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A HETEROSKEDASTICITY-CONSISTENT COVARIANCE
MATRIX ESTIMATOR AND A DIRECT TEST
FOR HETEROSKEDASTICITY

By HALBERT WHITE!

This paper presents a parameter covariance matrix estimator which is consistent even
when the disturbances of a linear regression model are heteroskedastic. This estimator
does not depend on a formal model of the structure of the heteroskedasticity. By
comparing the elements of the new estimator to those of the usual covariance estimator,
one obtains a direct test for heteroskedasticity, since in the absence of heteroskedasticity,
the two estimators will be approximately equal, but will generally diverge otherwise. The
test has an appealing least squares interpretation.

1. INTRODUCTION

IT 1Is WELL KNOWN that the presence of heteroskedasticity in the disturbances of
an otherwise properly specified linear model leads to consistent but inefficient
parameter estimates and inconsistent covariance matrix estimates. As a result,
faulty inferences will be drawn when testing statistical hypotheses in the presence
of heteroskedasticity.

If the investigator has a formal model of the process generating the differing
variances, these difficulties are easily eliminated by performing an appropriate
linear transformation on the data, based on this model. However, even when such
a model is available, it may be incorrect. Often, several models are considered
(e.g., Griliches [10]), but still without the certain knowledge that any of them is
correct. In this situation one can test each of the alternative transformed models
for remaining heteroskedasticity (using any of several available tests), and eli-
minate those which fail. But what is one to do if all fail the heteroskedasticity test?
Although the investigator will have a fairly good idea of the parameter values of
the linear model, there remains a considerable difficulty in assessing the precision
of the parameter estimates and testing hypotheses due to the possible inconsis-
tency of the usual covariance matrix estimator.

In this paper I resolve this difficulty by presenting a covariance matrix estimator
which is consistent in the presence of heteroskedasticity, but does not rely on a
(possibly incorrect) specific formal model of the structure of the heteroskedasti-
city. Thus, even when heteroskedasticity cannot be completely eliminated, proper
inferences can be drawn. Under appropriate conditions, a natural test for
heteroskedasticity can be obtained by comparing the consistent estimator to the
usual covariance matrix estimator; in the absence of heteroskedasticity, both
estimators will be about the same—otherwise, they will generally diverge. The test
shares the advantage of the covariance estimator, in that no formal structure on
the nature of the heteroskedasticity is imposed, in contrast to the.tests suggested
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by Goldfeld and Quandt [8], Rutemiller and Bowers [20], Glejser [6], or Harvey
[12].

2. THE HETEROSKEDASTICITY-CONSISTENT COVARIANCE ESTIMATOR

To begin, assume that the model has the following structure:

AssUMPTION 1: The model is known to be
Y. =XBo+e; (i=1,...,n)

where (X, &;) is a sequence of independent not (necessarily) identically dis-
tributed (i.n.i.d.) random vectors, such that X; (a 1 x K vector) and ¢; (a scalar)
satisfy E(Xe;) = 0. ¢; is unobservable while Y; and X are observable. B is a finite
unknown K X 1 parameter vector to be estimated.

By assuming that the elements of the sequence (X ¢;) are i.n.i.d., the case of
fixed regressors with (possibly) heteroskedastic errors is automatically covered.
Also covered by this assumption is the case in which observations are obtained not
from a controlled experiment (as the fixed regressor assumption requires) but
rather from a (possibly) stratified cross section, a case frequently encountered in
applied microeconomics. Note that by assuming only that X; and ; are uncor-
related, we automatically cover the less general but frequently encountered cases
in which E(¢;|X;) =0 or X; and ¢, are independent, with E(g;) = 0. Thus, we allow
heteroskedasticity of the form E (sﬂ)(;) = g(X;), where g is a known (possibly
parametric) function. Such a situation arises, for example, in the random
coefficients model of Hildreth and Houck [14].

Next, we make the following assumption.

AsSsUMPTION 2: (a) There exist positive finite constants & and A4 such
that, for all i, E(|e7|'*®) <4 and E(X,Xu«|'"?)<4 (j,k=1,...,K); (b) M, =

n~' 37, E(X|X;) is nonsingular for (all) n sufficiently large, such that det M, >
6 >0.

The first part of this assumption ensures that the error variances are uniformly
bounded (the condition being slightly stronger than this) and that the elements of
the average covariance matrix of the regressors are also uniformly bounded. In the
fixed regressor case, the condition requires that the regressors themselves be
uniformly bounded. The second part ensures the eventual nonsingularity of the
average covariance matrix of the regressors and the uniform boundedness of the
elements of the inverse. Note that M, is not required to converge to any particular
limit.

2 In what follows the qualifier “all” will be implicitly understood.
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Define the ordinary least squares (OLS) estimator é,, =(X'X)"'X'Y, where X
is the n X K matrix with rows X; and Y is the n X 1 vector with elements Y, It is
simple to prove the following lemma.

LEMMAAlt Given Assumptions 1 and 2, én exists almost surely for n sufficiently
large and B, == Bo.

Proofs are given in the Mathematical Appendix. Thus, OLS provides a strongly

consistent estimator for By in the i.n.i.d. regressor and error case defined by
Assumptions 1 and 2.

With the next assumption, an asymptotic normality result can be obtained.

AssUMPTION 3: (a) There exist positive finite constants § and 4 such that for all

i E(e; X,,X,k|1+5)<A (j, k K); (b) The average covariance matrix
V,.=n VE(£1X]X) is nonsmgular for n sufficiently large, such that
det V,>6 >0

Note that with fixed regressors or stochastic regressors independent of &,
Assumption 3(a) is implied by Assumption 2 (a).

The uniform boundedness of the elements of V, in Assumption 3 is guaranteed
by Assumptlon 3 (a). Assumption 3 (a) and (b) ensure the uniform boundedness of
vl

Together, Assumptions 1-3 allow the multivariate Liapounov central limit
theorem given by White [23] to be applied.

The asymptotic normality result is as follows.

LEMMA 2. Under Assumptions 1-3,

InV VML (B — Bo) ~N(0, Ik ).

This result is slightly more general than the asymptotlc normallty results usually
given since the ‘“‘asymptotic covariance matrix”’ M;'V,M," is not requlred to
converge to any partncular limit. In the fixed regressor case, M,' V,M,"' has the
familiar form (X'X/n) " (X'02X/n)(X'X/n)"", where Q2 is the n xn diagonal
matrix with diagonal elements o} =E(e?).

Now consider the problem of testing hypotheses. In particular, consider testing
the linear hypotheses

Hy: RBo=r vs. Hi:RBo#r,

where R is a finite ¢ X K matrix of full row rank and r is a finite g X 1 vector. It can
be shown that given Hj

n(RBn— ) [RM; VM RT (R —1) 2 X
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under Assumptions 1-3. This statistic is not computable however, since
M ,_.1‘7,,1\71 ;1 is not known. If it were possible to replace M;'V,M;' with a
consistent estimator, the usual asymptotic tests (the normal and y* tests analogous
to the familiar finite sample ¢ and F tests) could be performed.

The difficulty evidently arises in estimating V,. If we consider the fixed
regressor case in which V, = (X'£2X/n), it might appear that we must successfully
estimate each diagonal element of (2. As the model has been set out, this could
require estimating n different variances o7, obviously an impossible task when
only n observations are available (cf. Goldfeld and Quandt [9, p. 86]). But this
way of looking at the problem is misleading. What is actually required is to
estimate n ' X7, E(a?XﬁX,—), an average of expectations. To do this it is not
necessary to estimate each expectation separately. Under the conditions given
above, a consistent estimator is n ' 3/_; /X X,. Unfortunately, & is not
observable; however, ¢; can be estimated by &;, = Y; —Xiﬁm which leads us to
consider the estimator

n

9 -1 A2 '

V,, =n z Si,.X,*zY,*.
i=1

i=

In the fixed regressor case, this amounts to replacing the ith diagonal element of
0, o7, with é 4, the ith squared residual.

With the next condition, the estimator ‘7,, becomes the key to solving the
problem of obtaining a heteroskedasticity-consistent covariance estimator.

AsSUMPTION 4: There exist positive constants § and 4 such that for all i
E(IXiXaXa|'"") <4 ok I=1,...,K).
Uniformly bounded fixed or stochastic regressors are sufficient for Assumption 4

to hold.?
We now present the first main result.

THEOREM 1: (i) |V, — an—a—JQO under Assumptions 1, 2, 3(a) and 4; (ii)
(X'X/n) " VX' X ) = M VM =0
under Assumptions 1, 2, 3(a), and 4; (iii)
n(RB—rV[R(X'X/n) " V(X' X/n) R (RB, 1) ~x3,
given Hy and Assumptions 1-4.

The first part of Theorem 1 states that Vn consistently estimates V,, resolv-
ing the difficulty discussed in the preceding paragraphs. The second part

3 Note also that Assumption 4 is sufficient for the second condition in Assumption 2(a), since
E(XXa|'"*) < E(XEX0['"*) + 1.
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provides the heteroskedast1c1ty -consistent covariance matrix estimator,
(X'X/n)"" v, (X'X/n)! . Using this estimator to test linear hypotheses in the
usual way gives correct results asymptotically, as the third part of the theorem
demonstrates. This result fills a substantial gap in the econometrics literature, and
should be useful in a wide variety of applications. Since the convergence to
normality of vn(8, —Bo) can be shown to be uniform, the heteroskedasticity-
consistent covariance estimator can also be shown to be appropriate for use in
constructing asymptotic confidence intervals.

In fact, results similar to propositions (i) and (ii) of Theorem 1 were stated over a
decade ago by Eicker [5], although Eicker considers only fixed and not stochastic
regressors. Also, if r =0 and if R is the 1 X K vector with ith element equal to
unity and the rest zero, then the x1 test statistic of (iii) is precisely the square of the
asymptotic normal statistic (analogous to the ¢ test) proposed by Eicker [4] for the
heteroskedastic case in an even earlier classic paper. It is somewhat surprising that
these very useful facts have remained unfamiliar to practicing econometricians for
so long.

The estimator ‘7,, is also similar to an estimator proposed by Hartley, J. N. K.
Rao, and Kiefer [11] and C. R. Rao [18], namely

~

n
-1 A2 ’
Vo=n"Y ¢inXiX;
i=1

where G, is the minimum norm quadratic unbiased estimator (MINQUE) for o3,
discussed by C. R. Rao [18] and Chew [2]. e,,, is not a MINQUE for o7;
nevertheless, it is straightforward to show that V, and V, are asymptotically
equivalent, so that Theorem 1 also holds for V,,. Note, however, that due to thAe
complexity of the formula for 65, V, is always more difficult to compute than V,
and becomes more so as n increases.

The results of Theorem 1 can be extended to the nonlinear case Y;=
f(X,, 8)+¢; by replacing Xj; with 3f(X;, 6)/96; in all computations, under condi-
tions given by White [23]. In this case, it resembles the covariance matrix
estimator given by Berndt, Hall, Hall, and Hausman [1]. An expression analogous
to V, can also be easily obtained for instrumental variables estimators. (}n the
framework of two-stage least squares, one simply replaces X; with X, the
projection of X; on the space spanned by the instruments; however, as usual, £ 2 is
still computed using X.)

3. A DIRECT TEST FOR HETEROSKEDASTICITY

Goldfeld and Quandt [9, Ch. 3] provide several examples to show that
heteroskedasticity can result in serious inconsistencies in the usual least squares
covariance matrix estimator® &2(X'X/n)"" where ¢2=n""3"-, (Y- X;8.)°.

*The estimator 62 is used instead of s2=(n—K)™" =1 (K—X,ﬁ,f to avoid unnecessarily
cluttering the proofs. Obviously, all asymptotic results are valid if s> replaces &2.
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Similar problems can be caused by a lack of independence of ¢; and X, even in the
absence of heteroskedasticity. Of course, the heteroskedasticity consistent
covariance matrix given in Theorem 1 allows one to make proper inferences and
construct appropriate confidence intervals regardless of these complications.
However, this estimator is not as simple to compute as ¢2(X'X/n) ", so it is
particularly useful to have a simple indicator of whether or not &5(X'X/n) ' isin
fact inconsistent which does not rely on direct computation of
(X'X/n)! v, (X'X/n)"'. Further, if this inconsistency can be attributed to
heteroskedasticity (as will often be possible) one also has an indication of whether
there is a potential efficiency payoff to a more careful modeling of the variance
structure.

In this section, we derive a simple test for conditions which ensure the
consistency of ¢2(X'X/n)"". The test is based on the fact that in the presence of
homoskedasticity (o7 =3, for all i) and with &, independent of X, f/,. =
oon ' 2y E(X!X;). In this case V, can be consistently estimated either by V, or
by G2(X'X/n). Comparing the elements of Vn and 6%(X'X/n) thus provides an
indication of whether or not ¢2(X'X/n)"' is a consistent covariance matrix
estimator. Theorem 2 below makes precise the sense in which V, and 63 (X'X, /n)
must be sufficiently far apart to indicate inconsistency, and Corollary 1 provides a
simple procedure for detecting possible inconsistency. To obtain these results, we
must add additional structure.

First, we make the following assumption.

AssuUMPTION 5: There exist positive constants § and 4 such that, for all i
E(lef""*) <4, and E(|X;XuXuXim|' ") <4 Gk, Lm=1,...,K).

Note that Assumption 5 is sufficient for Assumption 4 and Assumption 2(a).
Next, define the products

Vs = XX (s=1,...,K(K+1)/2;k=1,...,K;I=1,...,k)

and let ¥; be the 1 X K(K +1)/2 vector with elements ¥;,. Thus, ¥; is the vector
containing the elements of the lower triangle of the matrix X;X;. Also, define

T, -1
v.=n

1

™M s

E(¥;) (s=1,...,K(K+1)/2).

1

The vector ¥, with elements ¥, contains the elements of the lower triangle of
M, Similarly, we define the 1 x K (K +1)/2 vector ¥, = n~' 37, ¥. ¥, contains
the elements of the lower triangle of X'X/n. Now assume the following:

ASSUMPTION 6: The average covariance matrix

Bo=n"' § E(el -l F(Wi= T, (¥~ F,)
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is nonsingular for n sufficiently large such that det B,>8>0; also, for n
sufficiently large n lsr  E(ef-02)H)>6>0.

In the theorem which follows, we are particularly concerned with the behavior
of the random variables (¥; — ¥, ) [e? — o7 ]. Assumptions 5 and 6 help to ensure
that the appropriate conditions are satisfied to invoke asymptotic normality. B,, is
the average covariance matrix of these random variables; with X; independent of
&, its elements are uniformly bounded by Assumption 5. The inverse B, ' exists
for n sufficiently large, and with X; independent of &; has uniformly bounded
elements by Assumptions 5 and 6.

Finally, we make the following assumption:

AssUMPTION 7: There exist positive constants § and 4 such that for all i

E(X5¥, ¥, <A (j=1,...,K;s,t, =1,...,K(K+1)/2).

In vector notation, we can express the lower triangle of the matrix difference
V,—362%(X'X/n) as the difference vector

Dn(ém &i) = n71 Z W:n[g?n _6'31]-
i=1
We also use an estimator of B,, defined as
B,=n"'Y (L -G (¥—- ) (¥, - F,).
i=1

With this structure, we can now give a direct test for inconsistency of the usual
least squares covariance matrix estimator, GE(X'X/n).

THEOREM 2: Given Assumptions 1,2(b),3(b), and 5-7, if ; is independent of
X, and E(e}) =03 for all i, then

\ 5 a2vip-1 5 a2\ A 2
(1/ nDn(Bm o'n)Bn Dn(Bm an) ~XK(K+1)/2-

Note that the null hypothesis maintains not only that the errors are homoske-
dastic, but also that they are independent of the regressors, and that the model is
correctly specified in the sense that Assumptions 1, 2(b), 3(b), and 5-7 hold.
Failure of any of these conditions can lead to a statistically significant test statistic.
Essentially, the statistic (1) is testing a joint hyoothesis that the model’s
specification of the first and second moments of the dependent variable is correct.
To discover that (1) is not statistically significant for a given model is particularly
good news since it implies that not only is the variance specification of the model
correct (subject to caveats below) but also that the linear specification Y; =
XiBo+ ¢; is correct. In this sense, the test based on (1) is a general test for model
misspecification.
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In fact, the test statistic of Theorem 2 is computationally identical to the linear
version of a test for model misspecification proposed in White [22] for the i.i.d.
regressor nonlinear model case. In that situation, the power of this statistic with
respect to the null hypothesis that the explanatory model is correct up to an
independent  additive  disturbance derives from the fact that
(X'X/n)"'V,(X'X/n)"" is a consistent estimator of the parameter covariance
matrix even when the model is misspecified, while 7, (X' X/ n)~! is inconsistent.
This inconsistency arises from the fact that when the model is misspecified, the
disturbance of the incorrect specification contains the specification error, so that it
is impossible for the regressors to be independent of the disturbance term, as the
consistency of ¢2(X'X/n)”" requires. (See White [22 and 24] for further dis-
cussion.)

When the null hypothesis of Theorem 2 is rejected, the appropriate conclusion
to be drawn depends upon whether one is willing to maintain the correctness of
the model’s specification (most importantly, that the true relation is indeed
Y: = X80+ ¢;). If so, the most plausible reason for rejection is heteroskedasticity.
In the regressor case, this is the only reason. In the stochastic regressor case, lack
of independence of regressors and errors alone can lead to rejection; however, in
the most commonly encountered models, it is heteroskedasticity which leads to
lack of independence, through a dependence of the error variance on the
regressors. Thus, when the model is maintained to be correct, rejection may
reasonably be attributed to heteroskedasticity, so that there is a potential
efficiency gain to be realized from a more careful modeling of the variance
structure.

If the investigator is less confident about the correctness of the linear model, the
test indicates only that something is wrong, but not what. A more thorough
investigation of the model’s specification is indicated.’ In what follows, we assume
the model is correct and treat (1) as a heteroskedasticity test.

As given, the statistic (1) is even more cumbersome to compute than ‘7,,.
However, by slightly modifying the conditions of Theorem 2, we can obtain a
comparable statistic which is very easy to obtain. In particular, replace Assump-
tion 7 in Theorem 2 with the assumption that the &; are homokurtic—that is,
E(eh = w4 for all i. Now consider the artificial regression

A2
(2) Eimn=apta1¥Vi+a, ¥+ ... +aK(K+1)/2!PK(K+1)/2

K K
=ao+ Y Y aX;Xu (i=1,...,n)

=1 k=j

% If the investigator is unsure about the correctness of the model’s specification, a practical way of
proceeding would be to use the statistic (1), and if rejection occurs, apply a specification test of the type
proposed by Hausman [13] or White [24]. These latter tests are sensitive to model misspecification, but
not heteroskedasticity. Hence, accepting the null hypothesis of no model misspecification would
indicate that rejection of the null hypothesis of Theorem 2 is indeed due to heteroskedasticity, whereas
rejection of the null hypothesis of no misspecification indicates that rejection of the null hypothesis of
Theorem 2 is due to model misspecification. Since these tests are in general dependent, the formal size
of this sequential procedure will be difficult to determine. Note also that both specification tests
mentioned above may detect only a lack of independence between errors and regressors, instead of
misspecification.
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where the a’s are parameters to be estimated by OLS. Equation (2) directs us to
regress the squared estimated residuals on all second order products and cross-
products of the original regressors. The next result uses the fact that (1) is
asymptotically equivalent to testing the joint hypothesis a;=a,= ... =
akk+1y,2 =0 using the standard R 2 statistic from the regression (2), given the
homokurtosis assumption. Formally, we have the following corollary.

COROLLARY 1: Given Assumptions 1,2(b), 3(b), 4-6, if €; is independent of X,
and E(e?)=0$, E(e}) = w4 for all i, then

(3) nR? ~XK(K+1)/2

where R? is the (constant-adjusted) squared multiple correlation coefficient from the
regression (2).

All the remarks made following Theorem 2 apply here as well. It is useful to
note at this point, however, that Assumption 6 can fail identically. In particular, if
the estimating equation contains a constant term, say X;; =1, then equation (2)
contams a redundant constant; equivalently, the corresponding (first) element of
D, (B,., G,,) and the row and column of B, corresponding to the constant will be
identically zero, implying a singular B,. In this case, it is entirely appropriate to
delete the redundant constant from (2) (equivalently, the corresponding element
of D, (ﬁn, 62) and row and column of é,,) and proceed, reducing the )(2 degrees of
freedom by one. Redundancies will also occur if the X; contains a constant and
polynomial terms (e.g., the translog production function). For example if X;; =1
and X3 = X,»Zz, then X;; X;3 = X;» X},. Again, the redundant term is simply dropped
and degrees of freedom are reduced by one.

Note that when the homokurtosis assumption fails (so that (1) is appropriate),
the only effect is that the nominal size of the test associated with (3) becomes
incorrect. The test statistic (3) will still have unit power asymptotically.

This result allows one to perform the test without first computing the matrix V,.
If the test is passed, it indicates the adequacy of ¢4(X'X/n)”" for hypothesis
testing, and one could stop at this point (although in some cases further efficiency
gains might be possible—see below). If the test is failed, one can proceed to

calculate the heteroskedasticity-consistent covariance matrix estimator using the
identity
D.(BndD=(n" £ (%= By (- 1,))d,
i=1
where a, is the K(K+1)/2x1 vector containing the OLS estimates of
a aK(K+1)/2 By adding the approprlate element of D, (B,,, G2) to each
element of ¢2(X'X/n), one obtains V..
In the form (3), the test resembles a Lagrange multiplier test for a specific class
of normal heteroskedastic alternatives considered by Godfrey [7]. Note that
normality is not assumed here. From the discussion above, it is clear that the
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power of Godfrey’s test must derive, as does that of the statistic (3), from the
inconsistency of ¢2(X'X/n) for V,.

The present testing procedure is also similar to the modified Glejser procedure
proposed by Goldfeld and Quandt [9, p. 93]; however, while Goldfeld and
Quandt accepted or rejected the homoskedasticity hypothesis on the basis of
unidirectional ¢ tests associated with the estimated a’s, the test proposed here
considers all a’s jointly. Its performance as a heteroskedasticity test should
compare to the modified Gleijser test in a manner roughly analogous to the
performance of Goldfeld and Quandt’s FIML x? test relative to their FIML ¢ test
[9, pp. 94-100].

Although most previous tests for heteroskedasticity have relied upon imposing
some more or less formal structure on the nature of the heteroskedasticity and
then testing to see if this structure is found (e.g., Goldfeld and Quandt [8], Glejser
[6], Rutemiller and Bowers [20], Harvey [12], and Godfrey [7]), the present test
does not require specifying the heteroskedastic structure. Heuristically, one
expects the statistics (1) or (3) to have good power against all heteroskedastic
alternatives which result in inconsistency for the usual covariance matrix estima-
tor; for n sufficiently large, the power of the test in these cases will approach unity.
Tests which correctly formalize the heteroskedasticity should have some power
advantage in finite samples, but (1) or (3) should equal or dominate tests which
incorrectly specify the variance structure. If theory suggests that some of the a’s in
(2) should be zero (as in the original Hildreth-Houck [14] model) or negligible,
power (and degrees of freedom) may be gained by omitting some terms in (2). A
finite sample investigation of the power of (3) absolutely and relative to existing
tests will be undertaken in future work.

Are there cases in which heteroskedasticity does not result in inconsistency for
G2(X'X/n)"'? If so, one should expect the power of (1) and (3) to be low in
absolute terms for these cases. Such circumstances are easily characterized,
although it might sometimes be difficult to detect these cases independently of the
statistics given. This characterization is given by the next simple result.

THEOREM 3: Given Assumptions 1, 2(a) and &; independent of X,
GL(X'X/n)— V|50 if and only if

n! z (02 —G)(EX!X))-M,)|>0 as n-oco.

The necessary and sufficient condition for the implied consistency of
GL(X'X/n)"" provided above says essentially that the second moments of the
errors, &;, must be ‘“uncorrelated” with (asymptotically orthogonal to) all second
moments and cross-moments of the regressors, X;. Obviously, this occurs when
o? =g}, the case of homoskedasticity; butit can also occur when E(X;X;) =M, (a
fixed finite matrix), e.g. when the X; are obtained from a truly random sample, so
that the regressors are i.i.d. In this last mentioned case, it can be shown that (1) has
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precisely the same ykx+1),2 distribution, so that in the presence of heteroske-
dasticity the power of the test is precisely the apparent size of the test.
Unfortunately, these cases are not the only possible ones for which the test will
have low power, since one can construct an unlimited number of them simply by
letting o? and E(X!X;) be independent random variables with finite means
(taking these moments as fixed a posteriori). A small y statistic will indicate either
homoskedasticity or any of these other possibilities. Note, however, that if a
variance structure satisfies E(e|Q;) = g(Q;) for some variables Q;, then Q; will
have to be appropriately orthogonal to X for the conditions of Theorem 3 to hold;
usually Q; = X, so this cannot occur.

Theorem 3 generalizes a simple result given by Malinvaud [16, pp. 303-04] for
the single regressor case. There, Malinvaud shows sufficiency; the present result
shows that necessity is also valid. This result indicates that heteroskedasticity will
be easily detected only when it makes a difference for drawing inferences using the
usual least squares covariance matrix estimator. However, it does not necessarily
follow that in such cases efficiency cannot be improved. The effects of heteroske-
dasticity on the usual covariance matrix estimator and on the efficiency of the least
squares estimator are quite separate. In the case of a diagonal error covariance
matrix, the necessary and sufficient condition for the efficiency of least squares is
precisely homoskedasticity (cf. McElroy [17]). Thus, taking proper account even
of variance structures which satisfy the conditions of Theorem 3 can improve
estimator efficiency. The extent of the improvement can be directly assessed (at
least asymptotically) by comparing the heteroskedasticity-consistent covariance
matrix of the appropriate weighted least squares estimator to that of the OLS
estimator.

In fact, since the covariance matrix is being consistently estimated, any number
of alternative variance structures may be evaluated in this way, and the structure
with the greatest resulting efficiency can be chosen. One particular such structure
suggested by equation (2) involves choosing weights

‘ain = (max [aAon + ll[/‘i&m 6> O])

(where § is arbitrarily chosen) and forming the weighted least squares estimator
B.=(X'0.'X)"'X'(2;'Y, where (), is the diagonal matrix with diagonal ele-
ments @;,. Both Glejser [6] and Goldfeld and Quandt [9] have found in Monte
Carlo studies that even incorrect heteroskedasticity corrections can improve
estimator efficiency over OLS. In future work, possible efficiency improvements
from the above choice of weights will be investigated using the heteroskedasticity-
consistent covariance matrix.

4. SUMMARY AND CONCLUDING REMARKS

This paper has presented general conditions under which a consistent estimator
of the OLS parameter covariance matrix can be obtained, regardless of the
presence of heteroskedasticity in the disturbances of a properly specified linear
model. Since this estimator does not require a formal modeling of the structure of
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the heteroskedasticity and since it requires only the regressors and the estimated
least squares residuals for its computation, the estimator of Theorem 1 should
have wide applicability. Additional conditions are given which allow the investi-
gator to test directly for the presence of heteroskedasticity. If found, elimination
of the heteroskedasticity by a more careful modeling of the stochastic structure of
the model can yield improved estimator efficiency.

Until now, one had either to model heteroskedasticity correctly or suffer the
consequences. The fact that the covariance matrix estimator and heteroskedasti-
city test given here do not require formal modeling of the heteroskedastic
structure is a great convenience, but it does not relieve the investigator of the
burden of carefully specifying his models. Instead, it is hoped that the statistics
presented here will enable researchers to be even more careful in specifying and
estimating econometric models. Thus, when a formal model for heteroskedasti-
city is available, application of the tools presented here will allow one to check the
validity of this model, and undertake further modeling if indicated. But even when
heteroskedasticity cannot be completely eliminated, the heteroskedasticity-
consistent covariance matrix of Theorem 1 allows correct inferences and
confidence intervals to be obtained.

University of Rochester

Manuscript received August, 1978; revision received March, 1979.

MATHEMATICAL APPENDIX

All symbols, definitions, and assumptions are as given in the text.

LEMMA 1: Given Assumptions 1 and 2, 8, exists almost surely for (all) n sufficiently large and

A as,

Brn — Bo-

PROOF: §, exists almost surely for (all) n sufficiently large provided (X'X/n) is nonsingular almost
surely for n sufficiently large. When this is true, Assumption 1 allows us to write

Ba=(X'X/n)" (X' Y/n) = Bo+(X'X/n)"\(X'e/n).
Now E(X;Xul|'"®)<A4 forall i and j, k=1,..., K by Assumption 2(a); since the X; are mutually
independent, it follows by Markov’s strong law of large numbers (e.g. Chung [3, p. 125]) that

(X' X/n)~ M,|—>0

where the notation is understood to indicate convergence of the matrices element by element. Now by
Assumption 2(b) M,, is nonsingular for » sufficiently large. By the continuity of the matrix inverse, it
follows that (X'X/n) is nonsingular almost surely for n sufficiently large (so that 8, exists); the
elements of M, are uniformly bounded for n sufficiently large, so that

I(X'X/n) " = M |50,

Next, E(|X;e|'*®)<Aforalliandj=1,..., K as a result of the Holder inequality and Assumption

2(a) which ensures E(X7|'*®)< 4, E(|e?|'*®) < A. Since the X ; are independent, Markov’s strong
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law implies
~(X'e/n)—n*‘ Y E(Xle))|—0
i=1

Since M, has uniformly bounded elements for n sufficiently large by Assumption 2(b), and since
E(X ;) has uniformly bounded elements, uniform continuity implies

X'X/n) N(X'e/n) =M n™' S E(Xle)| =250,

i=1

But E(X¢;) =0 under Assumption 1. Thus

(X'X/n) N (X'e/n)—250

given Assumptions 1 and 2, implying f, — Bo. Q.E.D.

LEMMA 2: Under Assumptions 1-3,

- 1 = - A
VnV,iM, (B, —Bo) ~N(0, Ix).

~ PROOF: Consider the quantity n s x! i€;. Under Assumption 1 the random vectors X¢; are
independent with E(X¢e;) =0 and average covariance matrix
1§ 2
T Y E(eiXiX)

which is positive definite for J sufficiently large by Assumptlon 3(a). Thus, we can define the symmetric
positive definite matrix V,* such that (V? ) V;.!. The elements of V* are uniformly bounded
under Assumptions 2 and 3 asare E(|X;e;|**®) for some & > 0andall i, j given Assumption 3(b). Thus,
by the Minkowski inequality for some 8 >0, 37, E|A' Vi X e |>"%/n?*® /250 for all A in RX.
Hence, the multivariate Liapounov central limit theorem (White [23, Theorem 3.1]) implies that

Vitn él Xle: IN, Ix).
Now

Vn M (B Bo) = VM, (X X/ VT § X
almost surely for n sufficiently large. Next,

|V M, X ) 7 ~ Tl 5 0

by Lemma 3.2 of White [23), since |(X'X/n)™" — M |&>0 under Assumption 2 as argued in Lemma
1, so that

- 1 - A — 1 L o 14
(a.1) VAV M, (B, —Bo) - Viin' ¥ Xie|—0.
i=1

It then follows from Lemma 3.3 of White [23] that

nVAM, (B, - Bo) ~N(O I). Q.E.D.
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THEOREM 1: (i) |V, — V, ]LO under Assumptions 1, 2, 3(a) and 4; (ii)

XX/ ) V(XX )™ = M, VM |50
under Assumptions 1, 2, 3(a) and 4; (iii)
R(RB, —r)[RX'X/n) " V(X' X/n) ' RT(RB, — 1) “i2,
given Hy and Assumptions 1-4.
PROOF: (i) Since By is finite, there exists a compact neighborhood v of B, such that (8; — Bo;) is finite,
ji=1, , k, where B; and By; are the jth elements of 8 and B, in », re 2pectwely There also exists a

finite vector 8 (not necessarily in v) with elements B, such that (8; —Bo;)" < (B;— Bo,) for all B8 in v, s0
that for all 8 in »

X5 (B; = Bop)* XiuXul <X (B — Boy)* XucXal-

Now
I(Yi = XiB)* XXl = I(e: = Xi(B — Bo)* XXl

under Assumption 1, and it is a direct consequence of the elementary inequality
la+b|"<2"" |a|"+2"7" 6| (r=1)

that there exist finite positive constants Ao, . . ., Ax such that for all Bin »

(.2) I(Y: = XiB)> XX < Aole ? XX + z A1X 3 (B; = Bo))* Xu Xl

= A0]'5.'2XikXi1| + 'gl AjIX?iXikXill(éi - Bo,')2 = my (X, &;).

Thus |(Y; — X;8)> XX, is dominated by my (X, ¢;).

Now it also follows from the above inequality that there exist finite positive constants wo,. . . , ux
such that, for § >0,

E(Imiu (X, e)|'**) < moro " °E (e XuXal'*°)
b A B XX 6~ o
i=1
Since E(|e? X Xa|'*®) is uniformly bounded by Assumption 3(a), since E(lX,2 WXl T8 is uniformly

bounded by Assumptlon 4, j=1,...,K, and since uo,... , Ak, and (31

Bo1)** 8, ..., (Bx — Box)**?® are finite posmve constants, E(| my (X, €; )| )1s umformly bounded on
v. It then follows from White [23, Lemma 2.3] that

sup|n”! Z(Y XiB) XX - ,§IE<(Yi—XiB>2kax,)\30.
Bev i=

Since B, — B, under Assumptions 1 and 2 as established by Lemma 1, it follows from White’[23,
Lemma 2.6] that

2 (Y- XB XuXy—n"" 3 E(e%x,-kx,n\lo kl=1,....K)
i=1

or |V, — V,| =250, the desired result.

(ii) In Lemma 1 it was established that |(X'X/n) " = M ' |—>0, and M, has uniformly bounded
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elements for n sufficiently large under Assumption 2. Combining this result with (i) above,
XX/ ) V(X X/ )™ = M5 VM 50
follows by uniform continuity, since V,, has uniformly bounded elements under Assumption 3(a).
(iii) We can write
RB,~r=RBo—r+R(B.~Bo).
Applying Hy: RBo=r and multiplying by Vn yields
Vn(RB, —r)="nR(B, - Bo).
For convenience let [, =RM,'V,M,'R’ (which exists, has uniformly bounded elements, and is
nonsingular for n suﬂic_ientl}' large given Assumptions 1-3) and define the symmetric positive definite

matrix I',,* such that (F,_,; )>=I",'. Theelementsof I";* are also uniformly bounded by Assumption 2
and 3. Consider the quantity

Vnl'3 (RB,—r)=nI7* R(B, — Bo)-

Since l_";;R is uniformly bounded, it follows from (a.1) that

—_1 - —1 =1 = A -1 -1 -1 it
Yl RM ' ViV M. (B, —Bo) - T*RM;'n™* ¥ Xlei| =0
1

and by Lemma 3.3 of White [24] that s/n]_’;%R([;,. — Bo) has the same asymptotic distribution as

I 1a

nt
i

FARM;' X e,
1

provided this is multivariate normal. The random variables r :;RM X' are independent with
E(;*RM ;' X'e;) = 0 and covariance matrix

By the multivariate Liapounov central limit theorem,
noo_ _ A
nt Y TPRM;'Xie; ~N(0, Ix)
i=1
provided that for some & >0,
(33) Z E|AlfiRM;1X2€;|2+8/n(2+8)/2-)0
i=1
forall A in R L
Equation (a.3) holds by the Minkowski inequality since I";* RM ;" has uniformly bounded elements
given 2 and 3 and since for some 8, E(|X;;&;|**®) is uniformly bounded for all i, j by Assumptions 3(a).
Thus, we may infer
_ ” A
(a.4) Vnl7* (RB,—r) ~N(0, Ix).
Since I, is not computable, consider the quantity
Il (RB, - r)

A—L . . e . . A — A £
where I',* is the symmetric positive definite matrix such that (1“,14)2=1"71 and [, =

n o

R(X'X/n)f‘f/,l(X'X/n)’lR’ exists and is nonsingular almost surely for n sufficiently large given
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Assumptions 1-4. Since R is finite it follows from (ii) above that
P
|, —T,]—0.
It then follows from Lemma 3.3 of White [23] that
Inl"H (R, —r) “N(O, L)
and that
” , A1 - A,
n(RBn —-r) Fn (RBn —=r) ~Xgq
or, substituting for I -
a - a A
n(RB, —rY[R(X'X/n) 'V, (X'X/n) 'R'T"(RB, — 1) ~x2. Q.E.D.

THEOREM 2: Given Assumptions 1,2(b),3(b),5-7, if ¢; is independent of X, and E (e ,-2) = 0(2) foralli,
then

5 a2vp-1 5 a2, 2
nD, (B, 6%) Brn Dp(Bn, G1) ~Xk(K+1)/2-
PROOF: Let 6 =(B, o) and consider the quantities

Dy@)=n"" ¥ (Y,~XB) =)W~ ) (s=1,...,K(K+1)/2)

where

Vpo=n"' ¥ E(¥,), ¥,=XuaXu
i=1

i=

(s=1,...,K(K+1)/2;k=1,...,K;I=1,...,k).

With homoskedastic disturbances independent of X;, the random variables [e2 —0d)(W,— W,,) have
expectation zero. Define the average covariance matrix B, (6) with elements

n

Bi0)=n""Y EQY:i-XB) -0 P(¥s— T ) (W= ) (s0=1,...,K(K+1)/2).
1

i=

By Assumption 6, B,(6,) is nonsingular for n sufficiently large, with uniformly bounded elements
given Assumption 5 and independence of X; and &, For n sufficiently large, we can define the
symmetric positive definite matrix B,(6,) > such that [B.(80) 1 =B.(60)" "

Assumptions 5, 6, and the independence of X; and ¢; ensure the eventual uniform boundedness of
the elements of B, (6,) '. Let D, (6o) be the K (K +1)/2x 1 vector with elements D}, (6,). Then

A

(a.5) VnB,(60) D, (60) ~N(0, I (x+1)2)

by the multivariate Liapounov central limit theorem, provided that for some § >0
Y EIN'B, (60 (%~ T, (e —ad) " /n2 "2 0
i=1

for all A in RX‘®*1/2_ But this holds by the Minkowski inequality since B, (6,) * has uniformly
bounded elements and since E|[(¥;, — ¥, )(e? —o3)[**® is uniformly bounded for some & >0 given
Assumption 5 and the independence of X; and ;.
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To obtain the desired result, we first show that

WnD5(6,)~nD% (60) —0,

where

Did=n"" L [(¥i- XA~ 32,
and

Fren S (Y- XB
Since

n Y (Y- XY - 6217,
i=1

is identically zero, we have

Db =n" T [(Yi-X)?~62) W, - F,).

i=1

Next, é,, —a—s_—> 6, under Assumption 1, 2, and the homoskedasticity assumption, so that there exists a
sequence (6,) which is tail equivalent to (6,) such that each 6, takes its values in a convex compact
neighborhood v of 6y, such that all 6 in » are finite. Let 8, =(B,1,...,B.x) and let B{ =
(Bots - - -» Bok)- Since Dy, (8) satisfies the conditions of Jennrich [15, Lemma 3], there exists a
measurable function 6, lying between 6, and 6, such that

-~ K -~ -
D;.(6,) = D3 (60) + ;l (Brj = Boj)oD3(6,)/3B;

+(62 —a3)aD5(6,)/d0>.

Rearranging and multiplying by Vn gives
K - -
VnD3,(6,) =VnD3(60)| = | T Vn(B;—Bo)oD}(8,)/08; +Vn (67— 55)eD3(6,) /307 .
i=1
Using the triangle inequality and factoring yields

-~ K -~ -
(a.5) WnDj3,(6,)—VnD3(60)| < z Vn(Bo;—Bo))l - 19D3(6,)/98

i=
+Vn(5n—ad)l-oD3(8,)/607].

Now each term |‘/"(an —Bo,»)J is 0,(1) by the tail equivalence of 8, and 8, and Lemma 2, given

Assumptions 1-3. Also, | V(52 - a3)lis easily shown to be O,(1) given Assumptions 1-3, provided the

e? are uniformly asymptotically negligible, as ensured by Assumption 5. Next,

0D (8,)/9B8;=-2n"" ¥ (Yi=XB)Xij(¥is— ¥ys)
i=1

i=

and
oD% (6,)/00*=—-n""' Y W, —¥,..
i=1

Assumptions 1, 2, and 5 ensure that |(Y;-X;8)X,¥,| and |(Y,—X,8)X;| are appropriately
dominated (arguing as in part (i) of Theorem 1 above) so that Lemma 2.3 of White [23] can be applied
to obtain

sup [ ¥ (Yi= XB)Xy(Wis— o) —n "' T E(Yi— X)X, (¥ — ¥,)| —> 0.
i=1 i=1

fev
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Since B, — By, it follows from White [23, Lemma 2.6] that

n Y (Y- X)Xy (Vo= Fr)—n ! z E(e)E(X,(¥, — F,0))| =250,
1

Under Assumption 1, and independence of X; and ¢;, E(¢;) = 0, soIaD (6,)/9B;]—=>0.In Lemma 1, it
was shown that |(X'X/n) — M, |50 under Assumption 2, so |dD?%,(8,)/da2|—=2>0. Hence, (a.6) and
the immediately preceding arguments imply

NnD},(6,)—vnD (60)|—0 (s=1,...,K(K+1)/2)

by 2c.4x(a) of Rao [19]. The uniform boundedness of the elements of E,,(OO)‘% then ensures that
— 1 ~ — 1 P
VB, (60) > Du(8,) ='nB,,(66) * D,(60)| —0.

The desired result will follow in a straightforward way from Lemma 3.3 of White [24] if we can find a
consistent estimator for B,,(6o). Accordingly, consider the estimator B with elements

B =n' S [(Yi= XV = 62 P(Wis = ) (Wi — Br)

where ¥,, =n"' £ ¥, Expanding B gives
i-1
-1 5 52 a272 ; 2
n Y [(Yi=XiBn) =0 (Wi — Vo) (Wi — W)
=1

=n ' Y (Y- XB) VWi —26in " L (Y- XiB,) Wi Wy
i=1 i=1

+265¥,n " I (Yi- XiBn) W= Fun™! PR

—¥un ' T (Y- XB) W +260 " Y (Y- XiB,)2 W,
i=1

i=1

G z Y+ VW' Y (Yi- X!
i=1

-2 li}ns‘-i}mn Z (Y XBn) + 'pnsq/ntan

Asin Lemma 1,| ¥, — ¥, 2250 under Assumption 2, and ¥, is uniformly bounded by Assumption

2. Also |65 — o§| 2250 under Assumptions 1, 2, and the homoskedasticity assumption. Consider a

convex compact neighborhood » of B, such that all 8 in v are finite. Using the same kind of argument

as that at the outset of the proof of Theorem 1, part (i), there exists 8* finite with elements 8 such that
BO,) <(BF Bo,) for all B8 in v, so that for all 8 in v

K
|(Yi *X.‘B)A ‘pis‘pu'SAO'e?‘pis‘pill-" ) A,‘|X?,"I’is‘1’.':|(B}k _Boi)4E(s:(Xi, &)
j=1
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where Ao, ..., Ak are finite positive constants. Similarly,
K
I(Y: = XiB)*|<Aolef|+ z MIXG(BF = Bop)* =n(X; &)
/=
for all B in v. Since |¥;;|< ¥ +1, it follows that
(Y= XiB) Wil <[(Y; = XB) WL |+ (Vi = XiB)*| < £ (X, £) + (X, £)
for all B8 in ». Similarly, for all 8 in »
(Y = XiB W Wil < (X, &) + | ¥, W
and
(Y = XiB)? i < £is(Xiy &) + 1.

Continuing the same kind of argument as in part (i) of Theorem 1, it is easily shown that
E(|£(X,, €)' ®) is uniformly bounded under Assumptions 5, 7 and independence of X; and ¢;, and
that E(|n(X, &;)|'*®) is uniformly bounded under Assumption 5. It is also easily shown that

IE( (X )+ n(Xi )] '%),  E(14u(X )+ Wi Willl'™®), and  E(|£,s(X, ) +1]1%)

are uniEormly bounded given Assumptions 5, 7 and independence of X; and ¢;. Thus by Lemma 2.3 of
White [23]

Zup|n"1 .21 (Yi-XB) ¥ W,—n"' ¥ E((K—KB)“‘I’,-S‘I’,-,)‘ 0,
b = i=1

n

NIAS T AR E«m—m)zwm)\io,
i=1

sup
Bev

i=

sup [n" X (Yo-XB)' W, —n! D E<<Y.-—X,-B)4qf,.,)‘ =0
i = i=1
Zup n“ _il(y’i—XiB)2wn_n—1 i E((Y,fX,B)zllf”)‘ as. 0,
v = i=1
and
sup[n”! £ (Yi=X@)'-n"' £ E(¥V-X8H[50  (si=1,. KK+ D/,
Bev i=1 i1

Since B‘,.LBO under Assumptions 1 and 2 as established by Lemma 1, it follows from White [23,
Lemma 2.6] that

-1
n
i

;—-Ml

(Yi=XB)' wt=n" ¥ EEtww)| 0,
- i=1

3

n 'Y (Yi-XB,) W W —n ' ¥ E(e,z'l’,-sllf,-,)‘—>a‘s‘ 0,
i=1 3

3

n Y (Y- XB) W' Y E(s?wi,)‘ﬁo,
i=1 i=1

3

n Y (Y XB W -n T EEEw)| o,
i=1 i=1

and

nU Y (Yi-XB) -n' Y E(e?)

i=1 i=

a.s.
—0.
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By Markov’s strong law of large numbers

n! z VW, —n"' Y E(W,¥,)|—0,

i=1 i=1
given Assumption 5. Since all relevant expectations are contained in a compact subset of a Euclidean
space, uniform continuity and the foregoing facts imply |[B% — B%(8)| 220, 5, t = ,K(K+1)/2,
as straightforward (but tedious) algebra will verify. It then follows from White [23, Lemma 3.3] that
5 va-1 FyA 2
nDp(6,)Br Dn(6,) ~xk(x+1)/2- Q.E.D.

COROLLARY 1: Given Assumptions 1, 2(b), 3(b), 4-6, if €; is independent of X;, and E(s y=a3,
E(e})= wy for all i, then

nR? ~XK(K+1>/2

where R? is the (constant-adjusted) squared multiple correlation coefficient of the regression (2).
PROOF: If X; and ¢, are independent, E(¢7) = o2 and E(e?) = u, for all i, then

B(60) = (wa=03)-n ™" T E(W= T (¥, T (=1, K(K+1)/2)

for which a strongly consistent estimator is
Z G -‘i (Wi = V) (Wi — o) (s t=1,...,K(K+1)/2)

given Assumption 5. Arguing exactly as in Theorem 2 above, it follows that
@.7) MDA (B 6B Dol 62) ik nra

where B, is the matrix with elements B?'. The left-hand side of (a.7) can be written more explicitly as
(a.8) DBy, 62) B ' Dy(Brr 67)

-1

S R ACETH) LY B d)

( 'IZ 11/[5,,.70,.])/( :i 6.,.—0))
The estimates of a1, . . ., ax(k+1y,2 from the regression (2) may be written in mean-deviation form as
an=(n £ B tyn-0) (a7 £ - d1e - 62).
Since
n! z wiléh-62)=n"" z (W= E) (e - 67,

(a.8) becomes
@.9) nD,(Bo, %) B Dy(Brr 62)

=n@i(n” T (B= Byt b))a, /(a7 £ @h-62)

Except for the proportionalit ty f2 factor n, the right-hand side of (a.9) is easily recognized to be in the form
for the constant-adjusted R~ given by Theil [21, p. 176, equation (4.4)]. Hence

A
nD, (B, 6%) By Dy(B,, 62) = nR? ~xk k102
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where R? is the constant-adjusted squared multiple correlation coefficient for the regression (2).
Q.E.D.

THEOREM 3: Given Assumptions 1, 2(a), and ¢, independent of X,
G2(X'X/n) - V| —50

if and only if
n 'Y (0 -AEXIX,)-M,)|—0
i=1

PROOF: (i) By the triangle inequality
Gr(X'X/n) = V| <|67(X'X/n) = 52M, | +|52M, — V.

Since G2 and M, are uniformly bounded by Assumption 2(a) and since |o",l—o',l|—a-'s—'>0 and
(X'X/n)—M, |—>0 by Markov’s strong law of large numbers, Lemma 3.2 of White [23] implies
|62(X'X/n) - 2M,|—0. With X; and ¢; independent,

:|‘7n_0_-3an|ﬁ)0

n
n 'Y (of-¢
i=1

by hypothesis. Hence, |6%(X'X/n) — Vn|—2‘io.
(ii) Suppose

n'Y (0?-&

does not hold. Then there exists § > 0 such that if » is any natural number there is a natural number
m(n)=n such that

| Vmik - &ilele =6

for some indices j, k {1, ..., K}. Given Assumptions 1 and 2(a), there exists no(8/2) such that

éan! Z XXk — 5?1Mn,'k <8/2

almost surely for all n = ny(8/2). The triangle inequality implies

Az ! Z Xerk n]k

Vn/k o M,,,k

z XX — 5aMy|.

In view of the above, there exist m(n)=n = ny(8/2) and & > 0 such that, almost surely,

Grm™! Z XiXike = Vimje| = 8/2
so that |62(X'X/n) - V, |i> 0 cannot hold, a contradiction. Q.E.D.
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