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We examine several modified versions of the heteroskedasticity-consistent covariance matrix 
estimator of Hinkley (1977) and White (1980). On the basis of sampling experiments which 
compare the performance of quasi r-statistics, we find that one estimator, based on the jackknife, 
performs better in small samples than the rest. We also examine the finite-sample properties of 
using modified critical values based on Edgeworth approximations, as proposed by Rothenberg 
(1984). In addition, we compare the power of several tests for heteroskedasticity. and find that it 
may be wise to employ the jackknife heteroskedasticity-consistent covariance matrix even in the 
absence of detected heteroskedasticity. 

1. Introduction 

The linear regression model is extensively used by applied econometricians. 
Together with its numerous generalizations, it constitutes the foundation of 
most empirical work in economics. Despite this fact, little is known about the 
properties of inferences made from this model when standard assumptions are 
violated. In particular, classical techniques require one to assume that the error 
terms have a constant variance. This assumption is often not very plausible. 
Nevertheless, a way of consistently estimating the variance-covariance matrix 
of ordinary least squares estimates in the face of heteroskedasticity of un- 
known form is available; see Eicker (1963) Hinkley (1977) and White (1980). 
This heteroskedasticity-consistent covariance matrix estimator allows one to 

make valid inferences provided the sample size is sufficiently large. 

*We are very grateful to an anonymous referee for a number of very useful suggestions and 
comments. Earlier versions of this paper appeared as UCSD Department of Economics Discussion 
Paper No. 82-18, and as Queen’s University Institute for Economic Research Discussion Paper No. 
537, 1983. Some computer funds were provided by the University of California, but most of the 
computing was done on an IBM 3081 at Queen’s University. MacKinnon’s research was sup- 
ported, in part, by grants from the Social Sciences and Humanities Research Council of Canada. 
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Unfortunately, it is not at all obvious what ‘sufficiently large’ means in 
practice, and it is well known that statistics with identical large sample 
properties can perform very differently in samples of small or modest size. In 
this paper, we examine some estimators which are asymptotically equivalent to 
the heteroskedasticity-consistent covariance matrix estimator alluded to above, 
but which may be expected to have superior finite sample properties. Since 
covariance matrix estimators are most frequently used to construct test statis- 
tics, we focus on the behavior of quasi t-statistics constructed using these 
different estimators. Using sampling experiments, we find that all the new 
estimators outperform the original one, and that one of them, based on the 
jackknife, consistently outperforms the other two. These experiments also show 
that in some circumstances the original estimator can be highly misleading, 
sometimes even more misleading than the conventional OLS covariance matrix 
which ignores the possibility of heteroskedasticity. 

We next consider an alternative approach due to Rothenberg (1984) in 
which the original heteroskedasticity-consistent estimator is used in conjunc- 
tion with modified critical values based on Edgeworth approximations. This 
approach appears to work well, especially when the sample is reasonably large. 
Finally, we consider the related question. of how well alternative tests for 
heteroskedasticity perform in the environments studied here. We find that the 
‘portmanteau’ test of White (1980) generally performs well. However, the 
evidence also suggests that it may be wise to use a heteroskedasticity-consistent 
covariance matrix estimator even in the absence of detected heteroskedasticity. 

The structure of the paper is as follows. In section 2 we describe the problem 
and the various estimators that will be examined. In sections 3 and 4 we 
describe the experiments to be performed and present the results of those 
experiments. In section 5 we discuss the use of modified critical values based 
on Edgeworth approximations. Finally, in section 6, we examine the perfor- 
mance of alternative tests for heteroskedasticity. 

2. Statement of the problem 

In this paper we deal exclusively with the linear regression model 

y=xp+u, 

where y is an (n X 1) vector of observations on a dependent variable, X is an 
(n x k) matrix of observations on independent variables, assumed to be of full 
rank, and u is an (n X 1) vector of observations on an error term with mean 
zero. The ordinary least squares estimator for this model is 

/3 = (xT-‘x~y (2) 



Inferences about p may be based on the fact that (fi - /?) has mean zero and 
covariance matrix 

(x~x)-‘x~ax(xrx)-‘, (3) 

where 

E( UU’) = a. 

Conventionally, it is assumed that E( UU’) = a2Z,,. Thus (3) simplifies to 
u 2( X’X) ‘, which can be conveniently estimated as 

s2(x’x)-1, S2=i(‘i(/(n-k), ic=(z-x(x’x)-lx’)y. (4) 

If X is non-stochastic and u is normally distributed, exact inferences in finite 
samples can then be based on the t or F distributions. Otherwise, (4) serves as 
the basis for valid asymptotic inference. 

The assumption that the errors are homoskedastic is often implausible. 
Instead, one may assume that E( u:) = a:, where a, varies in some unknown 
fashion over observations. A heteroskedasticity-consistent covariance matrix 
estimator which allows one to estimate (3) consistently under general condi- 
tions is 

(x,x) -‘x~8x( x/x)-‘, (5) 
where 

B=diag(ic:,Q:,...,a,Z); 

see White (1980). 

The estimator (5), which we shall refer to henceforth as NC, takes no 
account of the well-known fact that OLS residuals tend to be ‘too small’. One 
simple way to modify HC is to use a degrees of freedom correction similar to 
the one conventionally used to obtain unbiased estimates of cr2. This yields the 
modified estimator 

(n/(n-k))(X’X)-‘X’f2X(X’X)-‘, (6) 

which was suggested by Hinkley (1977). We shall refer to it as HCI. 

The degrees of freedom adjustment in WC1 is not the only way to com- 
pensate for the fact that the OLS residuals tend to underestimate the true 
errors. If there is no heteroskedasticity, it is easily seen that 

E( G;) = (1 - k,,)u2, (7) 
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where k,, is the t th diagonal element of the matrix X( X’X))‘X’. Thus Horn, 
Horn and Duncan (1975) suggest using 

(It -* = a;/(1 - k,,) (8) 

as an ‘almost unbiased’ estimator for a,*. Following their approach, we propose 
the estimator 

(x’x)-‘x’i2x(x’x)-‘, (9) 

where 

as an alternative way to estimate (3) consistently. We shall refer to this 
estimator as HC2. It is immediate from (7) that HC2 will be unbiased when 
the U,‘S are in fact homoskedastic. In contrast, as Hinkley (1977) points out, 
HCI will only be unbiased in the special case of a ‘balanced’ experimental 
design, for which k,, = k/n for all t. 

All of these covariance matrix estimators are intimately related to what 
statisticians refer to as the ‘jackknife’. Efron (1982, p. 19) points out that what 
is essentially HC can be obtained by the infinitesimal jackknife method. 
Hinkley (1977) derived HCI as the covariance matrix of what he called the 
‘weighted jackknife’ estimator, and it would have been possible to derive HC2 
using a very similar argument, although Hinkley did not in fact do so. All of 
this suggests that the ordinary jackknife [see Efron (1982)] might provide 
another modified heteroskedasticity-consistent covariance matrix estimator, 
and indeed that turns out to be the case. 

The basic idea of the jackknife is to recompute the estimates of a model n 
times, each time dropping one of the observations, and then to use the 
variability of the recomputed estimates as an estimate of the variability of the 
original estimator. For more details, see Efron (1982). Let /3(,) denote the OLS 

estimate of p based on all observations except the t th. It is easily shown that 

j3(,,=&(xTx)-‘x;,r, (10) 

where X, denotes the t th row of X and U; = GJ(l - k,,). Then from expres- 
sion (3.13) of Efron (1982), the jackknife estimate of the covariance matrix of fi 
is 



After considerable manipulation, 1 it can be shown that (11) reduces to 

((?r-1)/~)(XX~‘[X~a*x-(l/n)(X’u*u*’X)](X’X)~’, (12) 

where L?* is an n X n diagonal matrix with diagonal elements of UT’ and 
off-diagonal elements of zero, and u * is a vector of the u: ‘s. We shall refer to 
this covariance matrix estimator as HC3. It is evident that NC3 is asymptoti- 
cally equivalent to HC, HCl and HC2, since the middle factor (in square 
brackets) clearly converges to X’QX. 

As Messer and White (1984) have shown, it is easy to trick a conventional 
regression package which is capable of IV estimation into producing HC or 
HCI. If the k,,‘s can be obtained and used to compute the 6,‘s their technique 
can also be used to make a regression package produce HC2. Calculating HC3 
will inevitably be a little more difficult. Almost all the calculations can however 
be performed with a regression package, since (12) can be rewritten as 

((n - l~/~~)(x~x>-‘(x~a*x)(x~x)‘-((~ - I)/#)??‘, (13) 

where T = ( X’X) ‘X’U *. It is tempting to omit the factor (n - 1)/n from 
HC3. The effect of this omission will normally be very small. Moreover, our 
experimental results (see below) suggest that this small effect would normally 
be in the right direction. Since we did not know that when the experiments 
were designed, however, we retained the factor (n - 1)/n in those experiments. 

Since covariance matrix estimators are usually used to compute test statis- 
tics, we focus our experiments directly on the behavior of such test statistics. In 
particular, we examine the small-sample performance of quasi t-statistics used 
to test hypotheses that particular elements of p assume specified values. For 
related evidence on how well estimators such as HC and HCl approximate the 
true covariance matrix directly, see Cragg (1983) and Nicholls and Pagan 
(1983). 

One important property of these quasi r-statistics may be noted im- 
mediately. When the hypothesis being tested is true, the numerator of such a 
statistic does not depend on p, and is homogeneous of degree one in u. The 
covariance matrices (4) (6) (9) and (12) also do not depend on j3, and are 
homogeneous of degree two in u. Thus these test statistics themselves do not 
depend on either fi or u. They only depend on the X’s and the u’s, which may 
be normalized to have arbitrary variance. Since the exact finite sample proper- 
ties of these test statistics are otherwise quite difficult to obtain analytically, we 
investigate these properties using sampling experiments. 

‘When we wrote earlier versions of this paper. we were under the false impression that the 
Jackknife covariance estimator was computationally too complicated to be worth studying. We are 
extremely grateful to an anonymous referee for pointing out that it can be expressed in the form of 
(12) 
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Fig. 1. Regressors used in sampling experiments. 

3. Design of the experiments 

In all of our experiments we utilized the following model: 

.YI = PO + PlXU + P2X2t + ut, (14) 

where n = 50, 100 or 200. For the regressors Xi and X, we used the rate of 
,growth of real U.S. disposable income and the U.S. treasury bill rate, respec- 
tively, seasonally adjusted, for 1963-3 to 1975-4. The dependent variable can 
be thought of as a savings rate. These fifty observations were then replicated 
the required number of times when more than fifty observations were used. We 
chose the regressors in this way because we wanted them to be representative 

of real data, and so that the matrix X’X/n would not change as the sample 
size n was changed. Plots of Xi and X, are shown in fig. 1. 

There were six sets of experiments, in each of which the u,‘s were chosen 
differently. In the first set, referred to as case 1, the u,‘s were NID(0, a’), so 
that the OLS t-statistics are appropriate. The object here is to see how costly it 
is to use the various heteroskedasticity-consistent estimators when there is in 
fact no heteroskedasticity. 

In the next two sets of experiments (cases 2 and 3), the variance of u, 
changed abruptly, as if due to some sort of structural change. The errors u, 



were chosen as N(0, a’) for t = 1,. . ,25, f = 51,. . . ,75, t = 101,. . . ,125 and 
t = 151 , . . . ,175, and as N(0, a2u2) for the remaining observations. The struc- 

tural change parameter (Y was chosen to be 2 in case 2 and 4 in case 3. Notice 
that the pattern of structural change we used is equivalent to replicating the 
first 25 observations as many times as necessary (1, 2 or 4 depending on 
whether n = 50, 100 or 200) with the U,‘S having variance u2, and also 
replicating the second 25 observations as many times as necessary, with the 
U,‘S having variance a2u2. This pattern was chosen so that increasing the 
sample size from 50 to 100 or 200 would not change the relationship between 
the U,‘S and the X,‘s. 

In the final three sets of experiments (cases 4, 5 and 6) the variance of U, 
varied because the j3,‘s varied randomly. Specifically, the model (14) was 
modified by assuming that 

P, = i$ + v/r9 L’,,-N(O+f), j=o,1,2. (15) 

Together with (14) (15) implies that 

): = & + PJ,, + &x2, + u, + vat + UttXtr + %X21. (16) 

Assuming that U, and the u,*‘s are independent of each other, the variance of 
the error term in (16) is 

cJ2 + 0; + x,:0: + x;,t.d: = u,2(1+ x:,y: + x&22). (17) 

Without loss of generality (since the statistics we will be studying are indepen- 
dent of fi) we normalized X,, and X2, so that xX,:/n = 1, i = 1,2. Then for 
case 4 we chose (yi = 1, y2 = I), for case 5 we chose (yi = 3, y2 = 1) and for 
case 6 we chose (yi = 1, y2 = 3). 

Each experiment involved 2000 replications, and there were eighteen experi- 
ments in all (six cases for each of n = 50, n = 100 and n = 200).’ For each of 
the j3,‘s we calculated four test statistics of the hypothesis that /3, equals its true 
value. These statistics, denoted OLS, HCl, HC2 and HC3, utilize the covari- 

ante matrices after which they are named. In addition, we calculated a control 
variate which utilizes the true covariance matrix (3) and is thus exactly N(0, 1). 

For each experiment we calculated the sample mean, standard deviation, 
skewness and kurtosis (over the 2000 replications) of each of these test 

‘In fact, we conducted six additional experiments in which n = 150, but the results were 
predictable given those for n = 100 and n = 200 and are therefore not reported. 



statistics. There was nothing in the experimental results to suggest that any of 
them had a non-zero mean, or that their distributions were not symmetric. In 
the tables, therefore, we only report the standard deviation (under ‘S.D.‘) and 
the kurtosis (under ‘Kurt.‘), which should be one and three, respectively, 
if the test statistic in question is N(0, 1). If the standard deviation were in fact 
unity, the sample standard deviation would, assuming normality, have a 
variance of l/4000. The number reported under ‘Kurt.’ is a standard test 
statistic for kurtosis, namely the estimated fourth moment about the mean, 
divided by the square of the estimated second moment. 

Although the moments of the sample distributions of the test statistics are of 
interest, they do not directly tell us how often we will be led to make invalid 
inferences by using test statistics whose distributions differ from N(O,l). It is 
more interesting to ask what proportion of the time each of the test statistics 
exceeds certain critical values. The critical values we chose were the 5% and 1% 
levels; absolute critical values for the standard normal at these levels are 1.960 
and 2.576. 

The obvious way to estimate these rejection frequencies is to use the 
estimator 4 = R/N, where R is the observed number of rejections and N is the 
number of replications (here 2000). A consistent estimate of the variance of 
this estimator is G(1 - 4)/N. Since all of the test statistics have the same 
numerator as the control variate, they should all be highly correlated with it, 
and it should therefore be possible to obtain more accurate estimates than 4. 
Davidson and MacKinnon (1981) have proposed a simple technique for doing 
so, which we utilize here. If the control variate has exceeded its critical value 
more than the expected number of times, the estimated rejection frequency for 
the statistic in question will be reduced by an amount that depends on how 
closely it and the control variate are correlated; the reverse will be true if the 
control variate has exceeded its critical value less than the expected number of 
times. The variance of the resulting estimate will depend on the amount of 
correlation between the control variate and the other statistic, and will never 
exceed q(1 - q)/N, asymptotically. For details, see Davidson and MacKinnon 

(1981). 
The fact that we estimated rejection frequencies in this way should be borne 

in mind when reading the tables. The same estimated rejection frequency may 
have quite different standard errors in different cases, because the correlation 
between the control variate and the test statistic may be different. This means 
that the gain from utilizing this technique varies from case to case. In some 
cases, the standard errors reported in the tables are more than sixty percent 
below what they would have been if 4 had been used, equivalent to a 
replication number of 12,000 or more; in others, the standard errors are only 
about twenty percent lower, equivalent to a replication number of less than 
3000. These are asymptotic standard errors, but the very large number of 
replications should endure their validity. 



4. Results of the experiments 

The results of twelve of the eighteen experiments just discussed are presented 
in tables 1 through 4. Cases 2 and 4 are omitted to save space; the results for 
case 2 were similar to those for case 3, but not as pronounced, while the results 
for case 4 were reasonably similar to those for cases 5 and 6. An asterisk 
indicates that the quantity in question differs significantly at the one percent 
level from what it should be if the test statistic were really N(O,l). The tables 
largely speak for themselves, but we will discuss a few points of interest. 

The most obvious result in tables 1 through 4 is that almost all the quasi 
t-statistics have standard deviations greater than unity, so that rejection 
frequencies of tests based on them almost always exceed the nominal sizes of 
the tests. As one would expect, these standard deviations tend to decline as the 
sample size increases. They also vary systematically with the coefficient being 
estimated, the quasi t-statistics for p1 tending to have much larger variances 
than those for PO or &. The pattern of heteroskedasticity has a major impact 
on the distributions of the quasi t-statistics. They tend to be closest to their 
asymptotic N(0, 1) distribution when there is no heteroskedasticity, in table 1. 

In every single case, the standard deviation of the quasi t-statistic based on 
HCI exceeded that for HC2, which in turn exceeded that for HC3. Since there 
was certainly no tendency for HC3 to have too small a variance, this implies 
that HC3 is the covariance matrix estimator of choice. The difference between 
HCI and HC3 is often striking, and the difference between HC and HC3 
would of course be even more striking. From table 1 it is clear that using HC 
or NC1 when there is in fact no heteroskedasticity and the sample size is small 
could easily lead to serious errors of inference, while using HC3 is almost as 
reliable as using OLS. 

Even HC3 did not always perform well when the sample size was small and 
there was substantial heteroskedasticity. Its worst performance was in case 5 
(table 3) for p1 when n = 50. The standard deviation of the HC3 t-statistic is 
1.177 here, and it would incorrectly reject the null hypothesis 3.1% of the tirne 
at the nominal 1% level. But although HC3 performs poorly here, it performs 
much better than its competitors, since HC2 would reject the null 4.7% of the 
time, HCI would reject it 6.8% of the time, and the usual OLS t-statistic 
would reject it 27.2% of the time. 

Thus, subject to the usual qualifications about results of sampling experi- 
ments, those in tables 1 to 4 suggest the following conclusions: 

1. Among the heteroskedasticity-consistent estimators, HC3 is clearly the 
procedure of choice. 

2. The usual OLS covariance estimator can be very seriously misleading in the 
presence of heteroskedasticity. When it is, HC3 is also likely to be mislead- 
ing if the sample size is small, but much less so than OLS. 
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Coef. 

PO 

- 

No. of 
obs. 

50 

100 

200 

50 

100 

200 

50 

100 

200 

- 
C.V. 

1.030 
2.89 

0.998 
2.85 

1.011 
2.80 

1.018 
3.02 

0.998 
2.99 

1.006 
3.04 

1.029 
2.94 

0.994 
2.92 

1.003 
2.81 

Table 1 

Case 1: No heteroskedasticity.” 

Stat. SD. Kurt. 

OLS 
HCl 
HC2 
HC3 

1.053* 
1.099* 
1.081* 
1.035 

3.06 
3.21 
3.22 
3.24 

OLS 
HCI 
HCZ 
HC3 

1.007 
1.023 
1.014 
0.994 

2.89 
2.91 
2.91 
2.92 

OLS 
HCI 
HCZ 
HC3 

1.016 
1.024 
1.020 
1.010 

2.82 
2.85 
2.85 
2.85 

OLS 
HCl 
HC2 
HC3 

1.037 
1.217* 
1.159* 
1.074* 

1.009 
1.059* 
1.043* 
1.022 

- 

3.16 
3.47* 
3.55* 
3.69* 

0.059*(0.0032) 0.016*(0.0019) 
0.066* (0.0037) 0.020* (0.0021) 
0.063*(0.0037) 0.018*(0.0020) 
0.058 (0.0037) 0.013 (0.0020) 

0.052 (0.0024) 0.011 (0.0014) 
0.055 (0.0027) 0.013 (0.001x) 
0.053 (0.0028) 0.013 (0.0018) 
0.048 (0.0025) 0.012 (0.0018) 

0.054 (0.0019) 0.009 (0.0012) 
0.057*(0.0026) 0.012 (0.0014) 
0.056 (0.0026) 0.011 (0.0015) 
0.052 (0.0022) 0.011 (0.0015) 

0.057 (0.0033) 0.013 (0.0019) 
0.094*(0.0048) 0.038*(0.0033) 
0.082*(0.0046) 0.030*(0.0031) 
0.067*(0.0046) 0.023*(0.0029) 

OLS 
HCI 
HC2 
HC3 

1.010 
1.100* 
1.071* 
1.030 

3.11 
3.42* 
3.46* 
3.52* 

OLS 
HCl 
HC2 
HC3 

3.16 
3.38s 
3.39* 
3.41* 

OLS 
HCl 
HCZ 
HC3 

1.051* 
1.100* 
1.083* 
1.040 

3.06 
3.16 
3.16 
3.17 

OLS 
HCl 
HC2 
HC3 

1.002 
1.021 
1.013 
0.994 

1.008 
1.015 
1.011 
1.002 

2.95 
2.97 
2.97 
2.97 

OLS 
HCl 
HC? 
HC3 

2.84 
2.87 
2.87 
2.87 

0.051 (0.0024) 
0.072* (0.0039) 
0.067*(0.0037) 
0.055 (0.0036) 

0.052 (0.0025) 
0.065*(0.0033) 
0.060*(0.0034) 
0.056 (0.0034) 

0.062*(0.0033) 
0.073*(0.0036) 
0.071*(0.0036) 
0.059 (0.0039) 

0.051 (0.0025) 
0.050 (0.0030) 
0.049 (0.0030) 
0.045 (0.0028) 

0.052 (0.0019) 
0.054 (0.0025) 
0.053 (0.0025) 
0.051 (0.0024) 

5% 1% 

0.013 (0.0015) 
0.026 * (0.0029) 
0.024* (0.0027) 
0.018*(0.0024) 

0.011 (0.0013) 
0.014 (0.0018) 
0.014 (0.0018) 
0.011 (0.0017) 

0.016*(0.0021) 
0.022* (0.0024) 
0.022* (0.0024) 
0.017*(0.0024) 

0.010 (0.0016) 
0.012 (0.0018) 
0.011 (0.0018) 
0.009 (0.0017) 

0.010 (0.0015) 
0.013 (0.0016) 
0.013 (0.0016) 
0.011 (0.0016) 

“Numbers under ‘C.V.’ are the standard deviation and kurtosis of the control variate 
Numbers under ‘5%’ and ‘1%’ are the estimated rejection probabilities at those nominal levels. 

The standard errors of these estimates, which incorporate the information in the control variate. 
are in brackets. 

An asterisk indicates that a quantity is significantly different at the 1% level from what it should 
be if the r-statistic were N(O,l). 

Number of replications = 2000. 



Coef. 

PO 

No. of 
obs. 

50 

C.V. 

0.979 
2.97 

I% 1.036 
2.99 

P” 1.006 
3.07 

l.OOil 
3.03 

1.013 
3.01 

1.001 
3.07 

Pz 0.976 
3.03 

Pz 1.030 
2.91 

Pz 

100 

200 

50 

100 

200 

50 

100 

200 1.007 
2.94 

“See notes to table 1. 

Table 2 

Case 3: Structural change in variance, (Y = 4.” 

Stat. S.D Kurt. 5% 1% 

OLS 1.095 * 2.99 0.0x4*(0.0041) 
HCI 1.072* 3.02 O.DX2*(0.0044) 
HCZ 1.044* 3.05 0.072*(0.0042) 

HC3 0.989 3.10 0.061*(0.0039) 

OLS 1.130* 2.97 0.071*(0.0036) 
HCl 1.0841 2.98 0.066*(0.0037) 
HC-7 1.068* 2.99 0.065*(0.0036) 

HC3 1.041* 3.01 0.061*(0.0036) 

OLS 1.087* 3.09 0.074*(0.0030) 
HCl I.029 3.15 0.054 (0.0029) 
HC-7 1.021 3.16 0.052 (0.0027) 
HC3 1.008 3.16 0.050 (0.0028) 

OLS 1.316* 3.19 0.138*(0.0045) 
HCI 1.280* 3.74f 0.117*(0.0054) 
MC2 1.210* 3.96* 0.100*(0.0053) 

HC3 1.113* 4.27+ 0.081*(0.0051) 

0.019*(0.0027) 
0.017*(0.0026) 
0.015 (0.0025) 
0.010 (0.0022, 

0.01x*(0.0019) 
0.016*(0.0021) 
0.014 (0.0021) 
0.012 (0.0019) 

0.018*(0.0015) 
0.013 (0.0016) 
0.013 (0.0016) 
0.011 (0.0016) 

0.051*(0.0032) 
0.053*(0.0041) 
0.043*(0.0039) 
0.030*(0.0035) 

OLS 1.301* 3.08 0.130*(0.0038) 0.047 * (0.0024) 
HCI 1.152* 3.33* 0.088*(0.0047) 0.029*(0.0031) 
HC? 1.116* 3.38* 0.075*(0.0045) 0.025*(0.0030) 

HC3 1.068* 3.43* 0.065*(0.0042) 0.022*(0.002Y) 

OLS 1.271* 3.13 0.126*(0.0028) 
HCI 1.077* 3.33* 0.071*(0.0038) 
HC.? 1.059 * 3.34* 0.066 * (0.0040) 
HC3 1.035 3.36* 0.062*(0.0038) 

OLS 1.152* 3.09 0.091*(0.0036) 
HCl 1.078s 3.23 0.078*(0.0040) 
HC2 1.0541 3.23 0.071*(0.0039) 
HC3 1.004 3.24 0.058 (0.003X) 

OLS 1.184* 2.90 0.089 *(0.0038) 
HCI 1.080* 2.93 0.06X*(0.0038) 
HCZ 1.067* 2.94 0.064*(0.0036) 
HC3 1.043* 2.95 0.057 (0.0034) 

01s 1.147* 2.96 0.087* (0.0029) 
HCI 1.032 3.06 0.063*(0.0032) 
HC-’ 1.026 3.06 0.059*(0.0030) 
HC3 1.014 3.06 0.058*(0.0029) 

0.044*(0.0023) 
0.019 *(0X)024) 
0.016 (0.0023) 
0.014 (0.0022) 

0.034*(0.002X) 
0.023*(0.0027) 
0.022*(0.0028) 
0.015 (0.0025) 

0.027*(0.&)22) 
0.016 (0.0023) 
0.016 (0.0023) 
0.014 (0.0022) 

0.023* (0.0018) 
0.011 (0.0016) 
0.010 (0.0016) 
0.010 (0 0016) 



Table 3 

Case 5: Random coefficient model. weights = (3, l).” 

No. of 
obs. 

50 

100 

200 

50 

100 

200 

50 

100 

200 

C.V. 

1.002 
3.00 

1.002 
3.16 

0.963 
3.04 

0.997 
3.07 

0.996 
2.97 

0.976 
2.96 

1.002 
2.98 

1.004 
3.07 

0.969 
3.01 

“See notes to table 1 

stat. SD. Kurt. 5% 

OLS 1.325* 2.70* 0.142*(0.0050) 
HCl 1.236* 2.61* 0.109*(0.0060) 
HC2 1.149* 2.69 * 0.078*(0.0057) 
HC3 1.038 2.83 0.053 (0.0049) 

OLS 1.307* 2.93 0.133*(0.0042) 
UC1 1.143* 2.96 0.087*(0.0048) 
HC-7 1.096 * 2.99 0.070*(0.0046) 
HC3 1.037 3.04 0.05x (0.0044) 

OLS 1.252* 2.92 0.137*(0.()035) 
HCI 1.043* 2.99 0.059 (0.0041) 
HC2 1.019 3.01 0.054 (0.0040) 
HC3 0.991 3.02 0.048 (0.0038) 

OLS 2.205* 2.57* 0.398* (0.0056) 
HCI 1.483* 2.78 0 172*(0.00X(), 
ffC2 1.338* 2.98 0.122*(0.0072) 
HC3 1.177* 3.28* 0.082*(0.0061) 

0.046* (0.0036) 
0.024*(0.0034) 
0.018*(0.0()29) 
0.012 (0.0024) 

0.043*(0.0026) 
0.017 (0.0027) 
0.015 (0.0026) 
0.011 (0.0023) 

0.045 * (0.0022) 
0.019*(0.0027) 
0.017*(0.0025) 
0.013 (0.0022) 

0.272*(0.0054) 
0.068*(0.0055) 
0.047 *(0.0047) 
().031*(0.()039) 

OLS 2.211* 2.74 0.391*(0.(!045) 0.253*(0.0041) 
HC1 1.291* 3.16 0.120*(0.0064) 0.049*(0.0()46) 
HC2 1.220* 3.24 0.094*(0.0059) 0.038*(0.0042) 
HC3 1.139* 3.34* 0.076*(0.0()56) 0.030*(0.@038) 

OLS 2.158* 2.85 0.377*(0.@039) 0.249*(0.0042) 
HCI 1.136* 3.16 0.093* (0.0054) 0.025*(0.0033) 
HC-7 1.101* 3.19 0.085*(0.0053) 0.024*(0.0032) 
HC3 1.062* 3.22 0.07b*(0.0052) 0.020* (0.0030) 

OIS 1.1X6* 2.80 0.098*(0.0044) 
HCI 1.173* 2.72* 0.094* (0.0054) 
HC-’ 1.105* 2.75 0.070*(0.0051) 
HC3 1.011 2.84 0.050 (0.0047) 

OLS 1.165* 2.92 0.091* (0.0037) 
IfCI 1.108* 2.91 0.077*(0.0043) 
IfC2 1.070 * 2.92 0.065*(0.0041) 
HC3 1.021 2.95 0.052 (0.0040) 

OLS 1.117* 2.94 0.086 * (0.0033) 
HCl 1.026 3.00 0.061*(0.0040) 
HC.? 1.007 3.01 0.056 (0.0040) 
HC3 0.982 3.02 0.053 (0.0039) 

0.023*(0.0030) 
0.018*(0.002Y) 
0.013 ((1.0025) 
0.009 (0.0021) 

0.024*(0.0026) 
0.018*(0.0027) 
0.014 (0.0025) 
0.009 (0.0021) 

0.024*(0.0022) 
0.014 (0.0023) 
0.014 (0.0021) 
0.013 (0.0020) 



No. of 
ohs. 

50 

100 

200 

50 

100 

200 

50 

100 

200 

Table 4 

Case 6: Random coefficient model, weights = (1,3) 

0.986 
3.08 

1.002 
3.01 

1.007 
2.98 

1.013 
3.10 

1.007 
2.84 

1.034 
2.74 

0.984 
2.95 

0.989 
3.06 

1.001 
2.96 

“See notes to table 1. 

Stat. S.D. Kurt. 5% IF 

OLS 1.068* 3.13 0.074*(0.0033) 0.016*(0.0016) 
HCI 1.092* 3.23 0.077*(0.0040) 0.021*(0.0024) 
HC-’ 1.062* 3.27 0.074* (0.0040) 0.018*(0.0022) 
HC3 1.005 3.34* 0.057 (OBO39) 0.011 (0.0019) 

OLS 1.067* 3.03 0.062*(0.0029) 0.016*(0.0015) 
WC1 1.060 * 3.08 0.064*(0.0035) 0.016*(0.0019) 
HC2 1.043* 3.09 0.059*(0.0034) 0.016*(0.0019) 
HC3 1.015 3.09 0.052 (0.0034) 0.012 (0.0019) 

OLS 1.063* 3.01 0.064*(0.0023) 0.015*(0.0016) 
HCI 1.033 3.05 0.060 *(0.0027) 0.015*(0.0019) 
HC.? 1.024 3.05 0.054 (0.0027) 0.015 (0.0019) 
ffC3 1.010 3.06 0.050 (0.0027) 0.014 (0.0018) 

OLS 1.269* 3.17 0.114*(0.0039) 0.042*(0.0026) 
HCI 1.319s 3.78* 0.129*(0.0058) 0.052*(0.0(l41) 
HCZ 1.242* 3.96+ 0.110*(0.0056) 0.040*(0.0038) 
ifC3 1.137s 4.21* 0.084*(0.0053) 0.030*(0.0035) 

01‘S 1.249* 2.93 0.114*(0.0030) 0.037*(0.0024) 
NC1 1.1x0* 3.46* 0.096*(0.0045) 0.026*(0.0030) 
HC.! 1.140* 3.56* 0.0x7* (0.0045) 0.023*(0.0029) 
HC3 1.089* 3.67* 0.063*(0.0042) 0.019*(0.0027) 

OLS 1.266 * 2.75 0.114*(0.0026) 0.034* (0.0025) 
HCI 1.122* 2.99 0.072*(0.0043) 0.020*(0.0022) 
HC-’ 1.100* 3.01 0.067* (0.0041) 0.017*(0.0021) 
HC3 1.073* 3.03 0.062*(0.0042) 0.015 (0.0020) 

OLS I.1438 3.04 0.094*(0.0033) 0.025*(0.0023) 
HCl 1.08x* 3.25 0.073*(0.0043) 0.023*(0.0027) 
HC2 1.063* 3.28 0.069*(0.0043) 0.021*(0.0026) 
IfC3 1.013 3.33s 0.059 (0.0040) 0.014 (0.0022) 

OLS 1.132* 
HCl 1.044* 
HC2 1.031 
HC3 1.007 

3.04 
3.13 
3.13 
3.13 

3.01 
3.04 
3.04 
3.04 

0.085*(0.0031) 0.024*(0.0019) 
0.058 (0.0036) 0.017*(0.0021) 
0.054 (0.0037) 0.016*(0.0020) 
0.050 (0.0034) 0 015*(0.0019) 

OLS 1.137* 
HCI 1.027 
HCZ 1.020 
UC3 1.008 

0.0x6*(0.0028) 0.024*(0.0016) 
0.054 (0 0030) O.Ol? (0.001X) 
0.051 (0.0029) 0.012 (0.001X) 
0.050 (0.0029) 0.01 1 (0 0017) 
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3. When there is no heteroskedasticity, all the HC estimators are less reliable 
than OLS, but HC3 does not seem to be much less reliable. 

5. An alternative approach 

What we have done so far is to modify the heteroskedasticity-consistent 
covariance estimator so as to obtain test statistics whose finite sample distribu- 
tions are closer to their asymptotic ones. This is not the only approach to 
making more accurate inferences in finite samples. An alternative approach, 
which is theoretically appealing but technically demanding, would be to use 
the original test statistic based on HC in conjunction with size-corrected 
critical values. The latter may be obtained by the use of Edgeworth expansions, 
in this case second-order asymptotic approximations to the distribution of the 
test statistic. 

In a recent paper, Rothenberg (1984) has applied this technique to exactly 
the problem that interests us in this paper. His fundamental result is that 

(18) 

where t, is a size-a critical value for the normal distribution and ti is an 
adjusted size-a critical value. The parameters ci, c2 and c1 are constants which 
depend in a complicated way on the regressors, the pattern of heteroskedastic- 
ity, and the coefficient (or linear combination of coefficients) for which the test 
is to be conducted. In practice, the parameters ci through c3 will have to be 
estimated using the least squares residuals, since the pattern of heteroskedastic- 
ity is unknown. 

We conducted a number of experiments to see how this approach of using 
HC with adjusted critical values compares with the much simpler approach of 
using HC3 with the usual asymptotic critical values. We looked only at cases 2 
and 4, the ones which were not reported in tables 1 to 4. Case 2 was chosen 
because the heteroskedasticity was relatively mild in that case, and case 4 was 
chosen because it was representative of all the random coefficient cases. Results 
for both these cases for samples of size 50,100, 200 and 400 are shown in table 
5, which tabulates rejection frequencies for tests which are nominally at the 5% 
and 1% levels. ‘Edge-E ’ shows the rejection frequencies when cl, c2 and cg are 
estimated from the data, as they would have to be in practice, while ‘Edge-T’ 

shows the rejection frequencies when the true values of those parameters are 
used. All results are based on 10,000 replications, so experimental error should 
be very small.3 

3 We used 10,000 replications here instead of 2000 because early results showed that HC3 and 
Edge-E performed similarly for samples of medium size, and we wanted to minimize experimental 
error. Results are based on ten sets of loo0 replications. 



Table 5 

Performance of Edgeworth critical values.” 

No. of 
obs. 

50 

100 

200 

400 

50 

100 

200 

400 

50 

100 

200 

400 

Rejection frequ encies: Case 2 Rejection freque ncies: Case 4 

Test 5% 1% 5% 1% 

HC 
HC3 
Edge-E 
Edge-T 

IfC 
HC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge-T 

HC 
NC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge- T 

HC 
HC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge-T 

MC 
HC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge-T 

HC 
HC3 
Edge-E 
Edge-T 

0.079*(0.0018) 
0.052 (0.0016) 
0.059*(0.0017) 
0.050 (0.0015) 

0.065*(0.0014) 
0.052 (0.0014) 
0.054*(0.0014) 
0.051 (0.0014) 

0.057*(0.0012) 
0.051 (0.0012) 
0.052 (0.0012, 
0.050 (0.0012) 

0.053*(0.0010) 
0.048 (0.0009) 
0.04x (0.0009) 
0.04x (0.0009) 

0.122*(0.0024) 
0.080*(0.0022) 
0.116*(0.0027) 
0.043*(0.0017) 

0.087”(0.0020) 
0.062*(0.0018) 
0.068*(0.0020) 
0.044*(0.0016) 

0.070*(0.0016) 
0.056*(0.0015) 
0.055*(0.0016) 
0.047 (0.0013) 

0.060*(0.0013) 
0.053 (0.0013) 
0.052 (0.0013) 
0.049 (0.0013) 

0.080*(0.0018) 
0.055*(0.0017) 
0.058*(0.0017) 
0.051 (0.0016) 

0.064*(0.0015) 
0.053 (0.0014) 
0.053 (0.0014) 
0.051 (0.0014) 

0.060*(0.0014) 
0.053 (0.0013) 
0.053 (0.0013) 
0.050 (0.0013) 

0.053*(0.0010) 
0.049 (0.0010) 
0.050 (0.0010) 
0.049 (0.0010) 

0.023*(0.0012) 
0.014*(0.0010) 
0.019*(0.0011) 
0.010 (0.000X) 

0.015*(0.0009) 
0.011 (0.0007) 
0.012*(0.0008) 
0.008 (0.0007) 

0.012*(0.0007) 
0.011 (0.0007) 
0.012*(0.0007) 
0.010 (0.0006) 

0.011 (0.0006) 
0.010 (0.0005) 
0.010 (0.0005) 
0.009 (0.0005) 

0.051*(0.0017) 
0.027*(0.0014) 
0.0X9* (0.0026) 
0.005*(0.0006) 

0.029* (0.0013) 
0.018*(0.0011) 
0.029*(0.0015) 
0.009 (0.0008) 

0.021*(0.0010) 
0.014*(0.0009) 
0.017*(0.0011) 
0.008*(0.0006) 

0.015*(0.0009) 
0.014*(0.0008) 
0.014*(0.0009) 
0.010 (0.0007, 

0.026*(0.0013) 
0.015*(0.0010) 
0.020*(0.0012) 
0.011 (0.0009) 

0.016*(0.0009) 
0.012 (0.0008) 
0.013*(0.0008) 
0.009 (0.0007) 

0.013*(0.0006) 
0.010 (0.0006) 
0.011 (0.0006) 
0.009 (0.0006) 

0.012 (0.0006) 
0.011 (0.0006) 
0.011 (0.0006) 
0.010 (0.0006) 

0.101*(0.0021) 0’.034*(0.0015) 
0.060*(0.0020) 0.017*(0.0012) 
0.069*(0.0021) 0.022*(0.0013) 
0.040*(0.0015) 0.005*(0.0007) 

0.081*(0.0018) 0.022*(0.0011) 
0.059*(0.0017) 0.014*(0.0010) 
0.060 * (0.0018) 0.015*(0.0010) 
0.047 (0.0015) 0.008*(0.0007) 

0.064*(0.0015) 0.017*(0.0009) 
0.053 (0.0015) 0.013*(0.0009) 
0.051 (0.0015) 0.014*(0.0009) 
0.049 (0.0014) 0.009 (0.0007) 

0.058*(0.0013) 0.012 (0.0017) 
0.054*(0.0013) 0.011 (0.0007) 
0.054*(0.0013) 0.011 (0.0007) 
0.052 (0.0012) 0.010 (0.0006) 

0.175*(0.0032) 0.078*(0.0025) 
0.092*(0.0027) 0.038*(0.0019) 
0.123*(0.0032) 0.090* (0.0028) 
0.031*(0.0017) 0.003*(0.O005) 

0.116*(0.0026) 0.04x*(0.0019) 
0.082* (0.0024) 0.030*(0.0016) 
0.076*(0.0024) 0.033*(0.(~017) 
0.045* (0.0018) 0.006* (0.0007) 

0.0X5*(0.0022) 0.029*(0.0014) 
0.067*(0.0020) 0.021*(0.0013) 
0.061*(0.0019) 0.019*(0.0012) 
0.047 (0.0017) 0.008*(0.000x) 

0.070*(0.0018, 0.019*(0.0011) 
0.060*(0.0017) 0.014*(0.0009) 
0.055* (0.0017) 0.015*(0.0009) 
0.049 (0.0016) 0.010 (0.0008) 

0.091*(0.0019) 0.030*(0.0013) 
0.058*(0.0018) 0.016*(0.0011) 
0.067*(0.0019) 0.021*(0.0012) 
0.048 (0.0016) 0.009 (0.000x) 

0.073*(0.0017) 0.020’(0.0010) 
0.056*(0.0016) 0.014*(0.0009) 
0.057*(0.0016) 0 015*(0.0010) 
0.051 (0.0015) 0.009 (0.0007) 

0.061*(0.0014) 0.013*(0.0007) 
0.053*(0.0013) 0.011 (0.0007) 
0.053 (0.0013) 0.012*(0.0007) 
0.050 (0.0013) 0.010 (0.0007) 

0.055*(0.0011) 0.012 (0 0007) 
0.050 (0.0011) 0.011 (0.0007, 
0.050 (0.0011) 0.011 (0.0006) 
0.048 (0.0011) 0.010 (0.0006) 

“Estimated rejection frequencies are simple averages of 10 sets of control variate estimates, each 
based on 1000 replications. 

An asterisk indicates that a reJection frequency is significantly different from 0.05 or 0.01 at the 
1% level. 
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The results for Edge-T show that Rothenberg’s Edgeworth expansions are 
generally quite good, and become very good indeed as the sample size gets past 
100. If anything, the corrected critical values tend to be too conservative. 
Unfortunately, these good results usually do not carry over to Edge-E, for 
which the correct critical values are almost always not conservative enough. 
When the sample size is 50, HC3 always yields more accurate inferences than 
Edge-E, and that is usually the case for n = 100 as well. For n = 200 and 
n = 400, however, HC3 no longer outperforms Edge-E overall, although both 
perform very well. As one might expect from the nature of Edgeworth 
approximations, Edge-E typically performs less well at the 1% level than at the 
5% level. Except for a very few cases at the 1% level with n = 50. Edge-E does 
always outperform HC. 

These results suggest that Edgeworth expansions for t-statistics based on 
HC are valuable, but may be more useful as a theoretical tool than as a 
practical method to obtain corrected critical values. This may however be too 
pessimistic. In principal, Rothenberg’s technique could be applied to HCI, 
HC.2 or HC3 instead of to HC, and it is quite possible that this would produce 
improved results. The approach could also be modified by the use of alterna- 
tive asymptotic expansions, by improved methods for estimating the parame- 

ters ct, c2 and c3, or by more sophisticated methods for choosing a critical 
value, not necessarily equal to r;, but making use of the information that t:, 
conveys. Thus future research may well make Edgeworth expansions look more 
attractive than they do at present. 

6. Tests for heteroskedasticity 

Using the heteroskedasticity-consistent covariance matrix estimator as a 
starting point, White (1980) proposed a test for heteroskedasticity of unknown 
form. In the case of our model (14), the White test may be carried out by 
regressing the squared OLS residuals 2: on a constant, X,, X,, Xf, X2’ and 
X,X,. The test statistic is n times the R2 from this regression, and it is 
asymptotically distributed as chi-squared with (in this case) 5 degrees of 
freedom. In the tables, this test will be referred to as H. 

In view of the success of HC2 and HC3, it is natural to wonder whether 
modified versions of the White test might perform better than the original. In 
the case of HC3 it is not obvious how one should modify the test. However, in 
the case of HC2 it is straightforward to modify it by using 6: instead of fi: as 
the regressand. Unfortunately, this modified version of H turned out to have 
poorer small-sample properties under the null than the original, and we 
therefore dropped it from our experiments. 

Lagrange Multiplier tests for heteroskedasticity have recently become very 
popular. In the case of the random coefficient model described in section 3, a 
particularly simple form of the LM test may be computed by regressing fi: on 
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a constant, Xf and Xi. The test statistic is then n times the R’ from this 

regression, and it is asymptotically distributed as chi-squared with (in this case) 
2 degrees of freedom. For details, see Koenker (1981) and Breusch and Pagan 
(1979). A similar test may be constructed to test against a structural change in 
variance. In this case fi: is regressed on a constant and on a dummy variable 
equal to zero half the time and one the other half; the test has one degree of 
freedom. These tests will be referred to as LMl and LMZ, respectively. 

Over the years, numerous ad hoc tests for heteroskedasticity have been 
proposed. Among the most popular of these is the F test suggested by 
Goldfeld and Quandt (1965). The data are ordered by time or by one of the 
regressors, separate regressions are performed on the first and last thirds of the 
data (leaving out a third in the middle), and the ratio of the sums of squared 
residuals is then formed. Under the null, this ratio is distributed as F with 
both numerator and denominator degrees of freedom equal to n/3 - k. This 
test has the advantage of being exact, but may have little power if the actual 
heteroskedasticity is not closely related to time or to one of the regressors. We 
calculated three tests of this type. In all cases the partial regressions used 17, 
34, or 68 observations (so that 16 were omitted in the middle of each 50). FI is 
the test based on ordering the data in the same way that they are ordered for 
the structural change in variance (i.e., by time, given the odd way that time 
works in our experiments). F2 is the test based on ordering the data according 
to Xi, and F3 is the test based on ordering according to X,. 

Before we can examine the power of any of these tests, we must determine 
how well the asymptotic tests (H, LMI and LM2) perform under the null. 
Unfortunately, there are no obvious control variates comparable to the ones 
used in our previous experiments. Thus in order to obtain reasonably accurate 
estimates, we utilized 8000 replications. The results of these experiments are 
shown in table 6. The left-hand columns show the estimated rejection probabil- 
ities at nominal levels of 5% and l%, together with estimated standard errors. 
An asterisk indicates that the estimate differs from the nominal level by more 
than 2.576 estimated standard errors. It is noteworthy that LMI always rejects 
the null significantly less often than it should, while H also tends to reject the 
null too infrequently. The right-hand columns of table 6 show estimated 
critical values, followed by 95% confidence intervals based on the usual 
non-parametric approximations. These estimated critical values will be used in 
comparing the power of different tests, and the fact that they are only 
estimates should be borne in mind. 

The powers of various tests for heteroskedasticity are compared in tables 7. 8 
and 9, which deal with cases 2, 4, and 6, respectively. For the most part these 
tables are self-explanatory, so we will mention only a few points of interest. 
The H test performs least well relative to some of the other tests when the 
heteroskedasticity takes the form of a structural change in variance. LM2 and 
FZ, which are specifically designed to test against this form of heteroskedastic- 
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Table 6 

Tests for heteroskedasticity: Performance under the null.” 

Estimated rejection probabilities Estimated critical values 

No. of 
obs. Test 5% 1% 5% 1% 

50 H 0.042*(0.0022) 
LMI 0.030* (0.0019) 
LM.? 0.047 (0.0024) 

100 H 
LMI 
LMZ 

200 H 
LMl 
LMZ 

0.045 (0.0023) 
0.038*(0.0021) 
0.052 (0.0025) 

0.046 (0.0023) 
0.042*(0.0023) 
0.051 (0.0025) 

0.012 (0.0012) 
0.009 (0.0010) 
0.006*(0.@008) 

0.014*(0.0013) 
0.012 (0.0012) 
0.008 (0.0010) 

0.011 (0.0012) 
0.012 (0.0013) 
0.010 (0.0011) 

10.65(10.48-10.94) 
4.99( 4.866 5.17) 
3.74( 3.61- 3.90) 

10.86(10.51-11.09) 
5.46( 5.21- 5.61) 
3.90( 3.74- 4.05) 

10.88(10.64-11.13) 
5.66( 5.45- 5.86) 
3.86( 3.67- 4.03) 

15.53(14.86-16.19) 
8.76( 8.06- 9.45) 
5.91( 5.62- 6.12) 

16.08(15.50-16.91) 
9.79( 9.20-10.95) 
6.25( 6.055 6.63) 

15.47(14.96-16.04) 
9.79( 9.22-10.40) 
6.75( 6.35- 7.10) 

“Number of replications = 8000. 
An asterisk indicates that a quantity is significantly different at the 1% level from what it should 

be if the statistic had its asymptotic distribution. The statistics H, LMI and LMZ should be 
asymptotically distributed as cm-square with 5, 2 and 1 degrees of freedom, respectively. 

No. of 
obs. 

50 

100 

200 

Table 7 

-Tests for heteroskedasticity: Case 2: Structural change in variance, a = 2.” 

Test 

Estimated power using 
asymptotic critical values 

5% 1% 

Estimated power using 
estimated critical values 

- 

5% 1% 

H 0.161(0.0082) 0.063(0.0054) 0.176(0.0085) 0.053(0.0050) 
LMI 0.173(0.0084) 0.065(0.0055) 0.225(0X093) 0.077(0.0059) 
LM2 0.790(0.0091) 0.415(0.0110) 0.802(0.0089) 0.513(0.0112) 
FI 0.720(0.0100) 0.464(0.0112) 
F2 0.205(0.0090) 0.077(0.0060) 
F3 0.184(0.0087) 0.070(0.0057) 

H 0.281(0.0101) 0.141(0.0078) 0.291(0.0102) 0.113(0.0071) 
LMI 0.332(0.0105) 0.163(0.0082) 0.366(0.0108) 0.144(0.0079) 
LM2 0.993(0.0019) 0.947(0.0050) 0.993(0.0019) 0.95X(0.0045) 
Fl 0.975(0.0035) 0.900(0.0067) 
F_, 0.303(0.0103) 0.140(0.0078) 
F3 0.333(0.0105) 0.163(0.0083) 

H 0.531(0.0112) 0.322(0.0104) 0.544(0.0111) 0.306(0.0103) 
LMI 0.594(0.0110) 0.387(0.0109) 0.621(0.0108) 0.353(0.0107) 
LM2 1.000 1.000 l.ooO 1.000 
FI 1.000 0.998(0.0010) 
F2 0.490(0.0112) 0.293(0.0102) 
F3 0.564(0.0111) 0.358(0.0107) 

“Number of replications = 2000. Quantities in brackets are estimated standard errors. 



Tests for heteroskedasticity: Case 4: Random coefficient model, weights = (1, I).” 

No. of 
ohs. 

50 

Test 

II 
LMI 
LMZ 
FI 
F_7 
F.< 

100 If 
LMI 
I,M_, 
FI 
F? 

F.{ 

200 H 
LMI 
LM-7 
FI 
F2 

F-3 

Estimated power using 
asymptotic critical values 

58-- 1 tic 

0.281(0.0100) 0.152(0.0080) 
0.267(0.0099) 0.170(0.0084) 
0.056(0.0051) 0.009(0.0021) 
O.lOO(O.0067) 0.024(0.0034) 
0.090(0.0064) 0.027(0.0036) 
0.081(0.0061) 0.017(0.002X) 

0.560(0.0111) 0.419(0.0110) 
0.567(0.0111) 0.446(0.0111) 
0.097(0.0066) 0.015(0.0027) 
0.202(0.0090) 0.0X3(0.0062) 
0.202(0.0090) 0.076(0.0059) 
0.104(0.0068) 0.029(0.0037) 

0.870(0.0075) 0.760(0.0096) 
0.853(0.0079) 0.767(0.0095.) 
0.180(0.0086) 0.039(0.0043) 
0.369(0.0108) 0.1X3(0.0086) 
0.384(0.0109) 0.202(0.0090) 
0.141(0.007x) 0.048(0.004X) 

_____ 

Estimated power using 
estimated critical values 

5% l? 

0.295(0.0102) 0.145(0.(K)79) 
0.314(0.0104) 0.1x5(0.00x7) 
0.060(0.0053) 0.015(0.0027) 

0.570(0.0111) 0.385(0.0109) 
0.591(0.0110) 0.424(0.0111) 
0.096(0.0066) 0.022(0.0032) 

0.877(0.0073) 0.748(0.0097) 
0.X62(0.0077) 0.749(0.0097) 
0.17X(0.0086) 0.035(0.0041) 

“See notes to table 7. 

ity, both outperform the H test substantially. Even LMZ and the other F tests 
do as well as or better than H in this case. The facts that H has any power at 
all here, and likewise that the OLS covariance matrix is inconsistent, are 
attributable principally to the larger variance in X, in the second half of the 
sample. 

When the heteroskedasticity arises from a random coefficient model, H 

performs very well. Curiously, LMI, which is specifically designed to test 
against this alternative, does not perform much better than H, on average; it 
outperforms it in most cases, but not in all. When the weights for the random 
coefficient model are (1,3) or (3,1), so that most of the heteroskedasticity is 
associated with only one of the regressors, the corresponding F test performs 
very well, and somewhat better than H. 

The results, then, are somewhat mixed. No one test has greatest power 
against all alternatives. Perhaps the most interesting result is that, in many 
cases, the power of all the tests is fairly low, even though, as we saw earlier, 
there is enough heteroskedasticity in the errors to cause serious errors of 
inference when using OLS t-statistics. This suggests that a strategy of first 
testing for heteroskedasticity, and then using either OLS or HC3 depending on 
the outcome of the test, may not be a good one. 



Tests for heteroskedasticity: Case 6: Random coefficient model, weights = (1,3).” 

No. of 
obs. 

50 

Test 

H - 
LMI 
LMZ 
Fl 
F? 
F3 

5% 1% 

0.284(0.0101) 0.122(0.0073) 
0.370(0.0108) 0.169(0.0084) 
0.131(0.0075) 0.023(0.0042) 
0.257(0.0098) 0.095(0.0065) 
0.118(0.0072) 0.031(0.0039) 
0.397(0.0109) 0.18Y(O.o087) 

100 H 0.589(0.0110) 0.357(0.0107) 
LM1 0.699(0.0103) 0.475(0.0112) 
LM,, 0.260(0.0098) 0.081(0.0061) 
Fl 0.483(0.0112) 0.263(0.0098) 
FZ 0.185(0.0087) 0.067(0.0056) 
F3 0.713(0.0101) 0.482(0.0112) 

200 H 0.915(0.0063) 0.782(0.0092) 
LMI 0.946(0.0051) 0.865(0.0077) 
LM2 0.519(0.0112) 0.256(0.0098) 
Fl 0.796(0.0090) 0.597(0.0110) 
F? 0.318(0.0104) 0.147(0.0079) 
F3 0.963(0.0042) 0.880(0.0073) 

Estimated power using Estimated power using 
asymptotic critical values estimated critical values 

5% 1% 

0.310(0.0103) 0.10X(0.0069) 
0.451(0.0111) 0.188(0.0087) 
0.138(0.0077) 0.036(0.0042) 

0.600(0.0110) 0.309(0.0103) 
0.726(0.0100) 0.437(0.0111) 
0.255(0.0097) 0.096(0.0066) 

0.918(0.0061) 0.761(0.0095) 
0.954(0.0047) 0.X48(0.0080) 
0.516(0.0112) 0.248(0.0096) 

“See notes to table 7. 

We investigated the effects of using such a strategy, based on the H test with 
asymptotic size of 20%, 10% and 5%, for all the cases we studied. One might 
expect the properties of the resulting pretest t-statistic to be a convex combina- 
tion of the properties of the HC3 and OLS t-statistics, with weights given by 
the power of the test. In fact, the pretest t-statistics did not perform as badly as 
that; they were closer to the HC3 f-statistics than the power of the test would 
suggest. This presumably indicates that the H test tends to have power when 
the heteroskedasticity in the sample is particularly damaging. Nevertheless, 
whenever there actually was heteroskedasticity, we found that t-statistics based 
on pretesting were consistently and often substantially less well-behaved than 
those based on HC3. This was most apparent when the size of the test was low 
and the sample size small, so that the power of the H test was low. Since the 
cost of using HC3 instead of OLS when heteroskedasticity is absent is 
apparently not very great (see table l), it would seem wise to employ t-statistics 
based on HC3 even when there is little evidence of heteroskedasticity. 

7. Conclusions 

We have examined the performance of three modified versions of White’s 
(1980) heteroskedasticity-consistent covariance matrix estimator. All of them 
can be thought of as in some way derived from the jackknife. and the one 
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which is explicitly the jackknife covariance estimator, HC3, always performs 
better than the other two, which in turn always outperform the original. We 

have also studied an alternative approach to obtaining reliable inferences in 
small samples when there is heteroskedasticity of unknown form, namely the 
Edgeworth approximations of Rothenberg (1984). This approach is a good deal 
more difficult to implement than using HC3, and appears to perform less well 
than the latter when the sample size is small. 

In addition, we have studied the properties of several alternative tests for 
heteroskedasticity, and found that they often lack power to detect damaging 
levels of it. This fact, together with our other results, suggests that it may be 
wise to use HC3 in preference to the usual OLS covariance estimator, even 
when there is little evidence of heteroskedasticity. This of course is subject to 
the proviso that the sample size should not be extremely small, nor the design 
of the X’X matrix extremely unbalanced, so that HC3 might perform signifi- 
cantly less well than it did in our experiments. 
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