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This paper analyzes the asymptotic power properties of specification tests which are based on a 
finite set of moment conditions. It shows that any such test may fail against general misspecifica- 
tion that causes estimator inconsistency. The mutual asymptotic equivalence of maximal degree of 
freedom tests is shown and the form of optimal tests against specific forms of misspecification is 
derived. Applications to testing for exogeneity of a set of instrumental variables are presented. 

1. Introduction 

The purpose of this paper is to analyze the asymptotic power properties of 
the class of specification tests which are based on a finite set of moment 
conditions. This class of tests is very general, since it includes both Hausman 
(1978) tests and Sargan (1958) and Hansen (1982) tests of overidentifying 
restrictions. 

Section 2 lays out the framework to be used to analyze the power of 
specification tests. Most econometric estimators can be viewed as being ob- 
tained by minimizing a quadratic form in sample moments of functions of the 
data and parameters. Such an estimator will generally be consistent if each 
function involved, which will be referred to below as a moment function, has 
expectation zero at the true parameter value. Tests for violation of these 
moment conditions can be obtained by examining sample moments evaluated 
at estimated parameter values. Section 2 presents regularity conditions and 
obtains the asymptotic distribution of such tests under a local sequence of 
misspecification alternatives. The relationship of these tests to Hausman (1978) 
tests is also explained. 

Section 3 presents results on the asymptotic power properties of moment 
condition tests. It is found that for any such test there are misspecification 
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directions for which for some asymptotic significance level the power of the 
test does not go to one as the sample size grows. An equivalence result is 
obtained for the class of moment tests which test a full set of overidentifying 
restrictions. When a priori information restricts the form of misspecification, 
optimal moment condition tests are available. The form of these tests is 

presented in section 3. 
Section 4 presents some applications of the general results. Testing for 

contamination of a subset of instrumental variables is discussed in some detail 
in the context of a linear equation. A Hausman (1978) test interpretation of the 
Hansen (1982) test of overidentifying restrictions is presented and is used to 
show the mutual equivalence of some tests of overidentifying restrictions in the 
linear simultaneous equations system. 

Section 5 offers some conclusions. 

2. The asymptotic distribution of GMM specification tests 

Our first assumption specifies the process which generates the data. 

Assumption 1. The observed data z,, t = 1,. . _ , T, is p X 1, consists of random 
vectors which are the first T elements of a strictly stationary stochastic process 

Iat; t = 1,2, _ . . }, and has a measurable joint density function f(zt,. . . , zT, cr) 
with respect to a measure nr,,u, where u is a u-finite measure on RP and cr. 
is a 1 X 1 vector of parameters. 

The assumption of stationarity of the data-generating process for each T 
rules out fixed regressors in a regression model but allows for regressors which 
are random draws from a fixed distribution, as might be appropriate for 
cross-section data. Note that the data-generating process is allowed to depend 
on the sample size through the parameter vector cr, and that an extra T 
subscript on z, has been suppressed for notational convenience. A problem in 
deriving asymptotic approximations to the distribution of specification test 
statistics is that if the model is misspecified the test will often reject with 
probability one as the sample size grows. The classical solution to this problem 
is to assume that correct specification occurs at c = c0 and that the data-gener- 
ating process is subject to Pitman (1949) drift, with cr = c0 + S/n for a 
(possibly) non-zero 1 x 1 vector 6. This device of using a sequence of local 
misspecification alternatives will be the basis of most of the ensuing discussion 
of power properties of specification tests. 

Assumption 2. cT = cO + 6/ fi. 

The vector of parameters c represents parameters which affect the cor- 
rectness of the specification of an econometric model. For example, c might 
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include the coefficient of an omitted variable or a vector of covariances 
between right-hand side (r.h.s.) variables and the disturbance. The exact 
meaning of the statement that the econometric model is correctly specified at 
c0 will be given below as eq. (1). 

Let b, be the q X 1 vector of parameters which is to be estimated by using 
the data I,, t = 1,. . . , T. A generalized method of moments (GMM) estimator 
of 6, can be formed by using a r X 1 vector of functions g(z, b) of a data 
observation z and the parameter vector b which satisfies the following assump- 
tion. Let f( z, c) be the density of a single observation. 

Assumption 3. The elements of g(z, b) are measurable in z for each b in a 
known set B, with b, E B, and 

/ dzt h,)f(z, c,)du = 0. (1) 

The moment function vector g(z, 6) and the moment condition (1) sum- 
marize the information contained in the underlying econometric model which 
is used in estimation. For example, g( z, b) tight be a vector of cross-products 
of instrumental variables and disturbance terms, or it might be the gradient of 
the log-likelihood. 

The moment condition (1) can be exploited to yield estimators of 6, which 
should have good properties when the econometric model is correctly specified 
(i.e., when c = co). Define 

g,(b) = + i g(z,J). 
r=l 

A GMM estimator &, of b, can then be obtained as the solution to 

where W, is an r x r positive semi-definite matrix which may depend on the 
data. The estimator a, is obtained by setting the sample moment vector g7.( 6) 
as close as possible to zero, which is the population moment vector when 
c = cO. This class of estimators has been considered by Amemiya (1974), 
Burguete, Gallant and Souza (1982), and Hansen (1982), among others. 

When m&specification is present the population moment vector ma,y not be 
zero, resulting in possible inconsistency of the GMM estimator b,. One 
method of testing for misspecification, as suggested by Hansen (1982), is to use 
a linear combination L,g,(b,) of the estimated sample moments gT(kT), 
where L, is a s X r matrix. When the model is correctly specified, g,(b,) 
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should be close to zero in large samples by a law of large numbers and by L%r 
consistent for b,. At the same time, when there are more moment functions 
than parameters, gr(br) will not be identically zero, so that a useful test can 
be constructed by rejecting the null hypothesis of correct specification if a 
linear combination Lrgr(br) is too far from zero, after approximately 
accounting for sampling error using asymptotic distribution theory. 

To obtain the asymptotic distribution of L,g,(b,) under a sequence of 
local alternatives, it is useful to impose regularity conditions on g(z, b), the 
density f(z, c), and to restrict the dependence across observations of the 
data-generating process. The set of regularity conditions which will be pre- 
sented is by no means the weakest possible set of sufficient conditions, 
although most of the conditions should be straightforward to check in the 
context of a particular model. 

Assumption 4. The functions g( z, b) and f( z, c) are continuously differentia- 
ble on B and a neighborhood C of cO respectively, almost everywhere u. For 
each n > 2 the joint density f(zt, z,, c) is continuous in c, almost everywhere 
u x u. Also b, is contained in the interior of the set B, which is compact. 

The next assumption imposes dominance conditions. 

Assumption 5. There exist measurable functions at(z) and a,(z), and d > 1, 
such that almost everywhere u, and for all b in B and c in C, 

Isk b)12 5 a,(z), lJg(z, b)/W 2 q(z), 

Ialnf(z,c)/W* 2 a,(z), (3a) 

If(z, c)l s a2(z>, If(z,, z,, c)I 2 a2(zl)a2(z,), n 2 2, (3b) 

j-[u1(z)]du2(z)dui +a, /+(z)do< +oe. (4) 

To restrict the dependence across observations of the stochastic process 
z= {z,; f = 1,2,... } it is useful to employ mixing conditions. Mixing condi- 
tions have recently been discussed in some detail by Domowitz and White 
(1982) and White and Domowitz (1984) where definitions and notation for the 
following assumption can be found. 

Assumption 6. There exist constants D > 0 and X such that, for all c in C, 
either (a) Z is uniform mixing with 

G(m) I Dm-“, hkd/(d- l), 
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or (b) 2 is strong mixing with 

cx( m) I Dm-“, Xl2d/(d-1). 

The next assumption is an identification condition which guarantees that the 
minimization problem (2) has a unique solution asymptotically. Let E denote 
the expectation taken at c = ca, and 

Assumption 7. The matrix W, has a positive semi-definite probability limit 
W, such that WE[g(z,, b)] = 0 only if b = b, and such that H’WH is non-sin- 
gular. Also L, has a probability limit L with rank(L) = s. 

The asymptotic properties of the estimator 8, and the linear combination of 
estimated sample moments L,g,(b,) are summarized in the following result. 
Let 

V= E[ i+tJo)g(z,t bd’] 

+ nil (E[ tdz,, bo)dzt+n, ho)‘] + E[ dzt+n’ hddz,, bid’] ) 3 

K= E[g(z,,bo)alnf(z,,c,)/ac’], 

P,= I,- H(H’WH)-‘H’W. 

Lemma 1. If Assumptions I- 7 are satis$ed, then 

fi@,- 6,) = -(H’WH)-‘H’W@g,(b,) +0,(l), 

@L.g,@,) = W&%&a) + o,(l), 

(5) 

(6) 

J7;gT(bO) 2 N(KS, V). (7) 

Eqs. (6) and (7) imply that the asymptotic covariance matrix of L,g,( 8,) is 
given by 

Q = LP,VP&/L’. (8) 
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An asymptotic chi-square statistic can therefore be formed as 

where Q; is an estimate of a generalized inverse [g-inverse, see Rao (1973, p. 
24)] of Q. The use of a g-inverse is necessary because the singularity of P, 
(note P,H = 0) implies that Q may be singular. 

To estimate Q, H can be estimated by 

HT= gTb@TL 

where g,,(b) = dg,(b)/rYb, P, can be estimated by 

P WT = I,- HT( H+WTH,) -‘HGWT, 

and Q by 

QT = LTpWTvTp~TL~~ 

where VT is a consistent estimator of V. Detailed discussion of estimation of V 
is beyond the scope of this paper. The asymptotic covariance matrix estimators 
suggested by Hansen (1982) Domowitz and White (1982) and White and 
Domowitz (1984) should apply with little modification. For example, the 
following analog of Lemma 3.3 of Hansen (1,982) holds. 

Lemma 2. Zf Assumptions 1-7 are satisJied and Ig(z, b)12 I al(z) for all b in 
B, then for any n 2 0 

When only a finite number of terms in the asymptotic covariance matrix V 
of flgT(bO) are non-zero (e.g., cross-section data where observations may be 
independent), then Lemma 2 can be used to form a consistent estimator of V 
by replacing the non-zero terms which make up V by sample averages like 
those of Lemma 2. The results to be discussed later will not be restricted to this 
case, but will apply as long as some consistent estimator VT of V is available. 

Assumption 8. The estimator VT satisfies plim VT = V, and V is non-singular. 
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Because of the non-uniqueness of the g-inverse, using any sequence of 
g-inverses of Q, need not guarantee that Q+ converges in probability. One 
way to tie down Q; is given by the following result. 

Lemma 3. If Assumptions I-8 are satisfied and S is a fixed r x rank(Q) matrix 
such that S’QS is non-singular, then plim S(S’Q,S))‘S’ = QP, a 
g-inverse of Q. 

For example, S might be a selection matrix such that S’QS is a non-singular 
submatrix of Q with full rank. More generally, we will make the following 
assumption. 

Assumption 9. A sequence of g-inverses of Qr is chosen so that plim Q; = Q -, 
a g-inverse of Q. 

An important special case occurs when the moment functions are linear in 6, 
so that for a r x 1 vector gr(t) and a r X q matrix g*(z) of functions 

g(z, 6) = g,(z) +g2(zP. 00) 

This case will be referred to as the linear case. 
The asymptotic distribution of the GMM specification test statistic can now 

be obtained. 

Theorem 1. If Assumptions I-9 are satisfied, then mr converges in distribution 
to a non-central chi-squared distribution with 

rank(Q) = rank[ WH, L’] - q (11) 

degrees of freedom and non-centrality parameter 

h= = 6’K’P&,LQLP,KS. (12) 

Also, if m, and m$- are test statistics constructed with two di’erent g-inverses 
satisfying Assumption 9, then mr- m>= o,(l), while in the linear case m, is 

numerically invariant with respect to the choice of g-inverse. 

It is possible to obtain an interesting interpretation of the non-centrality 
parameter X2. The matrix Q- is just a g-inverse of the asymptotic covariance 
matrix of Lrg(br). The other term LPwK which appears in eq. (12) is related 
to the local behavior of Lrg(i)r) under m&specification. 

Theorem 2. Zf Assumptions 1 and 3-9 are satisfied, g( z, b) and f (z, c) are 
twice continuously diferentiable in (b, c), almost everywhere v with 

(6’2f(z,~)/~~8~‘]<a2(z), ]82g(z,b)i/6’bJb’]<a,(z), i=l,._.,r, and the 
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data-generating process satisjies cT = c for some fixed c in a neighborhood of cO, 
then 

plimb,= b(c), plimL,g,(&) = a(c), 

such that 

G’b(c,)/&= -(H’WH)-lH’WK, 

&I( co)/& = LP,K. 

(13) 

(14) 

From eq. (14) we see that LP*,KG is the directional derivative in the 
direction 6 of the limit of FTgT(bT), so that in addition to the asymptotic 
covariance matrix of L,g,( b,) the non-centrality parameter is determined by 
how rapidly the limit of L,g,( b,) moves away from zero as c departs from cO_ 

Theorem 1 gives the asymptotic distribution under local n&specification of a 
very large class of specification tests. For example, tests which use one vector 
of moment functions for estimation and another for testing can be subsumed 
in this framework by choosing W, to have certain rows and columns of zeros 
so that it picks out from the vector g(z, b) those functions used in estimation, 
and by choosing L, to pick out those used in testing. Our results also apply to 
Hausman (1978) specification tests. 

To clarify the relationship between Hausman tests and GMM tests, which 
has been discussed by Ruud (1982) and White (1982), a brief discussion of 
Hausman tests in the GMM framework should be helpful. Let gr. be a second 
GMM estimator which is obtained by solving eq. (2) with l%fr used in place of 
W,, where @‘r has a limit @’ which differs from W. Applying eq. (5) to both 
br. and br. gives the asymptotic covariance matrix 

M= (H’WH)-lH’WvWH(H’WH)-’ 

+(H’~H)~‘Hl~~r(H/~H)-l 

-(H’wH)-‘H’wwH(H’WH)-l (15) 

of the difference qT= 8, - 6,. A consistent, positive semi-definite estimator 

M, of M can be obtained by replacing H by, say H,, W by W,, J%’ by J$Jr, 
and I/ by V, in eq. (15). For a g-inverse M; of M, a Hausman test statistic is 
then given by 

h, = Tq$M,q, . 06) 
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Theorem 3. If Assumptions 1-8 are satisfied for both W, and k!iT and a 
sequence of g-inverses M, of MT are chosen so that M, converges in probability 
to M-, a g-inverse of M, then h, converges in distribution to a non-central 
chi-squared distribution with 

rank (44) = rank[ WH, F?H] - q (17) 

degrees of freedom and non-centrality parameter 

X; = FP[ WH(H~WH)-‘- FVH(HY,PH)-~] M 

x [(H/wH)-‘H/W-(HVVH)-‘HVP]KS. (18) 

Also, if h, and h$ are test statistics constructed with two difSerent g-inverses 
satisfying the above hypothesis, then h, - h$ = o,(l), while in the linear case h T 
is numerically invariant with respect to the choice of g-inverse. 

It should be emphasized that this result gives the asymptotic distribution of 
most df the Hausman tests, which have been presented in the literature, when 
particular forms of local misspecification are present. For example, specifica- 
tion tests which use different moment functions, such as the test based on the 
difference of two weighted least-squares estimators suggested by Domowitz 
and White (1982), can be accommodated by stacking the functions into one 

vector and specifying that certain rows and columns of W, and I@, contain 
only zeros. Also, eq. (8) shows exactly how the non-centrality parameter is 
determined. The non-centrality parameter is a quadratic form which has a 
matrix M- and, from eq. (13), a vector which is the directional derivative of 
the difference of the asymptotic bias of plim b, and plim &, in the direction 6. 

It is interesting to note that when I@ equals V/-l, the asymptotic covariance 
matrix of &,- 6, simplifies to 

M= (HfwH)-‘H~WVWH(H~WH)-’ -(H/V-%-‘, (19) 

which is the difference of asymptotic covariance matrices of hz. and b,. As 
shown by Hansen (1982), choosing W equal to I/-’ yields an estimator which 
is asymptotically efficient relative to any other GMM estimator, so that eq. (19) 
implies that for the covariance matrix M to have the simple difference form as 
discussed by Hausman (1978), it is sufficient that one estimator used to form L 
qr= b,- b, have the efficient choice of W = V/‘-l. For example, this observa- 
tion implies that all of the specific specification tests discussed by Hausman 
(1978) have the simple matrix difference form even if the disturbances are not 
normally distributed. 
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The relationship between Hausman and GMM specification tests can easily 
be seen from a generalization to GMM estimators of the famous one-step 
theorems for maximum likelihood and non-linear least squares. Let 

h,=~,-(~~~~H,)-‘H~~~~~(~~), 

be an estimator obtained by starting at &, and moving towards 6,. 

Lemma 4. If Assumptions l-8 are satisJed for both W, and FkT, then 

q&-b,) = o,(l), 

while b,= 6, in the linear case. 

(20) 

(21) 

This result says that the one-step estimator bT is asymptotically equivalent 
to the GMM estimator b, so that a Hausman test based on the difference 
&,- ir is asymptotically equivalent to a test based on &,- br. But from eq. 

(2% 

and the term on the right-hand side is a non-singular linear combination of 
H@‘rgT(6r). Therefore a Hausman test based on the difference b, - 6, is 
asymptotically equivalent to a GMM test with weighting matrix W and 
L = H’p, and numerically equivalent in the linear case. Clearly the roles of W 

and l$’ are interchangeable, so that a Hausman test based on &r - &r is also 
equivalent to a GMM test with weighting matrix w and L = H’W. 

In the next section the asymptotic distribution of GMM tests is employed to 
consider their asymptotic power properties. 

3. Asymptotic power properties of GMM specification tests 

The asymptotic power of GMM specification tests is determined by the 
non-centrality parameter A2 and the degrees of freedom, since the tail probabil- 
ity of a non-central &i-squared distribution is increasing in the non-centrality 
parameter and decreasing in the degrees of freedom. In particular, the asymp- 
totic power curve is flat in any direction for which the non-centrality parameter 
is zero. In fact, as shown in Newey (1983) the set of I X 1 vectors 8, such that 
the non-centrality parameter is equal to zero, is (under some additional 
regularity conditions) the tangent space at cO to a smooth manifold of 1 x 1 
vectors c on which the associated GMM test will not reject with probability 
approaching one, for some critical value. 



W. K. Newyv. Moments specificut~on testing 239 

An important property of GMM tests is that the non-centrality parameter is 
zero for non-zero directions 6 in the presence of general forms of misspecifica- 
tion, so that GMM tests are not consistent against general m&specification. 
Bierens (1982) and Holly (1982) have both given examples of specification tests 
which are not consistent. For the general form of GMM test and misspecifica- 
tion considered in section 2, the set of directions for which the non-centrality 
parameter is zero can be characterized as follows. 

Proposition 1. X2 = 0 if and only if LP,KS = 0. 

To interpret this result note that by V non-singular and eq. (8) the degrees of 
freedom of the GMM test are given by the rank of LP,,,, so that the rank of 
LP,K is less than or equal to the degrees of freedom of the test. Noting that 6 
is a Gdimensional vector, it follows that the set of directions for which the 
non-centrality parameter is zero has a dimension greater than or equal to 1 
minus the degrees of freedom of the test. For example, note that any particular 
GMM test will have a zero non-centrality parameter for some directions if the 
dimension of misspecification is big enough. 

We can also use this result to show -that when general misspecification is 
present there are directions for which the non-centrality parameter is zero and 
which result in the GMM estimator of b, being inconsistent. Note that 

= g(z,h,)[alnf(z,c,)/ac]f(z,c,)du=K. J (22) 

so that to say that the rank of K is equal to r means that the set of directional 
derivatives K6 of the expectation of the moment vector g(z, b,) traces out all 
of R’, which in turn means that the misspecification allows for any direction of 
departure of E[ g( z, 6,)] from zero. Also, if the rank of K is equal to r. then for 
any 0 # 0 we can find a S such that HP = K6. For this choice of S the 
non-centrality parameter is zero by P,H = 0 and Proposition 1, while by eq. 
(13) the directional derivative of the asymptotic bias of br. equals -/3 # 0. 

The interpretation of the potential failure of GMM tests resulting from 
insufficient degrees of freedom is facilitated by an analogy with the Chow test 
in the linear model. As discussed by Rea (1978), a Chow test with insufficient 
degrees of freedom in the second period has a power curve which is flat on a 
non-trivial subspace of the alternative space. The problem there is that the 
parameters of the second period are not identified, so that there are non-zero 
values of the second-period parameters which give a test statistic which has the 
same distribution as if the second-period parameters were zero. The con- 
sistency problem for GMM tests is also an identification problem. The vector 



g(z, b) provides r moment functions (i.e., degrees of freedom) which can be 
used in estimating parameters. If under the alternative there are more than r 
parameters to estimate in the vectors b and c, then there are insufficient 
degrees of freedom to identify both b and c. Consequently a GMM test will 
not be consistent against such an alternative. In terms of Proposition 1, note 
that by the fact that the rank of P, is Y - 4 the degrees of freedom of any 
GMM test is less than or equal to r - q. It follows that when r is less than 
I+ q (i.e., r - q is less than f) any GMM test will have a zero non-centrality 
parameter for some non-zero 6. 

A second important property of the class of GMM tests is the asymptotic 
equivalence of all such tests with r - q degrees of freedom. 

Proposition 2. If mT and tiT are two GMM test statistics with degrees of 
freedom r - q, then m T - 61, = o,(l), while in the linear case m T = 4 T. 

A restatement of this result is to say that a GMM test with maximal degrees 
of freedom r - q is asymptotically equivalent to any other such GMM test. Or, 
if r - q is identified with the number of overidentifying restrictions, a restate- 
ment is that all GMM tests which test a full set of overidentifying restrictions 
are mutually asymptotically equivalent. 

In many situations a priori information which rules out general misspecifica- 
tion may be available, so that the alternative c # ca involves misspecification of 
a particular form. Important examples include contamination of particular 
instrumental variables, which is discussed in the next section, and violation of 
covariance restrictions in a simultaneous equations system [Hausman, Newey 
and Taylor (1983)]. In such situations it is useful to have available GMM tests 
which are optimal against a particular form of m&specification. The notion of 
optimality which we use here is similar in nature to the idea that a GMM 
estimator with weighting matrix IV= I/-’ is optimal in the class of GMM 
estimators. A GMM test will be referred to as optimal in the class of 
GMM tests if it has the largest possible value of the non-centrality parameter 
for all 8 in R’ and has the smallest possible degrees of freedom among tests 
with this property. 

One form of optimal GMM test can be formed using the GMM estimator hr. 
with W = V ‘. Suppose for the moment that there is available an estimator K T 
of K which is consistent when c = cO. Consider a GMM test with the 1 X r 
linear combination matrix L, = K+V? ‘. Straightforward calculation using eq. 
(8) shows that the asymptotic covariance matrix of LTgT(bT) is given by 

Q = K’T’K- K’~“H(H’V~‘H)~lH’V-‘K. (23) 

Let QT be obtained by replacing H, V and K by gT,,(hT), Vr and K,, 
respectively, and let m T = g,(b,)‘L’,Q;‘L,g,( b,) be the corresponding GMM 



statistic. Under the conditions of the following theorem Q will be non-singular 
and mT will give an optimal GMM test. 

Proposition 3. If plim K, = K and [H, K ] has rank q + I, then mT has I 
degrees of freedom and is an optimal GMM test statistic. 

The form of this test statistic has a straightforward inlerpretation. If g,(b) 
is thought of as a vector of residuals, then the estimator b, can be interpreted 
as a generalized (non-linear) least squares (GLS) estimator. Then the linear 
combination of residuals K+VF-‘g,(b,) is the estimated score vector which 
would be used to form a score test for the inclusion of the variables K, if the 
disturbance vector g&b,) had a normal distribution. This procedure is 
asymptotically optimal because fig,(b,) converges in distribution to a nor- 
mal random vector. Note that, in general, consistent estimation of K may be 
difficult since it can require knowledge of the form of the density f (z, c). In the 
examples considered below this problem does not arise. 

An alternative form of an optimal GMM test can be obtained using an 
estimator which partials out K,. Let 

@I= v-1 _ V-‘K(K’V-‘K)PIK’I/-l, (24) 

let J@T be obtained from 6’ by replacing K by K, and V by VT, and let ir 
be the GMM estimator with weighting matrix pr. This estimator has a 
straightforward interpretation if g,(b) is thought of as a vector of residuals. 
The estimator is then a GLS estimator when K, is included in the residuals as 
a r X I matrix of r observations on I variables. In terms of the local results of 
Theorem 2 it can be shown that bT is an optimal GMM estimator among those 
GMM estimators which have a zero derivative of the asymptotic bias at c = cO, 
i.e., those estimators for which eq. (13) equals zero. 

Straightforward calculation using eq. (8) can be used to show that the 
asymptotic covariance matrix of L,g,(&,) is given by 

0 = K’V-‘K+ K’V-‘H(H’tiH) -‘H’V-‘K, (25) 

where we again let L, = IJfV;‘. Let Q, be obtained from Q by replacing 
H, V and K by g,,(bT), VT and K,, respectively, and let Gziz, = 
gT(6,)‘L’&‘L,gT(b,) be the associated GMM statistic with L,= K+Vy ‘. 
Under the conditions of the following theorem Q will be non-singular and Czr. 
will give an optimal GMM test statistic which is asymptotically equivalent to 
the previously presented optimal GMM test. 

Proposition 4. If plim K, = K and [H, K] has rank q + 1, then fir has I 
degrees of freedom and m, - fiT = o,(l), while in the linear case m T = fiiz,. 
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It is also possible to form a Hausman test statistic based on the estimator 
difference 4 r= JT- 6,. Using eq. (19) it follows that the asymptotic covari- 

ante matrix of qr is equal to 

M=(H’bvH)-l-(H’v-‘H)-l. (26) 

Let M, be obtained from M by replacing V and K by V, and K,, 

respectively, and H by, say gTh(hT), and let h, = Tq;M;q,. be the associated 
Hausman statistic. The use of a generalized inverse is called for because M 

may be singular. The analysis of Holly (1982a) and Hausman and Taylor 
(1980) can be generalized to give the following result. 

Proposition 5. If plim K, = K and [H, K] has rank q + 1, then h, has degrees 

of freedom equal to the rank of K ‘V’H. Also, if rank[ K’V ‘H] = 1, then 

m, - h, = o,(l), with numerical equality in the linear case, while if 
rank [K ‘V- ‘H] c I, then the asymptotic power curves of m, and h T cross. 

It is useful to compare the optimal GMM tests presented above with the 
class of asymptotically equivalent r - q degrees of freedom tests which test a 
full set of overidentifying restrictions. 

Proposition 6. For all 6 in R’ the non-centrality parameter for a GMM test with 

r - q degrees of freedom is greater than or equal to the non-centrality parameter 

for any other GMM test. 

It follows that the non-centrality parameter for the r - q degrees of freedom 
tests is equal to that of the optimal tests given above. These optimal tests will 
have larger local power than the r - q degrees of freedom test when the 
degrees of freedom I of the optimal tests is less than r - q, i.e., when the 
dimension of misspecification is less than the number of overidentifying 
restrictions. 

One important situation where optimal GMM tests are straightforward to 
construct and should be useful is when misspecification results in contamina- 
tion of a subset of moment functions. For example, such a situation can arise 
when certain instrumental variables are suspect. Eichenbaum, Hansen and 
Singleton (1984) also discuss tests of a subset of moment functions and present 
empirical applications which involve testing the validity of instrumental vari- 
ables in a rational expectations model. 

Suppose that the r X 1 vector of moment functions is partitioned as g(z, b) 
= (g,(z, b)‘, g,(z, b)‘)‘, where g,(z, b) is an 1 x 1 vector and 

s g(z,bo)f(z,c)du= (0,~‘)‘. (27) 
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Thus we parameterize the n&specification as the expectation of g2( z, 6, ) and 
under misspecification the moment condition E[ gt( z,, 6,)] = 0 remains satisfied. 
Then from eq. (22) it follows that K = [0, I,]‘, where I, is a I-dimensional 
identity matrix. Here the problem of obtaining a consistent estimator of K 
does not arise and optimal GMM tests can be calculated without further 
knowledge of the data generating process. 

To see what form optimal GMM tests of a subset of moment functions take, 
partition H, V’ and V-’ conformably with g(z, b), 

H= [H;, H;]‘, v= [y,], v+ = [VI, i,j= 1,2. (28) 

Straightforward calculation shows that the linear combination matrix L = 
K ‘V/‘- ’ becomes 

L = [o, I,]V = P[ - V2&l, I,]. (29) 

Since V22 is non-singular it can be dropped without affecting the test and an 
equivalent choice of linear combination matrix is 

J% = [ - G,,Gl, I,] 3 (30) 

where VT is also partitioned conformably with g(z, 6). With this choice the 
linear combination of estimated moment functions used in the optimal GMM 

test based on 8, is equal to gT2(!+)- V,,,V&grr(i)r), so that the optimal 
linear combination matrix partials out the uncontaminated moment functions. 

Further straightforward calculation shows that the weighting matrix fi for 
the estimator ?)r is a block-diagonal matrix, m= diag[Vr;‘,O]. Thus, &, is the 
optimal GMM estimator among those GMM estimators which use only the 
moment function vector gr( z, b). Such estimators will remain consistent for 6, 
under misspecification when misspecification does not affect the moment 
condition E[g,(z,, b,)] = 0. Note that the hypothesis that the rank of [H, K] is 
q + 1 of Propositions 4-6 here requires that rank( HI) = q, which is an identifi- 
cation assumption for b with the subvector gt( z, 6,) of moment functions. The 
asymptotic covariance matrices of tTgT(hT) and Lr.gr(gT) respectively are 

Q = V22 - V21V;1VI/12 - B( H’V-‘H)-‘B’, 

Q = V,, - V,,V,-,‘f’,, + B( H;V,-,‘H,) -b’, 

(31a) 

(31b) 

where B = H2 - V21Vl<‘H,. As before consistent estimators of these asymptotic 
covariance matrices can be obtained using consistent estimators of V and H. 

The other test which we have presented as a test for a specific form of 
misspecification is a Hausman test based on the difference of the GMM 
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estimators b, and &r. The asymptotic covariance matrix of qr.= b,- 8, is 

M= (H;~~lHl)~l-(H’V-lH)~l. (32) 

A consistent estimator of M can be obtained by replacing V by V, and H by, 
say grh(b7). Unlike Q and 0, the matrix M may be singular, so that use of a 
generalized inverse may be called for. 

4. Applications 

For a first application of the theoretical results of sections 2 and 3 consider a 
GMM test statistic i?i,= Tg,(&,)‘V;‘g,(~,), where &, is the optimal GMM 
estimator with W = V-‘. It is straightforward to check that the degrees of 
freedom of this test is r - q and that I/-’ is a g-inverse of the asymptotic 
covariance matrix of g&&r). This test statistic was suggested by Hansen 
(1982) as a convenient test for the overidentifying restrictions embodied in the 
moment condition E[g(z,, b,)] = 0. The flat asymptotic power curve of GMM 
tests in certain directions (Proposition 1) indicates that this statistic fails, along 
with every other GMM test (including Hausman tests), to be an omnibus test 
for misspecification. Nevertheless m,, or any other GMM test statistic with 
r - q degrees of freedom, comes closest in the class of GMM tests to being an 
omnibus test. For any direction of misspecification the non-centrality parame- 
ter is as large as possible (Proposition 6). 

It is also interesting that in certain circumstances 2, can be interpreted as a 
Hausman test, as conjectured by Mankiw, Rotemberg and Summers (1982). 
When r - q exceeds q the degrees of freedom of ti, will differ from that of 
any Hausman test based on the difference of two estimators of b,, but 
otherwise the equivalence of Hausman and GMM tests (Lemma 4) and the 
mutual asymptotic equivalence of all GMM tests with r - q degrees of 
freedom (Proposition 2) imply that 5i, will be asymptotically equivalent to 
any Hausman test with r - q degrees of freedom and numerically equivalent in 
the linear case. For example, in the context of a linear simultaneous equations 
system estimated by instrumental variables, Kr, equals T times the Gallant 
and Jorgenson (1979, p. 279) testing criteria, evaluated at the three-stage 
least-squares (3SLS) estimates. If the Hausman (1978) test based on the 
difference of the two-stage least-squares (2SLS) and 3SLS estimators has the 
same degrees of freedom it will equal m,, when the same disturbance covari- 
ante matrix estimator is used throughout. 

To consider an example in some detail, let a linear equation be given by 

y,=Z,b,+u 1, t=l,...,T, (33) 

where Z, is a 1 x q vector and u, a disturbance term. Let a 1 X r vector of 
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instrumental variables be given by X, and suppose that if the equation is 
correctly specified the orthogonality condition E[ X:ul] = 0 is satisfied. The 
moment condition vector for this problem is then given by 

where z, = (y,, Z,, X,). For simplicity assume that observations are indepen- 
dently distributed and that there is no heteroskedasticity. Let u 2 = E[uflX,]. 
Note that in terms of the notation of sections 2 and 3, H = - E( X;Z,) and 
V = a’E( XlX,). To guarantee that the regularity conditions of section 2 are 
satisfied assume that E( X,‘X,) is non-singular, that rank[E( X,lZ,)J = q, and that 

/Iz12%(z)d u is finite for some d > 1. 
For this example the optimal GMM estimator is the 2SLS estimator 

b = (j’Z)-iZry, (34) 

where y = (yi, . . . , y,)‘, Z = (Z;, . . . , ZG)‘, X = (Xi, . . . , X+)‘, fizz 

X( X’X)-‘X’, and 2 = I’?Z. For notational simplicity the T subscript on & is 
dropped. Consistent estimators of V and H are given by I’, = u 2X’X/T and 
HT = - X’Z/T, respectively, where 6 2 = ir’ir/( T - q) and c = y - Z&. The 
previous results on numerical equality of various test statistics depend on using 
the same estimator of V to form each test statistic. Consequently the numerical 
equality results given below will not hold when different estimators of u2 are 
used, although the relevant statistics will remain asymptotically equivalent as 
long as each estimator of u* is consistent. 

In this context, where sr(ar.) = X’B/T, the Hansen (1982) statistic is 

i%,= Tg,@,)‘V,-‘g,(b,) = (T- q)fi’h/ic’ic. 

As noted by Hausman (1984), %,= (T- q)R’, where R2 is the uncentered 
r-squared from a regression of ic on X. There are a surprisingly large class of 
statistics which are equal to %‘i,. Any GMM or Hausman test statistic with 
r - 4 degrees of freedom is numerically equal to 5, (Lemma 4 and Proposi- 
tion 2). For example, consider the test proposed by Hausman and Taylor 
(1980) based on the difference of & and a 2SLS estimator 

6 = (ZQ) -i&j, (35) 

which uses only a subset of the instrumental variables, where X, = (X,i, Xt2), 
E( Xl,Z,) has rank q, X,, is a 1 X I subvector of X,, X = [X,, X2] is partitioned 
conformably with X,, N = X,(Xi’X,)-‘Xj’, and Z = #Z. A Hausman test 
statistic based on the difference of !J and b is given by 
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Note that h, is invariant with respect to g-inverse by Theorem 3. As shown in 
Hausman and Taylor (1980) h, has min{ I,4 - s} degrees of freedom, where s 
is the number of right-hand side (r.h.s.) variables (components of Z,) which are 
retained as instrumental variables (components of X,,) when h is formed. 
When r - q = min{ 1, q - s } it follows that h, = 2,. Remarkably, this equality 
holds independently of the particular instrumental variables which are excluded 
when forming 6. 

When a priori information restricts misspecification to contamination of a 
particular subset of instrumental variables, the discussion in section 3 can be 
used to obtain optimal GMM tests. Suppose that misspecification takes a form 
such that when the model is misspecified 

E( X,+,) = 0, E( X:2uI) = c, (36) 

with a corresponding partition of the vector of moment functions gl( z,, b) = 
X:,(y, - Z,b) and gz(zr, b) = Xl,(y, - Z,b). The optimal linear combination 

matrix is z, = [ - X;X,( XIXl)-‘, I,], so that the optimal GMM test based on 
& will have a linear combination of estimated moment functions 

where R = (I - &‘) X2 is the TX I matrix of residuals from a regression of the 
columns of the contaminated variables X2 on the uncontaminated variables 
Xi. Also, 

T [ H,, - V&‘;~;H,,] = - R’Z = - R’g, 

where the second equality holds because fiR = R, and 

TFr*,- V,,,V&V,,,] = B 2R’R, TH;V; ‘H, = i ‘k/6 2. 

Then from the formula for Q in eq. (31a) it follows that a GMM test statistic is 
given by 

rn,=fi’R[R’R-~‘i(i’i)~‘i’lP]~~R’i(/6~. (37) 

By Proposition 3 this statistic is an optimal GMM statistic for misspecification 
of the form in eq. (36) and has I degrees of freedom. 

It is useful to note that my can be computed via a regression. By the fact 
that Z’( y - %) = Z!A( y - 28) = Z’ic = 0 and R’( y - %) = R’fi( y - .kb) = 
R’ic it follows that the statistic mT is the score statistic for the hypothesis 6 = 0 
in the regression equation 

y=ib+Ra+w, (38) 
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with the important modification that the estimate of the variance of the 
disturbance term in this equation is replaced by 8*. By the usual numerical 
equivalence of the score test with the Wald and F tests when the same estimate 
of the disturbance variance is used throughout [e.g., Engle (1984)], m, can also 
be obtained using these other statistics while replacing the estimate of the 
disturbance variance in eq. (38) by e2. 

The Hausman statistic h, can also be obtained via a regression. By Lemma 
4 h, is equal to a GMM statistic with W,= V+’ and L,= H$. diag[V&:, 01. 
This GMM statistic has a linear combination of estimated moment functions 
given by 

Then using eq. (8) to form a consistent estimator of the asymptotic covariance 
matrix of TL,g,(b) it follows that 

where S is chosen so that rank[Z, ZS] = 4 + min{ q - s, I}. The second equality 
is obtained by choosing a particular g-inverse, as discussed in section 2 (see 
Lemma 3). Similarly to the discussion of eq. (38) it follows that h, can be 
computed by obtaining the score, Wald, or F test for the hypothesis $ = 0 in 

the regression equation 

a 

y=Zb+iS8+W, (40) 

and replacing the estimate of the disturbance variance by b2. 
It appears that the optimal GMM test statistic mT for the validity of a 

subset of instrumental variables is new, although it is related to previously 
proposed tests in special cases. When I = r - q, m, is equal to the Hansen 
(1982) statistic. When the contaminated instrumental variables are r.h.s. vari- 
ables (i.e., the columns of Z contain X,) the statistic m, will test whether or 
not some r.h.s. variables are correlated with the disturbance term, while 
allowing other r.h.s. variables to be endogenous under the null hypothesis. 
Tests of such a null hypothesis have been specifically considered by Spencer 
and Berk (1981), Holly (1982b), and others [see Holly (1982b) for references]. 
To see the relationship of m, to these tests, note that h, is a Hausman test 
based on the difference of the optimal GMM estimator which uses all the 
moment functions (i.e., b) and the optimal GMM estimator which uses only 
the uncomtaminated moment functions (i.e., b). Then when Z includes X2, the 
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number of variables in X, plus the number of variables common to Z and Xi 
is no greater than q (i.e., I+ s < q), so that the degrees of freedom of h, is I, 
and it follows from Proposition 5 that m, = h,. Then since h, is the Hausman 
test discussed by Spencer and Berk (1981) and Holly (1982b) mT is equal to 
these tests. It is interesting to note that the regression equation, eq. (38) is 
different from the expanded regression of Holly (1982b) and that the discus- 
sion in Spencer and Berk (1981) of a regression method for computing h, is 
incomplete. With respect to Spencer and Berk (1981) it follows that in their 
equation (13) only 1 extra variables should be tested for significance and the 
usual estimates of the disturbance variance for this equation should be re- 
placed by an estimator of the disturbance of the structural equation [their 
equation (3)]. 

It is straightforward to obtain optimal GMM tests for the validity of certain 
instrumental variables in the presence heteroskedasticity and/or autocorre- 
lation. To obtain these tests we simply replace S2X’X/T by an estimator V, 
of the asymptotic covariance matrix of X’ti/@ which is appropriate in 
the presence of heteroskedasticity and/or autocorrelation [see White and 
Domowitz (1984) for such a choice of I’,]. The optimal GMM estimator of b, 
in eq. (33) is then 

b = (z’xv;‘x’z) -lz’xv;lxfy. 

With a choice of V, which is appropriate for the heteroskedastic case this 
estimator is White’s (1981) two-stage instrumental-variables estimator, while in 
the autocorrelation case it is the estimator of Cumby, Huizinga and Obstfeld 
(1983). The general formulae of section 3 then apply, with g-r(b) = X’( y - 
Zb)/T and H,= - X’Z/T, to obtaining optimal GMM test statistics for 
misspecification of the form given in eq. (36). 

5. Conclusion 

The fact that moment condition tests are not consistent against general 
misspecification indicates that some caution may be justified when interpreting 
the results of such tests. If the test does not result in rejection of the null 
hypothesis of no m&specification, it may be because the test has low power 
against a particular alternative, even though this alternative causes parameter 
inconsistency. This inconsistency result may also be a reason to pursue the 
work begun by Bierens (1982) in order to have available simple, omnibus 
m&specification tests for situations in which little information is available on 
the form of misspecification. 

The asymptotic equivalence of all moment condition tests with maximal 
degrees of freedom is convenient, because it allows us to limit some of the 
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discussion of specification tests. Due to the fact that all moment tests with 
maximal degrees of freedom are asymptotically equivalent, we can perhaps 
limit our use of such tests to the most convenient member of this group of 
tests. 

Optimal moment condition tests should prove to be useful in cases where 
a priori information restricts the form of misspecification. Optimal tests for the 
violation of specific moment conditions can be used to formulate tests for the 
validity of instrumental variables, as considered in section 4, and tests of 
restrictions on the disturbance matrix in a linear simultaneous equations 
system, as considered by Hausman, Newey and Taylor (1983). These optimal 
tests are more closely related to tests of parametric hypotheses (e.g., the Wald 
test) than other specification tests, precisely because optimal tests are for- 
mulated to have good power against certain alternatives. 

Appendix 

We first give several lemmas which are useful in the proofs that follow. Let 
R(B) be the rank of a matrix B. 

Lemma A.1. [Rao (1973, I.b._5,(iv),a)]. For a matrix A, A(A’A)-A’A =A 
and A’A( A/A)-A’ = A’ for any choice of g-inverse. 

Lemma A.2. [Rao and Mitra (1971, Lemma 2.2.5(b))]. For conformable 

matrices A and B, if R( ABA’) = R(B), then A’( ABA’)-A is a g-inverse of B for 

any choice of (ABA’)-. 

Lemma A.3. [ Rao and Mitra (1971, Lemma 2.2.6(g))]. For conformable 

matrices A and B, if R( ABA’) = R(A), then A’( ABA’)-A is invariant for any 
choice of g-inverse. 

Lemma A.4. For conformable matrices A and B, A( A%)-A’ and A( Ati)-A’ - 
AB( B’A’AB)-B’A are idempotent for any g-inverse choices. 

Lemma A.5. Let A be a k x I matrix, B a I x m matrix, and C a IX n matrix. 

If the columns of C form a basis for the column nullspace of A and R(B) = m, 
then R( AB) = R([C, B]) - n. 

Lemma A.6. For conformable matrices A and B, if B is positive definite, then 

R( A’( ABA’) -A) = R(A) for any choice of g-inverse. 

Let { c~}?=~ be a sequence contained in C which converges to C in C and let 
E, and covr denote the expectation and covariance, respectively, taken at 
f( z, c,), and let E denote the expectation taken at f(z, C). Unless noted 
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otherwise lim( .) and plim( .) will denote the limit and probability limit, 
respectively, as T --, 00. 

Lemma A. 7. If Assumptions 1, 5, and 6 are satis$ed and w( z, b) is a function 
which is measureable in z for all b, continuous on B almost everywhere v, and 
sup,lw(z, b)) I a,(z), then for w,(b) = w(z,, b), ET[ w,(b)] is continuous on B 
uniformly in T and converges to E[w,( b)] uniformly on B and 

plim sup i w,(b)/T- E[w,(b)] = 0. 
B r=l 

(A.11 

The proofs of Lemmas A.l-A.7 are omitted for brevity, but are available 
upon request from the author. 

Let 

h(b, c> = j-g(z, b)f(z, c> dv. 

Lemma A.8 If Assumptions l-6 are satisfied, then 

fi[g,(b,) -h(b,,c,)] 5 N(O, v). 

Proof. Let wrr = X’[g(z,, b,) - h( b,, c,)], where z, is the tth observation of 
the stochastic process with c = cT and X is any r x 1 vector with X’h = 1. Then 
for each T 

E&Q-) = 0, t= 1,2... . (A.2) 

Next, stationarity implies that for each T and non-negative integer a, 

(A.31 

where (~,,r= max{O,(T- n + l)/T}cov,(w,,,w,,,), n 2 1. By Lemma A.7, 
h(b,, cr) converges to h(b,, cO) = 0. Also, by Assumptions 4, 5 and 6 and the 
dominated convergence theorem (DCT) E,[ g( zr, b,)g( z,, b,)‘] converges to 
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E[ g( zt, b,)g( z,, b,)‘]. It follows that 

lim (Yap= X’E[ g(+ bo)g(z,, b,)‘] A, n2 1. 
T-+W2 

(A-4) 

From Assumptions 5 and 6 and Lemma 2.2 of White and Domowitz (1984) 
there are finite, constant D’, y, with y > 1, such that for all positive integers T 
and n, Ia,,J I D’neY. Then by eq. (A.4) and the DCT applied to the counting 
measure on the integers limT, ,N,(T) = WI, where the convergence is 
uniform in a because N,(T) does not depend on a. 

Next, note that by Assumption 5 there exists a finite constant D”, such that 
for all T and t 

E,[w,,[~~ s D”. (A.5) 

Finally, Assumption 6 implies that all the hypotheses of Theorem 2.4 of 
White and Domowitz (1984) are satisfied uniformly in T. Examination of the 
proof of this theorem, which uses inequalities based on mixing and moment 
conditions, leads to the conclusion that, even though the stochastic process wtr 

depends on T, 

; w,,/‘fi : N(0, XV/A), (A.61 
t=1 

so that the conclusion follows by the Cramer-Wold device. 

Proof of Lemma 1. To prove eq. (7), Assumptions 4 and 5 imply that h(b,, c) 
is continuously differentiable in c and that differentiation and integration can 
be interchanged. A mean value expansion gives 

lim[nh(b,,c,)] =lim[~h(b,,c,)+dh(b,,~,)/&-fi(c,-c,)] 

= ah(b,,c,)/&-6= K6, (A.71 

where ET lies on the line joining cT and cO so that lim(Z,) = cO. Eq. (7) now 
follows from Lemma A.8. 

To show that eq. (5) holds, note that by Assumption 5 and Lemma A.7, 
gT(b) converges in probability to h(b, co) uniformly in 6, so that 
gT( b)‘W,g,( 6) converges uniformly to h (b, c,)‘Wh( 6, co). By Assumption 7, 
h( 6, c,)‘Wh(b, cO) has a unique minimum at b, in B. Therefore a convergence 
in probability version of Lemma 3 of Amemiya (1973) implies plim ir. = b,. 
Then by Assumption 4, the first-order condition 

gT,(gT)‘WTfigT@T> = ‘3 64.8) 



252 W. K. Newqv, Moments specification testing 

will be satisfied with probability approaching one. Expanding b, around b,, 

fig,@,) = @gdbd +g,d&)@@- bd, (A.9) 

where b, lies on the line joining 8, and b,, with plim b, = b,. By Lemma A.7, 
Assumption 5, and Lemma 4 of Amerniya (1973) it follows that 

plim g,,( b,) = plim g,,( &,) = H. (A.10) 

Eq. (5) now follows from eqs. (A.8)-(A.10) plimW,= W, H’WH non-singu- 
lar, and J?;g,(b,) bounded in probability. Eq. (6) then follows from eqs. 
(A.9), (A.lO), and (5). 

Proof of Lemma 2. This result follows by Assumption 6, Lemma A.7 with 

w,(b) = g(zt, b)g(z,+,, b), and Lemma 4 of Amemiya (1973). 

Proof of Lemma 3. Q-= S(S’QS)-‘S follows from Lemma A.2. Then 
plim Q; = Q follows by plim QT = Q and continuity of matrix inversion. 

Proof of Theorem 1. By eq. (6) and Assumption 8, 

mT= Y;PbL’Q-LP,Y,+ o,(l), (All) 

where Y, = @gr( b,). The limiting non-central chi-square distribution of m r, 
with R(Q) degrees of freedom, then follows by eqs. (6) and (7). Then because 
WH is a basis for the nullspace of P& and R(Q) = R( P&L’), eq. (11) follows 
from Lemma A.5. Asymptotic equivalence of m, and m; is implied by eq. 
(A.ll) and Lemma A.3. In the linear case let gi = cy_,g,(z,)/T and gz = 
cy_,g,(z,)/T. Then for H,= g2 it follows that 

mT= Tg;P&L$-( L,P,,V,P~,L~)-L,P,,$,. (A.12) 

Invariance of mT with respect to g-inverse in the linear case now follows from 
Lemma A.3. 

Proof of Theorem 2. By the hypotheses of this theorem and Assumption 5, 
h(b, c) is twice continuously differentiable in (b, c). Since h(b,, cO) = 0 and 
dh(b,, c,)/db = H, the Hessian matrix of \k(b, c) = h(b, c)‘Wh(b, c)/2 in b at 
(b,, co) is H’WH, which is non-singular. Define b(c) as the value of b in B 
which minimizes 9(b, c). By the implicit function theorem applied to the 
first-order condition for this problem, and by compactness of B and continuity 
of h(b, c), it follows that b(c) is unique for c in a small enough neighborhood 
of cc, and b(c) satisfies eq. (13). The conclusion then follows by Lemma A.7 
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applied to gr(b) with c fixed in this neighborhood, by Lemma 3 of Amemiya 
(1973), and the chain rule applied to CX( c) = plim gr( 6,) = h(b( c), c). 

Proof of Theorem 3. Let D = (H’WH)-lH’W- (H’@‘H)-‘H’p, and note 
that M = DVD’. By eq. (5) and plim M; = M- it follows that 

h,= Y;D’M-DY,+ o,(l). (A.13) 

The conclusion now follows as in the proof of Theorem 1, noting that in the 
linear case, where D, is obtained from D by replacing H, W and I%’ by HT, 
W, and l&‘r, respectively, h, is given by 

h,= Tg;Dr,(D,VTD;.)-D,&. (A.14) 

Proof of Lemma 4. By the definition of br, eq. (A.9) and eq. (5) 

fi(6,-6,)= [I-( H~~~H,)-lH~~~g,,(b,)]~(~,- b,) 

In the linear case, 

0 (A. 15) 

Proof of Proposition I. For a positive definite matrix B and a conformable 
matrix A the nullspace of A’( ABA’)-A equals the nullspace of A, by Lemma 
A.l, so that the conclusion follows with A = LP, and B = V. 

Let P denote P, for W = V-’ and let U = V-‘P. 

Proof of Proposition 2. Let F be a symmetric square root of V and let 
Ni = F-‘H(H’F-*H)-‘H/F-’ and N2= FP&,(PwF2Ph)-PwF. By Lemma 

A.4, Ni and N2 are idempotent, and by P,H = 0, Nl and N, are orthogonal. 
Furthermore, by Lemma A.6, R( Ni) = q and R( N2) = r - q, so that R(N, + 
N2) = R( Iv,) + R( N2) = r. Since the only full rank, idempotent matrix is the 
identity, Z = Ni + N,. If R(Q) = r - q, then r - q = R( LP,) = R( Pw), so that 
by Lemma A.4, P&L/Q-LP, = P;V( P,VP&,-P,= F-‘N,F-‘. Noting that 
U = F-‘(I - N,)F-‘, the conclusion then follows by eq. (A.ll) and the fact 
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that R(Q) = r - 4 implies 

(A.17) 

Numerical equality in the linear case follows from eq. (A.12). 

Proof of Proposition 3. By R([H, K]) = q + I, [H, K]‘v-‘[H, K] is non- 
singular. Non-singularity of Q follows by partitioned inversion. Note that 
LP=K’V-‘P=K’lJandQ=K’UK,sothat 

6’K ‘P’L’Q-‘LPKG = G’K’UKQ-‘K’UKG = 6’K’UK6. (~.i8) 

The proof of Proposition 6 below implies that this non-centrality parameter is 
as large as possible in the class of GMM tests. By non-singularity of Q = K ‘UK 
the non-centrality parameter is greater than zero for any non-zero S, while by 
Proposition 1 any GMM test with less than I degrees of freedom will have a 
zero non-centrality parameter for some non-zero 6. 

Proof of Proposition 4. Note that H%‘H non-singular follows from 
[H, K]‘V-I[ H, K] non-singular by partitioned inversion. Also note that from 
eq. (25) and partitioned inversion (K’V-lK)-‘&K’V~lK)-l is the lower 
right block of the inverse of [H, K]‘V-‘[ H, K], which is also equal to 
(K ‘UK)-l. Non-singularity of Q follows immediately. Next, tedious but 
straightforward manipulation yields 

LP$= K’V-lK(K’UK)-lK’U. (A.19) 

Then eq. (A.19), LP = K ‘U, and Q = K ‘UK imply that 

PbL’&‘LPti= U’K(K’UK)-lK’U= P’L’QplLP. (A.20) 

Asymptotic equivalence now follows from this equation and eq. (A.ll). 
Numerical equivalence in the linear case follows from eq. (A.12). 

Proof of Proposition 5. By Lemma 4, h, is asymptotically equivalent (and 
numerically equivalent in the linear case) to a GMM test with W = V-’ and 
L=J?=H%‘.B~H’U=O~~~UVU=U, 

LPVPT’=[ZV-H’]uvu[v~~-H] 
(A.21) 

= H’V-lK(K’V-lK)-lK’UK(K’V-lK)-lK’V~lH. 
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K’UK, R(LPVP’L’)= R(H’V-lK). If R(H’V-‘K)=I, 
then by Lemma A.2 and eq. (A.21) 

Pt’Q-LP = U’K(K’UK)~lK’U, (A.22) 

and asymptotic equivalence of h, and fir follows by eqs. (A.ll) and (A.20). 
Numerical equivalence in the linear case follows by eq. (A.12). If R( H ‘V- ‘K) 
< I, then by Proposition 3.1 there is a non-zero 6 such that the non-centrality 
parameter of h, is zero, so that h, will have smaller local power than the 
optimal tests for this 6. For 8 = (K’V-‘K)-‘K’V-‘Hy, for some y such that 6 
is non-zero, the non-centrality parameter of h, is equal to that of the optimal 
tests, so that for this 6, h, has higher local power than the optimal tests 
because of its lower degrees of freedom. 

Proof of Proposition 6. From eq. (A.17) it follows that the non-centrality 
parameter for an r - q degree of freedom test is 6’K’UK6. Also for any GMM 
test the proof of Proposition 2 implies U = P&,( P,VP~)~P,. The conclusion 
follows from Lemma A.4, with A = F-‘Pl, and B = L’. 
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