# @0.10# @0.07# @1.53#

l 5 2.50 0.30 0.70 0.03 0.02 0.95 0.60 0.51 0.49 0.08 0.04 0.88 0.67
@0.14# @0.14# @0.15# @0.15# @0.09# @3.87# @0.20# @0.20# @0.09# @0.09# @0.06# @1.36#

b 5 0.9 l 5 2.00 0.42 0.58 0.06 0.00 0.94 1.00 0.70 0.30 0.20 0.03 0.77 0.87
@0.19# @0.19# @0.18# @0.19# @0.11# @3.01# @0.35# @0.35# @0.17# @0.14# @0.13# @1.49#

l 5 2.50 0.30 0.70 0.05 0.01 0.94 0.83 0.50 0.50 0.12 0.02 0.86 0.86
@0.13# @0.13# @0.14# @0.15# @0.09# @3.32# @0.22# @0.22# @0.10# @0.10# @0.07# @1.33#

b 5 1.0 l 5 2.00 0.39 0.61 0.08 0.02 0.90 0.80 0.76 0.24 0.46 0.06 0.48 0.88
@0.17# @0.17# @0.18# @0.18# @0.11# @2.35# @0.39# @0.39# @0.50# @0.23# @0.45# @1.58#

l 5 2.50 0.30 0.70 0.07 0.02 0.91 0.78 0.49 0.51 0.15 0.04 0.81 0.79
@0.11# @0.11# @0.14# @0.14# @0.08# @2.07# @0.24# @0.24# @0.13# @0.12# @0.09# @1.41#

Six-Month Horizon One-Year Horizon

b 5 0.8 l 5 2.00 1.00 0.00 0.22 0.13 0.65 0.63 1.00 0.00 1.00 0.00 0.00 1.00
@0.39# @0.39# @0.42# @0.22# @0.43# @0.90# @0.43# @0.43# @0.53# @0.41# @0.47# @0.14#

l 5 2.50 0.53 0.47 0.16 0.07 0.77 0.70 1.00 0.00 1.00 0.00 0.00 1.00
@0.23# @0.23# @0.11# @0.12# @0.11# @0.66# @0.44# @0.44# @0.54# @0.41# @0.48# @0.15#

b 5 0.9 l 5 2.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
@0.44# @0.44# @0.49# @0.26# @0.50# @0.93# @0.48# @0.48# @0.58# @0.43# @0.51# @0.17#

l 5 2.50 0.60 0.40 0.24 0.14 0.62 0.63 1.00 0.00 1.00 0.00 0.00 1.00
@0.25# @0.25# @0.18# @0.21# @0.22# @0.86# @0.49# @0.49# @0.59# @0.43# @0.51# @0.18#

b 5 1.0 l 5 2.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
@0.49# @0.49# @0.54# @0.28# @0.59# @1.11# @0.52# @0.52# @0.64# @0.48# @0.54# @0.23#

l 5 2.50 0.65 0.35 0.49 0.18 0.33 0.73 1.00 0.00 1.00 0.00 0.00 1.00
@0.31# @0.31# @0.23# @0.26# @0.26# @0.91# @0.53# @0.53# @0.64# @0.49# @0.55# @0.25#
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Besides the horizon effects, the portfolio choice with loss aversion prefer-
ences is noteworthy because investors with different degrees of loss aversion
hold substantially different positions in the risky securities ~except at the
annual horizon, where the short-sale constraints are binding!. In particular,
for the portfolio choice with a risk-free rate, the fraction of stocks in the
risky part of the allocation ranges from 60 to 100 percent.

B. Optimal Index Composition

Turning now to the conditional portfolio choice, we estimate the optimal
index composition as described in Section II.B. We use linear instruments
g~Zt ! 5 Zt , which may be suboptimal in the sense of problem ~12!, but result
in numerically more reliable estimates.29 We demean and standardize the
variables Zt to be able to interpret the magnitude of the index coefficients.
We also normalize the index coefficients to sum to one in absolute values,
meaning 6b6'i 5 1, since they are only identified up to scale. This normal-
ization means that we can read the index coefficients as signed percentage
loadings.

B.1. Expected Utility Preferences

B.1.1. Mean-variance Investors. Panel A of Table V presents estimates of
the index coefficients for mean-variance investors with a one-month or one-
year horizon. One, two, or three stars indicate that the coefficient is statis-
tically significant at the 10, 5, or 1 percent levels, respectively. Table VI
describes the estimated indices, where Panel A shows univariate descriptive
statistics and Panel B shows pairwise correlations with the four predictors,
with the returns on bonds, stocks, and wealth generated by the uncondi-
tional portfolio choice, and with the squared returns on bonds, stocks, and
wealth.30

29 The “optimal” instruments in equation ~14! tend to result in estimates that are sensitive
to the starting values and are only locally optimal. The problem is that, due to the derivative
of a~Zt

'b;b! with respect to its second argument, the optimal instruments cause the GMM
objective function to be less well behaved than with linear instruments ~see also the discussion
in Section II.B!.

We verified, however, that the estimates with linear instruments are virtually identical to
the estimates that correspond to the global minimum of the GMM criterion with the optimal
instruments. In particular, we solved for eight indices ~two for each set of preferences! using a
random search optimization algorithm that is robust to ill-behaved objective functions. In the
worst case ~ambiguity-aversion preferences with g 5 10 and « 5 0.01!, the difference between
the estimates with linear and optimal instruments implies an expected utility loss of 0.09 per-
cent in certainty equivalent terms. The corresponding estimates of the index are @0.249,20.124,
0.597,0.030# with linear and @0.312,20.119,0.518,0.051# with optimal instruments.

30 We use the return on wealth generated by the unconditional portfolio choice as a mean-
ingful way to collapse the bivariate return series ~bonds and stocks! into a univariate variable.
In particular, the return on wealth weights the bond and stock returns relative to their uncon-
ditional importance to the investor.
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Consider first the indices for the portfolio choice with a risk-free rate. The
most striking feature of the results is that the index composition is remark-
ably insensitive to the level of risk aversion. This is again an implication of
two-fund separation because with a risk-free rate and without short-sale

Table V

Index Composition with Expected Utility Preferences
This table shows estimates of the optimal index composition for the conditional portfolio choice
of investors with single-period preferences:

Panel A: v~Wt11! 5 Wt11 2
g

2
~Wt11 2 E@Wt11# !2 Panel B: v~Wt11! 5

Wt11
12g

1 2 g
,

where Wt11 denotes next period’s wealth. Each index is a linear combination of the default
spread Def, the log dividend-to-price ratio of the S&P 500 index LnDP, the term spread Term,
and the S&P index momentum variable Trend. The investment horizon is one month or one
year. The Without Risk-Free Rate estimates are for a portfolio choice between stocks and bonds
and the With Risk-Free Rate estimates are for a portfolio choice between stocks, bonds, and
Treasury bills. In both cases, the optimization is subject to the short-sale constraints 0 # a # 1.

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

Panel A: Mean-Variance Investors

One-Month Horizon

g 5 2 20.091 0.127 0.465** 0.317* 0.165 20.134 0.549** 0.151
g 5 5 20.075 0.122 0.444** 0.360* 0.164 20.133 0.554** 0.149
g 5 10 0.002 0.168 0.401** 0.429** 0.158 20.131 0.590** 0.121
g 5 20 0.049 0.230* 0.299* 0.422** 0.151 20.129 0.599** 0.121

One-Year Horizon

g 5 2 20.235 0.418* 0.347 0.001 20.107 0.291 0.559* 20.043
g 5 5 20.199 0.438* 0.327 0.036 20.106 0.287 0.565* 20.042
g 5 10 20.159 0.459* 0.324 0.058 20.105 0.285 0.570* 20.041
g 5 20 20.130 0.468* 0.318 0.083 20.105 0.280 0.573* 20.041

Panel B: Constant Relative Risk-Averse Investors

One-Month Horizon

g 5 2 20.146 0.154 0.431** 0.268* 0.181* 20.083 0.648** 0.089
g 5 5 20.094 0.144 0.420** 0.342* 0.173* 20.087 0.667** 0.073
g 5 10 20.011 0.173 0.388* 0.428** 0.168 20.091 0.683** 0.058
g 5 20 0.086 0.173 0.268* 0.472** 0.164 20.091 0.687** 0.058

One-Year Horizon

g 5 2 20.136 0.441* 0.391 0.032 0.095 0.179 0.625* 20.101
g 5 5 20.124 0.462* 0.361 0.053 0.087 0.180 0.630* 20.104
g 5 10 20.102 0.470* 0.320 0.108 0.054 0.184 0.655* 20.107
g 5 20 20.055 0.504* 0.229 0.212 0.049 0.184 0.658* 20.108

** and * denote statistical significance at the 5 and 10 percent levels, respectively.
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constraints, the optimal portfolio choice of a mean-variance investor is to
allocate a fraction at

tgc ~from equation ~6!! of wealth to the tangency portfolio
and to hold the remaining wealth in risk-free Treasury bills. Two-fund sep-
aration therefore implies that the portfolio policies of all mean-variance
investors are proportional to each other and that, as a result, the optimal
index of conditional variables must be the same for all investors ~since the
index is identified only up to scale!. In line with this theoretical result, the
estimated indices are in fact identical across different levels of risk aver-

Table VI

Description of Indices with MV Preferences
Panel A of this table shows descriptive statistics of the optimal indices for the conditional
portfolio choice of investors with single-period mean-variance preferences. Each index is a lin-
ear combination of the default spread Def, the log dividend-to-price ratio of the S&P 500 index
LnDP, the term spread Term, and the S&P index momentum variable Trend. The index coeffi-
cients are shown in Panel A of Table V. The investment horizon is one month or one year. Panel
B shows correlations of the indices with the predictors, excess bond returns rt11

b , excess stock
returns rt11

s , and excess returns on wealth rt11
w generated by the unconditional portfolio choices

from Panel A of Table III. It also shows correlations of the indices with squared excess returns
on bonds, stocks, and wealth.

One-Month Horizon One-Year Horizon

Without Risk-Free Rate

With
Risk-Free

Rate Without Risk-Free Rate

With
Risk-Free

Rate

g 5 2 g 5 5 g 5 10 g 5 20 g 5 5 g 5 2 g 5 5 g 5 10 g 5 20 g 5 5

Panel A: Descriptive Statistics

Median 0.05 0.04 0.04 0.00 0.05 20.05 20.05 20.20 20.02 20.03
StdDev 0.59 0.60 0.61 0.53 0.66 0.39 0.39 0.00 0.41 0.52
Skew 20.38 20.42 20.70 20.23 20.21 0.06 0.06 0.00 20.01 0.03
Kurtosis 2.81 2.83 2.99 3.18 2.73 3.14 3.23 3.20 3.14 2.98
Min 21.83 22.01 22.17 21.90 21.94 21.11 21.18 21.26 21.29 21.56
Max 1.14 1.12 1.33 1.38 1.48 1.16 1.16 1.17 1.17 1.35
r1 0.95 0.95 0.94 0.93 0.97 0.96 0.97 0.97 0.97 0.96
r3 0.83 0.82 0.80 0.79 0.86 0.86 0.88 0.90 0.91 0.84
r6 0.66 0.63 0.58 0.57 0.73 0.75 0.78 0.80 0.82 0.70
r12 0.44 0.39 0.30 0.27 0.55 0.55 0.60 0.30 0.66 0.53

Panel B: Correlations

Def 20.13 20.11 0.05 0.23 0.06 20.08 0.04 0.16 0.23 0.03
LnDP 20.32 20.32 20.18 0.03 20.43 0.43 0.52 0.60 0.63 0.08
Term 0.86 0.83 0.74 0.61 0.95 0.55 0.50 0.47 0.44 0.89
Trend 0.68 0.73 0.79 0.79 0.48 20.07 20.01 0.02 0.06 0.04
rt11

b 0.03 0.02 0.01 20.00 0.13 0.06 0.05 0.05 0.05 0.24
rt11

s 0.13 0.12 0.12 0.10 0.18 0.37 0.36 0.36 0.35 0.39
rt11

w 0.13 0.12 0.09 0.05 0.18 0.37 0.34 0.28 0.22 0.40
~rt11

b !2 20.07 20.06 0.01 0.08 20.01 0.17 0.21 0.25 0.27 0.20
~rt11

s !2 20.17 20.18 20.16 20.13 20.11 20.04 20.03 20.01 0.00 20.06
~rt11

w !2 20.17 20.20 20.14 20.02 20.11 20.04 20.03 0.02 0.06 20.05
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sions if we relax the short-sale constraints. If we impose the short-sale con-
straints, as we do for Table V, the estimates are slightly different because
the constraints are binding more often for an investor with g 5 2 than for an
investor with g 5 20.

At the monthly horizon, the index loads positively on the term spread,
positively on the default spread, negatively on the log dividend yield, and
positively on the trend, with relative weights of about 55, 16, 13, and 15 per-
cent, respectively. At the one-year horizon, it loads positively on the term
spread and the dividend yield, with relative weights of 57 and 29 percent.
The default spread and trend each account for less than 11 percent of the
index.

To better understand the index composition, given that the predictors are
correlated, consider the pairwise correlations in Panel B of Table VI. At the
monthly horizon, the index is most correlated with the term spread and is
about equally correlated with the log dividend yield and trend ~correlations
of 0.95, 20.43, and 0.48, respectively!. Somewhat unexpectedly, it is nearly
orthogonal to the default spread, although the loading on the default spread
exceeds those on the log dividend yield and trend. At the annual horizon, the
index is positively correlated with the term spread and dividend yield ~cor-
relations of 0.89, 0.08, respectively! and is virtually orthogonal to the de-
fault spread and trend.

At both horizons, the indices relate positively to the returns on wealth,
with correlations of 0.18 and 0.40, and negatively to the squared returns on
wealth, with correlations of 20.11 and 20.05.31 The signs and magnitudes of
these correlations suggest the following:

• An increase in the index represents an unambiguous improvement in
investment opportunities, since it increases the mean and decreases the
variance of future wealth.

• The term spread receives the highest weighting in all indices.32 Tables I
and II show that the term spread is the only variable that is strongly ~in
relative terms! positively correlated with the mean and negatively cor-
related with the variance of stock returns. Since mean-variance inves-
tors allocate unconditionally between 86 and 90 percent of their risky
investments to stocks, they definitely cheer increases in the term spread.
The log dividend-to-price ratio, the more traditional predictor of ex-
pected returns, receives a negative weight at the monthly horizon, since
it is negatively correlated with the mean and positively correlated with
the variance of stock returns, and a less positive ~60 percent less! weight

31 At the monthly horizon, the positive correlation of the index with returns on wealth is
attributed to the positive loading on the term premium. The negative correlation with squared
returns comes from the positive loading on the trend. At the annual horizon both the positive
correlation with returns and the negative correlation with squared returns on wealth are at-
tributed to the term spread.

32 We checked that the dominance of the term spread in the indices is not attributed to a few
inf luential data points, such as the period surrounding October 1987.
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than the term spread at the annual horizon because it is positively cor-
related with the mean but also with the variance of stock returns. The
less positive weight ref lects the fact that an increase in the dividend
yield is good news for expected returns but bad news for the variance of
returns.

• The correlations of the indices with the returns and squared returns on
wealth are both below their theoretical maximums implied by the indi-
vidual moment regressions in Panel A of Table II. This implies that, in
line with our intuition, the indices achieve a compromise between pre-
dicting means and variances.

• The balance between predicting means and variances depends on the
relative degree of predictability of the two moments. At the monthly
horizon, the mean and variance of stock returns are equally predictable
~R2s of 0.04 and 0.05! and the indices are about equally correlated with
returns and squared returns on wealth. At the annual horizon, however,
the expected return of stocks is almost twice as predictable as the vari-
ance ~R2s of 0.18 and 0.10! and, as a result, the indices focus almost
exclusively on predicting mean returns.

This is exactly how we intend the indices to work. The only feature of our
approach that is not well illustrated yet is that the index composition can be
investor specific.

This feature of the indices is apparent from the results for the portfolio
choice without a risk-free rate. Recall from Table III that as risk aversion
increases, the unconditional portfolio choice without a risk-free rate varies
from 100 percent stocks to the global minimum variance portfolio of 20 per-
cent stocks and 80 percent bonds. The corresponding entries in Tables V and
VI show that as the relative position in stocks versus bonds changes with
the level of risk aversion, the index composition also changes. In particular,
at the one-month horizon, the most important predictor is the term spread
for g 5 $2,5% and the trend for g 5 $10,20% .

B.1.2. Constant Relative Risk-averse Investors. The indices for CRRA pref-
erences, in Panel B of Table V, resemble those for mean-variance prefer-
ences. Their likes and dislikes of higher order moments induce CRRA investors
to focus somewhat more on the term premium and less on the dividend yield
~except for the one-month portfolio choice without a risk-free rate!. Despite
the differences between the CRRA and mean-variance indices, the indices
for CRRA investors with different levels of risk aversion are no more dif-
ferent than those for mean-variance investors with different levels of risk
aversion. In fact, if we relax the short-sell constraints, the CRRA indices
for the portfolio choice with a risk-free rate are identical across different
levels of risk aversion, just as they are for mean-variance investors. This is
true not only for g ranging from 2 through 20, but also for g as large as 100
~not shown in the table!. We hence conclude that the preferences for higher
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order moments, which depend on the level of risk aversion, are not strong
enough to induce different CRRA investors to focus on different economic
variables.

B.2. Nonexpected Utility Preferences

B.2.1. Ambiguity-averse Investors. Panel A of Table VII presents the esti-
mated indices for investors with ambiguity aversion preferences. Overall,
the results are quite similar to those for the expected utility preferences in
Table V. For the portfolio choice with a risk-free rate, the term spread is by
far the most important contributor to the index. The second most important
predictor is the default spread at the monthly horizon and the log dividend
yield at the annual horizon.

A more subtle feature of the results is that the index composition depends
on the degree of ambiguity aversion. Consider, for example, the case g 5 5
for the one-month portfolio choice with a risk-free rate. With « 5 0 ~in Panel B
of Table V! the index coefficients are 0.173, 20.087, 0.667, and 0.073,
while with « 5 0.01 they are 0.184, 20.116, 0.644, and 20.056. Depending
on whether the portfolio choice includes a risk-free rate or not, there are
different reasons for why the index composition depends on the degree of
ambiguity aversion. Without a risk-free rate, an increase in ambiguity
aversion is observationally equivalent to an increase in risk aversion.
Thus, the index composition changes in the same way as it does for the
CRRA portfolio choice without a risk-free rate when risk aversion increases.
With a risk-free rate, in contrast, the index changes because sufficiently
ambiguity-averse investors avoid bonds. As the unconditionally optimal risky
position shifts from 87 percent stocks and 13 percent bonds ~in Panel B of
Table III! to 100 percent stocks ~in Panel A of Table IV!, the index changes
accordingly.

B.2.2. Prospect-theory Investors. The indices for prospect theory investors,
shown in Panel B of Table VII, exhibit the most variation across different
preference parameters and are the most different from the mean-variance
benchmark. They are also the most challenging to interpret, due to the strong
horizon effects that we documented in Panel B of Table IV.

To abstract from the horizon effects, we focus on the index composition for
the portfolio choice with a risk-free rate at the one-year horizon, where all
prospect theory investors hold only stocks. The indices are quite different
from those for mean-variance preferences at the one-year horizon. In par-
ticular, when b 5 0.8, the index loads positively and substantially on the
default spread ~correlation of 0.22!. This is puzzling, at first sight, since the
default spread is a strong positive predictor of the variance of stock returns
and even relates negatively to the mean. However, the fact that prospect
theory investors are risk loving in the case of losses explains the role of the
default spread. When the default spread is high the investor anticipates
relatively volatile losses, as opposed to certain losses, which is preferred in
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prospect theory.33 Indeed, as b increases and the investor becomes less risk
loving over losses, the correlation of the index with the default spread drops
sharply. The correlation increases for values of b less than 0.8 ~not shown in
the table!.

33 We checked that losses are indeed more volatile when the default spread is high than
when it is low.

Table VII

Index Composition with Nonexpected Utility Preferences
This table shows estimates of the optimal index composition for the conditional portfolio choice
of investors with single-period preferences:

Panel A: v~Wt11! 5 ~1 2 «!
Wt11

12g

1 2 g
1 « inf

R

Wt11
12g

1 2 g

Panel B: v~Wt11! 5 H 2l~ RW 2 Wt11!b if Wt11 , RW

~Wt11 2 RW !b if Wt11 $ RW
,

where Wt11 denotes next period’s wealth and RW 5 1 is a subjective wealth reference level. Each
index is a linear combination of the default spread Def, the log dividend-to-price ratio of the
S&P 500 index LnDP, the term spread Term, and the S&P index momentum variable Trend.
The investment horizon is 1, 3, 6, and 12 months. The Without Risk-Free Rate estimates are for
a portfolio choice between stocks and bonds and the With Risk-Free Rate estimates are for a
portfolio choice between stocks, bonds, and Treasury bills. In both cases, the optimization is
subject to the short-sale constraints 0 # a # 1.

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

Panel A: Ambiguity-Averse Investors

One-Month Horizon

g 5 5 « 5 0.1% 20.024 0.169 0.415** 0.392* 0.178* 20.097 0.659** 0.066
« 5 0.5% 0.008 0.175 0.384* 0.433** 0.183* 20.115 0.645** 0.057
« 5 1.0% 0.014 0.183 0.327* 0.476** 0.184* 20.116 0.644** 0.056

g 5 10 « 5 0.1% 20.008 0.186 0.346* 0.460** 0.196* 20.099 0.669** 0.036
« 5 0.5% 0.013 0.195 0.307* 0.485** 0.235* 20.121 0.612** 0.032
« 5 1.0% 0.027 0.221 0.255* 0.497** 0.249* 20.124 0.597** 0.030

One-Year Horizon

g 5 5 « 5 0.1% 20.080 0.483* 0.349 0.088 0.058 0.194 0.620* 20.128
« 5 0.5% 0.012 0.512* 0.367 0.109 0.041 0.218 0.592* 20.149
« 5 1.0% 0.045 0.535* 0.284 0.136 0.039 0.246 0.568* 20.147

g 5 10 « 5 0.1% 20.063 0.491* 0.301 0.145 0.052 0.190 0.623* 20.135
« 5 0.5% 0.024 0.521* 0.294 0.161 0.035 0.213 0.606* 20.146
« 5 1.0% 0.053 0.543* 0.222 0.182 0.029 0.236 0.592* 20.143

~continued !
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Another interesting difference between the prospect theory and mean-
variance indices is the negative loading on the trend. At the one-year hori-
zon, the trend is a weak negative predictor of the mean, but a strong negative
predictor of the variance of stock returns. Thus, mean-variance investors
virtually ignore the trend, since the correlation with the variance is not
strong enough to offset the correlation with the mean of the same sign, and

Table VII—Continued

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

Panel B: Prospect-Theory Investors

One-Month Horizon

b 5 0.8 l 5 2.0 0.069 20.247 0.677** 20.007 0.232* 20.139 0.589** 20.041
l 5 2.5 20.032 20.276* 0.587** 20.105 0.229* 20.138 0.584** 20.049

b 5 0.9 l 5 2.0 0.101 20.227 0.644** 20.027 0.164 20.135 0.590** 0.111
l 5 2.5 0.001 20.276* 0.608** 20.115 0.190 20.150 0.624** 0.036

b 5 1.0 l 5 2.0 0.125 20.210 0.603** 20.062 0.204 20.149 0.605** 0.042
l 5 2.5 0.032 20.260* 0.582** 20.126 0.189 20.154 0.611** 0.046

Three-Month Horizon

b 5 0.8 l 5 2.0 0.148 0.009 0.806** 0.037 0.235 0.085 0.674** 20.006
l 5 2.5 0.109 20.062 0.823** 20.007 0.235 0.085 0.674** 20.006

b 5 0.9 l 5 2.0 0.175 0.009 0.797** 0.019 0.156 0.146 0.636** 0.062
l 5 2.5 0.133 20.052 0.800** 20.015 0.185 0.127 0.654** 0.034

b 5 1.0 l 5 2.0 0.204 0.002 0.786** 20.007 0.207 0.117 0.657** 0.018
l 5 2.5 0.154 20.049 0.771** 20.026 0.199 0.127 0.652** 0.022

Six-Month Horizon

b 5 0.8 l 5 2.0 0.190 0.066 0.716* 0.028 0.205 0.116 0.642* 20.037
l 5 2.5 0.198 20.006 0.776* 20.019 0.205 0.116 0.642* 20.037

b 5 0.9 l 5 2.0 0.210 0.067 0.714* 0.008 0.140 0.186 0.653* 0.020
l 5 2.5 0.216 0.003 0.755* 20.026 0.168 0.166 0.665* 20.002

b 5 1.0 l 5 2.0 0.230 0.057 0.694* 20.019 0.187 0.143 0.651* 20.018
l 5 2.5 0.230 0.005 0.726* 20.040 0.178 0.154 0.654* 20.013

One-Year Horizon

b 5 0.8 l 5 2.0 0.115 0.163 0.623* 20.099 0.125 0.173 0.564* 20.137
l 5 2.5 0.141 0.094 0.653* 20.112 0.125 0.173 0.564* 20.137

b 5 0.9 l 5 2.0 0.133 0.147 0.612* 20.109 0.040 0.264 0.578* 20.117
l 5 2.5 0.156 0.092 0.632* 20.120 0.071 0.231 0.573* 20.125

b 5 1.0 l 5 2.0 0.156 0.124 0.599* 20.121 0.095 0.206 0.566* 20.133
l 5 2.5 0.172 0.086 0.614* 20.128 0.084 0.218 0.568* 20.130

** and * denote statistical significance at the 5 and 10 percent levels, respectively.
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vice versa. More puzzling than the negative loading itself, however, is the
fact that the role of the trend variable in the index does not depend much on
the curvature of the utility function, which suggests that it is unrelated to
our usual mean-variance intuition. Instead, there are two reasons to believe
that loss-averse investors use the trend to predict positive skewness, or rather
fewer and smaller losses. First, the importance of the trend depends on the
loss aversion parameter l. In particular, when we consider l , 2, the loading
on the trend decreases, while it increases when we consider l . 2.5 ~both
results are not shown in the table!. Second, the correlation of the trend with
cubed stock returns, a simple measure of skewness, is 20.21.

C. Conditional Asset Allocation

Figures 3 and 4 plot the portfolio policies of investors with expected and
nonexpected utility preferences. The black, gray, and white areas in each
plot represent the estimated allocations of wealth to Treasury bills, bonds,
and stocks as a function of the estimated indices from Table V ~for Figure 3!
and Table VII ~for Figure 4!.34 We compute the conditional portfolio weights
for 15 evenly spaced realizations of the index ranging from its mean minus
two standard deviations to its mean plus two standard deviations, which
roughly corresponds to the interior 95 percent of the empirical distribution
of the index. We only plot the portfolio policies with a risk-free rate.

C.1. Market Timing

In our context, market timing is the response of the optimal asset alloca-
tion to changes in the index. Market timing is therefore visible in Figures 3
and 4 through changes in the bar charts from the left of each plot ~where the
index is equal to its mean minus two standard deviations! to the right ~where
the index is equal to its mean plus two standard deviations!. In a nutshell,
all of the investors we consider engage in market timing, unless they are
very risk averse ~with extremely high g! or very ambiguity averse ~with
extremely high «!.

Otherwise, a few broad patterns emerge:

• More market timing takes place at long horizons than at short horizons.
There are two reasons for this phenomenon. First, it ref lects one of the
basic findings from Section I, that long-horizon returns are more pre-
dictable than short-horizon returns, which is largely due to the slow
mean reversion of the term premium and log dividend yield ~see Fig-
ure 1!. Second, short-horizon investors hold a larger percentage of their
wealth in cash, which implies that the rewards from timing the market
are more limited.

34 The kernel bandwidths for the estimator of a~Z 'b;b! are determined by leave-one-out
cross-validation, which is a data-based procedure described in detail in Brandt ~1999!. We checked
that the estimated portfolio rules are fairly insensitive to reasonable variations ~625 percent!
in the bandwidths.
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• Less ~more! risk-averse investors engage in more ~less! market timing.
It takes only a small increase in the index for an investor with g 5 2 to
switch from 100 percent cash ~or bonds in the case without a risk-free
rate! to 100 percent stocks, and this switch occurs much before the in-
dex reaches its mean. More risk-averse investors react less abruptly to
an increase in the index. Furthermore, there appears to be a limit to
how far they are willing to switch from Treasury bills into stocks. This
pattern is most pronounced at the one-month horizon, where a mean-
variance investor with g 5 20, for example, reduces the cash holdings
from 100 percent to 55 percent as the index moves from minus two
standard deviations to its mean, but then keeps the 55 percent cash
position even when the index rises to plus two standard deviations.
Interestingly, the investor tends to substitute bonds for stocks as the
index rises above its mean. As a result, the stock holdings peak around
the mean of the index.35

• Predictability induces even mean-variance investors with different levels
of risk aversion to hold different relative positions in bonds and stocks
for a given horizon. This creates a departure from the unconditional
mean-variance allocation, where investors hold the same risky position,
the tangency portfolio, irrespective of their risk aversion.

• The portfolio policies of mean-variance and CRRA investors with the
same degree of risk aversion differ substantially, which can only be at-
tributed to time variations in the higher order moments of the return
distribution.36

• Prospect theory investors are by far the most active market timers. They
substitute stocks for Treasury bills more or less quickly, depending on
their degree of loss aversion, as the index increases. Except at the monthly
horizons, prospect-theory investors are invested 100 percent in stocks
even before the index reaches its mean. At the one-month horizon and
without a risk-free rate ~not shown in the figure!, their bond holdings
reach a minimum of 25 to 40 percent around the mean of the index.
Further increases in the index do not induce the investors to hold more
stocks and fewer bonds because of the short-term loss potential of stocks.
With a risk-free rate, prospect-theory investors introduce some bonds to
their portfolio ~up to 35 percent! when the index increases above its
mean.

35 This nonmonotonicity in the portfolio policy can be explained by the strong positive rela-
tion between the term spread and expected bond returns, as documented in Panel A of Table II,
together with the fact that expected stock returns relate positively to the term spread only
when the yield curve is inverted ~see Boudoukh, Richardson, and Whitelaw ~1997!!.

36 We explicitly control for the possibility of our econometric procedure inducing these dif-
ferences in the policies by constraining the kernel bandwidths to be the same for mean-variance
and CRRA preferences.
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Figure 3. Conditional portfolio choice with expected utility preferences. This figure plots the conditional portfolio choice with a risk-free
rate of investors with mean-variance preferences, in Panel A, or constant relative risk-aversion preferences, in Panel B. The investment horizon
is one month or one year. The portfolio choice is conditional on an index of the default spread, log dividend-to-price ratio of the S&P 500 index,
the term spread, and the S&P index trend variable. The index coefficients are shown in Table V. The black, gray, and white areas represent the
fractions of wealth allocated to Treasury bills, bonds, and stocks, respectively.
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Figure 4. Conditional portfolio choice with nonexpected utility preferences. This figure plots the conditional portfolio choice with a
risk-free rate of investors with ambiguity-aversion preferences, in Panel A, and prospect theory preferences, in Panel B. The investment horizon
is 1, 3, 6, or 12 months. The portfolio choice is conditional on an index of the default spread, log dividend-to-price ratio of the S&P 500 index, the
term spread, and the S&P index momentum variable. The index coefficients are shown in Table VII. The black, gray, and white areas represent
the fractions of wealth allocated to Treasury bills, bonds, and stocks, respectively.
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Since mean-variance preferences yield an analytical expression for the
optimal portfolio weights, we can compare our semiparametric estimates of
the portfolio policies to plug-in policies based on individual estimates of the
first and second moments of returns. This comparison allows us to measure
the trade-off between the expected utility loss from combining the predictors
into a single index as opposed to two indices ~one for each moment! and the
statistical gain ~if any! from directly estimating the portfolio weights.

Table VIII compares our semiparametric estimates of the mean-variance
portfolio policies in Panel A of Figure 3 to plug-in policies based on the
regression estimates of the conditional moments in Panel A of Table II.37

Since the linear moment structure imposed by the linear regressions makes
this an unfair comparison, we also compare our estimates to nonlinear plug-in
policies based on semiparametric index regressions, where each conditional
moment depends nonparametrically on a separate linear index of the pre-
dictors ~see Powell, Stock, and Stoker ~1989!!. We use index regressions,
which still impose some parametric structure on the moments, because fully
nonparametric plug-in policies, in which both moments are arbitrary func-
tions of all four predictors, are infeasible due to the curse of dimensionality
of nonparametric estimators.

Table VIII reports for each portfolio policy the mean and standard devia-
tion of the return on wealth generated by the estimated asset allocations in
our sample. It also shows the certainty equivalent rate of return cet , which
we define as the risk-free rate of return on wealth that makes the investors
indifferent between timing the market and the unconditional portfolio choice
in Panel A of Table III. All entries in Table VIII are annualized.

The semiparametric policies clearly outperform the linear plug-in policies
and perform about as well as the nonlinear plug-in policies, although they
ignore the parametric structure of the optimal portfolio weights. The gen-
eral pattern is that the semiparametric policies generate a mean return that
is substantially larger than that of the linear plug-in policies but slightly
smaller than that of the nonlinear plug-in policies. Furthermore, they gen-
erate a smaller standard deviation of wealth than both the linear and non-
linear plug-in policies. This implies that, according to the certainty equivalent
rates of return, the semiparametric policies are dominated by the nonlinear
plug-in policies for low levels of risk aversion, when investors focus on ex-
pected returns, but dominate the nonlinear plug-in policies for high levels of
risk aversion, when investors are more sensitive to risk.

We draw two conclusions from Table VIII. First, comparing the linear
plug-in policies to the nonlinear ones, it is clear that allowing for nonlin-
earities in the conditional moments is crucial. Second, comparing the semi-
parametric policies to the nonlinear plug-in ones, it is apparent that collapsing
the conditioning information into a single index as opposed to two indices

37 We use the full regressions, but the results with the best one- or two-variable regressions
are very similar.
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Table VIII

Semiparametric Versus Plug-in Estimates of the Conditional Portfolio Choice
This tables shows the annualized mean and standard deviation of the return on wealth generated by semiparametric and plug-in estimates of
the conditional portfolio choice of investors with single-period mean-variance preferences. The semiparametric estimates are based on indices of
the default spread, the log dividend-to-price ratio of the S&P 500 index, the term spread, and the S&P index trend variable. The index coeffi-
cients are shown in Panel A of Table V. The linear plug-in estimates are based on the individual moment regressions in Panel A of Table II. The
nonlinear plug-in estimates are based on semiparametric index regressions for the individual moments. The table also shows the annualized
certainty equivalent rate of return cet required to make the investors indifferent between the conditional portfolio choice and the unconditional
portfolio choice in Panel A of Table III. The investment horizon is one month or one year.

Without Risk-Free Rate With Risk-Free Rate

Plug-in Portfolio Weights Plug-in Portfolio Weights
Semiparametric

Portfolio Weights Linear Nonlinear
Semiparametric

Portfolio Weights Linear Nonlinear

Mean Std cet Mean Std cet Mean Std cet Mean Std cet Mean Std cet Mean Std cet

One-Month Horizon

g 5 2 0.141 0.129 0.017 0.137 0.119 0.014 0.143 0.131 0.014 0.149 0.117 0.028 0.143 0.104 0.025 0.150 0.118 0.029
g 5 5 0.137 0.121 0.021 0.131 0.115 0.017 0.139 0.123 0.020 0.147 0.111 0.036 0.136 0.096 0.033 0.148 0.112 0.037
g 5 10 0.121 0.098 0.018 0.117 0.101 0.011 0.122 0.100 0.015 0.127 0.083 0.027 0.120 0.082 0.020 0.130 0.086 0.027
g 5 20 0.100 0.083 0.013 0.102 0.090 0.002 0.101 0.084 0.012 0.090 0.042 0.013 0.091 0.057 0.000 0.093 0.046 0.012

One-Year Horizon

g 5 2 0.132 0.128 0.013 0.129 0.120 0.012 0.135 0.129 0.015 0.136 0.127 0.017 0.129 0.115 0.012 0.138 0.129 0.018
g 5 5 0.129 0.117 0.020 0.118 0.106 0.016 0.131 0.119 0.021 0.130 0.115 0.022 0.116 0.098 0.016 0.132 0.116 0.023
g 5 10 0.113 0.096 0.018 0.108 0.098 0.012 0.115 0.097 0.019 0.100 0.069 0.011 0.101 0.082 0.003 0.102 0.073 0.011
g 5 20 0.100 0.086 0.022 0.100 0.094 0.007 0.102 0.087 0.021 0.076 0.035 0.006 0.088 0.068 20.018 0.079 0.039 0.005
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~one for each moment! is inconsequential, or, if it matters, the expected
utility loss is balanced by the statistical gain from directly estimating the
portfolio policy.

As a more direct measure of the expected utility cost of collapsing the
multidimensional information into a single index or, equivalently, of solving
the constrained maximization problem ~8! instead of the unconstrained max-
imization problem ~2!, we report in Table IX the differences in certainty
equivalent rates of return for semiparametric policies with indices of two
predictors and fully nonparametric policies ~as in Brandt ~1999!! with the
same two predictors. Ideally, we would like to compare the semiparametric
policies with all four predictors to their fully nonparametric counterparts
but, as we explained in Section II.B, the nonparametric approach cannot be
applied to more than two predictors due to the curse of dimensionality. How-
ever, we hope that the comparison with two predictors is representative of
the results with all four predictors ~especially since the index tends to be
dominated by one or two predictors!.

The most surprising result in Table IX is that most of the entries are
positive, suggesting that collapsing the information into a single index gen-
erates an expected utility gain, not loss. Of course, the solution of the con-
strained maximization problem ~8! cannot dominate that of the unconstrained
maximization problem ~2!. Instead, the gains are due to our econometric
approach. In particular, the reason is that the optimal bandwidths for the
nonparametric estimator of the bivariate policy a~Z1, t ,Z2, t ! are substan-
tially larger than the optimal bandwidths for estimator of the univariate
policy function a~@Z1, t ,Z2, t #

'b;b!.38 This causes the estimates of the bivar-
iate policies to be less responsive to the data. Since the theoretical expected
utility difference cannot be positive, the difference due to the larger band-
widths can exceed 50 basis points per year ~for low levels of risk aversion!.

Focusing only on the negative entries in the table, where the expected
utility loss is not erased by the statistical gain, it appears that without a
risk-free rate there are significant interactions between the term spread
and trend variable at the monthly horizon and between the dividend yield
and term spread at the annual horizon. Similarly, with a risk-free rate, there
appears to be significant interactions between the default spread and term
spread at both the monthly and annual horizons and between the dividend
yield and term spread at the annual horizon. In both cases, the expected
utility loss due to the index can be as high as 50 basis points per year ~for
high levels of risk aversion!.

To put these expected utility losses into perspective, we compare them to
the expected utility gains from market timing based on the index ~of all four
predictors! instead of on each predictor individually. We show in Table X the

38 The asymptotically optimal bandwidths of a nonparametric regression are proportional to
T 210~K14!, where K denotes the number of regressors ~see Härdle ~1990!!. With T 5 528 obser-
vations, the bandwidths for the bivariate estimator are therefore approximately 23 percent
larger than those for the univariate estimator.
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Table IX

Bivariate Indices Versus Pairs of Predictors for the Conditional Portfolio Choice
This tables shows the annualized certainty equivalent rate of return required to make an investor with single-period mean-variance preferences
indifferent between semiparametric estimates of the conditional portfolio choice based on bivariate indices of the default spread, the log dividend-
to-price ratio of the S&P 500 index, the term spread, and the S&P index trend variable, and fully nonparametric estimates based on the same
pairs of predictors. The index coefficients are shown in Panel A of Table V. The investment horizon is one month or one year.

Without Risk-Free Rate With Risk-Free Rate

Def
LnDP

Def
Term

Def
Trend

LnDP
Term

LnDP
Trend

Term
Trend

Def
LnDP

Def
Term

Def
Trend

LnDP
Term

LnDP
Trend

Term
Trend

One-Month Horizon

g 5 2 0.0042 0.0047 0.0032 0.0018 0.0007 20.0011 0.0020 20.0021 0.0044 0.0013 0.0025 0.0027
g 5 5 0.0034 0.0039 0.0024 0.0011 0.0001 20.0015 0.0001 20.0035 0.0031 0.0001 0.0015 0.0024
g 5 10 0.0021 0.0026 0.0019 0.0003 20.0006 20.0024 0.0006 20.0048 0.0030 20.0009 0.0011 0.0007
g 5 20 0.0019 0.0020 0.0013 20.0009 20.0017 20.0036 0.0001 20.0056 0.0024 20.0014 0.0007 0.0001

One-Year Horizon

g 5 2 0.0034 0.0041 0.0016 20.0033 0.0026 0.0030 0.0008 20.0011 0.0033 20.0020 0.0019 0.0025
g 5 5 0.0017 0.0027 0.0010 20.0041 0.0010 0.0025 0.0003 20.0016 0.0024 20.0038 0.0013 0.0020
g 5 10 0.0012 0.0021 0.0010 20.0049 0.0008 0.0017 20.0010 20.0031 0.0018 20.0043 20.0005 0.0011
g 5 20 0.0011 0.0010 0.0008 20.0050 0.0001 0.0012 20.0016 20.0032 0.0009 20.0051 20.0010 0.0003
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differences in certainty equivalent rates of return for the portfolio policies
with indices and with individual predictors. Even when the individual pre-
dictor is the dominant variable in the index ~without a risk-free rate: the
dividend yield, term spread, or trend, depending on the level of risk aversion
and horizon; with a risk-free rate: the term spread!, the expected utility gain
from the index can be as large as 1.4 percent per year. When the individual
predictor is not the dominant variable in the index, the expected utility gain
can be almost three percent.

Overall, Tables IX and X suggest that our index approach is sensible for
general asset allocation problems where an analytical solution is not avail-
able. The expected utility gains from considering an index as opposed to
individual predictors is substantial, while the expected utility loss from an
index as opposed to multivariate predictors appears to be relatively small.

C.2. Horizon Effects

Horizon effects refer to differences in the portfolio choices of single-period
investors with different buy-and-hold horizons ~see also footnote 27!. In a mean-
variance setting, unconditional positive ~negative! horizon effects are induced
by an unconditional negative ~positive! autocorrelation in returns, which makes

Table X

Indices Versus Individual Predictors for
the Conditional Portfolio Choice

This tables shows the annualized certainty equivalent rate of return required to make an in-
vestor with single-period mean-variance preferences indifferent between estimates of the con-
ditional portfolio choice based on indices of the default spread, the log dividend-to-price ratio of
the S&P 500 index, the term spread, and the S&P index trend variable, and estimates based on
the individual predictors. The index coefficients are shown in Panel A of Table V. The invest-
ment horizon is one month or one year.

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

One-Month Horizon

g 5 2 0.0178 0.0147 0.0007 0.0063 0.0287 0.0250 0.0001 0.0164
g 5 5 0.0160 0.0123 0.0017 0.0045 0.0297 0.0267 0.0023 0.0185
g 5 10 0.0160 0.0110 0.0012 0.0075 0.0229 0.0202 0.0022 0.0166
g 5 20 0.0114 0.0093 0.0016 0.0046 0.0115 0.0105 0.0026 0.0073

One-Year Horizon

g 5 2 0.0138 0.0099 0.0072 0.0134 0.0171 0.0136 0.0068 0.0178
g 5 5 0.0195 0.0148 0.0109 0.0181 0.0202 0.0155 0.0055 0.0207
g 5 10 0.0174 0.0121 0.0111 0.0160 0.0101 0.0086 0.0011 0.0108
g 5 20 0.0199 0.0139 0.0153 0.0196 0.0056 0.0046 0.0014 0.0053
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stocks more ~less! attractive at long horizons than at short horizons. While the
mean return grows linearly with the horizon, the variance of the returns also
grows linearly when returns are uncorrelated, but grows less ~more! than lin-
early when they are negatively ~positively! autocorrelated. Furthermore, pre-
dictability can in some cases induce conditional mean reversion and thereby
generate conditional horizon effects ~e.g., Barberis ~2000!!.

The horizon effects for the conditional portfolio choice are most pro-
nounced for prospect theory investors, who avoid stocks like the plague in
the short-term but f lock to them at longer horizons, just as in the uncondi-
tional case ~see Table IV!. However, these hedging demands are not due to
unconditional or conditional mean reversion, but are rather attributed to the
simple fact that losses on risky securities are realized more often at short
horizons than at long horizons ~see also Benartzi and Thaler ~1995! and
Barberis, Huang, and Santos ~2001!!. For prospect-theory investors, the mean
reversion induced by predictability is a secondary source of horizon effects
that reinforces the primary effect due to loss aversion.

For the expected utility investors, in contrast, mean reversion is the only
source of horizon effects because it is the only reason for the Merton0
Samuelson horizon-irrelevance result to fail in a single-period setting ~recall
footnote 28!. The unconditional horizon effects in Table III are relatively
small, ref lecting the fact that returns are unconditionally not very autocor-
related. Both mean-variance and CRRA investors tend to allocate somewhat
less wealth to stocks and bonds at the annual horizon than at the monthly
horizon ~notice the positive autocorrelations of returns in Panel A of Table I!.
Conditional on the indices, however, the horizon effects are much more pro-
nounced. For example, consider the portfolio choice of a mean-variance in-
vestor with g 5 10. Although we cannot directly compare the portfolio policies
across horizons, since the indices are not the same, it is immediately clear
from the substantial bond positions at the monthly horizon that the portfolio
choice depends dramatically on how soon utility is realized.

Unfortunately, the horizon effects we find for the expected utility inves-
tors are only partially consistent with the popular advice that investors should
gradually shift from risky securities to cash as the end of their investment
horizon ~e.g., retirement! approaches. Consistent with this advice, suffi-
ciently risk-averse investors hold more bonds at the monthly horizon than
at the annual horizon. However, if we count bonds as risky securities, all
investors allocate more wealth to risky securities at the monthly horizon. It
is not clear, of course, that this pattern does not reverse at buy-and-hold
horizons longer than a year or in a multiperiod context with intermediate
rebalancing.39 We therefore turn next to the multiperiod portfolio choice.

39 Brandt ~1999! also documents negative horizon effects ~meaning less wealth allocated to
stocks at long horizons relative to the monthly portfolio choice! for horizons between two months
and one year. However, he finds positive horizon effects for buy-and-hold investments lasting
between 1 and 10 years.
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C.3. Hedging Demands

Hedging demands arise in a multiperiod ~i.e., long-horizon with intermedi-
ate rebalancing! portfolio choice when investors can partially hedge against
future changes in investment opportunities by deviating from their single-
period portfolio choice. To measure the extent to which hedging demands
arise in our setting, we solve for the multiperiod index coefficients bn and
portfolio weights an~Zt

'bn ;bn! of investors with an annual rebalancing fre-
quency and horizons n ranging from 1 to 10 years. We define hedging demands
as an~Zt

'bn ;bn! 2 a1~Zt
'b1;b1!, where b1 and a1~{! are the single-period index

and portfolio weights, respectively.
Besides studying hedging demands, we are interested in seeing how the

index composition bn varies with the horizon n. Intuitively, the index serves
two purposes in a multiperiod portfolio choice. First, the index forecasts the
features of the return distribution that are important to the investor, just as
in a single-period context. Second, it predicts next period’s index realization,
which in turn summarizes next period’s investment opportunities, to help
the investor hedge against future changes in investment opportunities. The
first purpose of the index is independent of the horizon but the second one
is not by definition.

We estimate bn and an~Zt
'bn ;bn! recursively, starting with the single-

period problem at the end of the horizon and recursing backward, period by
period, to the initial 10-period problem. Each period n we replace in our
estimator the single-period objective function v~Wt11! and its derivative
?v~Wt11!0?Wt11 with the multiperiod value function J~Wt11,Zt11

' bn21, n 2 1!
and its derivative ?J~Wt11,Zt11

' bn21, n 2 1!0?Wt11. The value function rep-
resents the expected utility of making optimal portfolio choices for the re-
maining n 2 1 periods, as a function of next period’s wealth Wt11 and
conditional on next period’s index realization Zt11

' bn21. We obtain the value
function by evaluating the maximized objective function of the ~n 2 1!-period
problem over a fine grid of initial wealth levels and index realizations.

We study only CRRA and ambiguity-aversion investors in this multiperiod
context. The reason is that mean-variance utility is inherently a single-
period objective that generates nonsensical multiperiod policies and prospect
theory yields trivial results, since with annual rebalancing, the short-sale
constraints are binding for all horizons and preference parameters.

Panels A and B of Table XI show estimates of the multiperiod index coeffi-
cients for CRRA and ambiguity-aversion investors with horizons of 1, 2, 5, and
10 years. Since the portfolio is rebalanced once a year, the one-year horizon
results correspond to the single-period index coefficients in Panel B of Table V
and Panel A of Table VII. To preserve space, we only present results for the
cases g 5 $5,10% and « 5 0.005. The results for different degrees of relative
risk aversion and ambiguity aversion are quantitatively similar.

It is clear that the optimal index composition depends at least to some
extent on the investor’s horizon. Consider, for example, the portfolio choice
with a risk-free rate of a CRRA investor with g 5 10. The single-period

1344 The Journal of Finance



index has loadings of 0.054, 0.218, 0.592, and 20.149 on the default spread,
dividend yield, term spread, and trend, respectively. For a 10-year portfolio
choice, the corresponding loadings are 0.022, 0.209, 0.721, and 20.048. The
general pattern is that long-horizon investors focus even more on the term

Table XI

Index Composition for Multiperiod Portfolio Choice
This table shows estimates of the optimal index composition for the conditional portfolio choice
of investors with multiperiod preferences:

Panel A: v~Wt1n! 5
Wt1n

12g

1 2 g
Panel B: v~Wt1n! 5 ~1 2 «!

Wt1n
12g

1 2 g
1 « inf

R

Wt1n
12g

1 2 g
,

where Wt1n denotes the terminal wealth in n periods. Each index is a linear combination of the
default spread Def, the log dividend-to-price ratio of the S&P 500 index LnDP, the term spread
Term, and the S&P index momentum variable Trend. The portfolio is rebalanced annually and
the investment horizon ranges from 1 to 10 years. The Without Risk-Free Rate estimates are
for a portfolio choice between stocks and bonds and the With Risk-Free Rate estimates are for
a portfolio choice between stocks, bonds, and Treasury bills. In both cases, the optimization is
subject to the short-sale constraints 0 # a # 1.

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

Panel A: Constant Relative Risk-Averse Investors

g 5 5

n 5 1 20.124 0.462 0.361 0.053 0.087 0.180 0.630 20.104
n 5 2 20.098 0.413 0.422 0.067 0.064 0.194 0.663 20.079
n 5 5 20.089 0.395 0.430 0.086 0.049 0.197 0.679 20.075
n 5 10 20.088 0.394 0.430 0.088 0.044 0.198 0.683 20.075

g 5 10

n 5 1 20.102 0.450 0.340 0.108 0.054 0.184 0.655 20.107
n 5 2 20.088 0.441 0.360 0.111 0.041 0.192 0.674 20.093
n 5 5 20.084 0.421 0.368 0.127 0.039 0.208 0.695 20.058
n 5 10 20.084 0.420 0.368 0.128 0.022 0.209 0.721 20.048

Panel B: Ambiguity-Averse Investors

g 5 5 and « 5 0.5%

n 5 1 0.012 0.512 0.367 0.109 0.041 0.218 0.592 20.149
n 5 2 0.015 0.461 0.405 0.119 0.028 0.229 0.608 20.135
n 5 5 0.016 0.442 0.419 0.123 0.020 0.232 0.617 20.131
n 5 10 0.016 0.438 0.420 0.126 0.016 0.234 0.622 20.128

g 5 10 and « 5 0.5%

n 5 1 0.024 0.521 0.294 0.161 0.035 0.213 0.606 20.146
n 5 2 0.036 0.509 0.289 0.166 0.022 0.222 0.625 20.131
n 5 5 0.042 0.487 0.298 0.173 0.016 0.229 0.627 20.128
n 5 10 0.043 0.483 0.300 0.174 0.011 0.231 0.633 20.125
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spread than single-period investors. Also, when the portfolio choice includes
a risk-free rate, long-term investors focus more on the dividend yield than
single-period investors. When it does not, they instead pay more attention to
the trend.

Panels A and B of Figure 5 plot the portfolio policies as a function of the
horizon ~along the horizontal axis! and the index ~across plots!. The three
plots in each row present the portfolio choice conditional on the index being
equal to its 25th percentile, median, and 75th percentile, respectively. The
black, grey, and white areas in each plot represent the estimated allocations
of wealth to Treasury bills, bonds, and stocks as a function of the horizon.

Relative to the recent and ever-growing literature on hedging demands
~e.g., Brennan, Schwartz, and Lagnado ~1997!, Campbell and Viceira ~1998,
1999!, Balduzzi and Lynch ~1999!, Brandt ~1999!, Chacko and Viceira ~1999!,
Barberis ~2000!, and Lynch ~2000!!, we surprisingly find relatively small
hedging demands. Even more striking, we find negative hedging demands,
in the sense that long-term investors allocate less wealth to risky securities
than short-term investors, instead of the consensus of positive hedging demands.

To understand our results, recall that for hedging demands to arise, the
returns have to be contemporaneously correlated with changes in the invest-
ment opportunities. Looking at Panel B of Table I, we notice that at the
one-year frequency, stock returns are ~by construction! strongly negatively
correlated with changes in the log dividend yield and strongly positively
correlated with changes in the trend variable ~20.36 and 0.31, respectively!.
They are weakly positively correlated with the term spread. Bond returns, in
turn, are only weakly positively correlated with both the default and term
spreads.

Most of the literature on hedging demands focuses on the dividend yield
as the leading state variable. Since stock returns are strongly negatively
correlated with innovations in the dividend yield, multiperiod investors in
these settings allocate more wealth to stocks than single-period investors,
since stock returns tend to be high when the dividend yield falls and the
investment opportunities next period worsen. In our setting, however, the
choice of the leading state variable is endogenously determined to be the term
spread. Since returns are not as correlated with changes in the term spread
as they are with changes in the dividend yield, our indices generate little
hedging demands. In fact, the weak positive correlation of both stock and
bond returns with changes in the term spread induces a slight reduction in
risky investments at longer horizons.

Another noteworthy feature of our multiperiod policies is that at horizons
of more than five years even CRRA investors do not invest in bonds. The
reason is that the negative correlation of the bond returns with changes in
the term spread ~or the indices! leads investors to reduce their bond holdings
as a hedge against changes in the investment opportunities. Therefore, our
results confirm, at least qualitatively, the popular investment advice that
short-term investors should hold a larger fraction of bonds relative to stocks
than long-term investors ~see also Canner, Mankiw, and Weil ~1997!!.
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Figure 5. Conditional multiperiod portfolio choice. This figure plots the conditional multi-
period portfolio choices with a risk-free rate of investors with constant relative risk-aversion
preferences, in Panel A, and ambiguity-aversion preferences, in Panel B. The horizon ranges
from 1 year to 10 years with an annual rebalancing frequency. The portfolio choice is condi-
tional on an index of the default spread, log dividend-to-price ratio of the S&P 500 index, the
term spread, and the S&P index momentum variable. The index coefficients are shown in
Table XI. The black, gray, and white areas represent the fractions of wealth allocated to Trea-
sury bills, bonds, and stocks, respectively.
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V. Conclusions

We showed how to use indices to select and combine predictive variables
for the conditional portfolio choice of an investor with given preferences and
investment horizons. We also characterized the optimal single-period and
multiperiod asset allocations between asset classes for a variety of investor
preferences as a function of their respective indices. This enables us to give
investors sensible advice, we hope, regarding the economic variables to which
they should pay attention and the sensitivity of their investments to the
~sometimes mixed! signal these variables send. As Campbell and Viceira
~1999! and others note, financial planners who provide advice to individual
investors have received surprisingly little guidance from academics. We hope
to have taken another step towards providing such advice.

Beyond the introduction of an index, an important feature of this paper is
that we considered investors with a variety of preferences, including both
expected and nonexpected utility objectives, which are viewed by psycholo-
gists as more realistic descriptions of human decision making under uncer-
tainty. Along the way, we identified features of these preferences that lead
investors to select different combinations of variables and react differently
to them.

At least four stylized facts emerged from our empirical analysis:

• The term premium is a ubiquitous variable in our indices, appearing
significantly across all preferences, investment horizons, and rebalanc-
ing frequencies. To a lesser extent, but fairly consistently, the S&P in-
dex momentum variable we termed “Trend” enters our indices at short
horizons, whereas the dividend yield is the second most important vari-
able at long horizons. The default risk premium generally records the
lowest index loadings.

• All investors, when presented with their index of investment opportu-
nities, find it optimal to engage in significant market timing.

• Horizon effects are most pronounced for prospect-theory investors, who
find the likelihood of stock losses at short horizons to be prohibitively
costly. For investors who are not subject to loss aversion, the relative
lack of returns autocorrelation translates into relatively small horizon
effects.

• Hedging demands are weak and negative because stocks do not provide
a good hedge for innovations in the index ~i.e., in the investment oppor-
tunities!. However, the index coefficients vary with the horizons.

Finally, it should be noted that in the second half of the 1990s ~which is
only partially included in our sample!, many of the patterns in expected
returns previously identified have weakened: The dividend-to-price ratio stub-
bornly predicted negative returns for the stock market which never materi-
alized; the size factor has all but disappeared; and value stocks earned
substantially lower returns than predicted on the basis of previously esti-
mated regressions. This should serve as a reminder that the magnitude of
predictability in returns is small and subject to a tremendous amount of
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noise, especially at short horizons. Our analysis incorporated this fact through
the standard errors of the estimated indices and optimal portfolio rules. The
size of these standard errors merely ref lects the fact that predicting returns
is difficult. Nevertheless, our estimates allow us to identify a few important
stylized facts about the optimal selection and combination of predictors, as
well as about market timing, horizon effects, and hedging demands.
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THE CURRENT PAPER BY YACINE AIT-SAHALIA and Michael W. Brandt ~henceforth
AB! addresses two issues that are of central concern in portfolio choice: How
can portfolio advice be made realistic while remaining tractable? How can
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