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We propose alternative generalized method of
moments (GMM) tests that are analytically solva-
ble in many econometric models, yielding in par-
ticular analytical GMM tests for asset pricing mod-
els with time-varying risk premiums. We also
provide simulation evidence showing that the pro-
posed tests bave good finite sample properties and
that their asymptotic distribution is reliable for
the sample size commonly used. We apply our tests
to study the number of latent factors in the pre-
dictable variations of the returns on portfolios
grouped by industries. Using data from October
1941 to September 1986 and two sets of instru-
mental variables, we find that the tests reject a one-
Jactor model but not a two-factor one.

A fundamental problem in finance is to characterize
the expected return on a security. Sharpe (1964), Lint-
ner (1965), Black (1972), Ross (1976), Merton (1973),
and Breeden (1979), among others, develop asset
pricing models that imply that the expected return
on a security is a linear function of factor risk pre-
miums. Traditional empirical analysis assumes that
the factor risk premiums are constant. There has been
an enormous amount of research in this direction.
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Gibbons, Ross, and Shanken (1989), Kandel and Stambaugh (1990),
Zhou (1991), and Shanken (1992), for example, provide both the
estimation strategies and the associated tests for the constant risk
premium beta pricing models.

Many recent studies allow the factor risk premiums to be time-
varying, generating a class of latent variables models. Hansen and
Hodrick (1983) and Gibbons and Ferson (1985) are the first to derive
such models to examine time-varying factor risk premiums. Subse-
quently, Campbell (1987), Cumby (1987), Chan (1988), Stambaugh
(1988), Campbell and Hamao (1992), Ferson (1990), Chang, Pinegar,
and Ravichandran (1991), and Zhou (1993a), among others, use sim-
ilar models to study stock returns, forward currency premiums, inter-
national equity returns, and capital market integration. Ferson and
Foerster (1991) provide a brief survey of the literature in addition to
their study of finite sample properties of Hansen’s (1982) generalized
method of moments (GMM) test. This GMM test is the predominant
approach for parameter estimation and hypothesis testing in the latent
variables models.

This article proposes new GMM tests that are analytically solvable
in a wide range of asset pricing models, a special case of which is
the latent variables models. One of the primary difficulties in applying
the traditional GMM procedure is to solve the GMM optimization
problem, which is often done numerically over a large parameter
space. For example, in a simple case where there are 12 assets, 2
factors, and 5 instrumental variables, the optimization problem in the
latent variables models requires the minimization of a complex non-
linear function in a 30-dimensional space. If there are 24 assets and
4 factors, the dimensionality increases to 100. One of the well-known
problems with numerical procedures is that the solution may not
converge to the global minimum or even converge at all. Because of
this, the task of solving for the traditional GMM test can be very
difficult if not impossible to accomplish in many applications. Our
tests overcome this difficulty, making the GMM approach applicable
to cases where there may be hundreds of parameters. The underlying
idea of the tests is simple. Realizing that it is extremely difficult to
solve the GMM optimization problem analytically in general, we focus
instead on a special case where the model residuals are independent
and identically distributed (i.i.d.). Fortunately, explicit solutions in
the i.i.d. case are available for many models, and they can be adjusted
to yield analytical GMM tests that are valid even in the general case
with heteroskedasticity.

The article is organized as follows. In Section 1, we propose our
alternative GMM tests based on arbitrary weighting matrices (in con-
trast, the usual GMM tests are obtained based on the optimal weight-
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ing matrix). In Section 2, we apply our method to the latent variables
models to obtain analytical GMM tests. The method may also be
applied to testing, among others, the arbitrage pricing theory (APT)
and the multibeta pricing models. In Section 3, we apply the tests to
investigate the number of “priced” latent factors in the U.S. equity
market. In Section 4, we provide simulation evidence on the perfor-
mance of the proposed GMM tests in finite samples. Section 5 con-
cludes the article.

. Alternative GMM Tests

In this section, we show how to obtain the alternative GMM tests that
are based on arbitrary weighting matrices. As will be clear later, the
important advantage of the alternative GMM tests is that they can be
analytically obtained in many applications where it may be extremely
difficult to obtain numerically the conventional GMM test.

Hansen (1982) proposes a GMM for the estimation and testing of
a wide class of econometric models. The idea of the GMM approach
is to use sample moment conditions to replace those of the model.
Then, the parameter estimators are obtained by minimizing a weighted
quadratic form of the sample moments. Formally, let 8 be a g-vector
of the parameters of an econometric model, U,(6) be an N-vector of
the model disturbances, and Z,_, be an L-vector of the instruments.
Then, the model can be written as

Ef.(6)]=0, f£(6 =00 QZ_, €Y)

where ® is the Kronecker product that makes f,an NL-vector function
of both the disturbances and the instruments. Let g, be the sample
mean of £,

80 == D0, N X1 @)

At the true population parameters, because the population mean of
f, must be zero [satisfying the above NL moment conditions (1)], the
sample mean g, should be small and so should a quadratic form of
gr. To estimate the parameters, we use the solution, (f, which mini-
mizes the quadratic form:

min Q = g.(0)'W,g,(8), 3)

where Wy is an NL X NL weighting matrix that is positive definite.
The resulting estimator is Hansen’s (1982) GMM estimator.

With different choices of the weighting matrix, one obtains different
estimators. Although differing in statistical properties, these estima-
tors are nevertheless consistent. Hansen (1982) derives the optimal
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estimator, which is obtained by choosing the weighting matrix that
minimijzes the asymptotic covariance matrix of the estimator. Depend-
ing on the type of heteroskedasticity and autocorrelation assumed,
the optimal weighting matrix may take different forms. In general, it
can be taken as W, = S;!, where S, is a consistent estimator of the
covariance matrix of the model’s moment conditions [Newey and West
(1987) provide a general approach to obtain such an estimator].
Assume the number of moment conditions (NL) is greater than the
number of parameters (g), so there are (NL — g) overidentification
restrictions in the model. These overidentification restrictions are
often tested by computing the well-known Hansen test statistic:

H, = Tgr(é) Wrgr(é): (4)

where W, is the optimal weighting matrix, W, = S$7'. Under certain
regularity conditions [see Hansen (1982)], H, is asymptotically dis-
tributed x? with the degree of freedom (NL — g).

Notice that, to obtain H,, we have to solve the GMM optimization
problem (3). Usually, the problem cannot be solved analytically and
numerical procedures are the only available approach. However, there
are three major difficulties in using numerical procedures. First, the
success or failure of a numerical optimization algorithm usually
depends on how close an initial estimate is to its true solution, and
a good initial estimate is often difficult to obtain. Second, it is well
known that, as the number of parameters increases, it becomes more
difficult to search for the minimum in a space whose dimensionality
is the number of the parameters. Finally, as emphasized by Judge et
al. (1985, p. 969), numerical algorithms often converge only to the
local maximum or minimum. Therefore, if the numerical solution of
the GMM optimization problem (3) achieves only a local minimum,
then the test statistic obtained will be greater than the global mini-
mum and an erroneous rejection of the tested theory can result.

We can avoid the above difficulties if an analytical solution that
achieves the global minimum is available. Notice that H, is defined
with W;as the optimal weighting matrix. Given the complexity of the
optimal weighting matrix in the general case, it is difficult or impos-
sible to solve (3) analytically. However, simple intuition suggests that
an analytical solution to (3) may be possible if the weighting matrix
is chosen of some particular form. Indeed, as shown in Section 2, we
can obtain analytical solutions for a class of weighting matrices, such
as the identity matrix or the inverse of a covariance matrix based on
an i.i.d. assumption. Moreover, such analytical solutions are available
not only for the latent variables models, but also for many others.
Given that analytical solutions are available to (3) for some simplified
weighting matrices different from the optimal one, there is no reason
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that the resulting quadratic form multiplied by 7 should have an
asymptotic x? distribution. Hence, to make use of the possible ana-
lytical solutions, we need a new GMM test that is well defined for
the simplified weighting matrices.

Theorem 1. Let W;. be any NL X NL positive definite matrix that may
lge either stochastic or nonstochastic. The associated GMM estimator
0 must be consistent.! Define

H, = T(Mg,;)'V,(Mg;), )
where g, = gr(é ) evaluated from (2); V; is a diagonal matrix, V, =
Diag(1/v,, ..., 1/v, O, ..., 0), formed byv,> ... > v,> 0, the

Dositive eigenvalues of the following NL X NL semidefinite matrix:
Q.= [I — D(D;W; D)~ "D W;]S; [I — D (D;W; D)~ 'D7Wy]', ©6)

where 8;is a consistent estimator of the residual covariance matrix;
D.is an NL X q matrix of the first-order derivatives of g, with respect
to 0; and M, is an NL X NL matrix, of which the ith row is the
standardized eigenvector corresponding to the ith largest eigenvalue
(i=1,. .., NL). Then H, is asymptotically distributed x? with degrees
of freedom (NL — q).

Proof. See Appendix A.

Theorem 1 says that, based on an arbitrary weighting matrix or an
arbitrary consistent GMM estimator, an asymptotic test can be con-
structed. If the consistent GMM estimator is analytically available or
if (3) can be solved analytically for some specially chosen weighting
matrix, then H, provides an analytical GMM test. As will be clear later,
we often impose the i.i.d. assumption on the model residuals to obtain
an analytical GMM estimator, but H, computed from (5) is valid under
the most general heteroskedasticity assumptions as spelled out in
Hansen (1982).

In comparison with the traditional GMM test, which is often difficult
or impossible to obtain, H, is analytically tractable for a number of
models, of which the latent variables models is a special case. This
is the major advantage of H, over the traditional GMM test. On the
other hand, the motivations of the two tests are closely related. Both
H, and H, are based on normalizations of the asymptotic covariance
matrix of S7'/2g,. To examine this linkage, consider W, = 87! in the
i.i.d. case. Because W, is now the optimal weighting matrix, the

' Here we suppose for Theorem 2 that the regularity conditions, Assumptions 3.1-3.6 of Hansen
(1982), are satisfied.
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asymptotic covariance matrix is already idempotent, and thus no nor-
malization is necessary. This implies that the M, and the V, matrices,
which play the role of normalization, can be chosen as $7%/2 and the
identity matrix, respectively. This procedure gives rise to the tradi-
tional GMM test. On the other hand, H, is obtained with normalization
of the asymptotic covariance matrix regardless of whether the weight-
ing matrix is optimal or not. Hence, H, is a generalization of the
traditional GMM test: the former is defined for an arbitrary weighting
matrix while the latter is defined only for the optimal weighting
matrix.

Applications

In this section, we discuss first the asset pricing restrictions in the
latent variables models and show that the usual latent variables tests
are in fact a test of a rank hypothesis. Second, we apply our method
in Section 1 to obtain analytical GMM tests to test the rank hypothesis.
The method can be useful wherever the GMM approach is relevant.
For example, it can also yield analytical and semianalytical tests of
such nonlatent variables models as the multibeta pricing models [see,

. e.g., Kandel and Stambaugh (1990)], the APT [Ross (1976)], and the

consumption capital asset pricing model (CCAPM) [Breeden (1979)].
Finally, we examine the relationship between the GMM estimator and
the maximum likelihood estimator under the rank restriction.

2.1 Asset pricing restrictions
Consider a general K-factor asset pricing model of the form

E(rylZ, ) = \N(Z, ) + BiM(Z, ) + ...+ BA(Z,_,), (7)
i=0,1,..., N, t=1,...,T,

where 7, is the return on asset i between period ¢ — 1 and # A\ (Z,_,)
is the marketwide expected risk premium on the jth factor; Z,_,, L X
1, is the marketwide information available at ¢ 8,,, ..., By are the
conditional betas of asset #; N + 1 is the number of assets (N > K);
and T'is the number of periods.

In terms of excess returns, the pricing relation (8) can be written

E(Rn lz,_,) = blixl(zl—l) + ...+ blG)\K(Zt—l)v (8
i=1,..., N, t=1,...,T,

where R, = r, — r, is the return on the 7th asset in excess of the
return on the Oth asset (the Oth asset is arbitrarily ordered), and by
= B4 — By is the “excess” conditional beta. In matrix form,

ER |Z) = M2)B, ©)

692



Analytical GMM Tests

where R is a T X N matrix formed by the N excess returns over T
periods; Z, T X L, the instrumental variables; A(Z), T X K, the risk
premiums on the K factors; and B, K X N, the excess conditional
betas. We assume that the number of information variables is greater
than the number of factors, that is, L > K In addition, we assume
that both A(Z) and B have full-column rank K[A(Z) is so with prob-
ability one]. Otherwise, (8) would be reduced to a pricing model
with the number of factors being less than K

As emphasized by Fama (1991), we cannot test any pricing theory
without specifying the law of motion for the asset returns. Given
statistical assumptions about the stochastic behavior of the returns,
Equation (9) has testable restrictions on the parameters of the statis-
tical model. Following most studies, we assume the returns are gov-
erned by the multivariate regression model:

R, = 0132—1,1 L o 0L1Z:—1,1. + u,, (10)
i=1,..., N, t=1,...,T,

where u,’s are the disturbances or forecasting errors that have zero
means conditional on the instruments. Put differently, the realized
returns are decomposed into two parts: the predictable part and
unpredictable part. The predictable part is 6,,Z,_,, + ... + 0,Z,_,,,

“which can be forecasted by the investor’s available information at .
The unpredictable part cannot be forecasted with the available infor-
mation.

The K-factor asset pricing model says that the predictable returns
are driven by K latent factors, resulting in the pricing restriction (9).
The objective is to test whether this restriction is valid given that the
returns are governed by (10). By (9) and (10), we have ERR | Z) =
Z0 and \(Z) = ZA, where A is an L X K constant matrix. Hence, we
can conclude that Z® = A(Z)B = ZAB. Assume throughout that there
are no redundancies in the information set, so that the L X L matrix
Z'Z is invertible (with probability one). Then we must have & = AB,
implying that @ has rank less than or equal to K. By the assumptions
on A(Z) and B, ® must have rank K. On the other hand, if ® has rank
K, there must exist an L X K matrix A and K X N matrix such that @
= AB and the pricing restriction follows. Therefore, given the return
process (10), the pricing restriction (9) is valid if and only if the
multivariate regression coefficient matrix ® has rank K

2.2 Analytical GMM tests
In latent variables models, the conditional mean of the disturbances
is assumed to be zero:

E(Ut I Zt—l; Uf—l) zt—Zr . -) = O (11)
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Equation (11) says that economic agents’ forecast of the return of the
unpredictable part is zero conditional on the available information.
In this case, as shown in Hansen (1982), a consistent estimator of
the covariance matrix of the moment conditions is given by

1 &
S$,= ? E ou®z._z, ), (12)

where U, is evaluated at any consistent estimate of the model param-
eters @. If we assume that the conditional covariance matrix of the
residuals is constant, then a consistent estimator of the covariance
matrix of the moment conditions is

1 <« 1 —
= (; > U,U;> ® (7 2 z,_,z:_l). (13)
=1 =1

This latter S, is also a consistent estimator when the residuals are
i.i.d. In other applications, the heteroskedasticity may be different,
and so the general estimator of Newey and West (1987) should be
used in place of S;.

Given the optimal weighting matrix W, = 87! where S;is given by
(12), it is very difficult if not impossible to solve analytically the GMM
optimization problem (3). Fortunately, we can obtain an explicit
GMM estimator (which achieves the global minimum) for a wide
class of weighting matrices including, in particular, the identity matrix
and W, = 87 where S, is given by (13). To make it easier for appli-
cations, we summarize the results as Theorem 2. To simplify the
presentation, we will use the matrix form of the return process (10):

R=12Z0 + U, (10)

where R, Z, and @ are defined in the previous subsection.

Theorem 2. If the weighting matrix is of the form:
W,=W,QW, W:NxXN  Ws.LXxIL,

then the GMM estimator of® under the rank K restriction is explicitly
given by
@=4B, A LxK B KxN, (14)
where
A= (Z’PZ/T?) —/’E, P=ZW,Z P Tx T,
B= (zv'PZ*)"'Z*'PR, Z*=1ZA,2":TX K

and E is the L X K matrix that stacks the ‘“‘standardized’ eigenvectors
(E'E = I) corresponding to the K largest eigenvalues of the L X L
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matrix:
(Z'PZ/T?)V?(Z'PR/T?)W,(Z'PR/T?)(Z'PZ/T?)~"2. (15)
Furthermore, the minimum of Q is given by
Q*= W, (R'PR/T?) — v, — ... — Y (16)

where v, . .., Yx are the K largest eigenvalues of the L X L matrix
given by (15).

Proof See Appendix B.

The difficulties in the usual numerical approach can potentially be
insurmountable in applications where the number of the parameters
is large. This is especially true when either the number of assets or
the number of instruments is large. In contrast, there are in principle
no difficulties in using the analytical solutions. As long as Z'PZ and
Z*'PZ* are invertible matrices, the analytical estimators can be eval-
uated for any number of assets or instruments. There is no concern
with convergence and the result is guaranteed to be the global min-
imum.

To efficiently implement the analytical GMM estimator, one can
compute Z'PZas (Z'Z)'W,(Z'Z). Z'PR can be treated similarly so that
no T x T matrices are needed for storage in the computer program.
Because it is computationally more efficient to obtain the Cholesky
decomposition than to obtain the square root, (Z'PZ/T?)~/* may be
replaced by the lower triangular matrix of the Cholesky decomposition
of the matrix (Z'PZ/T?) 1. To verify the results against possible cod-
ing errors in the computer program, the minimized Q may be com-
puted from both (16) and Q = g/W,g,. Additionally, the first-order
derivatives of Q with respect to the parameters may also be computed
and checked as to whether they are zero.

The estimates of A and B are not unique, since for any given esti-
mate of A and B linear transformations of them, AC and C~'B, give
rise to the same estimate of ®, where C is any K X Kinvertible matrix.
Fortunately, the estimate of @ is unique, and so the estimates of both
A and B are determined up to a linear transformation. In particular,
they are unique under the following normalization:

A'Z'PZA = T4, 17)

The unique estimator provided by Theorem 2 uses this normalization.
In the latent-variables literature, the most widely used normalization
partitions the parameter matrix B into (I, B,), thus requiring the first
K X K submatrix of B to be the identity matrix, that is, B = (I, Bz)
[see, e.g., Ferson and Foerster (1991), p. 9]. The estimators under this
conventional normalization are easily obtained from AandBasA =
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AC'and B = Cﬁ, where C is a K X K nonsingular matrix such that
the upper K x K submatrix of CB is an identity matrix of order K.
Such a matrix C is in fact uniquely given by the inverse of the first K
X K submatrix of B, which is nonsingular (with probability one).

Based on Theorem 2, a consistent estimate of @ is first analytically
obtained by choosing the weighting matrix as the identity matrix.
Then, S; can be computed from (13) and the GMM estimator can be
analytically evaluated for W= Sz*. This estimator will be the optimal
GMM estimator in the case where the model residuals satisfy (11)
and where the conditional covariance matrix is constant, as occurs
with i.i.d. residuals. In general, however, the consistent estimator
provided by Theorem 2 is not the optimal estimator in the presence
of heteroskedasticity. Nevertheless, Theorem 1 allows us to construct
the analytical GMM test H, as given by (5).

After the usual normalization of the population parameters, we let
0 = vec(A, B,) be a vector of all the free parameters, which has in
total g= KL + K(N — K) = K(N — K + L) elements. At the above
analytical estimator provided by Theorem 2, we can evaluate g Dy,
and the S, matrix as given by (12) and hence obtain H, by (5). [S,
can be another consisitent estimator such as Newey and West’s (1987).]
Based on Theorem 1, H, is asymptotically distributed x2 with degrees
of freedom (L — K) (N — K) under the very general heteroskedasticity
conditions of Hansen (1982). This offers an analytical test? of the
overidentification restrictions imposed on the model by the K-factor
pricing theory.

The above analytical test H, will be applied later to the U.S. equity
market (Section 3), but it can also be applied to study bond returns,
term structure models, forward currency premiums, international
equity returns, and capital market integration, in the same manner as
Campbell (1987), Cumby (1987), Chan (1988), Stambaugh (1988),
Campbell and Hamao (1992), Ferson (1990), Chang, Pinegar, and
Ravichandran (1991), Ferson and Foerster (1991), and others. H, will
be especially helpful in situations where it is difficult to obtain the
traditional GMM test by numerical methods. For example, in their
study of international capital markets, Harvey, Solnik, and Zhou (1992)
use 44 asset returns and 8 instruments, giving rise to a GMM opti-
mization problem with 100 parameters in a two-factor case. Because
there are so many parameters, the authors cannot solve the GMM
optimization problem numerically, but our analytical test can be

* Rob Stambaugh pointed out to the author a much simpler analytical two-step estimator: obtain first
the fitted latent factors by using K unconstrained regressions and then run N — K regressions on
the fitted latent variables. However, this is not a GMM estimator. Nevertheless, it seems possible
to derive a test based on this two-step estimator by using techniques advanced in Gallant and White
(1988).
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applied in a straightforward manner. In addition, Zhou (1993a) shows
that latent variables models provide a convenient and powerful frame-
work for testing asset pricing models with constant risk premiums
because many of such models imply similar rank restrictions. There-
fore, the results of this study may also be used to examine the validity
of constant risk premium models. Examples include the APT and the
multibeta pricing models.

2.3 Relationship with the maximum likelihood approach

If the model residuals are not only i.i.d., but also normally distributed
with mean zero and a constant nonsingular covariance matrix, a max-
imum likehood (ML) approach may be used. Gibbons and Ferson
(1985) are the first to use such an approach to test asset pricing theory
in latent variables models. However, their inference is based on an
asymptotic test and the estimation is done by nonlinear numerical
maximization. As an extension of their work, Zhou (1993a) provides
an exact Wald test, which is computed analytically from the ordinary
least square (OLS) estimator. The Wald test is also shown to be equiv-
alent to the likelihood ratio test in small sample, making it straight-
forward to use the ML approach in latent variables models. Although
it seems difficult to derive the exact distribution of the constrained
ML estimator, the asymptotic distribution can be obtained from the
present GMM framework. By using Theorem 2 and its proof, we know
that the constrained ML estimator is a GMM estimator with the past
regressors as instruments, and so it is asymptotically normal with the
asymptotic covariance matrix computed as usual.

Empirical Results

In this section, we apply our testing method to examine the number
of “priced” latent factors in the U.S. equity market. The asset returns
used in the K-factor model are 46 portfolios of monthly stock returns
that are consistently available from October 1941 to September 1986
and are from the CRSP data base (the Center for Research in Security
Prices at the University of Chicago). The portfolios are value-weighted,
grouped by the stock’s first two-digit standard industry classification
(SIC) code. By arbitrarily taking the first group (in terms of the SIC
code) as the first asset, there are 45 industry returns in excess of the
first group and T = 540 observations.

There are two sets of instrumental variables that are used in our
test. The first is a small instrument set, which contains three variables:
a constant, the lagged return on the equal-weighted index in excess
of the 30-day Treasury bill rate (market premium), and the lagged
monthly return on a 90-day bill in excess of the 30-day bill rate (term
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premium). The second is a large instrument set that combines the
small instrument set and three other variables: a dummy variable for
January; the lagged yield on Moody’s BAA-rated bonds minus the
yield on Moody’s AAA-rated bonds (junk bond premium); and the
lagged dividend yield on the Standard and Poor’s Composite Stock
Price Index minus the return on a 30-day bill (dividend yield spread).
Fama (1984) and Campbell (1987) find that measures of the interest
rate term premium can predict monthly stock returns. Fama and French
(1988, 1989) and Campbell and Shiller (1988), among others, show
that the dividend yield spread has power in forecasting returns. Keim
and Stambaugh (1986) demonstrate the usefulness of junk bond pre-
miums in predicting stock returns.

To test the K-factor theory, we first need to estimate the parameters
of the return generating process (10) under the null hypothesis that
the K-factor theory is valid. The estimation is done in three steps.
First, an estimator is computed by using our analytical solution (The-
orem 2) with the weighting matrix W, being the identity matrix.
Second, the residuals computed with this estimator are used to com-
pute S;using (13). Finally, the weighting matrix W= S7! is used to
obtain a second-round analytical estimator. One can indeed verify
the result that the derivatives of the objective function with respect
to all of the normalized parameters are zero. Based on this second-
round analytical estimator, the GMM test H, is evaluated from (5).
For comparison, we also compute the conventional GMM test, H,. As
noted earlier, H, has to be solved numerically for general heteroske-
dastic model residuals.? However, as we emphasized previously, the
numerical optimization is not always possible. Indeed, we often fail
to find convergent solutions for larger values of N, so H, is reported
only when it is available.

In our testing, we analyze not only the full set of the N= 45 excess
returns, but also some subsets. In deciding on the subsets, we rank
the excess returns by their means and choose the most disperse group
possible. For example, assets whose ranks are 1, 5, 10, 15, 20, 25, 30,
35, 40, and 45 are chosen as a subset with N = 10 assets. For N = 20
(N = 30), we choose the assets in the N =10 (N = 20) group, plus
10 new assets. This way, we obtain four subsets out of the 45 assets
with N= 10, 20, 30, and 40 being the number of assets in each of the
subsets.

Table 1 provides the results. In the case where the small instrument
set is used, panel A reports H,, H,, and H,,, where Hy is the con-

3 The GMM minimization problem is solved by using the optimization program of Shanno and Phua
(1980). As with any such program, an initial value of the GMM estimator must be supplied. The
second-round analytical estimator is used as the starting point.
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ventional GMM test statistic computed under an i.i.d. assumption.
Note that H,q is provided by Theorem 2 under the i.i.d. assumption.
The associated p-values based on the asymptotic x? distributions are
in parentheses. When the null hypothesis that there is one “priced”
latent factor is tested against the alternative that there are more than
one factor, the p-values from these three tests are 0, 9, and 9.5 percent
for the N = 10 assets case. Notice that the difference between Hjy
and H, lies in the i.i.d. assumption imposed on Hg,. If the i.i.d.
assumption is true, the numerical values of H,4 and H, are close, as
will be demonstrated below in Section 4. Thus, it seems that the low
p-value from H,y is due to the presence of heteroskedasticity, and
hence the test of the null hypothesis should be based on H, or H,.
Because the p-values from H,and H, are 9 and 9.5 percent, we cannot
reject the one-factor hypothesis for the N= 10 assets case at the usual
5 percent significance level. When the null hypothesis of K = 2 is
examined, all of the p-values are greater than 40 percent, and we
cannot reject the null at all. As the number of assets increases from
10 to 20, the p-values become smaller. However, when N increases
from 20 to 30 and from 30 to 40, they become slightly larger. Overall,
a one-factor model gets rejected at the 5 percent level using 20, 30,
40, and 45 assets, but a two-factor model cannot be rejected in any
of the cases.

To study the sensitivity to instruments, we repeat the tests by using
the large instrument set. The results are reported in panel B. The
p-values are generally smaller than those in the small instrument case,
but the conclusion is basically the same. That is, the one-factor
hypothesis is rejected at the usual 5 percent level for the 20, 30, and
40 assets cases, but the two-factor model is not rejected. Of course,
the failure to reject a two-factor model may be due to the tests having
low power, but this issue must await further research.

Finite Sample Properties

In this section, we study the finite sample properties of H, and H, in
the context of the latent variable models. In contrast to numerical
procedures, the analytical solution makes it feasible to study the finite
sample properties of H, in both the i.i.d. case and the heteroskedas-
ticity case. Recall that Theorem 2 gives rise to the optimal estimator
in the i.i.d. case, and hence we also obtain the conventional GMM
test H,,, which is H, when the i.i.d. assumption is imposed. Therefore,
in the i.i.d. case, we can easily perform simulations for both H, and
H,,. In the heteroskedasticity case, however, H, is obtained analyti-
cally, but H, is not . Without the analytical solution, there are at least
two difficulties in performing simulations for H,. First, it is difficult
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Table 1
The number of latent factors
H, H, H,
A: Small instrument set (L = 3)!
N=10 K= 47.986 26.435 26.206
(0.000) (0.090) (0.095)
K=2 8.201 8.325 8.022
(0.414) (0.402) (0.431)
N=20 K= 78.719 61.433 69.693
(0.000) (0.009) (0.001)
K=2 26.137 27.261 27.707
(0.097) (0.074) (0.067)
N=30 K= 94.401 83.322 83.336
(0.002) (0.016) (0.016)
K=2 32.258 32.823 32.228
(0.264) (0.242) (0.265)
N=40 K= 118.476 104.340 *2
(0.002) (0.025) .
K=2 42.989 44.516 .
(0.266) (0.217) .
N=45 K=1 123.844 112.141 .
(0.007) (0.042) *
K=2 46.469 48.723 *
(0.331) (0.254) .
B: Large instrument set (L = 6)
N=10 K=1 87.738 58.202 57.791
(0.000) (0.090) (0.096)
K=2 44.447 35.897 35.290
(0.071) (0.291) (0.315)
N=20 K=1 151.468 121.787 13.567
(0.000) (0.033) (0.850)
K=2 94.162 84.601 84.770
(0.041) (0.147) (0.144)
N=30 K=1 224.940 179.706 180.351
(0.000) (0.027) (0.025)
K=2 146.971 130.796 hd
(0.015) (0.108) .
N=40 K=1 287.369 228.847 .
(0.000) (0.049) *
K=2 194.670 175.553 *
(0.011) (0.093) *
N=45 K=1 310.652 251.769 .
(0.000) (0.070) .
K=2 214.588 197.742 hd
(0.015) (0.087) .

If the K-factor pricing theory is valid, the expected excess asset returns satisfy
E(Rnizn—l) = bu"l(zr—-l) + o+ bxi)\x(z:—l)y

where A(Z,_,) is the market wide expected risk premium on the jth factor; Z,_,, L X 1, are the
instruments representing marketwide information available at # and b,,, . . ., by, are the conditional
excess betas. The above pricing relationship is equivalent to a rank K restriction on ©, an L X N
regression coefficients matrix of the excess return-generating process:

le=auzl—1,|+"'+0LrZ:—1.L+um i=1,..., N t=1,..., T,

where u,’s are the disturbances. The data are the monthly industry returns, and there are 45 excess
asset returns with T = 540 observations.
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to automate the process of obtaining hundreds and thousands of
numerical solutions. Second, it is difficult to interpret those solutions
that are the possible local minimums or the nonconvergent draws.
As a result, we perform simulations only for H, in the heteroskedas-
ticity case.

Consider first the i.i.d. case where the residuals U, are assumed to
have a multivariate normal distribution with zero means and covari-
ance matrix 2. Given the parameters 8 and Z, it is straightforward to
generate the residuals and hence the returns. In other words, once
the parameters @ and 2 are prespecified, we can generate hundreds
of sets of residuals and returns. With these artificial data, H, and Hy
are easily computed and compared with their asymptotic x? distri-
bution.

It is, however, not an easy matter to generate the residuals in the
heteroskedasticity case because a specific form of heteroskedasticity
has to be specified. There are many possible specifications, but we
use a simple one: let Z¥ , be a subset of Z,_, such that we can assume
Z} | and U, are jointly multivariate ¢ distributed with the degree of
freedom » and the nonsingular covariance matrix V. Partition V as

Vi, V
V = 11 12) ,
<V21 Vo
where V,, = 2. To be consistent with both (10) and (11), Z* , and

U, must be uncorrelated, that is, V,, = V,, = 0. However, Z¥ , and U,
will not be independent. Indeed,

Var(U, | zr )= cl+ @y, —Z)'V3(ZE, -2 /(v — 2)]"221 (18)

where Z¥ is the population mean of Z¥ , and c = (v — 2)/(»v — 1).
Thus, the covariance matrix of the residuals are heteroskedastic or
time-varying in the particular fashion of (18). As v increases, the
multivariate ¢ distribution approaches the multivariate normal distri-
bution and Var(U, | Z¥_,) approaches the constant matrix V,,, making
the heteroskedasticity less important. In the extreme case of » = +00,
it collapses to the i.i.d. case.

(——-
Panels A and B report the testing results by using a small and a large instrument set, respectively.
Both H,, and H, are the conventional GMM test statistics with and without the i.i.d. assumption,
and H, is the analytical GMM test statistic (Theorem 1). Under the null hypothesis that the K-factor
model is true, all the tests are asymptotically x? distributed with (L — K)(¥ — K) degrees of
freedom. The p-values are reported underneath the test statistics.

' The small instrument setis {Z,, Z,y, Zy}, and the large instrument set contains all the instrumental
variables.

* The traditional GMM test statistics and the associated p-values are not reported in these cases
because of the failure of convergence of the numerical procedures used.
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Table 2
Finite sample properties of GMM tests
T=60 T=120 T =240 T =480
A: Rejection rate of H,, (size = 5 percent) under i.i.d.!
N=10 0.035 0.044 0.047 0.050
N=20 0.019 0.033 0.041 0.044
N=30 0.006 0.029 0.041 0.044
N=40 0.001 0.021 0.041 0.047
B: Rejection rate of H, (size = 5 percent) under i.i.d.?
N=10 0.032 0.045 0.050 0.049
N=20 0.019 0.034 0.042 0.046
C: Rejection rate of H, (size = 5 percent) under heteroskedasticity?
N=10 0.085 0.065 0.054 0.046
N=20 0.058 0.074 0.042 0.034

The table provides simulation evidence of the finite sample properties of both the conventional
GMM test (H,,) with the i.i.d. assumption and the proposed analytical GMM test (H,). At the fixed
test size of 5 percent determined from their asymptotic x? distributions, the rejection rates of the
tests are computed for an array of the number of assets (V) and the sample size (7).

' Based on 10,000 simulated data sets.
* Based on 5,000 simulated data sets.

In the simulation study that follows, we fix, for simplicity, the size
of the tests at 5 percent.* In addition, we let L=3, K=1,andv =8
throughout.> But we allow both the number of assets (N) and the
sample size (T) to vary over a number of plausible values. All param-
eter values are set equal to those estimated in Section 3. Specifically,
0 is set equal to the second-round analytical estimates, and 2 is taken
as the sample covariance matrix of the fitted residuals. In addition,
Z} , is taken as the small instrument set excluding the constant, and
its sample mean and covariance matrix are taken as Z* and V,,. With
these specifications, it is straightforward to carry out our Monte Carlo
study.

Table 2 provides the results. Panel A reports the rejection rate of
H,4 based on 10,000 simulated data sets.®* When there are only 10
assets and the sample size equals 60, the rejection rate from the 10,000
runs is 3.5 percent as compared with the true size of 5 percent. As
the sample size increases to 120, 240, and 480, the rejection rates rise
to 4.4, 4.7, and 5 percent. So, for the H,, test in the 10-asset case, the

* A size of 10 percent gives rise to similar results. For example, at the 10 percent size, the first row
of Table 2 would read as: 0.0846, 0.0937, 0.0967, 0.1005.

5 The first entry of Table 2 would be 0.032 for an L value of 6. A value of » = 8 is shown by Zhou
(1993b) to model residual nonnormality reasonably well, and the simulation results will not change
substantially if a value of » other than 8 (say » = 6) is chosen.

¢ For a year after the publication of this article, a Fortran program of the simulation and other
applications of the article will be available from the author through e-mail (Zhou@Zhoufin.wustl.edu)
upon request.
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asymptotic size and the finite-sample size are remarkably similar; they
are close even with a sample size as small as 60. When there are 20
assets, the rejection rates are 1.9, 3.3, 4.1, and 4.4 percent for sample
sizes of 60, 120, 240, and 480. In comparison with the 10-asset case,
a greater sample size is needed to get as accurate an inference. When
there are 40 assets, the rejection rates are 0.1, 2.1, 4.1, and 4.7 percent
for the four sample sizes. At T'= 240, the rejection rate is 4.1 percent,
suggesting that a sample size of 240 is sufficient to obtain accurate
p-values for a system of as many as 40 assets. In their studies of the
finite sample properties of H,,, Ferson and Foerster (1991) provide
simulation results for N only up to 14 assets, and hence our results
complement theirs, showing that H,y produces reliable statistical
inference for a sample size of 240 and for as many as 40 assets.

In contrast to H;;4, the computation of H, is far more time consuming
because it requires the evaluation of the complex @, matrix and its
eigenvalues and eigenvectors. Thus, we consider only up to 20 assets
and use only 5,000 data sets to obtain the simulation evidence. In
the i.i.d. case, the results are reported in panel B. When there are
only 10 assets, the rejection rates are 3.2, 4.5, 5.0, and 4.9 percent for
sample sizes of 60, 120, 240, and 480. In comparison with those from
the Hy, test, the differences in the numerical values of the rejection
rates are too small to make any substantial differences in inference.
This is also true when there are 20 assets. Indeed, for any given value
of Nand T'in Table 2, the numerical value of H, is virtually identical
to that of Hy, in each of the 5,000 simulations, where the data are the
first 5,000 of the 10,000 data sets used earlier.” As a result, we find
that H, produces inferences similar to those from H,,, at least for
those cases provided in the table.

In the heteroskedasticity case, the simulation results for H, are
provided in panel C. When there are only 10 assets, the rejection
rates are 8.5, 6.5, 5.4, and 4.6 percent for sample sizes of 60, 120, 240,
and 480. In contrast to the i.i.d. case, these results show some ten-
dency of slight overrejection, especially when the sample size is small,
say T'= 60. However, as the sample size increases, the rejection rates
get much closer to the 5 percent level. When there are 20 assets, we
obtain similar conclusions to the 10-asset case. Thus, despite the
heteroskedasticity, H, still produces fairly accurate rejection rates.

In summary, our simulations show that the p-values based on the
asymptotic distributions of H,4 and H, are close to their finite sample
p-values, suggesting that both H,4 and H, may be reliable for many

7 The same result between H, and H, also seems true, but we have not established it because
simulations for H, under heteroskedasticity cannot be easily done without analytical solutions.
However, we do find almost identical values between the two from our applications in Section 3.
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empirical applications.® However, there are certain limitations of our
results. First, due to the computational time required, the simulations
for H,are done only up to 20 assets. Thus, one still needs to be careful
when applying the tests to a model of a large number of assets. Second,
our simulations provide evidence about the finite sample performance
of the tests only under the null hypothesis. The properties of the tests
under the alternative hypothesis remain unknown. Nevertheless, with
faster computers, it is possible to carry out similar simulations for up
to 100 or more assets and for up to 10 or more factors, and it may
also be possible to study the power of the tests. Both of the issues
seem to be interesting topics for future research.

5. Conclusions

We propose alternative GMM tests that are analytically solvable in
many econometric models, yielding in particular analytical GMM tests
for latent variables models. Because such models arise from many
studies of stock returns, term structure theories, forward currency
premiums, international equity returns, capital market integration,
and the reduction of factors, it is likely that there are wide applications
of our results. In addition, we provide simulation evidence showing
that the proposed tests have good finite sample properties and that
their asymptotic distribution is reliable for the sample size commonly
used. In contrast to the conventional GMM test, our tests can be
obtained analytically. This overcomes the difficulty in applying the
traditional GMM test for which the iterated solution to the nonlinear
GMM minimization problem may not converge to the global mini-
mum or even converge at all. Many previously difficult estimation and
testing problems, such as tests of the APT, the CCAPM, and the beta
pricing models, could become more tractable by using the new GMM
tests. The method of this article seems useful wherever the GMM
approach is relevant.

Appendix A: Proof of Theorem 1

This theorem is a result based upon Hansen’s (1982) Lemma 4.1. To
obtain a x2 test, we need to diagonalize the asymptotic covariance
matrix of \/7g,, which is given by

Q, = Wy V2N, (W2)N, W52, (A1)

* An additional analytical GMM test can be constructed following Newey (1985), but this test seems
to reject the null hypothesis too often in finite samples. For example, if this test were used, the
first entry of Table 2 would be 56 percent. Even when T = 480, the rejection rate from this test is
still 43.47 percent, well away from the 5 percent level.
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with
N, =1 — W{?D, (D{)WODO)_lD(,)W})/Z: (A2)

where variables with subscript 0 indicate that they are evaluated at
the true population parameters. It is clear that N, is idempotent and
so it has rank d. This implies that @, has rank less than or equal to
d. By the eigenvalue decomposition of N,, we know the rank of Q,
is exactly d. Because of the singularity of @,, we use the following
technique to diagonalize it. Let u, = ... = p, be the nonzero eigen-
values of Q,. Then there is a unique M, such that

Q0 = M(/)Dlag(#’l, LRI ] #d’O’ L ] O)MOa (A3)

where MM}, = M;M, = I. In fact, the ith row of M, is the standardized
eigenvector corresponding to the 7th largest eigenvalue u,, for i =1,
..., NL. Therefore, the covariance matrix of \/7'V;/2M,ghas asymp-
totic covariance matrix Diag(1, ..., 1,0, ..., 0). Finally, notice that
M, and V, are continuous functions of the elements of @, and hence
can be consistently estimated by their sample analogue. Thus, the
theorem follows. Q.E.D.

Appendix B: Proof of Theorem 2

We derive in this Appendix the analytical solution to the GMM esti-
mator for the following multivariate regression model:

Y=X0 + U, (B1)

where Y, T X N, are the dependent variables; X, T X M, are the
regressors; ®, M X N, is the regression coefficient matrix; and U is
the disturbance matrix. Notice that X may contain contemporaneous
variables as well as some or all of the information variables. Equation
(10) is a special case of (B1) with Y =R, X = Z, and M= L. Following
Hansen (1982), we obtain the GMM estimator by minimizing:

1
min Q= gITWTgT’ gr = 7 fn NL x 1 (BZ)

where f,=U,® Z,_,; W, NL X NL, is the weighting matrix; U,, N X
1, is the model residuals at time ¢ and Z,_,, L X 1, the instruments.
Let Z be a T x L matrix of the instruments (L = M). It is seen that
Theorem 2 is a special case of the following:

Theorem 2*, If the weighting matrix is of the form
W= W,Q W, W;: N X N, Wy L XL,
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then the GMM estimator of ® under the rank K restriction, that the
rank of ® is K, is explicitly given by

@=AB, A MxK B:KXN, (B3)
where
A= (X'PX/T?)-"2E, B= (X"PX*) X*PY,

P = ZW,Z', X* = XA and E is the M X K matrix stacked by the
“standardized” eigenvectors (E'E= I) corresponding to the K largest
eigenvalues of the M X M matrix:

(X'PX/T?)-72(X' PY/T>)W,(X'PY/T?)' (X' PX/T?)~"2. (B4)

Furtbermore, the minimum of Q is Q* = trW,(Y'PY/T?) — v,— ...
— Yo where v,,. .., yx are the K largest eigenvalues of the matrix
given in (B4).

Proof. Let G; = Z'U/T. Then g, = vec(G,), and the objective function
can be written

Q = [vec(G] (W, ® W,)[vec(Gy)] = tr(W,G7W,Gp)
- %u (W, U'ZW,Z'0) = %u (W,U'PU),

where P = ZW,Z’. Under the null, we can write @ as
® = AB, A: M x K, B: K X N,
for suitable A and B. Now, it is easy to verify that
UPU = (Y — X*B)’P(Y — X*B)
= (Y — X*B)P(Y — X*B) + (B — B)’X*PX*(B — B),

where X* = XA. Therefore, conditional on A, th~e estimator of B is
given by B = (X*’PX*) “'X*'PY. Replacing B by B, we get

UPU = (Y — X*B)’P(Y — X*B)
= Y/[P — PX*(X*PX*) 'X*'P[Y.

Notice that Q is now a function of A alone. To minimize it, we
normalize A such that (X*'PX*)/ T2 =1, or A’(X’PX)A = T%,. Then,
we have

72Q = tr (Y'[P — PXAA'X'P/T? YW,
= tr(Y'PYW,) — tr(Y'PXAA'PYW,)/T?,
so we need only to maximize

O** = tr(Y'PXAA'X'PYW,) = tr(A’X’PYW,Y'PXA)
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= r[(S$2A)’S~/2X'PYW,Y'PXS~V/2(S'/2A))],

where § = (X'PX)/T?, M x M, is positive definite if L = M, and X
has rank M. Hence, applying the Poincare Separation Theorem the
same way as in Zhou (1993a), the trace is maximized if $'/2A = E,
and the maximum is given by the K largest eigenvalues of the M X
M matrix $?2X'PYW,Y'PXS~1/2, Q.E.D.
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