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We examine the small-sample properties of the generalized method of moments estimator applied
to models of covariance structures, in which case it is commonly known as the optimal minimum
distance (OMD) estimator. We find that OMD is almost always biased downward in absolute
value. The bias arises because sampling errors in the second moments are correlated with sampling
errors in the weighting matrix used by OMD. Furthermore, OMD is usually dominated by equally
weighted minimum distance (EWMD). We also propose an alternative estimator that is unbiased
and asymptotically equivalent to OMD. The Monte Carlo evidence indicates, however, that it is

usually dominated by EWMD.
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Generalized method of moments (GMM) estimators have
desirable asymptotic properties in many contexts, but little
is known about their small-sample properties. In this article,
we examine the small-sample properties of GMM for mod-
els of covariance structures. Recent applications of models
of covariance structures include Abowd and Card’s (1987,
1989) studies of contract models of employment and earn-
ings growth, Hall and Mishkin’s (1982) study of consump-
tion, Behrman, Rozenzweig, and Taubman’s (1994) study
of the effects of individual endowments on earnings, own
schooling, and spouse’s schooling, and Griliches’s (1979)
survey of sibling models. In these contexts, GMM mini-
mizes the weighted distance between sample moments and
the implied population moments, in which case the weight-
ing matrix is the inverse of a consistent estimate of the
covariance matrix of the sample moments. In this context
GMM is often referred to as the optimal minimum distance
(OMD) estimator.

Our study of the small-sample properties of OMD is
motivated by the fact that several authors report difficul-
ties in empirical applications based on OMD estimation of
covariance models, including Abowd and Card (1989) and
Altonji, Martins, and Siow (1987). There have been sim-
ilar reports of problems with GMM in empirical finance,
where GMM has been widely adopted and researchers rou-
tinely work with models of second moments. For exam-
ple, Lehmann (1990) reported difficulties in using feasible
OMD to combine information from subsamples. Shanken
(1990) estimated models of the mean and the variance of
portfolio returns by ordinary least squares (OLS). He noted
that simultaneous estimation of the models for the mean re-
turn and the variance offer advantages, but he reported in a
footnote that “Attempts to incorporate the estimated resid-
ual variance relations in potentially more efficient WLS re-
gression were unsuccessful and appeared to induce spurious
associations that I do not fully understand” (p. 118).

To shed light on the difficulties with OMD encountered
by empirical researchers, we present Monte Carlo evidence
on the relative bias, variance, root mean squared error
(RMSE), median absolute error (MAE), and coverage rates
of the equally weighted minimum distance (EWMD) and
OMD estimators for a set of covariance models. We argue
that the correlation between sampling errors in the second
moments and the sample weighting matrix generates bias in
OMD. To isolate the weighting procedure as the sole source
of bias, we focus on linear models of covariance structures,
although many of the issues carry over to nonlinear models
of population moments (Clark 1996). Our main finding is
that OMD is seriously downward biased in absolute value
in small samples for most distributions and in relatively
large samples for poorly behaved distributions such as the
lognormal. Furthermore, OMD usually has a larger RMSE
and MAE than EWMD. The coverage rates of 90% confi-
dence intervals for EWMD based on the usual asymptotic
approximation are usually close to 90%, but those for OMD
are often much less than 90%. We typically find that OMD
outperforms EWMD in RMSE only in situations in which
the RMSE of both estimators is small. EWMD typically
dominates OMD even in designs in which the theoretical
advantage of OMD is large. By comparing feasible OMD
to OMD based on the theoretically optimal weighting ma-
trix, we show that estimating the weighting matrix typically
involves a large increase in sampling variance and in RMSE.

Our strongest evidence in favor of EWMD over OMD is
based on the data used by Abowd and Card (1987, 1989).
We begin with the “stationary model” of the growth in log
earnings and log hours estimated by Abowd and Card. We
show that OMD leads to substantial underestimates (in ab-
solute value) of population second moments. Because the
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change in hours and earnings probably is not covariance
stationary, we also present a simulation in which we treat
the Abowd and Card data as the population and use the mo-
ments of that population to define a model that is true by
construction. We analyze the distribution of the various es-
timators by drawing samples (with replacement) from the
population and computing each estimator on the sample.
The results strongly reinforce our main theme, which is that
the OMD estimator of covariance structures suffers from
serious downward bias in absolute value and that OMD
is usually dominated by EWMD. The best choice for the
Abowd and Card data is EWMD, which is what they chose
on pragmatic grounds.

In addition to comparing EWMD and OMD, we propose
and investigate an alternative estimator, which we call inde-
pendently weighted optimal minimum distance (IWOMD).
IWOMD is a split-sample estimator that uses separate
groups of observations to estimate the moments and the
weights. The random partitioning of the data breaks the
sampling covariance between the moments and the weights.
Parameter estimates are computed separately for each par-
tition, and the estimates are averaged to form a final param-
eter estimate. IWOMD has identical large-sample proper-
ties to the OMD estimator but is unbiased regardless of
sample size. The Monte Carlo evidence indicates, however,
that IWOMD is usually dominated by EWMD based on the
criteria of RMSE, MAE, and confidence-interval coverage
rates.

The article is organized as follows. In Section 1 we il-
lustrate the class of models of interest with an example
that underlies some of our simulations. We define the OMD
and EWMD estimators for the problem and present initial
Monte Carlo evidence indicating that OMD is downward
biased. In Section 2 we provide a theoretical discussion of
the bias in OMD. The discussion points to an inverse re-
lationship between the size of the bias and the precision
in the second moments, which is strongly confirmed by the
Monte Carlo evidence. In Section 3 we present the IWOMD
estimator. In Section 4 we present more detailed Monte
Carlo evidence on the performance of EWMD, OMD, and
IWOMD. In Section 5 we present the empirical example
based on the data used by Abowd and Card (1987, 1989)
and also briefly discuss evidence from Schwert and Seguin
(1990). We close the article with a brief summary and a
research agenda. We wish to stress that care is required in
extrapolating our results beyond the models of covariance
structures we study. Although our points that the correla-
tion between the moments being fitted and the weights will
lead to bias and that imprecision in the weights will reduce
or even eliminate theoretical efficiency gains are general,
GMM may perform well in time series applications involv-
ing first moments, cases in which it has frequently been
used.

1. EVIDENCE OF SMALL-SAMPLE BIAS
IN OPTIMAL MINIMUM DISTANCE

In the basic covariance model, multiple sample moments
are combined into a single estimate of the population mo-
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ments. Our examples focus on linear models relating sample
variances (or covariances) to a single population parame-
ter so that we isolate a particular source of small-sample
bias. Assume that the researcher has data observations Dy,
where p = 1,..., P indexes the variable used to compute
the sample moment and ¢ = 1,..., N, indexes the observa-
tions on that variable. For each value of p, the mean and
variance are computed using the standard unbiased estima-
tors

N,
_ 1
D, = , ;Dm (1
and
N,
1 - —
™= 1) Z (Dpi = Dp)%s E(my) = pp. (2)

=1

The second moment estimates are stacked into a (P x 1)
vector, m, and are related to a (P x 1) vector of population
moments, x, through the model

m=pu+e=f(6)+e. 3)

In (3), 6 is the (Q x 1) parameter vector one wishes to
estimate and ¢ is a (P x 1) vector of sampling errors. When
f(6) is linear in 6, the model is

m=X60+c¢. 4)

For example, suppose that a researcher wishes to estimate
a population variance from observations on a panel of in-
dividuals covering 10 time periods. In this case, P = 10,

- and the vector m contains 10 estimates of the variance, one

from each time period. The matrix X is a (10 x 1) vector
of ones, and 6 is the population variance (a scalar). EWMD
amounts to a least squares regression of m on X with the
familiar solution

ArgMin, (m — £(6))'(m — £())
= (X'X)"HX'm). ®)

fEwMD

The EWMD estimator is not efficient if the elements of
€ are heteroscedastic or correlated. Heteroscedasticity may
arise as a result of unbalanced data (N, may differ across
p) or because the distributions of the D, are different. The
elements of ¢ will be correlated if cov(D,;, D,;) is not
0, which is likely in panel-data applications. The variance
of ¢ is not a scalar matrix in these cases. OMD takes this
into account and is generalized least squares (GLS) applied
to (4). The covariance matrix of ¢, 2, is replaced with a
consistent estimate obtained from the same data used to
compute the sample second moments m. For example, a
conventional estimator of the variance of m,, is
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Table 1. Performance of Estimators of a Variance Parameter Using 10 Sample Variances From 1 Distribution
Equally weighted (EWMD) Optimally weighted (OMD) Independently weighted (IWOMD)

Std 90% coverage 90% asym. Std 90% coverage

RMSE MAE  Asym. Boot Bias Std RMSE MAE coverage Bias RAMSE MAE  Asym. Boot

Row distribution  Obs. (1) (2 3 (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
1 45) 50 126 o7 84 79 —.199 101 223 201 15 —.011 202 125 A1 75
2 1(10) 50 079 052 89 86 —.118 089 148 21 41 000 136 .080 57 82
3 15) 50 073 .050 90 86 —.100 083 .130 .101 47 —.001 116 077 60 83
4 Normal 50 063 041 90 86 —.074 075 105 079 57 —.003 099 065 62 81
5 Uniform 50 042 028 90 86 —.013 048 049 032 80 —.002 085 036 75 90
6 Lognormal 50 395 206 74 7 —.616 128 629 625 .00 —.024 899 377 a2 76
7 Exp 50 125 085 .88 86 —.279 131 309 281 RE} —.012 255 165 31 85
8 Half-normal 50 074 050 88 85 —.118 .088 147 120 A1 — .00t 131 084 52 84
9 Bimodal 50 039 027 90 84 —.021 044 049 034 75 —.001 053 035 73 88
10 (5) 100 083 057 88 85 —.124 070 143 126 28 003 126 077 57 70
11 t(10) 100 054 038 89 87 —.065 059 087 067 55 .000 073 050 89 78
12 t(15) 100 051 035 88 86 —.052 055 076 056 62 —.001 068 046 72 .78
13 Normal 100 043 029 90 88 —.034 047 058 039 .70 003 055 037 75 79
14 Uniform 100 029 020 89 86 —.006 031 .03t 021 85 —.001 033 021 83 88
15 Lognormal 100 344 .156 78 77 — 474 115 488 480 01 018 752 254 19 73
16 Exp 100 .085 055 86 85 —.165 083 189 .169 27 —.003 147 095 50 75
17 Half-normat 100 052 034 90 89 —.062 059 085 066 57 —.001 074 051 68 78
18 Bimodal 100 027 018 .87 84 —.on 029 031 020 77 —.001 .031 021 77 80
19 t(5) 500 042 025 88 88 —.041 034 054 043 57 .002 067 031 70 78
20 t(10) 500 025 017 89 .88 —.014 025 029 021 79 001 027 018 82 .84
21 t(15) 500 .023 016 .90 89 —.011 024 026 018 B2 000 025 018 84 84
22 Normal 500 019 012 90 90 —.007 020 021 013 87 .000 .020 013 .88 88
23 Uniform 500 012 .008 89 88 —.001 012 012 .008 89 .000 012 .008 89 88
24 Lognormal 500 147 080 82 82 —.233 084 247 236 .08 .008 238 118 40 68
25 Exp 500 041 025 91 .90 —.043 043 061 047 B4 —.001 .051 033 76 81
26 Half-normal 500 024 017 90 90 —.012 024 027 020 83 002 027 019 86 87
27 Bimodal 500 012 008 90 90 —.002 012 012 008 .90 —.000 012 .008 91 90
28 1(5) 1,000 029 018 89 87 —.026 025 036 027 624 —.001 033 021 74 .78
29 t(10) 1,000 018 012 90 89 —.008 018 020 013 829 —.000 019 013 87 87
30 H(15) 1,000 016 011 89 88 —.006 016 017 012 840 — 001 017 on 87 87
31 Normal 1,000 014 009 80 89 —.004 014 015 010 887 —.000 014 010 89 86
32 Uniform 1,000 .009 006 92 91 —.001 .009 009 006 896 —.000 009 006 91 91
33 Lognormal 1,000 100 060 84 84 —.161 067 475 165 .138 002 151 085 45 70
34 Exp 1,000 030 020 89 88 —.020 031 037 026 752 003 035 023 82 84
35 Half-normal 1,000 017 o011 91 80 —.006 017 018 013 861 .001 018 012 .88 88
36 Bimodal 1,000 .008 .006 .90 90 —.000 .008 008 006 904 .001 .008 006 89 89

NOTE:

1. Results are based on 1,000 replications of a model that equates 10 uncorrelated variances from the specified distribution and sample size to a single population variance. 2. The
columns labeled “90% coverage” report the probability that the symmetric 90% confidence-interval estimate contains (covers) the true value of 1. “Asym.” indi i

that the cor val

estimate is based on the conventional asymptotic formula. “Boot” indicates that a bootstrap confidence intervai is used. We constructed the bootstrap confidence interval for EWMD as follows.
For each of 1,000 Monte Carlo samples of size N, we draw with replacement 500 different bootstrap samples of size N. We then compute the EWMD estimator using each of the 500 bootstrap
samples. The 5th and 95th values of the EWMD estimator form the 90% confidence-interval estimate for the particular Monte Cario sample. We use an analogous bootstrap procedure to produce

column (14) for IWOMD.

Ny
(N — (N, — 2

var(m)

N
1 e _

o Z (Dpi — Dy)*
P =1

N 2
1 = .
S B MCAES Ai RO
i=1

A comparable formula exists for the covariance between
m, and m, . Let €} represent the estimated covariance ma-
trix of m. The OMD estimator minimizes a quadratic form
involving the sampling error in the moments and Q. In other

words,

fomp = ArgMing(m — £(8))'Q7 (m - £(6))
— (X/Q-—IX)—IX/Q—lm (7)

in the linear case.

Malinvaud (1970), Chamberlain (1982, 1984), Hansen
(1982), and others showed that under a relatively innocu-
ous set of conditions N/2(8omp — 8) —p N(F'Q™1F/N),
where F is f /06 evaluated at the true 6, and that the OMD
estimator is asymptotically efficient.

The replacement of ) with a consistent estimate does
not affect the asymptotic properties of fomp. It does, how-
ever, affect the small-sample behavior of the estimator.
Table 1 examines the EWMD and OMD estimators of the
10-variance model mentioned previously, using simulated
data from several common distributions and several sample
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sizes. We consider the case in which the data D,; are in-
dependent across ¢ and p, which implies that the 10 sample
variances are independent. The distributions were chosen
to include thick-tailed symmetric distributions [student-(5)
and student-t(10)], long-tailed asymmetric distributions (ex-
ponential and lognormal), an asymmetric distribution (half-
normal), several “well-behaved” distributions (normal and
uniform), and a bimodal distribution. (The bimodal distribu-
tion is generated by using a binomial to choose randomly
between two normally distributed random variables. One
has mean —2, one has mean 2, and both have variance 1.)
All of the population distributions are scaled to have mean
0 and variance 1. For each distribution, a fixed number of
observations is drawn at random and used to estimate the 10
variances and their covariance matrix Q. Both the diagonal
and off-diagonal elements of Q are replaced with sample
estimates, even though the elements of m are independent.
This corresponds to the case in which the econometrician is
unaware of the fact that the moments are independent. The
EWMD and OMD estimates are computed and the entire
process is replicated 1,000 times.

The columns in the first panel of the table (rows 1-9) that
are labeled “Bias” report the average of ( — ) from 1,000
replications of the experiment based on 50 observations per
moment (N, = 50,p =1,...,10). We omit the column for
EWMD because it is known to be unbiased. Column (5)
shows that OMD has a negative bias. For example, when
data are drawn from the standard normal distribution, the
OMD estimates have a bias of —.074, or 7.4% of the true
parameter value of 1. The mean of OMD when using data
from the uniform distribution is still .013 below the true
value.

The bias in OMD is larger for thick-tailed distributions,
which have higher fourth moments and therefore have more
variable second moments. To see this, note that the bias de-
clines with the number of degrees of freedom of the ¢ distri-
bution, and recall that the tails of the student-¢ distribution
become thinner as the degrees of freedom increase and the
distribution approaches the normal. For example, when N
is 50 the bias in the OMD estimator declines from —.199
to —.118 to —.100 as one moves from a ¢(5) distribution to
a t(10) and then to a ¢(15) distribution. The lognormal and
exponential distributions produce the worst bias. The bias
is —.616 and —.279, respectively, when N is 50, which is
very large relative to the true parameter value of 1.

The remaining panels of the table repeat the experiment,
increasing the amount of data used to estimate each mo-
ment. As N rises, EWMD remains unbiased and the bias in
OMD declines. The additional data improve the accuracy
of the variance estimates and the accuracy of the weights.
This, in turn, improves the accuracy of the OMD estima-
tor. For most distributions the bias is very small when 1,000
observations are available to estimate each sample moment.
The bias is 16% in the lognormal case, however, even with
1,000 observations per moment.

Table 1 suggests three conclusions. First, OMD is down-
ward biased. Second, the bias dissipates with sample size.

Journal of Business & Economic Statistics, July 1996

Third, the bias is worse in long-tailed and skewed distribu-
tions.

Because there is no heteroscedasticity or serial correla-
tion in the experiments of Table 1, the EWMD estimator
is the optimally weighted estimator, and OMD and EWMD
are asymptotically equivalent. Thus, it is not surprising that
EWMD outperforms OMD in these cases. The detailed ta-
bles of Altonji and Segal (1994) (hereafter AS) show, how-
ever, that the three conclusions about bias hold when het-
eroscedasticity is introduced by varying the distribution of
the data within an experiment and when OMD is used to
estimate a parameter of the covariance matrix of a vector of
correlated random variables. Section 3 provides a graphical
summary of some of this evidence.

2. THE SOURCE OF BIAS IN OMD

Feasible GLS estimation, including OMD, is justified by
its asymptotic properties rather than small-sample proper-
ties. Bias will arise in most cases in which the estimate
of the weighting matrix covaries with the regression model
erTor.

This problem can be serious in the case of OMD estima-
tion of covariance structure models. From (7) the bias for
fixed N is

E(fomp — 0) = E[(X'Q7 X)) 1X'Q el (8)

In OMD the sample estimate, 2, of the covariance matrix of
the vector of sample moments, m, is the weighting matrix.
When m consists of second moments, it is likely to be cor-
related with ) because individual observations that increase
the sample estimate of a variance will also tend to increase
the sample estimate of the variance of the variance. The re-
sulting correlation between the elements of {2 and e creates
a correlation between the elements of (X'Q~1X)~1X'Q~!
and the elements of . Thus, the bias is nonzero even though
the mean of the error ¢ in the sample moments m is 0.

The consequences of correlation between the weights and
the errors is easily illustrated in a model of independent
but heteroscedastic sample moments. Let w, be the esti-
mated variance of the pth element of m,m,, and assume
that E(my) = 6 for p = 1,..., P. The design matrix for
this model is a vector of ones, so the bias of the OMD
estimator is

P “1p
E(HOMD — 9) =F (Zw;l> pr_lfp . (9)
p=1 p=1

The sign of the bias in fomp for a fixed sample size N
requires an examination of the expectation in (9). The first
summation is the sum of inverses of the variance estimates
and must be positive. Thus, the sign of the bias depends
on the weighted sum of the ¢, in the second summation.
Intuitively, the weight w,; L (proportional to the inverse of
the difference between the fourth moment and the square of
the second sample moment) tends to be small when there are
unusually large or small observations in the sample used to
compute the sample variance m,, but ¢, (the sampling error
in m,) tends to be positive. Consequently, the estimator
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gives less weight to positive realizations of the sampling
error €, than to negative realizations. Because ¢, has a mean
of 0 and the estimator places less weight on positive values
of e, the bias is negative. :

Formally evaluating the expectation on the right side of
(9) is difficult because of the correlation between the terms
of the first and second summations. Several studies (e.g.,
Angrist and Krueger 1995; Bekker 1994), however, have
evaluated small-sample properties in other contexts by al-
lowing the number of moments to grow with the sample
size. Using a similar approach we evaluate the probability
limit of 6oMmp as the number P of independent sample vari-
ances of fixed sample size N goes to infinity. Dividing each
summation by P, the probability limit of fomp as P goes
to infinity is

plim (fomp — 0) = E(w, ') ' E(w, ep), (10)

P—oc

provided the expectations exist.

The random variable w,, is greater than 0 with probabil-
ity 1, so the first expectation in (10) is positive. Thus, the
sign of the bias is determined by the sign of the second
expectation. Because w, is greater than 0 with probabil-
ity 1, wy! is strictly decreasing in w,. This suggests that
E(e,/w,) will be opposite in sign from E(e,w,), although
the monotonicity of the transformation w, 1 is not sufficient
to guarantee this. That is, if cov(ep,wp) > 0, then E(ep/wp)
is likely to be less than O and the bias in OMD is negative.
In the Appendix we show that cov(e,,w,) is greater than O
if the distribution of (D2, — E(DZ,)) has a positive skew.
This condition holds for the standard distributions used in
the economics literature, the distribution of the Abowd-
Card data, and for all of the distributions used in Table 1.
Thus, the analysis of (10) supports the intuitive argument
for a negative bias and the Monte Carlo evidence of Ta-
ble 1. We provide an example in the Appendix in which
cov(ep,wp) < 0 and the bias in OMD is positive. The ex-
ample involves a symmetric distribution with finite support
and most of the mass near the minimum and maximum
values.

It is interesting to relate this result to feasible GLS ap-
plied to problems involving means or conditional means.
If the moments m,,p = 1,..., P, were the sample means
rather than the variances of D;, and 6 was the population
mean, then the exact same analysis implies a negative (pos-
itive) bias if D;, has a positive (negative) skew. The OMD
weights for combining the means of D;, from the P groups
into an estimate of the population mean 6 are the sample
variances for each group p. Thus the weights are even func-
tions of the vector {D1,, ..., Dn,}. If D;, are independent
and have symmetric distributions then the sampling error
in the sample mean m, will have a symmetric distribu-
tion. This symmetry condition together with the fact that
the OMD weights are even functions are basically the Kak-
wani (1967) conditions for feasible GLS regression to be
unbiased. In the preceding problem involving a model of
variances (rather than means) the weight w,, is also an even
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function of {Dy,, ..., Dy}, but €, has a symmetric distri-
bution only if (D%, — E(DZ,)) has a symmetric distribution.

Our simulation results using the Abowd and Card data
and other unreported Monte Carlo experiments indicate that
OMD estimates of covariances, like variances, are often bi-
ased downward in absolute value. To get some insight into
this, we have formulated a comparable model with m,, re-
defined to be the covariance between two mean O random
variables Z;, and Y;,,. The sign of the bias continues to de-
pend on E(e,/w,), where ¢, and wj, are defined from the
model of covariances. E(e,/wp) is likely to be of oppo-
site sign to cov(ep, w,). One may show that cov(e,, wp) has
the same sign as E[(YZ — E(Y Z))3]. Because the cross-
products of positively (negatively) correlated variables are
likely to have a positive (negative) skew, the simple theo-
retical analysis is consistent with the simulation results.

What determines the size of the bias? The intuitive ar-
gument implies that it will depend on the degree to which
g, covaries with w,, which suggests that the bias is lower
for large N and higher for distributions with larger higher-
order moments because these affect var(e,). To see the de-
pendence on N, note that standard asymptotic analysis of
OMD examines the behavior of the estimator for fixed P
as N goes to infinity and therefore implies that the bias in
fomp declines with the sample size per moment. The dis-
tributions of w, and m, are implicitly indexed by N and
the distribution of D,;. As N goes to infinity, £, converges
in probability to 0 and the covariance between ¢, and w,, !
dissipates. Therefore E(e,/w,) normalized by E(1/wp)™*
converges to 0. For a given N, var(e,) and cov(e,,wp)
are positive functions of the higher moments of the dis-
tribution, leading to larger bias for distributions with larger
higher-order moments. The bias may be small in situations
in which the sampling errors ¢, are small, either because
N is large or because the underlying distributions are well
behaved. In these situations, however, any improvements in
precision from using OMD are also likely to be small in
absolute magnitude.

In Figure 1, we examine the implication that there is a
relationship between var(e,) and the bias, E(6omp —0), by
plotting the theoretical standard deviation (std) of the sam-
ple variance against the size of the downward bias of fomp
for the Monte Carlo experiments of Table 1. The theoretical
standard deviation is the square root of the variance of the
variances and is a function of the sample size and the popu-
lation moments of the particular distribution. The bimodal
and half-normal distributions are omitted from the figure
because we have not calculated the theoretical variance of
the variance in these cases. The figure shows a strong pos-
itive relationship between the downward bias in fonmp and
the std of the sample variances. The solid regression line in
the figure has a slope of .46 and an adjusted R-square of
.95. As the sample size declines and as the fourth moment
of the underlying distribution increases holding the second
moment fixed, the variance of the variance increases and
the bias becomes worse. The tight fit in the figure suggests
that the simple relationship between the bias and the theo-
retical std holds regardless of whether the variation in the
theoretical std is due to variation in the distribution across
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Downward Bias

0.0 0.4 0.8 1.2 1.6
Standard deviation of sample variance

Figure 1. Relationship Between Sampling Variance and OMD Bias:
Based on 10 Moments From 7 Distributions and 5 Sample Sizes; Pre-
dicted Bias = —.01 + .46* Std of Sample Variance; Adjusted R-
Squared is .95.

experiments or due to variation in sample size across ex-
periments.

The preceding results suggest that research on the small-
sample properties of GMM and alternative estimators is
needed. Before proceeding further, it is worth mentioning
a few recent works that have considered the small-sample
properties of GMM. Koenker, Machado, Skeels, and Welsh
(1994) provided a theoretical analysis of small-sample prop-
erties of GMM in a somewhat different context than ours
but focused on efficiency rather than bias. They suggested
alternatives based on robust estimators rather than the least
squares criteria that underly conventional GMM. Arellano
and Sargan (1990) discussed alternative small-sample ap-
proximations to the distribution of estimators that may be
written as functions of second moments, with references
to earlier works, but did not apply the approximations to
the class of problems we consider. Tauchen (1986) exam-
ined the use of GMM to estimate parameters of nonlinear
models of conditional means with endogenous variables in
time series data. Horowitz and Neumann (1992) presented
a second-order correction for bias in a GMM-based test
statistic of the proportional-hazards assumption in duration
analysis. Neither these studies nor a handful of other recent
working papers referenced by Ogaki (in press) raised the
issue of bias from correlation between the moments under
study and the weighting matrix, which is our focus.

3. AN UNBIASED OMD ESTIMATOR

The bias in OMD arises because of a correlation be-
tween sample moments and the estimated weighting matrix
§2. Corrections based on bias approximations are cumber-
some. We develop an unbiased estimator based on the old
idea in econometrics of splitting the sample to break statis-
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tical dependence. [Another recent application of this idea is
the article by Angrist and Krueger (1995).] Observe that es-
timates of the second moments based on part of the sample
are statistically independent of estimates of the weighting
matrix based on the other part. Consider a random parti-
tioning of the full data sample into G groups of equal size.
Let the (P x 1) vector m, and the (P x P) matrix €, be
the sample estimates of p [recall that 4 = f(#)] and Q us-
ing only the data in group g. Let m(,) and €2, represent
estimates based on the data excluding group g. Define the
IWOMD estimator frwomp(c) as the split-sample estima-

tor that uses each my and Q(g) pair to produce G separate
parameter estimates, which are then averaged. The formal
definition of the IWOMD estimator is

frwoMD(G)
G A
= — Y ArgMiny(my — £(6))' 2, (mg — f(6)). (11)

For f(6) linear in 6, each term in the average is free of
small-sample bias because the sampling errors in the es-
timates of p and ) are independent. Hence the average
is unbiased. In the linear case, fomp and Oywomp(c) are
asymptotically equivalent estimators. This is easily demon-
strated using (11). The basic argument is that the Q4 and

) used in OMD all converge to 2. When Q(g) is set to 2
for all ¢,fwowmp is numerically identical to OMD based
on the true Q. Consequently, frwomp has the same limiting
distribution as feasible OMD and true OMD.

Note that the estimates m, and Q(g) will be dependent
if a single sample mean (or regression function) is used to
center the data, as is often done in EWMD and OMD. Con-
sequently, IWOMD is not unbiased in small samples unless
the data are centered separately for partitions g and (g) with
an appropriate degree-of-freedom adjustment in computing
mg and Q(g). When we refer to IWOMD as unbiased, we
are referring to the estimator in which either the mean is
known or the data are centered separately. Estimation of the
mean has no asymptotic effect, so researchers often ignore
the effects of estimating the means in actual applications.
Our simulations (not reported) indicate, however, that the
bias due to correlation through the mean may be substan-
tial if the sample size is small and the distribution is heavily
skewed like the lognormal and the exponential distributions.
Use of a single mean to center the data produces positive
bias in the IWOMD estimator.

We investigated whether the number of partitions G mat-
ters much. The number of groups affects the estimation by
trading off the precision of the moment estimates and the
weighting estimates. The precision loss in the moment es-
timates due to increased G is offset by the averaging of the
parameter estimates as the last step in the procedure. When
£(8) is nonlinear in §, however, the average of the estimates
of 8 based on each of the subgroups of observations may be
biased as a consequence of Jensen’s inequality. One could
use IWOMD to estimate the most restrictive linear model
that nests the nonlinear model and then use EWMD to fit
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the nonlinear model to the parameter estimates of the linear
model.

In Monte Carlo simulations (not reported) we compared
the performance of the estimator when G is set to 2, 5, 10,
25, and N groups when the data are not centered separately
for each partition. The simulations suggest that its perfor-
mance usually is not very sensitive to choice of G. We use
G = 2 throughout the article, however, out of a concern
that in actual applications centering the data separately for
each partition may cause problems when the ratio of N to
G is small.

In Table 1 we report simulations of #rwomp analogous
to those of Ogwmp and Ooymp discussed previously. The
results in column (10) confirm that dpwowmp is unbiased.

4. EVALUATING THE PERFORMANCE
OF EWMD, OMD, AND IWOMD

In this section we provide a broader assessment of the
performance of EWMD and OMD. We consider the bias,
RMSE, MAE, and std of the estimators. We also consider
the coverage rates of 90% confidence-interval estimates. We
defer discussion of IWOMD until the end of the section.

4.1 Models With Identically Distributed Moments

In Table 1 we report the std, RMSE, and MAE of EWMD
and OMD estimators of the variance parameter ¢ as well
as the bias. In these experiments EWMD is OMD based on
the true weights. The table shows that OMD is not only
biased but always has an RMSE and an MAE that are as
large or larger than EWMD. For example, in the case of
the ¢(5) with 50 observations, the bias in OMD is —.199. It
has an RMSE of .223, almost double that of EWMD.

Given that EWMD is “true” OMD in these experiments,
it is initially surprising that, for the ¢(5) and the lognormal
cases, OMD has a smaller std than EWMD. The source
of bias in OMD—the correlation between the weight and
the second moment—is expected to reduce the sampling
variance of OMD when the kurtosis of the underlying data
is large (Koenker et al. 1994), as in the ¢(5) and lognormal
cases. These are typically the cases in which bias is large.

The fact that sampling error in {2 leads to bias in OMD
raises concern about the use of the conventional asymp-
totic ¢t statistics, standard errors, and confidence intervals as
the basis of statistical inference in the EWMD or IWOMD
cases because these rely heavily on 2. Moreover, to the ex-
tent that departures from normality in the second moments
and the estimators are substantial, confidence intervals and
test statistics based on the asymptotic standard errors must
be treated cautiously. _

To assess these concerns, we report the fraction of the
replications in which the 90% confidence-interval estimate
for 6 covers the true value of 1 in columns (3) and (9) of
Table 1. The confidence-interval estimates were constructed
using {2 to form the conventional asymptotic standard errors
for both EWMD and OMD. The coverage rate is close to
.9 or slightly below in the case of EWMD for sample sizes
of 50, 100, and 500, except when the lognormal is used in
the experiment. In contrast, the coverage rates for the OMD

359

confidence intervals are well below .9 in most cases, even
when N is 500. For example, when N is 500 the OMD
coverage rates for the ¢(5), exponential, and lognormal are
.57, .64, and .08.

Given concerns about using the estimated weighting ma-
trix to form confidence intervals, we also examined the per-
formance of a 90% symmetric bootstrap confidence interval
for the EWMD simulations [col. (4)]. These results indicate
that the use of Q with the asymptotic standard-error formula
is usually a bit better than inference based on the bootstrap.
For example, for the ¢(5) with 100 observations, the cover-
age rate using the conventional asymptotic standard errors
is .88, and coverage rate of the bootstrap confidence interval
is .85. The coverage rates of bootstrap confidence intervals
for OMD are usually even worse than those based on the
asymptotic theory, and we do not report them.

In summary, we find first that inference based on the use
of {1 is satisfactory in most cases when the estimator is
EWMD. Difficulties arise in the cases involving the lognor-
mal. Second, we find that the coverage rates for the OMD
90% confidence intervals are often far below the nominal
value of .9.

4.2 Fitting Variance Parameters to Second Moments
Based on Different Distributions

AS reported Monte Carlo experiments when 5 moments
come from one distribution and 5 from another for most
combinations of the distributions in Table 1 and sample
sizes of 50, 100, 300, 500, and 1,000. Figure 2, a—d, sum-
marizes the evidence on the relative performance of the es-
timators. For the simulation experiments with similar the-
oretical efficiency gains (between 1.125 and 1.5), we plot
the bias squared (squares and solid regression line) and the
difference between the variance of EWMD and OMD (cir-
cles and dashed regression line) against the average vari-
ance of the sample variance. (We will discuss the dotted
line later.) The pairs of distributions used are the ¢t5-¢10,
t5—t15, t15—uniform, uniform—-normal, t10—-exponential, and
t15-exponential. The mean-squared errors of the EWMD
and OMD are the same where the solid and dashed lines
intersect. For a fixed efficiency gain, the OMD bias in-
creases much faster than var(fomp) — var(gwmp) as the
variance of the sample variances increases. The figure sug-
gests that the realized efficiency gain of OMD dominates
the bias only for very well-behaved distributions with small
fourth moments. In Figure 2b we exclude experiments with
high values for the average variance of the sample vari-
ance to be sure that these are not dominating the figure.
Figure 2¢ and Figure 2d are analogous to 2a and 2b (re-
spectively) but consider cases in which the theoretical effi-
ciency gain is between 3.03 and 4.04. [The pairs of distri-
butions are the uniform—¢(5), the uniform-exponential, the
t(5)-lognormal, and the exponential-lognormal.] In these
figures the dashed line is positively sloped, indicating that
var(fgwwmp) — var(fomp) is positively related to the av-
erage variance of the sample variances. The bias squared
line (the solid line) has a much larger slope, however. The
bias squared usually lies above var(gwmp) — var(6omp),
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Figure 2. Decomposition of the Mean Squared Error of EWMD and OMD. Squares and solid lines indicate bias squared. Circles and dashed
lines indicate the difference between the variance of EWMD and the variance of OMD. The dotted lines indicate the difference between the variance

of feasible OMD and the variance of the true OMD.

except in cases in which average variance of the sampling
variances is small and efficiency makes little difference in
absolute terms.

The evidence in the figures suggests that the advantage of
OMD in RMSE over EWMD (when there is an advantage)
is usually only a small fraction of the theoretical advantage.
To get further insight, we also compare the performance of
feasible OMD to the performance of “true” OMD based on
a known, optimal weighting matrix. The dotted line in the
figures is the least squares regression line relating the dif-
ference between the sampling variances of OMD and “true
OMD?” based on a known, optimal weighting matrix to the

average variance of the sample variances. The sum of the
dotted line and the solid line is the difference in RMSE
between OMD and true OMD. The gap in RMSE between
OMD and true OMD arises because of bias in OMD and be-
cause in most cases OMD has a higher sampling variance.
The gap in sampling variance is reflected in the figures,
where the dotted line graphing var(6oymp) minus the vari-
ance of true OMD lies above 0. Both bias and sampling
variance are more important when the theoretical efficiency
gain from OMD is high (e.g., the lognormal-normal and
lognormal—-uniform cases). Bias is much more important
when the theoretical efficiency gain is low but the distri-
butions are badly behaved [e.g., the exponential-¢(5)]. The
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high cost of estimating the weighting matrix suggests that
there are large gains from a priori information about the
relative precision of different sample moments.

AS also examined coverage rates for some of the ex-
periments involving two distributions. EWMD continues
to dominate OMD in RMSE and MAE and in the cov-
erage rates of confidence intervals. The coverage rates of
EWMD confidence intervals based on the asymptotic the-
ory are close to .9, except in cases involving the lognormal.
OMD coverage rates are often well below .9.

4.3 Experiments Involving Correlated Moments

AS also presented detailed Monte Carlo evidence on the
behavior of the estimators when the sample moments are
correlated. To save space, we simply describe the experi-
ments and summarize our main results.

Because the efficiency gains of OMD are surprisingly
small when the moments are homoscedastic (but correlated)
unless there are restrictions across the parameters of the
model, the interesting model for OMD involves correlated
moments in which the structure of the correlation is known
and aids in the identification of the parameter. We generate
Dy = (Zp+ pZp41)/(1 + p)® for p=1 to 10 from a set of
mean 0, variance 6, iid random variables Zy, ..., Zy,. The D
variables are mean 0 with variance 6, but D, and D, have
a covariance of 8p/(1+ p?). We assume that p is known, so
the 10 sample variances and 9 first-order autocovariances
are functions of the single unknown population variance
6. which is set to 1 in our experiments. The mix of vari-
ances and covariances in the vector of sample moments, m,
implies heteroscedasticity in addition to serial correlation.
AS reported simulation results from this model applied to
a variety of distributions, sample sizes, and implied values
for cov(D,, Dy41). (We were surprised that the theoretical
efficiency gains of OMD over EWMD are relatively small
for the preceding design even when p is 1.) We also inves-
tigated how increasing the size of the model while holding
constant the number of moments that contain information
on a given sample moment affects small-sample bias.

The results confirm our earlier finding that the bias in
OMD is larger when the sample size is small or the dis-
tribution is poorly behaved. For example, in the lognormal
case when the sample size is 100 and p is .5, the bias is
—.551, and the bias is —.074 in the corresponding case for
the normal. Second, EWMD continues to dominate OMD
in RMSE and MAE. Third, the small-sample bias rises with
the size of the model while holding constant the number of
moments that contain information on a given sample mo-
ment.

4.4 The Performance of IWOMD

We have already noted that the experiments with inde-
pendent, homoscedastic moments in Table 1 confirm that
IWOMD is unbiased. We now provide a broader assess-
ment of the performance of this estimator. Columns (10)—
(14) of Table 1 report the bias, RMSE and std (they are the
same for unbiased estimators), MAE, and 90% coverage
rate for IWOMD for the homoscedastic model. The MAE
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and' RMSE of IWOMD are less than or equal to that of
OMD in 33 of 36 cases and 30 of 36 cases, respectively.
For the ¢(5) distribution with 50 observations, the MAE val-
ues are .201 for OMD and .125 for IWOMD. The RMSE
values are .223 and .202, respectively. On the other hand,
the RMSE of the IWOMD estimator is always greater than
EWMD.

Comparison of the RMSE and MAE between EWMD
and IWOMD provides evidence of the cost of estimating
the weighting matrix that is uncontaminated by the corre-
lation between the weights and the second moments. For
poorly behaved distributions and small sample sizes, the
costs can be quite large. For example, for the ¢(5) distribu-
tion with N = 50 the MAE for EWMD is .071 and .125
for IWOMD. The difference corresponds to an increase of
more than 75% and the RMSE rises from .126 to .202. The
difference dissipates as sample size increases but there is
still a 50% difference in RMSE for the same experiment
using 500 observations to estimate each moment.

AS reported Monte Carlo experiments for IWOMD based
on 10 moments from two different distributions. The de-
tailed results showed that IWOMD never outperforms
EWMD in RMSE or MAE when N is 50 or 100. As the
sample size increases the two estimators perform similarly,
with IWOMD having an advantage in larger sample sizes
for pairs of distributions that imply a substantial asymp-
totic efficiency gain for IWOMD and OMD. The sampling
variance of IWOMD is larger than OMD even though the
asymptotic variances of IWOMD and OMD are identical.
As in the single-distribution case, the cost of estimating the
weighting matrix is high. The experiments of AS based on
serially correlated data show that IWOMD often dominates
OMD in MAE and RMSE but usually does not perform as
well as EWMD unless the efficiency gain is above 1.4 and
the sample size is above 300.

In columns 13 and 14 of Table 1 we examine statisti-
cal inference based on IWOMD. For each replication we
computed the 90% confidence-interval estimate using Q to
evaluate the asymptotic standard-error formula (which is
the same as OMD). The coverage rate for 90% confidence
intervals based on IWOMD [col. (13)] are typically closer to
.9 than OMD but well below the coverage rates for EWMD.
This may seem puzzling given the very good performance
of the EWMD confidence intervals based on the asymptotic
theory. The source of the problem is that the std of IWOMD
is often much larger than the asymptotic standard error (not
reported). OMD and IWOMD are designed to reweight the
sample moments to correct for heteroscedasticity and serial
correlation that is reflected in Q2. The IWOMD asymptotic
standard errors ignore the fact that sampling error in Qg in-
troduces additional heteroscedasticity and serial correlation
into the weighted sample moments. (In the OMD case the
correlation between the sampling error in € and ¢ seems
to reduce the discrepancy between the asymptotic standard
errors and actual std.) The coverage rates for IWOMD are
directly related to the ratio of the std of EWMD (true OMD
for the experiments in Table 1) to the std of IWOMD and
are close to .9 when this ratio is close to 1.
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Table 2. Estimates of the Abowd-Card Stationary Covariance
Structure of the Changes in Log Hours and Log Earnings
for a PSID 11-Year Sample

Lag: Lag: Lag:
Moment and estimator T=20 T=1 T=2
cov(Aearnings,, Aearnings;_ )
EWMD 175 —.060 —.008
OMD .086 —.026 —.008
IWOMD 149 —.060 -.007
EWMD (Abowd and Card) 172 —.060 —.007
cov(Ahours;. Ahours;_ ;)
EWMD 131 —.047 —.006
OMD .060 —.022 —.005
IWOMD q11 —.043 —.005
EWMD (Abowd and Card) 17 —.035 -.011
cov(Ahours;, Aearnings;_ )
EWMD .080 —.026 —.008
OMD .026 —.002 —.005
IWOMD .060 —.024 —.006
EWMD (Abowd and Card) .073 —.023 —.006
cov(Aearnings;, Ahours;_ ;)
EWMD .080 —.024 —.002
OMD .026 —.005 —.003
IWOMD .060 —.016 —.001
EWMD (Abowd and Card) .073 —.020 —.002

For all Table 1 experiments, we computed bootstrap con-
fidence intervals [col. (14)]. These performed much better
but still have coverage rates that are usually between .75
and .85.

We have also examined the coverage rates of IWOMD
confidence intervals for designs involving moments from
two different distributions. We again find that coverage rates
for the IWOMD bootstrap confidence intervals are better
than OMD but not as good as EWMD (see AS for details).
We also find that the bootstrap confidence intervals perform
better than confidence intervals constructed from the con-
ventional asymptotic standard errors, which are too small.
(Results are not reported.)

4.5 Summary

The experiments based on independent and homoscedas-
tic second moments in Table 1, moments from two differ-
ent distributions, and correlated moments all indicate, first,
that omp suffers from serious small-sample bias in many
cases; second, that it is almost always dominated by frwwyp
in RMSE, MAE, and the coverage rates for 90% confidence
intervals; and, third, that there is a large cost to having to
estimate the weighting matrix. fgwp also typically domi-
nates frwonmp, which is unbiased but has a larger sampling
variance.

5. AN EMPIRICAL EXAMPLE

It is difficult to know what to assume about the data
and models used in practice. Therefore, we supplement the
preceding Monte Carlo analysis by applying the various es-
timators to Abowd and Card’s (1987, 1989) analysis of the
covariance of changes in log earnings and changes in log
hours from the Panel Study of Income Dynamics (PSID).
The data are based on an 11-year (1969-1979) sample of
male heads of household. The sample consists of 1,536 in-
dividuals with complete data for the period, annual hours
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continuously above O but less than or equal to 4,680, and
average hourly wages continually less than $100. [In con-
structing our sample, we followed the data appendix of
Abowd and Card (1987), who worked with a sample size
of 1,448. With their assistance we attempted to track down
the differences between their sample and ours. We gave up
after a modest effort because the EWMD and OMD esti-
mates are very similar for the two samples.] All dollar val-
ues have been adjusted to 1967 levels using the Consumer
Price Index. Log hours and log earnings are adjusted for
labor-market experience and year effects prior to comput-
ing variances. The adjustment consists of separate regres-
sions of the change in log earnings and the change in log
hours on the 1967 potential experience level (age — edu-
cation attainment — 5) and time dummies. The remainder
of the procedure is performed using the mean O residuals
from the experience regression.

The assumption of stationarity in first differences implies
that the autocovariances and cross-covariances do not de-
pend on time. The raw data for 1969-1979 provide 10 ob-
servations per person on the changes in log earnings and
in log hours. There are 210 unrestricted moment estimates
covering the various years and lags (10 hours variances, 45
earnings autocovariances, 10 earnings variances, 45 auto-
covariances, and 100 hours/earnings covariances). The sta-
tionary model has 39 unique parameters (1 hours variance,
9 hours autocovariances, 1 earnings variance, 9 earnings au-
tocovariances, and 19 hours/earnings covariances). Table 2
presents the EWMD and OMD estimates of the covariance
at time lags of 0, 1, and 2. The results of Abowd and Card
(1987) are presented as well.

The difference between EWMD and OMD is striking.
There is a systematic tendency for the absolute value of the
EWMD estimates to exceed that of the OMD estimates.
For example, the OMD estimate of the variance of the
change in log earnings is .086, which is less than half of
the EWMD estimate. The OMD estimate of the covariance
of the change in hours and the first lag of the change in log
earnings is .026, which is less than a third of the EWMD
estimate of .080. Altonji et al. (1987) reported the same
phenomena for similar data on earnings and hours as well
as for data on changes in family income, wage rates, con-
sumption, and the hours of unemployment. The fact that
the OMD estimates are consistently below the EWMD es-
timates in absolute value is disturbing but expected in view
of the discussion in Section 2.

Note, however, that the IWOMD estimates are somewhat
smaller in absolute value than EWMD despite the fact that
both estimators are unbiased. This may indicate that the
covariances are in fact nonstationary because in the non-
stationary case the true weights are likely to be positively
related to the absolute values of the variances and covari-
ances. As a result, OMD and IWOMD produce weighted
averages of the true variances and covariances that will be
less than the simple average produced by EWMD.

We would like to compare the three estimators using
a model of the Abowd—Card data that we know is true
by construction. To this end, we perform an experiment
in which we treat the Abowd—Card sample as a popula-
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Table 3. Simulation of a True Covariance Model of the Change in Log Hours and Earnings Based on 11-Year PSID Sample

EWMD OMD IWOMD
Std __90% coverage 90% asym. Std 90% asym.
RMSE MAE Asym. Boot Bias Std RMSE MAE coverage RMSE MAE coverage

Moment (1) 2 3) (4) (5) (6) (7) (8 (9) (10) (11) (12)
var(Aearningst) .108 .075 .86 .89 —.722 .044 723 722 .00 0.258 A7 .08
cov(Aearnings;, Aearningsy_1) .156 .104 .87 .88 —.737 .051 .739 739 .00 0.314 215 .08
cov(Aearnings, Aearnings;_») 511 .366 .90 .89 —.808 162 .824 .812 .00 1.140 761 .08
var(Ahoursy) 114 077 .88 .89 —.728 .045 730 729 .00 0.256 .150 .07
cov(Ahourst, Ahours;_ 1) 159 .108 .87 .87 —.725 .049 726 727 .00 0.301 .180 .09
cov(Ahours;, Ahours;_2) 412 .269 .90 .90 —-.778 110 .786 779 .00 0.766 484 13
var(Ahoursy) 161 110 .87 .87 —.804 .048 .806 .807 .00 0.309 .202 .09
cov(Ahoursy, Aearnings;_1) 246 170 .88 .88 —.800 .0569 .802 .801 .00 0.392 .250 .08
cov(Ahours, Aearnings;_2) .453 319 .88 .88 —.851 .095 .856 .854 .00 0.718 AT75 10
var(Aearningst, Ahours;_1) 279 .185 .87 .87 —.815 .061 817 .819 .00 0.402 .284 .07
cov(Aearningst, Ahours;_») 624 407 .86 .86 —.846 101 .852 .854 .00 0.716 476 .09

NOTE: 1. Estimates are based on 500 replications. 2. Columns (3), (9), and (12) report the coverage rate of a symmetric asymptotic confidence interval. Columns (4) and (13) report the coverage

rate of a 90% symmetric bootstrap confidence interval. See Table 1, note 2.

tion and resample from it with replacement. We specify
the following “model” of the sample moments. Consider
first the variance in hours. Let m,,_, be the estimate of
cov(Ahours;, Ahours;_, ) for a sample drawn from the pop-
ulation with replacement. Then

Mi 7 = Xt t—70r +€t.4—1,

t =1970,...,1979,7 =0,...,9, (12)

where Xr;_- is cov(Ahours;, Ahours;_,) for the “popu-
lation.” The true parameter value for 6. is 1, and the sam-
pling error €, ;. has mean 0. We construct a corresponding
model for the variance of earnings and the covariance of
hours and earnings (leads and lags). The observations are
stacked into the model

m=X60+e, (13)
where m is (210 x 1), X is a (210 x 39) matrix of con-
structed “explanatory variables,” 6 is a (39 x 1) vec-
tor of parameters, and ¢ is a (210 x 1) vector of sam-
pling errors. For example, if we order the observations
so that the first 10 correspond to the observations on
cov(Ahours;, Ahours;_,), then the first 10 elements of
m are the “sample” estimates of the “population” pa-
rameters cov(Ahoursigrg, Ahoursigrg) . . . cov(Ahours;grg,
Ahoursjg7g). The first 10 rows of the first column
of X are cov(Ahoursigrg, Ahoursigzg) . . . cov(Ahoursigrg,
Ahours;g7g) for the “population.” All of the elements of the
true ¢ equal 1. The dimensions of the constructed model
match the Abowd and Card stationary model.

We draw samples of 500 observations (with replacement)
from the population of 1,536 individuals and estimate the
39 elements of § by EWMD, OMD, and IWOMD. In Table
3 we report the bias, std, RMSE, MAE, and coverage rates
for 90% confidence intervals for a subset of the moments.
We focus our attention on the results for autocovariances
and cross-covariances at lags O, 1, and 2. The results are
quite striking. OMD is badly biased and has a much larger
RMSE and MAE than EWMD. The bias is typically be-

tween —.7 and —.85, which is very large relative to the true
parameter value of 1. These results suggest that the main
reason that the OMD estimates of the “stationary model” of
hours and earnings in Table 2 are smaller than the EWMD
and IWOMD estimates is bias, not misspecification.

The RMSE of the OMD estimator typically exceeds the
RMSE for EWMD by a factor between 2 and 7. The MAE
is also much larger for OMD. OMD does usually have a
smaller sampling variance, but its advantage in this dimen-
sion is not enough to make up for the large bias. Using the
diagonal of (), instead of the complete Q, in the station-
ary model in Table 2 and the constructed model of Table
3 leads to a substantial reduction in the bias (not reported).
We speculate that OMD performs particularly poorly when
2 is a large matrix and the random variables are correlated,
which is consistent with the findings mentioned in Sec-
tion 4.3.

In column (3) of Table 3, we report the probability that
the 90% EWMD confidence-interval estimate based on the
asymptotic formulas (using 1) contains the true value of
1. In the case of var{Aearnings,), the coverage rate is .86.
The coverage rate is typically about .88 for other moment
parameters. Column (4) of Table 3 reports on the coverage
rate based on a 90% symmetric bootstrap confidence inter-
val. In the case of var(Aearnings, ), the coverage rate is .89,
and the typical result is that bootstrap-based confidence in-
tervals and conventional asymptotic confidence-interval es-
timates perform about the same and cover the true value of
1 slightly less often than .90. Whether or not the departure
of the actual size from the true size is serious would seem
to depend on the application.

In contrast, we reject the hypothesis that the OMD es-
timates equal the true value in every single replication of
the experiment [col. (9)], which is a reflection of the fact
that the bias in OMD is many std’s away from 0. [Com-
pare cols. (5) and (6).] The coverage rates for IWOMD,
computed using the same asymptotic approximation as in
OMD, are also very poor because the asymptotic approxi-
mation understates the sampling variance of IWOMD. We
suspect that bootstrap IWOMD confidence intervals would
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perform better than the asymptotic confidence intervals but
did not compute them because of the computational burden.

In summary, EWMD is the best estimator for fitting linear
models of the covariance structure of the PSID data on
earnings and hours. The relative performance of EWMD,
OMD, and IWOMD in the PSID data is consistent with the
simulations in Table 1, but the problem of bias in OMD
seems far worse in real-world data with a large model. The
results provide at least some evidence that the small-sample
bias in OMD is a serious problem in applications.

The results of Schwert and Seguin (1990) provide an-
other illustration of the concerns we raise. They analyzed
the covariance in stock-market returns in a microecono-
metric model relating the second moments of stock port-
folio returns to a constant and a time-varying measure of
aggregate market volatility. They estimated the model in-
dividually for each second moment from five size-ranked
portfolios (5 variances and 10 covariances) by OLS. Then
the OLS residuals were used in a Glejser-style regression
relating the square of the residuals to the regressors. Feasi-
ble weighted least squares (WLS) is applied using the pre-
dicted values from the second-stage regression. Ignoring
the aggregate-market-volatility regressor, the Glejser pro-
cedure is equivalent to estimating the variance of the sam-
ple second moments using the average squared deviation
of the second moments from their average. Twenty-nine
of the thirty WLS coefficients are smaller in absolute value
than the OLS coefficients even though both procedures yield
consistent estimates. This is what our analysis predicts, al-
though the difference between the WLS and OLS results is
not sufficient to change their conclusions.

6. CONCLUSION

In this article we provide a theoretical argument and
Monte Carlo evidence showing that OMD is biased in small
samples. For a given sample size, the bias depends on the
distribution of the underlying data. The bias is worse when
the data are drawn from distributions with heavy tails. The
problem goes away as the sample size gets large but does
not go away (and may get worse) as the number of mo-
ments available to fit a model increases or as the size of the
model increases, holding constant the number of moments
that are informative about a given parameter. Our findings
using the Abowd-Card data are particularly striking. We
also present an estimator called IWOMD, which is an un-
biased split-sample alternative to conventional OMD and is
asymptotically equivalent to it. In most cases we consider,
however, the asymptotic efficiency gain of IWOMD relative
to EWMD is overwhelmed by the extra noise introduced by
estimated weights.

Our conclusion is that EWMD is almost always prefer-
able to using OMD when the optimal weighting matrix is
unknown and unconstrained, especially when bias is an im-
portant concern. This is true even in situations in which
OMD is far superior in asymptotic efficiency. At a min-
imum, researchers should estimate models by both OMD
and EWMD, or both OMD and IWOMD, and worry about
bias in OMD if the parameter estimates differ substan-
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tially. Discrepancies between OMD and EWMD may be a
risky basis for Hausman-type model-misspecification tests
for models of second moments.

If one is going to use EWMD because of small-sample
considerations, the issue of statistical inference arises. The
limited Monte Carlo evidence in Table 1 and some addi-
tional evidence for experiments involving moments from
two different distributions of AS suggests, perhaps surpris-
ingly given our evidence on bias in OMD, that in most cases
the standard asymptotic formula provides a satisfactory ba-
sis for inference when using EWMD. Hypothesis testing
in the case of OMD is a disaster in small samples with
poorly behaved distributions because the sampling distri-
bution of OMD is shifted far away from the true parameter
value. IWOMD confidence intervals also have lower cover-
age rates than EWMD.

We wish to highlight several areas for future research.
First, perhaps the use of robust estimation methods to esti-
mate the weighting matrix or to estimate the moments being
modeled (see Koenker et al. 1994) may lead to an OMD es-
timator that is superior to conventional OMD and IWOMD.
Second, it is clear from the information in Figure 2 and the
more detailed results of AS about the performance of true
OMD that prior information about the appropriate weight-
ing matrix is valuable. Iterative or continuous updating of
the weighting matrix that takes advantage of the link be-
tween the weighting matrix and the moments being fitted
(see Hanson, Heaton, and Yaron 1996) is one possibility in
this vein. These techniques use the moment estimates to
improve the estimates of the weighting matrix. The tech-
niques do not, however, necessarily eliminate the covariance
between the weights and the moment estimates. There may
be many situations in which researchers may improve on
EWMD and OMD by using prior information about which
sets of moments are likely to be highly correlated or par-
ticularly noisy to reduce the dimensionality of Q.

Third, it may be worth investigating estimators that con-
verge to EWMD as the number of moment conditions P
becomes large with N fixed and to IWOMD and OMD as
N becomes large with P fixed. For example, in a model of
uncorrelated heteroscedastic moments we might consider
an estimator formed from a weighted sum of the IWOMD
and EWMD estimates. The respective weights are the ad-
justed R? and one minus the adjusted R? from a first-stage
regression of the diagonal elements of 2~! estimated from
one-half of the sample on the corresponding elements from
the other half of the sample. The adjusted R? is near 0
in small samples, placing the majority of the weight on
EWMD. As the sample size increases, the adjusted R? tends
toward 1, increasing the weight on IWOMD. Initial simu-
lation results suggest that the weighted estimator often has
better properties than EWMD and IWOMD.

Fourth, our Monte Carlo evidence is focused on cases in
which the model of the second moments is linear in param-
eters. Many applications of OMD involve models in which
the parameters of interest are nonlinear functions of the
second moments. (For example, Abowd and Card estimated
factor models that are nonlinear in the second moments.) In
these cases, bias is likely, but the sign and severity is not
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likely to be easy to predict. For example, if a factor load-
ing parameter is estimated as the covariance divided by a
variance, then downward bias (in absolute value) in the two
moments may partially cancel out, and the direction and
size of the parameter bias will depend on the relative bias
in the two moments. Clark (1996) extended our analysis
to consider three nonlinear models that are popular in the
literature and found serious problems with OMD. Further
work on nonlinear models is needed.

Fifth, Monte Carlo evidence is needed on the validity of
model misspecification tests based on OMD and EWMD, an
issue that we have not explored. Sixth, we suspect similar
biases in maximum likelihood and quasi-maximum likeli-
hood estimation of covariance structures. This should be
investigated.

We wish to emphasize that our basic concern—that fea-
sible GMM estimators are biased in small samples because
of correlation between the moments used to fit the model
and the weight matrix—applies in situations involving mo-
ments of any order. This is not a new point because it is
well known, for example, that feasible GLS is biased in
small samples in many situations. It has not gotten the at-
tention it deserves, however, in the burgeoning literature
that involves GMM. We suspect that the problem of bias is
far more serious in models of covariance structures than in
models of conditional mean functions (such as the standard
regression model with or without endogenous regressors)
that are more common in applied work. In such models the
errors are often close to symmetric and the weighting ma-
trices involve second moments rather than fourth moments.
Whether GMM is in fact better in RMSE than estimators
based on simpler weighting schemes seems to us to be an
open question even in these applications. In any case, a care-
ful investigation of the small-sample properties of GMM in
a variety of contexts would seem to be warranted.
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APPENDIX: THE DIRECTION OF THE BIAS

This appendix establishes that cov(e,, wp) is negative pro-
vided that the distribution of Dfp is skewed to the right, with
E[(D}, — E(DZ))?] > 0. Assume that the underlying data,
D;p, are known to have mean 0. Let p;, represent the jth
population moment of D;,, and let m;, be the jth sample
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moment of D;,, computed as

1 L
mjp = N Zsz
i=1

To simplify the notation we suppress the p subscripts in
what follows so that m, is a sample mean and m is a
sample variance. The notation m; should not be confused
with m, used in the text to represent the pth element of the
vector m of second moments. Note that

(A1)

E(m;) = u; (A2)
and
mg = 2 + €, (A.3)

where ¢ is the sampling error. The variance of m; is

1
var(m;) = <= (425 = 43)- (A4)
The variance of my is
1
var(mg) = N (Ba — 13), (A.5)
which is estimated as
1
W= (myg —m2). (A.6)

The covariance between ¢ and w depends on the skewness
of D? as shown by

cov(e,w) =

= E(mow) — E(paw)

= % E(maomg — mg) - (NN_Z L (H2pa — lﬁg)
= (N]V_g 2 (ue — Bpapa + 2u3)
= XD B(D? - ), (A7)

where the last equality follows from the fact that
pe — Bpigpia + 243 = E[(D* — 2D%p)(D? — pio)]
= E[(D* - 2D%us + u3)(D? - 1))
~ E[u3(D? - po)]

= E[(D? - uo)?]. (A.8)

“Thus, the expectation of cov(e,w) is positive if the distribu-

tion of D? is skewed to the right. This restriction is satisfied
for all of the distributions we consider. It is not satisfied if
the density of D is symmetric and the density is concen-
trated near the minimum and maximum of D. For example,
consider the density dF (D) = ¢|D|* when —D, < 0 < D,
and 0 otherwise, where ¢ normalizes the cdf to 1 and o > 0.
When a > 0, the density has a minimum at 0 and maxi-
mums at —D, and D;,. We established numerically that the
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sign of E{(D? — u3))?) is less than O when o > 1 and that
there is a small positive bias in fopp When this distribution
is used in an experiment analogous to those in Table 1. The
intuition is that, when « is large, the “unusual” observations
on D are those near the mean of 0. These correspond to low
values of D? but substantial values of (D? — p3)?, which
is the contribution to the weighting matrix. Consequently,
second moments with negative sampling errors receive too
little weight, and fomp is biased upward.

[Received September 1994. Revised December 1995.]
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