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This paper analyzes the asymptotic power properties of specification tests which are based on a
finite set of moment conditions. It shows that any such test may fail against general misspecifica-
tion that causes estimator inconsistency. The mutual asymptotic equivalence of maximal degree of
freedom tests is shown and the form of optimal tests against specific forms of misspecification is
derived. Applications to testing for exogeneity of a set of instrumental variables are presented.

s

1. Introduction

The purpose of this paper is to analyze the asymptotic power properties of
the class of specification tests which are based on a finite set of moment
conditions. This class of tests is very general, since it includes both Hausman
(1978) tests and Sargan (1958) and Hansen (1982) tests of overidentifying
restrictions.

Section 2 lays out the framework to be used to analyze the power of
specification tests. Most econometric estimators can be viewed as being ob-
tained by minimizing a quadratic form in sample moments of functions of the
data and parameters. Such an estimator will generally be consistent if each
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expectation zero at the true parameter value. Tests for violation of these
moment conditions can be obtained by examining sample moments evaluated
at estimated parameter values. Section 2 presents reguiarity conditions and
obtains the asymptotic distribution of such tests under a local sequence of
misspecification alternatives. The relationship of these tests to Hausman (1978)
tests is also explained.

Section 3 presents results on the asymptotic power properties of moment

condition tests. It is found that for any such test there are misspecification
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directions for which for some asymptotic significance level the power of the
test does not go to one as the sample size grows. An equivalence result is
obtained for the class of moment tests which test a full set of overidentifying
restrictions. When a priori information restricts the form of misspecification,
optimal moment condition tests are available. The form of these tests is
presented in section 3.

Section 4 presents some applications of the general results. Testing for
contamination of a subset of instrumental variables is discussed in some detail
in the context of a linear equation. A Hausman (1978) test interpretation of the
Hansen (1982) test of overidentifying restrictions is presented and is used to
show the mutual equivalence of some tests of overidentifying restrictions in the
linear simultaneous equations system.

Section 5 offers some conclusions.

2. The asymptotic distribution of GMM specification tests

Our first assumption specifies the process which generates the data.

Assumption 1. The observed data z,, t=1,..., T, is p X 1, consists of random
vectors which are the first T elements of a strictly stationary stochastic process
{z,; t=1,2,...}, and has a measurable joint density function f(z,,...,z7,¢7)

with respect to a measure H,T=1v, where v is a o-finite measure on R? and ¢
is a I X 1 vector of parameters.

The assumption of stationarity of the data-generating process for each T
rules out fixed regressors in a regression model but allows for regressors which
are random draws from a fixed distribution, as might be appropriate for
cross-section data. Note that the data-generating process is allowed to depend
on the sample size through the parameter vector ¢, and that an extra T
subscript on z, has been suppressed for notational convenience. A problem in
deriving asymptotic approximations to the distribution of specification test
statistics is that if the model is misspecified the test will often reject with
probability one as the sample size grows. The classical solution to this problem
is to assume that correct specification occurs at ¢ = ¢, and that the data-gener-
ating process is subject to Pitman (1949) drift, with ¢, =c¢,+8/VT for a
(possibly) non-zero /X 1 vector §. This device of using a sequence of local
misspecification alternatives will be the basis of most of the ensuing discussion
of power properties of specification tests.

Assumption 2. cp=cy+8/VT.

The vector of parameters ¢ represents parameters which affect the cor-
rectness of the specification of an econometric model. For example, ¢ might
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include the coefficient of an omitted variable or a vector of covariances
between right-hand side (r.h.s.) variables and the disturbance. The exact
meaning of the statement that the econometric model is correctiy specified at
¢, will be given below as eq. (1).

Let b, be the g X 1 vector of parameters which is to be estimated by using
the data z,, r=1,...,T. A generalized method of moments (GMM) estimator
of b, can be formed by using a r X 1 vector of functions g(z, b) of a data
observation z and the parameter vector b which satisfies the following assump-
tion. Let f(z,c) be the density of a single observation.

Assumption 3. The elements of g(z, b) are measurable in z for each b in a
known set B, with b, € B, and
jg(z,bo)f(z,co)dv=0. (1)

The moment function vector g(z, b) and the moment condition (1) sum-
marize the information contained in the underlying econometric model which
is used in estimation. For example, g(z, b) might be a vector of cross-products
of instrumental variables and disturbance terms, or it might be the gradient of
the log-likelihood.

The moment canditian (1
TI'he moment conadition L

—

should have good properties when the econometric mode

(i.e., when ¢ = ¢;). Define

is correctly specified

-
1
gr(b)==5 X g(z.b).
A GMM estimator b, of b, can then be obtained as the solution to
ming,(b) Wrgr(b), (2)
heB

where W, is an r X r positive semi-definite matrix which may depend on the
data. The estimator ET is obtained by setting the sample moment vector g;(b)
as close as possible to zero, which is the population moment vector when
c¢=c,. This class of estimators has been considered by Amemiya (1974),
Burguete, Gallant and Souza (1982), and Hansen (1982), among others.
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zero, resulting in possible inconsistency of the GMM estimator ?)T. One
method of testing for misspecification, as suggested by Hansen (1982), is to use
a linear combination LTgT(;')T) of the estimated sample moments g,(b;),
where L, is a s X r matrix. When the model is correctly specified, g, ( ?)T)
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should be close to zero in large samples by a law of large numbers and by i)T
consistent for b,. At the same time, when there are more moment functions
than parameters, gT(BT) will not be identically zero, so that a useful test can
be constructed by rejecting the null hypothesis of correct specification if a
linear combination L,g,(b;) is too far from zero, after approximately
accounting for sampling error using asymptotic distribution theory.

To obtain the asymptotic distribution of L, g,(b;) under a sequence of
local alternatives, it is useful to impose regularity conditions on g(z, b), the
density f(z,c¢), and to restrict the dependence across observations of the
data-generating process. The set of regularity conditions which will be pre-
sented is by no means the weakest possible set of sufficient conditions,
although most of the conditions should be straightforward to check in the
context of a particular model.

Assumption 4. The functions g(z, b) and f(z, ¢) are continuously differentia-
ble on B and a neighborhood C of ¢, respectively, aimost everywhere v. For
each n > 2 the joint density f(z,, z,, ¢} is continuous in ¢, almost everywhere
v X v. Also by, is contained in the interior of the set B, which is compact.

The next assumption imposes dominance conditions.

Assumption 5. There exist measurable functions a,(z) and a@,(z), and d> 1,
such that almost everywhere v, and for all b in B and ¢ in C,

g(z,b)1* <ay(z), 19g(z,b)/0b|<a(z),

|0ln f(z,¢)/0¢c)* < a,(z), (3a)
1f(z,0)<ay(2), 1f(z1,z,.0)I<ay(2))ay(z,), n>2, (3b)
f[al(z)]daz(z)dv< + 0, faz(z)dv< + 0. (4)

To restrict the dependence across observations of the stochastic process
Z={z,; t=1,2,...} it is useful to employ mixing conditions. Mixing condi-
tions have recently been discussed in some detail by Domowitz and White
(1982) and White and Domowitz (1984), where definitions and notation for the
following assumption can be found.

Assumption 6. There exist constants D >0 and A such that, for all ¢ in C,
either (a) Z is uniform mixing with

¢(m)<Dm™,  Az=d/(d-1),
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or (b) Z is strong mixing with

a(m) < Dm™*, A=2d/(d—1).

The next assumption is an identification condition which guarantees that the
minimization problem (2) has a unique solution asymptotically. Let E denote
the expectation taken at ¢ = ¢, and

H=E[dg(z,, b,)/3b].

Assumption 7. The matrix W, has a positive semi-definite probability limit
W, such that WE[g(z,, b))= 0 only if b= b, and such that H’WH is non-sin-
gular. Also L, has a probability limit L with rank(L)=s.

The asymptotic properties of the estimator i)T and the linear combination of
estimated sample moments L,g,(b;) are summarized in the following result.
Let

V= E[g(Z,, by)g(z,, bO),]
+ T (B8 )8 (rens b0) ]+ Elgrans )8 b ] ).
n=1

K=E[g(z,,b0)3nf(z,.¢,)/9c],

p,=I —H(HWH) 'HW.

Lemma 1. If Assumptions 1-7 are satisfied, then

VT (by—by) = — (H'WH) " H'WAT g7(by) +0,(1), (5)
ﬁLTgT(AbT)=LPWﬁgT(bO)+op(1)9 (6)
VT g7 (bo) > N(K8, V). (7)

Egs. (6) and (7) imply that the asymptotic covariance matrix of L gr(by)is
given by

Q=LP,VP, L. (8)
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An asymptotic chi-square statistic can therefore be formed as

my= TgT(ET)iL’TQ;LTgT(i)T)’ (9)

where O, is an estima
\/ 1 %2 10 All vollilia
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24)] of Q. The use of a g-inverse is necessary because the singularity of P,
(note P, H = 0) implies that Q may be singular.

To estimate ¢, H can be estimated by

r

- {7
Hr = 5rp\V

\
T/
where g,,(b)= dg(b)/db, P, can be estimated by
-1

Pyr=1- HT(H;“WTHT) HiWr,
and Q by

Qr=LrPyrViPy Ly,
where V. 1s a consistent estimator of V. Detailed discussion of estimation of V
is beyond the scope of this paper. The asymptotic covariance matrix estimators
suggested by Hansen (1982), Domowitz and White (1982), and White and

Domowitz (1984) should apply with little modification. For example, the
following analog of Lemma 3.3 of Hansen (1982) holds.

Lemma 2. If Assumptions 1-7 are satisfied and |g(z, b)|* < a,(z) for all b in
B, then for any n >0

T—n R . , P ,
Z ( bT)g(ZH—n’bT) - E[g(zr’bo)g(zt+n’b0) ]

=1
1

When only a finite number of terms in the asymptotic covariance matrix ¥V
of VT gr(by) are non-zero (e.g., cross-section data where observations may be
independent), then Lemma 2 can be used to form a consistent estimator of V

hv renlacine the non-zero termes which make un V' hv samnle averaceg like
Oy repiacing (he non-zero terms whnicnh maxe up ¥ by sampie averages e

those of Lemma 2. The results to be discussed later will not be restricted to this
case, but will apply as long as some consistent estimator V. of V is available.

Assumption 8. The estimator V. satisfies plim¥V,. = ¥V, and V' is non-singular.
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Because of the non-uniqueness of the g-inverse, using any sequence of
g-inverses of @, need not guarantee that O, converges in probability. One
way to tie down Q; is given by the following result.

Lemma 3. If Assumptions 1-8 are satisfied and S is a fixed r X rank(Q) matrix
such that S'QS is non-singular, then plim S(S'Q;S) 'S’ =Q, a
g-inverse of Q.

For example, S might be a selection matrix such that $’QS is a non-singular
submatrix of Q@ with full rank. More generally, we will make the following
assumption.

Assumption 9. A sequence of g-inverses of Q 1s chosen so that plim Q7 = Q"
a g-inverse of Q.

An important special case occurs when the moment functions are linear in b,
so that for a r X 1 vector g,(z) and a r X g matrix g,(z) of functions

g(z,b)=g,(z)+g,(2)b. (10)

This case will be referred to as the linear case.
The asymptotic distribution of the GMM specification test statistic can now
be obtained.

Theorem 1. If Assumptions 1-9 are satisfied, then my converges in distribution
to a non-central chi-squared distribution with

rank(Q)=rank[WH, L’] — g (11)
degrees of freedom and non-centrality parameter
A’ =8K'P,,L'Q" LP,K3. (12)

Also, if my and m'. are test statistics constructed with two different g-inverses
satisfying Assumption 9, then my— m’r= 0,(1), while in the linear case my is
numerically invariant with respect to the choice of g-inverse.

It is possible to obtain an interesting interpretation of the non-centrality
parameter A%. The matrix Q~ is just a g-inverse of the asymptotic covariance
matrix of L,g(b,). The other term LP,, K which appears in eq. (12) is related
to the local behavior of L,g(b;) under misspecification.

Theorem 2. If Assumptions 1 and 3-9 are satisfied, g(z,b) and f(z,c) are
twice continuously differentiable in (b, c), almost everywhere v with
|82f(z,¢)/dcdc’| < a,(z), |d%¢(z,b),/dbdb|<ay(z), i=1,...,r, and the
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data-generating process satisfies ¢ = c for some fixed ¢ in a neighborhood of c,,
then

plim b, = b(c), plim L g (b;) = a(c),

such that
3b(cy)/dc=—(H'WH) 'H'WK, (13)
da(cy)/dc=LP,K. (14)

From eq. (14) we see that LP,K§ is the directional derivative in the
direction & of the limit of L,g,(b;), so that in addition to the asymptotic
covariance matrix of L, gT(i)T) the non-centrality parameter is determined by
how rapidly the limit of L,.g,(b;) moves away from zero as ¢ departs from Co-

Theorem 1 gives the asymptotic distribution under local misspecification of a
very large class of specification tests. For example, tests which use one vector
of moment functions for estimation and another for testing can be subsumed
in this framework by choosing W to have certain rows and columns of zeros
so that it picks out from the vector g(z, b) those functions used in estimation,
and by choosing L to pick out those used in testing. Our results also apply to
Hausman (1978) specification tests.

To clarify the relationship between Hausman tests and GMM tests, which
has been discussed by Ruud (1982) and White (1982), a brief discussion of
Hausman tests in the GMM framework should be helpful. Let b, be a second
GMM estimator which is obtained by solving eq. (2) with WT used in place of
W,., where W, has a limit W which differs from W. Applying eq. (5) to both
i’r and BT gives the asymptotic covariance matrix

M=(H'WH) '"H'WVWH(H'WH) '
+(H'WH) '"HWVvWH(H'WH) ™'

—(H'WH) "H'WVWH(H'WH) ™"

—(H'WH) 'H'WVWH(H'WH) ™! (15)
of the difference g,= BT— b,. A consistent, positive semi-definite_estimator
M of M can be obtained by replacing H by, say H,, W by W,, W by W,
and V by V; in eq. (15). For a g-inverse M; of M, a Hausman test statistic is

then given by

hr=TqrMrqr. (16)
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Theorem 3. If Assumptions 1-8 are satisfied for both Wy and Wy and a
sequence of g-inverses My of M are chosen so that My converges in probability
to M~, a g-inverse of M, then h; converges in distribution to a non-central
chi-squared distribution with

rank (M) = rank[ WH, WH | — ¢ (17)
degrees of freedom and non-centrality parameter
Ny = &K' |[WH(H'WH) '~ WH(H'WH) ™" M~
x [(H'WH) '"H'W - (H'WH) "H'W|Ks. (18)

Also, if hy and h% are test statistics constructed with two different g-inverses
satisfying the above hypothesis, then hy— h% = 0,(1), while in the linear case hy
is numerically invariant with respect to the choice of g-inverse.

It should be emphasized that this result gives the asymptotic distribution of
most &f the Hausman tests, which have been presented in the literature, when
particular forms of local misspecification are present. For example, specifica-
tion tests which use different moment functions, such as the test based on the
difference of two weighted least-squares estimators suggested by Domowitz
and White (1982), can be accommodated by stacking the functions into one
vector and specifying that certain rows and columns of W, and W, contain
only zeros. Also, eq. (8) shows exactly how the non-centrality parameter is
determined. The non-centrality parameter is a quadratic form which has a
matrix M~ and, from eq. (13), a vector which is the directional derivative of
the difference of the asymptotic bias of piim 27T and plim b in the direction 8.

It is interesting to note that when W equals V™!, the asymptotic covariance
matrix of b, — b, simplifies to

M=(H'WH) 'HWYWH(H'WH) ' —(H'V 'H) ", (19)

which is the difference of asymptotic covariance matrices of BT and b,. As
shown by Hansen (1982), choosing W equal to ¥~! yields an estimator which
is asymptotically efficient relative to any other GMM estimator, so that eq. (19)
implies that for the covariance matrix M to have the simple difference form as
discussed by Hausman (1978), it is sufficient that one estimator used to form
gr=b,— b, have the efficient choice of W = V"', For example, this observa-
tion implies that all of the specific specification tests discussed by Hausman
(1978) have the simple matrix difference form even if the disturbances are not
normally distributed.
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The relationship between Hausman and GMM specification tests can easily
be seen from a generalization to GMM estimators of the famous one-step
theorems for maximum likelihood and non-linear least squares. Let

A~

_ ~ —-1 ~ ~
bT=bT—(H;WTHT) HiW,gr(br), (20)
be an estimator obtained by starting at i)r and moving towards BT.

Lemma 4. I Assumptions 1-8 are satisfied for both W, and W, then
VT (by—by) =0,(1), (21)
while b= b, in the linear case.

This result says that the one-step estimator b, is asymptotically equivalent
to the GMM estimator b, so that a Hausman test based on the difference
b, — b, is asymptotically equivalent to a test based on b — b,. But from eq.
(20)

— ~ 1 - ~
br—by= (HfWTHT) HfWTgT(bT)s

and the term on the right-hand side is a non-singular linear combination of
H;W g, (b,). Therefore a Hausman test based on the difference b.— b, is
asymptotically equivalent to a GMM test with weighting matrix W and
L = H'W, and numerically equivalent in the linear case. Clearly the roles of W
and W are interchangeable, so that a Hausman test based on b, — b is also
equivalent to a GMM test with weighting matrix W and L= H'W.

In the next section the asymptotic distribution of GMM tests is employed to
consider their asymptotic power properties.

3. Asymptotic power properties of GMM specification tests

The asymptotic power of GMM specification tests is determined by the
non-centrality parameter A* and the degrees of freedom, since the tail probabil-
ity of a non-central chi-squared distribution is increasing in the non-centrality
parameter and decreasing in the degrees of freedom. In particular, the asymp-
totic power curve is flat in any direction for which the non-centrality parameter
is zero. In fact, as shown in Newey (1983), the set of / X 1 vectors 8, such that
the non-centrality parameter is equal to zero, is (under some additional
regularity conditions) the tangent space at ¢, to a smooth manifold of /X 1
vectors ¢ on which the associated GMM test will not reject with probability
approaching one, for some critical value.
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An important property of GMM tests is that the non-centrality parameter is
zero for non-zero directions § in the presence of general forms of misspecifica-

tion. so that GMM tecte are not consistent acainst ceneral misenecification
uon, 56 Ulal 3vivL 185LSs are Nol COonSsisient against generar misspeciicaion.

Bierens (1982) and Holly (1982) have both given examples of specification tests
which are not consistent. For the general form of GMM test and misspecifica-
tion considered in section 2, the set of directions for which the non-centrality
parameter is zero can be characterized as follows.

Proposition 1. N =0 if and only if LP,, K8 = 0.

To interpret this result note that by V' non-singular and eq. (8) the degrees of
freedom of the GMM test are given by the rank of LP,,, so that the rank of
LP, K is less than or equal to the degrees of freedom of the test. Noting that §
is a /-dimensional vector, it follows that the set of directions for which the
non-centrality parameter is zero has a dimension greater than or equal to /
minus the degrees of freedom of the test. For example, note that any particular

OIMARNA tact vwiill hagya o wara wAn_~amnteolity mavamatar fare cnma dirantiane
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dimension of misspecification is big enough.

We can also use this result to show -that when general misspecification is
present there are directions for which the non-centrality parameter is zero and
which result in the GMM estimator of b, being inconsistent. Note that

3 [g(z.by) f(z,¢0) dv/de

= [5(z.50)[#10 /(2. co) /c] f(z.¢5) dv = K. (22)

¢y that to gav tha
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derivatives K8 of the expectation of the moment vector g(z, b,) traces out all
of R’, which in turn means that the misspeciﬁcation allows for any direction of
departure of E[g(z, )] from zero. Also, if the rank of K is equal to r. then for
any 8+ 0 we can find a & such that HB = K§. For this choice of § the
non-centrality parameter is zero by P, H = 0 and Proposition 1, while by eq.
(13) the directional derivative of the asymptotic bias of b, equals — 8 # 0.
The interpretation of the potential failure of GMM tests resulting from
insufficient degrees of freedom is facilitated by an analogy with the Chow test
in the linear model. As discussed by Rea (1978), a Chow test with insufficient
degrees of freedom in the second period has a power curve which is flat on a
non-trivial subspace of the alternative space. The problem there is that the
parameters of the second period are not identified, so that there are non-zero
values of the second-period parameters which give a test statistic which has the

m 1 1 1 1 - 1 matarc wara 7arn ha caon-
same distribution as if the second-pericd parameters were zero. The con-

sistency problem for GMM tests is also an identification problem. The vector

t the rank of K ic eanual to » meang that the cet of diractional
tingra i ¢ a
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g(z, b) provides r moment functions (i.e., degrees of freedom) which can be

used in estimating parameters. If under the alternative there are more than r
narameters to estimate in the vectors b and ¢. then there are insufficient
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degrees of freedom to identify both b and ¢. Consequently a GMM test will
not be consistent against such an alternative. In terms of Proposition 1, note
that by the fact that the rank of P, is » — ¢ the degrees of freedom of any
GMM test is less than or equal to r — g. It follows that when r is less than
[+ ¢q (i.e, r—q is less than /) any GMM test will have a zero non-centrality
parameter for some non-zero 8.

A second important property of the class of GMM tests 1s the asymptotic

equivalence of all such tests with r — ¢ degrees of freedom.

Proposition 2. If my and m are two GMM test statistics with degrees of
freedom r — q, then my— fay= 0,(1), while in the linear case m, = firy.

A restatement of this result is to say that a GMM test with maximal degrees

— taticall lant t +h L (3NN tagt e
of freedom r g 1s asymp LOuC?Auy equ‘.va‘en. {0 any oiner sucii UMM Est. LT,

if r — ¢ is identified with the number of overidentifying restrictions, a restate-
ment is that all GMM tests which test a full set of overidentifying restrictions
are mutuaily asymptotically equivaient.

In many situations a priori information which rules out general misspecifica-
tion may be available, so that the alternative ¢ # ¢, involves misspecification of
a particular form. Important examples include contamination of particular
instrumental variables, which is discussed in the next section, and violation of
covariance restrictions in a simultaneous equations system [Hausman, Newey
and Taylor (1983)]. In such situations it is useful to have available GMM tests
which are optimal against a particular form of misspecification. The notion of
nnhmnhtv which we use here is similar in nature to the idea that a GMM

estimator with weighting matrix W= V"1 is optimal in the class of GMM
estimators. A GMM test will be referred to as optimal in the class of
GMM tests if it has the largest possible value of the non-centrality parameter
for all 8 in R’ and has the smallest possible degrees of freedom among tests
with this property.

One form of optimal GMM test can be formed using the GMM estimator b .
with W= V"', Suppose for the moment that there is available an estimator K
of K which is consistent when ¢ =c¢,. Consider a GMM test with the /X r
linear combination matrix L;= K;V; . Straightforward calculation using eq.
(8) shows that the asymptotic covariance matrix of L, g,(b) is given by

O=K'V'K-KV 'HHV 'H)Y '"HV K. (23)

.(i)m\ V. and K,

77 1 TR SR

corresponding GMM

Let () be obtaine

d
respectlvely, and let m
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statistic. Under the conditions of the following theorem Q will be non-singular
and m, will give an optimal GMM test.

Proposition 3. 1If pim K, =K and [H, K] has rankq+ [, then m, has [
degrees of freedom and is an optimal GMM test statistic.

The form of this test statistic has a straightforward interpretation. If g,(b)
is thought of as a vector of residuals, then the estimator b, can be interpreted
as a generalized (non-linear) least squares (GLS) estimator. Then the linear
combination of residuals K;V; 'g,(b,) is the estimated score vector which
would be used to form a score test for the inclusion of the variables K, if the
disturbance vector g;(b,) had a normal distribution. This procedure is
asymptotically optimal because VT T g+(b,) converges in distribution to a nor-
mal random vector. Note that, in general, consistent estimation of K may be
difficult since it can require knowledge of the form of the density f(z. ¢). In the
examples considered below this problem does not arise.

Vi pnm bl £nzesnn SN | bnct ~nm
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estimator which partials out K. Let

W=V 1i-VK(KVK) 'KV (24)

let W, be obtained from W by replacing K by K, and ¥ by V, and let b,
be the GMM estimator with weighting matrix W,. This estimator has a
straightforward interpretation if g,(b) is thought of as a vector of residuals.
The estimator is then a GLS estimator when K is included in the residuals as
a r X/ matrix of r observations on / variables. In terms of the local results of
Theorem 2 it can be shown that b, is an optimal GMM estimator among those

GMM estimators which have a zero derivative of the asymntotic bias at ¢ = ¢
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1.e., those estimators for which eq. (13) equals zero.
Straightforward calculation using eq. (8) can be used to show that the
asymptotic covariance matrix of L,g,(b;) 1s given by

O=K'VK+K'V HHWH) 'HV K, (25)

where we again let L,= K;V;'. Let Q, be obtained from Q by replacing
H, V and K by gn(b;), V, and K,, respectively, and let m, =
gr(bYLy Q7 'Lrgr(by) be the associated GMM statistic with L, = KV, %
Under the conditions of the following theorem Q will be non-singular and s
will give an optimal GMM test statistic which is asymptotically equivalent to
the previously presented optimal GMM test.

D A r 1
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degrees of freedom and m,— m,
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It is also possible to form a Hausman test statistic based on the estimator
difference 4r= b, bT Using eq. (19) it follows that the asymptotic covari-

M=(H'WH) '—(HVH) . (26)

Let M, be obtained from M by replacing VV and K by V, and K.,
respectively, and H by, say g,(b;), and let h, = Tq;M; g, be the associated
Hausman statistic. The use of a generalized inverse is called for because M
may be singular. The analysis of Holly (1982a) and Hausman and Taylor
(1980) can be generalized to give the following result.

Proposition 5. If plim K= K and [H, K] has rank q + |, then h has degrees
of freedom equal to the rank of K'V " 'H. Also, if rank|K'V " 'H)=1, then
My — hy = 0,(1), with numerical equality in the linear case, while if
rank [K 'V 'H] < I, then the asymptotic power curves of i and h cross.

It is useful to compare the optimal GMM tests presented above with the
class of asymptotically equivalent r — g degrees of freedom tests which test a
full set of overidentifying restrictions.

Proposition 6. For all § in R' the non-centrality parameter for a GMM test with
r — q degrees of freedom is greater than or equal to the non-centrality parameter
for any other GMM test.

It follows that the non-centrality parameter for the r — g degrees of freedom
tests is equal to that of the optimal tests given above. These optimal tests will

have larcer local nower than the r — g desrees of freedom test when the
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degrees of freedom / of the optimal tests is less than r—g, i.e., when the
dimension of misspecification is less than the number of overidentifying
restrictions.

One important situation where optimal GMM tests are straightforward to
construct and should be useful is when misspecification results in contamina-
tion of a subset of moment functions. For example, such a situation can arise
when certain instrumental variables are suspect. Eichenbaum, Hansen and
Singleton (1984) also discuss tests of a subset of moment functions and present
empirical applications which involve testing the validity of instrumental vari-
ables in a rational expectations model.

Suppose that the r X 1 vector of moment functions is partitioned as g(z, b)
= (g(z,b), g,(z,b) Y, where g,(z,b) is an /X 1 vector and

jrg(z,bo)f(z,c)dv= (0,¢"). (27)
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Thus we parameterize the misspecification as the expectation of g,(z, b,) and
under misspecification the moment condition E[ g:1(z,, by)] = 0 remains satisfied.
Than from aa N it fallage that E—T0 71/ olhiaee e
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identity matrix. Here the problem of obtaining a consistent estimator of K
does not arise and optimal GMM tests can be calculated without further
knowledge of the data generating process.

To see what form optimal GMM tests of a subset of moment functions take,

partition H, V and V! conformably with g(z, b),
H=[H{H|', v=[V,]. v'=[V"]. ij=12. (28)

Straightforward calculation shows that the linear combination matrix L =
K’V~! becomes

L=[0, 1]y ' =v2]-wvyil 1]. (29)
Since ¥ is non-singular it can be dropped without affecting the test and an
equivalent choice of linear combination matrix is
~ r _ =1 1 £
Lr=1=VruVr 4], (30)
where V5 is also partitioned conformably with g(z, b). With this choice the
linear combination of estimated moment functions used in the optimal GMM
test based on by is equal 10 g75(b7) — VioVr1871(b7), so that the optimal
linear combination matrix partials out the uncontaminated moment functions.
Further straightforward calculation shows that the weighting matrix W for
the estimator b, is a block-diagonal matrix, W = diag[V},*,0]. Thus, b, is the

ontimal GMM estimator among those GMM estimators which use onlv the

Lpaiilial RTIVAYL LONNGIO0 QIO WIUSO RIVLVE CouiaiVls Winlil st Qliy Uic

moment function vector g,(z, ). Such estimators will remain consistent for b,
under misspeciﬁcation when misspeciﬁcation does not affect the moment
condition Ef g,{z,, b;)] = 0. Noie ihai the hypoihesis that the rank of [ H, K] 1s
q + ! of Propositions 4-6 here requires that rank( H,) = ¢, which 1s an identifi-
cation assumption for b with the subvector g,(z, b,) of moment functions. The

asymptotic covariance matrices of LTgT(?)T) and L,g;(b;) respectively are

0=V, — Vy VW — B(HVH) (31a)

F — "S- 15,
O=Vy,—- V21V111V12+B(H1V111H1) B, (31b)

where B = H, — V,,V/;{'H,. As before consistent estimators of these asymptotic
covariance matrices can be obtained using consistent estimators of ¥ and H.

The other test which we have presented as a iest for a specific form of
misspecification is a Hausman test based on the difference of the GMM
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estimators b, and b,. The asymptotic covariance matrix of gr=b,— b, is

-
-

- -1 - -1

- 1 _ 1

/‘I_(LIT/ u) (LI/I/ u) ) (32)
A consistent estimator of M can be obtained by replacing V' by V, and H by,
say gr,(b7). Uniike Q and (, the matrix A may be singular, so that use of a
generalized inverse may be called for.

4. Applications

For a first application of the theoretical results of sections 2 and 3 consider a
GMM test statistic MT= Tg(b7)'Vy'gr(by), where by is the optimal GMM
estimator with W= V"1 It is straightforward to check that the degrees of

freedom of this test is »r — ¢ and that V™! is a g-inverse of the asvmptotic
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covariance matrix of gT(bT). This test statistic was suggested by Hansen
(1982) as a convenient test for the overidentifying restrictions embodied in the
moment condition E[g(z,, by)] = 0. The flat asymptotic power curve of GMM
tests in certain directions (Proposition 1) indicates that this statistic fails, along
with every other GMM test (including Hausman tests), to be an omnibus test
tor misspecification. Nevertheless 7, or any other GMM test statistic with
r — g degrees of freedom, comes closest in the class of GMM tests to being an
omnibus test. For any direction of misspecification the non-centrality parame-
ter is as large as possible (Proposition 6).

It is also interesting that in certain circumstances 7, can be interpreted as a
Hausman test, as conjectured by Mankiw, Rotemberg and Summers (1982).
When r — g exceeds g the degrees of freedom of mi, will differ from that of
any Hausman test based on the difference of two estimators of b;, but

2 f Ha d MM tact A A tha
otherwise the %qui‘\«alfﬂﬂce Ol mausman anda sviivi (€sts \Lﬁmma &) and ne

mutual asymptotic equivalence of all GMM tests with r— g degrees of
freedom (Proposition 2) imply that m, will be asymptotically equivalent to
any Hausman test with r — ¢ degrees of freedom and numericaily equivaient in
the linear case. For example, in the context of a linear simultaneous equations
system estimated by instrumental variables, m, equals T times the Gallant
and Jorgenson (1979, p. 279) testing criteria, evaluated at the three-stage
least-squares (3SLS) estimates. If the Hausman (1978) test based on the
difference of the two-stage least-squares (2SLS) and 3SLS estimators has the
same degrees of freedom it will equal m,, when the same disturbance covari-
ance matrix estimator is used throughout.
To consider an example in some detail, let a linear equation be given by

v=2Zby+u, t=1,...,T, (33)

where Z, is a 1 X g vector and u, a disturbance term. Let a 1 X r vector of
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mstrumental variables be given by X, and suppose that if the equation is
correctly specified the orthogonality condition E[X/u,]= 0 is satisfied. The
moment condition vector for this problem is then given by

g(Z,, b) = X,’(y,— Zrb)’

where z,=(y,, Z,, X,). For simplicity assume that observations are indepen-
dently distributed and that there is no heteroskedasticity. Let ¢ = E[u?|X,].
Note that in terms of the notation of sections 2 and 3, H = —E(X/Z,) and
V=0%B(X/X,). To guarantee that the regularity conditions of section 2 are
satisfied assume that E( X, X,) is non-singular, that rank[E( X/Z,)] = ¢, and that
[1z]*4a,(z)dv is finite for some d > 1.

For this example the optimal GMM estimator is the 2SLS estimator

b=(2'2)""'27y, (34)

where y=(y,...,»y7)s Z=(Z{,....Z7), X=(X{,....X7), N=
X(X’'X)"'X’, and Z = NZ. For notational simplicity the T subscript on b is
dropped. Consistent estimators of V and H are given by V= ¢?X’X/T and
H,= —X'Z/T, respectively, where 6%='is/(T—q) and &=y — Zb. The
previous results on numerical equality of various test statistics depend on using
the same estimator of V' to form each test statistic. Consequently the numerical
equality results given below will not hold when different estimators of o2 are
used, although the relevant statistics will remain asymptotically equivalent as
long as each estimator of ¢ is consistent.
In this context, where gT(i)T) = X’'u/T, the Hansen (1982) statistic is

mir=Tg(bs) Vi'gr(br)=(T—q)u'Nuy/i'is.

As noted by Hausman (1984), #i, = (T — q)R? where R? is the uncentered
r-squared from a regression of # on X. There are a surprisingly large class of
statistics which are equal to m,. Any GMM or Hausman test statistic with
r — g degrees of freedom is numerically equal to 7, (Lemma 4 and Proposi-
tion 2). For example, consider the test proposed by Hausman and Taylor
(1980) based on the difference of  and a 2SLS estimator

b=(2'2)"'ZYy, (35)
which uses only a subset of the instrumental variables, where X, = (X,;, X,,),

E(X,iZ,) hasrank g, X,, is a1l X/ subvector of X,, X =[X], X,] is partitioned

conformably with X,, N=X(X/X,)"'X/, and Z=NZ. A Hausman test
statistic based on the difference of b and b is given by

he=(b-bY[(22) " = (2'2) " (b-b) /s
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Note that &, is invariant with respect to g-inverse by Theorem 3. As shown in
Hausman and Taylor (1980) %, has min{/, ¢ — s} degrees of freedom, where s
is the number of right-hand side (r.h.s.) variables (components of Z,) which are
retained as instrumental variables (components of X,;) when b is formed.
When r — ¢ = min{/, ¢ — s } it follows that &, = m,. Remarkably, this equality
holds independently of the particular instrumental variables which are excluded
when forming b.

When a priori information restricts misspecification to contamination of a
particular subset of instrumental variables, the discussion in section 3 can be
used to obtain optimal GMM tests. Suppose that misspecification takes a form
such that when the model is misspecified

E(Xju,)=0, E(Xj,u,)=c, (36)
with a corresponding partition of the vector of moment functions g,(z,, b)=
X (y,— Z,b) and g,(z,,b)= X/;,(y,— Z,b). The optimal linear combination

matrix is L= [~ X} X,(X{X,)~%, 1}, so that the optimal GMM test based on
b will have a linear combination of estimated moment functions

where R = (I — N) X, is the T X [ matrix of residuals from a regression of the
columns of the contaminated variables X, on the uncontaminated variables
X;. Also,

T[Hrz - rleflllHn] =~-RZ= —R’Zv
where the second equality holds because NR = R, and
T [Vrzz - VT12V;111VT12] =G6’R'R, THiVr 1HT = 2'2/5 .

Then from the formula for Q in eq. (31a) it follows that a GMM test statistic is
given by

mp=wR|RR~-R2(2'2) '2R| "Ri/s2. (37)

By Proposition 3 this statistic is an optimal GMM statistic for misspecification
of the form in eq. (36) and has / degrees of freedom.

It is useful to note that m. . can be computed via a regression. By the fact
that Z(y — Zb)=Z'N(y — Zb)=Z't1=0 and R'(y — Zb)=R'N(y — Zb) =
R’ it follows that the statistic m is the score statistic for the hypothesis § = 0
in the regression equation

y=2Zb+R6+w, (38)
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with the important modification that the estimate of the variance of the
disturbance term in this equation is replaced by 6% By the usual numerical
equivalence of the score test with the Wald and F tests when the same estimate
of the disturbance variance is used throughout [e.g., Engle (1984)], »1, can also
be obtained using these other statistics while replacing the estimate of the
disturbance variance in eq. (38) by 6°.

The Hausman statistic £, can also be obtained via a regression. By Lemma
4 h, is equal to a GMM statistic with W, = V7! and L= Hj.- diag[V},0].
This GMM statistic has a linear combination of estimated moment functions
given by

TLTgT(b) = [Z/X1(X1'X1)71,O] X'i=2Z'Nia=Z"q.

Then using eq. (8) to form a consistent estimator of the asymptotic covariance
matrix of TL,g(b) it follows that

Aas—1la,~1— =

he=wZ|22-22(22) 27| Z'u/8?

A )\' 41;\ -~

—wzs|szzs-s272(22) ' 2028| s 20062, (39)

where S is chosen so that rank[Z, ZS]= ¢ + min{ ¢ — 5,/ }. The second equality
is obtained by choosing a particular g-inverse, as discussed in section 2 (see
Lemma 3). Similarly to the discussion of eq. (38) it follows that 4, can be
computed by obtaining the score, Wald, or F test for the hypothesis 8=0in
the regression equation

y=2b+ 7885+ w, (40)

and replacing the estimate of the disturbance variance by 7.

It appears that the optimal GMM test statistic m, for the validity of a
subset of instrumental variables is new, although it is related to previously
proposed tests in special cases. When /=r— ¢, m; is equal to the Hansen
(1982) statistic. When the contaminated instrumental variables are r.h.s. vari-
ables (i.e., the columns of Z contain X,) the statistic m, will test whether or
not some r.h.s. variables are correlated with the disturbance term, while
allowing other r.h.s. variables to be endogenous under the null hypothesis.
Tests of such a null hypothesis have been specifically considered by Spencer
and Berk (1981), Holly (1982b), and others [see Holly (1982b) for references].
To see the relationship of m to these tests, note that /4, is a Hausman test
based on the difference of the optimal GMM estimator which uses all the
moment functions (i.e., ») and the optimal GMM estimator which uses only
the uncomtaminated moment functions (i.e., Z)). Then when Z includes X, the
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number of variables in X, plus the number of variables common to Z and X,

is no greater than g (i.e., [+ s < ¢q), so that the degrees of freedom of 4 1s /,
and it follows from Pronosition 5 that m.-= h . Then since h is the Hausman
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test discussed by Spencer and Berk (1981) and Holly (1982b) my is equal to
these tests. It is interesting to note that the regression equation eq. (38), is
different from the expanded regression of Holly (1982b) and that the discus-
sion in Spencer and Berk (1981) of a regression method for computing 7, is
incomplete. With respect to Spencer and Berk (1981), it follows that in their
equation (13) only / extra variables should be tested for significance and the
usual estimates of the disturbance variance for this equation should be re-
placed by an estimator of the disturbance of the structural equation [their
equation (3)].

It is straightforward to obtain optimal GMM tests for the validity of certain
instrumental variables in the presence heteroskedasticity and/or autocorre-
lation. To obtain these tests we simply replace 6°X’X/T by an estimator V;,
of the asymptotic covariance matrix of X’u/yT which is appropriate in

tha nracancae of hataraclkadacticity and / 1tacarralatinn lcae White and
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Domowitz (1984) for such a choice of V;]. The optimal GMM estimator of b,
in eq. (33) is then

b=(z'xv;y'x'z) ' Z'XVi X'y,

With a choice of V, which is appropriate for the heteroskedastic case this
estimator is White’s (1981) two-stage instrumental-variables estimator, while in
the autocorrelation case it is the estimator of Cumby, Huizinga and Obstfeld

(1983). The general formulae of section 3 then apply, with g.(b)= X'(y —
ZhY /T and ” = ——Y’7/T to obtaining ontimal GMM test statistics for
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rmsspec1ﬁcat10n of the form given in eq. (36).

5. Conclusion

The fact that moment condition tests are not consistent against general
misspecification indicates that some caution may be justified when interpreting
the results of such tests. If the test does not result in rejection of the null
hypothesis of no misspecification, it may be because the test has low power
against a particular alternative, even though this alternative causes parameter
inconsistency. This inconsistency result may also be a reason to pursue the
work begun by Bierens (1982) in order to have available simple, omnibus
misspecification tests for situations in which little information is available on

the form of misspecification.
The asvmntotic eauivalence of all mom

1ne asymptouc equivaience momen
e it

degrees of freedom is convenient, because

t conditio

1 ts
allows us to limi
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discussion of specification tests. Due to the fact that all moment tests with
maximal degrees of freedom are asymptoucally equivalent, we can perhaps
limit our use of such tests to the most convenien t member
tests.

Optimal moment condition tests should prove to be useful in cases where
a priori information restricts the form of misspecification. Optimal tests for the
violation of specific moment conditions can be used to formulate tests for the
validity of instrumental variables, as considered in section 4, and tests of
restrictions on the disturbance matrix in a linear simultaneous equations
system, as considered by Hausman, Newey and Taylor (1983). These optimal
tests are more closely related to tests of parametric hypotheses (e.g., the Wald
test) than other specification tests, precisely because optimal tests are for-
mulated to have good power against certain alternatives.
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Appendix

We first give several iemmas which are useful in the proofs that foliow. Let
R(B) be the rank of a matrix B.

Lemma A.1. [Rao (1973, 1.b.5,(iv),a)). For a matrix A, A(A'A) " A4 =A
and A'/A(A’A)~ A’ = A’ for any choice of g-inverse.

Lemma A.2. [Rao and Mitra (1971, Lemma 2.2.5(b))]. For conformable
matrices A and B, if R(ABA’)= R(B), then A'(ABA’)™ A is a g-inverse of B for
any choice nf ( ARA’\

Lemma A.3. [Rao and Mitra (1971, Lemma 2.2.6(g))]. For conformable

mairices A and B, if R(ABA’)= R(A), then A'(ABA’)™ A is invariant for any
choice of g-inverse.

Lemma A.4. For conformable matrices A and B, A(A’A)" A’ and A(A’A)" A’ —
AB(B'A’AB)™ B’A are idempotent for any g-inverse choices.

Lemma A.5. Let A be a k X matrix, B alX m matrix, and C a [ X n matrix.
If the columns of C form a basis for the column nullspace of A and R(B)=m,
then R(AB)= R([C, B]) —n.

Lemma A. For ¢ onformable matrices A and B, if B is positive definite, then
R{ AT ARANT AN AN fnr amyv phnice Fmnorcn
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Let { ¢ }5_ be a sequence contained in C which converges to ¢ in C and let
E; and cov, denote the expectation and covariance, respectively, taken at
f(z,¢r), and let E denote the expectation taken at f(z,c). Unless noted
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otherwise lim(-) and plim(-) will denote the limit and probability limit,
respectively, as 7 — oo.

Lemma A.7. If Assumptions 1, 5, and 6 are satisfied and w(z, b) is a function
which is measureable in z for all b, continuous on B almost everywhere v, and
sup,|w(z, b)| < ay(z), then for w,(b)=w(z,, b), E¢[w\(b)] is continuous on B
uniformly in T and converges to E[w,(b)] uniformly on B and

T

Y w/(b)/T—E[w(b)}|=0. (A1)

=1

plim sup
B

The proofs of Lemmas A.1-A.7 are omitted for brevity, but are available
upon request from the author.

Let

h(b,c)=fg(z,b)f(z,c)du.

Lemma A.8. If Assumptions 1-6 are satisfied, then

VT [ g7(by) = h(by, )] S N(O, V).

Proof. Let w,=NXN[g(z,, by)— h(by, cr)], where z, is the tth observation of
the stochastic process with ¢ = ¢, and A is any r X 1 vector with NA = 1. Then
for each T

Er(w,;)=0, r=1,2.... (A.2)

Next, stationarity implies that for each T and non-negative integer a,

Na(T)zET[( Tia Wrr/ﬁ) ]=a17+2 f: Ay (A3)
t=1+a n=2

where a,r=max{0,(T~n+1)/T }covy(w,;;,w,;), n=1. By Lemma A.7,
h(b,, c) converges to h(bg, cy) = 0. Also, by Assumptions 4, 5 and 6 and the
dominated convergence theorem (DCT) E(g(zy, by)g(z,, by)’] converges to
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Elg(zy, by)g(z,, by)’]. It follows that

—
>
3
[a—y

—~~
}.
£

—

From Assumptions 5 and 6 and Lemma 2.2 of White and Domowitz (1984)
there are finite, constant D’, y, with y > 1, such that for all positive integers T
and n, |a,;| < D’n”". Then by eq. (A.4) and the DCT applied to the counting

measure Oon ﬂ'\P intecers lim.. N(TY= NV ﬂthrP the converoence ig
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uniform in a because N,(T') does not depend on a.
Next, note that by Assumption S there exists a finite constant D", such that
for all T and ¢

Erlw,|**< D" (A.5)

Finally, Assumption 6 implies that all the hypotheses of Theorem 2.4 of
White and Domowitz (1984) are satisfied uniformly in 7. Examination of the
proof of this theorem, which uses inequalities based on mixing and moment
conditions, leads to the conclusion that, even though the stochastic process w,
depends on T,

T

Y w/VT 5 N0, XVA), (A6)

=1

so that the conclusion follows by the Cramer—-Wold device.

Proof of Lemma 1. To prove eq. (7), Assumptions 4 and 5 imply that k(b ¢)
is continuously differentiable in ¢ and that differentiation and integration can
be interchanged. A mean value expansion gives

Lm[VT h(by, )] = im[VT h(bq, ¢o) + dh(by, 1)/ dc VT (er=c,)]
= 0h(by,cy)/dc-8=K3, (A7)

where ¢, lies on the line joining ¢, and ¢, so that im(¢; )= ¢,. Eq. (7) now
follows from Lemma A.8.

To show that eq. (5) holds, note that by Assumption 5 and Lemma A.7,
gr(b) converges in probability to h(b,c,) uniformly in b, so that
g7 (b)Y Wrgr(b) converges uniformly to h(b, cy)’ Wh(b, c;). By Assumption 7,
h(b, c;)Wh(b, cy) has a unique minimum at b, in B. Therefore a convergence
in probablhty version of Lemma 3 of Amemiya (1973) implies phmb = by.
Then by Assumption 4, the first-order condition

gTb(BT)’WTﬁgT(z)T)zo’ (A.8)
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will be satisfied with probability approaching one. Expanding b, around b,

\V/’Fn (b N=vVTo (b Y+to (b \\/—{iy—}\\ {A Q)
L Er\O7) = VL Er\ Do) T Erp\ O VL0 — Dy )5 A~
where b, lies on the line joining b, and by, with plim b, = b,. By Lemma A.7,
Assumption 5, and Lemma 4 of Amemiya (1973) it foﬂows that

plim g, (b;) = plim g7, (b ) = H. (A.10)

Eq. (5) now follows from eqs. (A.8)-(A.10), plimW,= W, H'WH non-singu-
lar, and VT g,(b,) bounded in probability. Eq. (6) then follows from egs.
(A.9), (A.10), and (5).

Proof of Lemma 2. This result follows by Assumption 6, Lemma A.7 with
w(b)=g(z,b)g(z,,,, b), and Lemma 4 of Amemiya (1973).

Proof of Lemma 3 N =8S(S'NS
k4 194 S S S

oy 4y <L e

V-
7
plimQ; = Q~ follows by plim Q= Q and continuity o

allows frn
QuUOwWS ITo

m emma A2 Then
m cmma A, 10aen

I
matrix inversion.
Proof of Theorem I. By eq. (6) and Assumption 8,
my=Y[{PLL'Q LP,Y + op(l), (A.11)

where Y, = VT g,(b,). The limiting non-central chi-square distribution of m,
with R(Q) degrees of freedom, then follows by egs. (6) and (7). Then because
WH is a basis for the nullspace of P}, and R(Q)= R(P},L’), eq. (11) follows

from Lemma A.5. Asymptotic equivalence of m; and m4 is implied by eq.
(A 11Y and Temma A3 In the linear cace let & _V ol{zY/T and &
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Z,T=1g2(z,)/ T. Then for Hy = g, it follows that

T=rpr jr {7 P i pr §FrY F P = {A 375

mye=1gi Pyl Lefyr¥rEywrlr) Lylyr8- (A.L2)

Invariance of m with respect to g-inverse in the linear case now follows from
Lemma A.3.

Proof of Theorem 2. By the hypotheses of this theorem and Assumption 5,
h(b,c) is twice continuously differentiable in (b, c). Since h(by,¢y)=0 and
dh(bg, c,)/0b = H, the Hessian matrix of ¥(b,c)=h(b,c)Wh(b,c)/21in b at
(by, cp) is H’'WH, which is non-singular. Define b(c) as the value of b in B
which minimizes ¥(b,c). By the implicit function theorem applied to the
first-order condition for this problem and by compactness of B and continuity
~fF L £ e tlns [N g all Ay maighlh el ~aad

UL n \U L), ll 10Uu0WS inat U\L) lb 'ﬁui\.iuc 10T ¢ lll a Sifiaii Cuuu5u llCIEIIUUl.IlUUU

of ¢, and b(c) satisfies eq. (13). The conclusion then follows by Lemma A.7
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applied to g, () with ¢ fixed in this neighborhood, by Lemma 3 of Amemiya
(1973), and the chain rule applied to a(c) = plim g(b;)= h(b(c), c).

Proof of Theorem 3. Let D=(H'WH) ‘H'W — (H'WH) 'H'W, and note
that M = DVD’. By eq. (5) and plim M; = M~ it follows that

hy=Y{D'M~ DY, +0,(1). (A.13)

The conclusion now follows as in the proof of Theorem 1, noting that in the
linear case, where Dy is obtained from D by replacing H, W and W by H,
W, and W, respectively, h; is given by

hp=Tg;Dy(D,VyD}) Dyg,. (A.14)

Proof of Lemma 4. By the definition of T)T, eg- (A.9), and eq. (5),
VT (br=by) = [ 1= (B ) " HiW g, (br) VT (b= by)
=o0,(1). (A.15)

In the linear case,
- - —, ~ _ _1_’ ~ — _ A
bT=bT—(g2WTg2) 82WT[81+82bT] =br. (A-16)

Proof of Proposition 1. For a positive definite matrix B and a conformable
matrix A the nullspace of A’(ABA’)” A equals the nullspace of 4, by Lemma
A.1, so that the conclusion follows with 4 = LP,, and B=V.

Let P denote Py, for W=V "!andlet U= V"'P.

Proof of Proposition 2. let F be a symmetric square root of V and let
N,=F 'H(H'’F?H) 'H’F"' and N,= FP,,(P,F?P},) P,F. By Lemma
A.4, N, and N, are idempotent, and by P, H =0, N, and N, are orthogonal.
Furthermore, by Lemma A.6, R(N,)= ¢ and R(N,)=r — g, so that R(N, +
N,)= R(N;)+ R(N,)=r. Since the only full rank, idempotent matrix is the
identity, =N, + N,.If R(Q)=r—gq, then r —g= R(LP, )= R(Py), so that
by Lemma A4, P, L'Q LP,=P,,(P,VP;,) P,=F 'N,F~ 1. Noting that
U= F Y1 — N,))F™', the conclusion then follows by eq. (A.11) and the fact
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that R(Q)=r — g implies

I'"O"IP =F YJ1_N _N)YF 1
o~ L FHI-N N

,‘
I

o

/h\
g
-
~1

S

Numerical equality in the linear case follows from eq. (A.12).

Proof of Proposition 3. By R(H,K))=g+I, [H K)V"YH, K] is non-
singular. Non-singularity of Q follows by partitioned inversion. Note that
LP=K'V"'P=K'U and Q = K’UK, so that

8’K'P'L'Q"'LPK& = 8K 'UKQ 'K 'UKS = 8'K "UKS. (A.18)

The proof of Proposition 6 below implies that this non-centrality parameter is
as large as possible in the class of GMM tests. By non-singularity of @ = K'UK
the non-centrality parameter is greater than zero for any non-zero §, while by
Proposition 1 any GMM test with less than / degrees of freedom will have a

zero non-centrality parameter for some non-zero 8.

Proof of Proposition 4. Note that H’WH non-singular follows from
[H, K1’V H, K] non-singular by partitioned inversion. Also note that from
eq. (25) and partitioned inversion (K’V7!K) 'Q(K’V 'K)™! is the lower
right block of the inverse of [H, K1’V '[H, K], which is also equal to
(K'UK) . Non-singularity of O follows immediately. Next, tedious but
straightforward manipulation yields

LP;,=K'V'K(K'UK) 'K'U. (A.19)

Then eq. (A.19), LP = K’U, and Q = K'UK imply that

“lrp _rr'R{ERITIECY
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Asymptotic equivalence now follows from this equation and eq. (A.11).
Numerical equivalence in the linear case follows from eq. (A.12).

Proof of Proposition 5. By Lemma 4, h, is asymptotically equivalent (and

numerlcally equlvalent in the linear case) to t a GMM test with W=V "! and
L=L=H'W.By HU=0and UVU=U,

LPVP'L'=[Lv-H'|UVU[VL - H]
(A.21)

=H'V'K(K'VK) 'K'UK(K'VK) 'K'V 'H.
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By non-singularity of K'UK, R(LPVP’L’y=R(H'V 'K).If R(CH'V 'K)=1,
then by Lemma A.2 and eq. (A.21),

P'L'O"LP=UK(K'UK) 'K'U, (A.22)

and asymptotic equivalence of k. and /m; follows by eqs. (A.11) and (A.20).
Numerical equivalence in the linear case follows by eq. (A.12). If R(H'V 'K)
</, then by Proposition 3.1 there is a non-zero & such that the non-centrality
parameter of h, is zero, so that h; will have smaller local power than the
optimal tests for this 8. For § = (K 'V 'K )™ 'K’V 'Hy, for some y such that §
is non-zero, the non-centrality parameter of 4, is equal to that of the optimal
tests, so that for this 8, A, has higher local power than the optimal tests
because of its lower degrees of freedom.

Proof of Proposition 6. From eq. (A.17) it follows that the non-centrality
parameter for an r — g degree of freedom test is 8’K 'UK 8. Also for any GMM
test the proof of Proposition 2 implies U = P, (P, VP},) P,. The conclusion
follows from Lemma A4, with 4 = F " 'P}, and B= L.
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