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ABSTRACT

This paper develops tests of unconditional mean-variance efficiency under weak
distributional assumptions using a Generalized Method of Moments framework.
These tests are potentially more robust than commonly employed tests which rely
on the assumption that asset returns are normally distributed and temporarily
i.i.d. Using returns for size-based portfolios from 1926 to 1988 we show that the
conclusion concerning the mean-variance efficiency of market indexes can be sensi-
tive to the test considered.

THE APPLICATION OF MULTIVARIATE statistical techniques in financial eco-
nomics has become common practice in recent years. Much of the develop-
ment has been in the area of testing asset pricing models. The assumption
that asset returns follow a time invariant multivariate normal distribution
permits tests of restrictions on model parameters in a pooled time
series-cross-section framework. These tests can be interpreted as tests of the
mean-variance efficiency of a portfolio or combination of portfolios. Gibbons
(1982), Jobson and Korkie (1982), Stambaugh (1982), Shanken (1985, 1987),
Kandel and Stambaugh (1987), MacKinlay (1987), and Gibbons, Ross, and
Shanken (1989) are examples of work presenting multivariate tests of the
capital asset pricing model.! Connor and Korajczyk (1988) and Lehmann and
Modest (1988) present multivariate tests of the arbitrage pricing model;
Breeden, Gibbons, and Litzenberger (1989) present multivariate tests of the
consumption based CAPM. Although these papers assume the normality of
asset returns, little analysis has been conducted to understand the sensitivity
of the inferences to violations of this assumption.?3

*The Wharton School of The University of Pennsylvania, Philadelphia, Pennsylvania 19104-
6367. We thank Michael Gibbons, Andrew Lo, Krishna Ramaswamy, Tom Smith, René Stulz,
and a referee for helpful comments. Research support received from the Geewax-Terker Research
Fund and the University of Pennsylvania Research Foundation is gratefully acknowledged. The
first author also acknowledges support from the Batterymarch Fellowship and the National
Science Foundation (SES-8821583).

! Gibbons, Ross, and Shanken (1989) present their results in the context of testing the
efficiency of a given portfolio.

2 Actually, from a statistical perspective, the tests require that asset returns conditional on the
factor portfolios be i.i.d. and multivariate normal.

8 MacKinlay (1985) and Affleck-Graves and McDonald (1989) do present simulation evidence
for the robustness of these tests to deviations from normality. The results indicate the tests are
quite robust to deviations. However, these studies focus on 5-year test periods with twenty and
more portfolios.
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This paper proposes multivariate tests which are robust to departures from
normality. Such tests are of interest for two reasons. First, the normality
assumption is, in general, not necessary from a theoretical perspective to
derive the models. Rather, the normality assumption is adopted for statistical
convenience. Without this assumption finite sample properties of asset pric-
ing model tests are difficult to derive. Second, nonnormality of security
returns on a monthly basis (more so on a weekly basis) has been documented.
Fama (1965, 1976), Blattberg and Gonedes (1974), and Hsu (1982) contain
evidence concerning the nonnormality of returns. In addition, numerous
studies have presented evidence of heteroskedasticity in returns.*

We employ a Generalized Method of Moments (GMM) framework to de-
velop tests of mean-variance efficiency. The GMM based tests are valid under
much weaker distributional assumptions than most previous tests. Using a
GMM based test, we find that misspecified distributional assumptions can
have a quantifiably adverse effect on statistical inference.

The paper is organized as follows. Section I presents a statement of the
mean-variance efficiency of a portfolio and reviews the commonly used test
statistic. In Section II, we provide GMM based tests of whether a portfolio p
is mean-variance efficient. Most importantly, we employ only minimal re-
strictions beyond those implied by mean-variance efficiency. In order to
compare the various approaches, Section III investigates the effect on the test
statistics of contemporaneous conditional heteroskedasticity. In Section IV,
we apply the analysis of the previous sections to actual data. It is shown that
this analysis is economically meaningful. Section V concludes the paper.

1. Tests of Mean-Variance Efficiency

In this section, we review mean-variance efficiency and the commonly em-
ployed test statistic. If a given portfolio p is mean-variance efficient (when a
risk-free asset exists) then:

E[Fit] = 6iE[Fpt] vi (1)
where

F,, = excess return on asset i time period ¢;

cov(Fit, Fpt)
L= 2
b var(F, Pt) ®
excess return on portfolio p time period ¢.

~

Tyt

4 Schwert and Seguin (1989) is a recent example of work providing evidence of heteroskedastic-
ity in stock returns, and Barone-Adesi and Talwar (1983) and Diebold, Im, and Lee (1989)
provide evidence of heteroskedasticity in market model residuals.
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For N assets, these conditions can be expressed as restrictions on a system of
excess return market model regression equations:

Foo=o;+ BiFp + &, i=1,...,N,
E[git] =0 (3)
E[¢,F,] =0
O(i = O

where €, is the disturbance term for asset i in period ¢.

For the sample estimators the first two restrictions, E[¢,,] = E[ €i:Tp] = 0,
will always be true for all i from least squares projection theory. That is,
ordinary least squares (OLS) implies that the §8,’s given by equation (2)
always satisfy these restrictions in the system of equations in (3). The third
condition, «; = 0 for all i, however, imposes testable restrictions on the data
and is true if portfolio p is mean-variance efficient.

For the subsequent analysis, it is convenient to introduce further notation.
Define « as the (N x 1) vector (ay, ag,...,ay), B as the (N x 1) vector
(By; Bas- -, By), and 6 as the (2N X 1) vector (o, By, ag, B, - - -, oy, By)-
The (N X N) unconditional disturbance covariance matrix will be denoted by
> and is assumed to be positive definite.’

Given the i.i.d. assumption for excess returns and multivariate normality,
most papers have used the Wald statistic to test the mean-variance efficiency
of a portfolio. The Wald test statistic for the efficiency of portfolio p is:

A9 -1
6o = T& (1+%)2} & (4)

p

where ji, is the sample mean excess return of portfolio p, 61,2 is the maximum
likelihood estimator of the variance of portfolio p’s excess return, ¥ is the
maximum likelihood estimator of X, and 7' is the number of time series
observations. Asymptotically, under the null hypothesis, ¢, will have a
chi-square distribution with N degrees of freedom. In finite samples, [(T —
N - 1)/(NT)l¢, will have a F distribution with N degrees of freedom in the

numerator and T — N — 1 degrees of freedom in the denominator.®

II. GMM Test

In this section, we present a GMM-based test of whether a portfolio is
unconditionally mean-variance efficient. For the most part, we employ only
restrictions implied by mean-variance portfolio theory. Unlike many other
authors, we do not make strong assumptions concerning the disturbance term

5 This assumption requires that r,, not be a linear combination of the left-hand side portfolio
returns.

6See, for example, Gibbons, Ross, and Shanken (1989) for derivations of the Wald and F
statistics.
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in a market model regression.” With the GMM framework, the disturbance
term can be both serially dependent and conditionally heteroskedastic. We
assume that there exists a riskless rate of interest R, for each ¢ and that

excess asset returns (over R,,) are stationary and ergodic with finite fourth
moments.®?°

Consider a sample of T time series observations, ¢t =1,...,T and of N
assets, i = 1,..., N. Define (2 N x 1) vectors' f,(6) and g,(6) as follows:

glt(al’ 51)

glt(al’ 61)fpt

git(a‘i’ 5i)
ft(a) B Eit(aia 51’)?;:: (5)
gNt(aNﬁ 5N)

gNt(aN’ BN)Fpt

82(6) = 5 3 140) ©

From the excess return market model we have the moment condition E[ f,(6)]
= 0. We exploit this moment condition for estimation and testing using a
GMM approach. The GMM approach involves selecting an estimator to set
linear combinations of the moment condition to zero. Specifically, for some
matrix A with row dimension equal to the number of parameters and column
dimension equal to the length of g,(:),6 is chosen so that Ag,(d) = 0.
Hansen (1982) develops the sampling theory for such an estimator. Within
the class of estimators that set linear combinations of g,(-) equal to zero,
Hansen (1982) shows that the optimal GMM weighting matrix is given by A*

.10
where: A% = Dy S; 1, (7)
g7 (8)
D,=E|——
0 [ 96’ ’ (8)

+ oo
So= 2. E[f(8)f—.(8)]. (9)
) l=—o0

"An exception in Shanken (1990) who employs the White (1980) covariance matrix estimator
which does not require the stronger distributional assumptions. In the absence of serial correla-
tion, this covariance matrix estimator will be identical to the estimator from the exactly
identified GMM case in Section II.A.

8 If a time series is ergodic, then the time average over a period of T observations converges in
mean square to the corresponding ensemble average as T increases to oo.

9 See Hansen (1982) for technical details concerning the required assumptions.

® The weighting matrix is optimal in the sense that the difference between the covariance
matrix of the parameter estimators using any other weighting matrix and the covariance matrix
using A* will be a positive semidefinite matrix. The estimator will not depend on the weighing
matrix in the case of exact identification since all elements of g, () can be set to 0.
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Using a GMM framework, there are two ways to test whether portfolio p is
mean-variance efficient; that is, whether a; = 0, i = 1,..., N. One approach
is to estimate the unrestricted system and then test the hypothesis a = 0
using the unrestricted estimates. The second approach is to substitute the
restrictions « = 0 into equation (5), estimate the restricted system, and then
test the overidentifying restrictions. Next we briefly outline these two
approaches.

A. Unrestricted Case

Consider the sample moment vector given in equation (6) for N assets,
i=1,...,N. For each asset, there are two sample moments,
[1/ T2 & (e;, 8)) and [1/TE] € (a;, B,)F,,] and two parameters, (;, 8;).
There are, therefore, 2 N equations and 2 N unknown parameters, the system
is exactly identified, and the parameters can be chosen to set the sample
moments equal to zero. Since setting the sample moments equal to zero is
equivalent to deriving the normal equations from OLS, this GMM procedure
is equivalent to OLS regression for each i.

Hansen (1982) shows that the GMM parameter estimator § will have an
asymptotic normal distribution with mean é and asymptotic variance-covari-
ance matrix [ Dy Sy 'D,]1" . In practice, D, and S, will be unknown; however,
the asymptotic results are still valid for consistent estimators of D, and S,
which we denote D, and S;. An assumption with respect to S, is necessary
to reduce the summation to a finite number of terms and permit construction
of a consistent estimator.!’ The test statistic can be constructed employing
the usual framework for testing linear restrictions. Let ¢, be the test
statistic. Then under the null hypothesis we have:

a

-1 -1
¢, = T&| R[DyS7'Dy] 'R &
where R = I, ® (10) and R § = 4.

X% (10)

B. Restricted Case

Consider substituting the mean-variance portfolio restrictions «; = 0 for
all i into f,(8) in equation (5). Then, for this restricted case we have:

gn(a=0.8) = 3 fila=0,6). (1)

For each asset, there are two sample moments but only one parameter £3; to
be estimated. There are, therefore, 2 N equations and N unknown parame-
ters, the system is overidentified, and all the sample moments cannot be set
equal to zero. It is possible, however, to set the optimal linear combination of

11 See Hansen and Singleton (1982), Eichenbaum, Hansen, and Singleton (1988), Newey and
West (1987), and Richardson and Smith (1990) for a discussion of various estimation procedures
for Dy and S;.
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the moments A*g,(B) equal to zero. Under the null hypothesis, the parame-
ter estimators from this procedure B will asymptotically have a normal
distribution with mean B and variance-covariance matrix [DySy D ] ?

ag T(a = 03 B)
(where D, = E[T
N overidentifying restrictions of the model (a = 0) can then be performed
using:

D). Using Hansen’s (1982) results, a test of the

¢y = Tgr(B) St'gr(B) = x%. - (12)

The required assumptions are the stationarity and ergodicity of 7, i=
1,..., N, and 7,, and the existence of fourth moments for excess asset
returns. The mean-variance efficient model imposes restrictions which can be
tested directly. This is in contrast to previous tests of mean-variance effi-
ciency which have placed strong distributional assumptions of the ¢;, in
regression equation (3).

In the next section, we look at one particular test of mean-variance
efficiency in some detail. Because many existing tests are special cases of this
test, the conditions under which these existing tests of mean-variance effi-
ciency are appropriate can be determined.

II1I. Conditional Heteroskedasticity

We consider the case of contemporaneous conditional heteroskedasticity to
illustrate the difference between some previous tests of mean-variance effi-
ciency and a GMM based test. With contemporaneous conditional het-
eroskedasticity, the variances of the market model residuals of equation (3)
will be dependent upon the contemporaneous portfolio return. We assume
that E[ £,(8) f;_;(8)] = O for all I # 0. This assumption implies that there is no
serial dependence in either €, or €,7,,."> Consider the unrestricted model of
Section II.A. Applying the GMM procedure to the moment condition in
equation (4) gives us the OLS estimators of («;, 8;) for each i. Then, given the
covariance matrix of &, we can construct a test similar to ones that appear in
Gibbons, Ross, and Shanken (1989), Breeden, Gibbons, and Litzenberger
(1989), MacKinlay (1987), and Jobson and Korkie (1982). The difference with
the GMM based test is the calculation of the asymptotic variance of &,
var(&).

In Appendix A, for this case, the expression for the asymptotic covariance
matrix of the GMM & estimator is derived:

p b

i 1
var(é) = Q = (1 + —’2?)2 + =¥ (13)
g

12 The results can be generalized to allow for serial correlation using, for example, the
technique of Newey and West (1987).
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where
¥ = N X N covariance matrix of the disturbance
vector €, with (i, j)th element [o;;],
¥ = N X N “correction factor” matrix for contemporaneous
conditional heteroskedasticity, with (i, J )th element

" w

p b ..
o2 Oy 720 — 2”‘}7(1 + o2 ) R where a( ’ )
b b

denotes the covariance operator.

Given Q, we can test the hypothesis « = 0 with the test statistic 76’ Q4.
Since asymptotically VT (& — «) is distributed N(0, ), this test statistic will
have a chi-square distribution with N degrees of freedom under the null
hypothesis. In applications, @ can be replaced with a consistent estimator Q
without a]tering the asymptotic distribution of the test statistic.

Since the estimator of « is the same for the GMM procedure and the
procedure based on the normality assumption, the differences between the
tests relate to the appropriate2 asymptotic covariance matrix for &. The first
term in equation (13), (1 + %)E, has been given as the asymptotic covari-
ance matrix of the interceptg & in most empirical applications of mean-
variance efficiency and is used in constructing d>0.13 The multivariate nor-
mality assumption implies the &,’s are contemporaneously conditionally
- homoskedastistic, which is a sufficient condition to make the second term of
(13) zero. It is in this sense that previous tests are special cases. That is, by
including additional restrictions such as Oz 7 = 0 80d 0 - 52, = 0 for all
i and j in the null hypothesis of mean-variance efficiency, GMM test becomes
asymptotically equivalent to previous tests.!* These additional assumptions,
however, are not implied by mean-variance theory and may not be consistent
with actual equilibrium returns.

A. A Specific Example: Multivariate Student t

The use of the multivariate Student ¢ as a return distribution can be
motivated both empirically and theoretically. One empirical stylized fact
from the distribution of returns literature is that returns have fatter tails
and are more peaked than one would expect from a normal distribution. This
is consistent with returns coming from a multivariate Student ¢.!° Further,

li See Gibbons, Ross, and Shanken (1989) or MacKinlay (1987).

4 However, the cost of the more general framework is the loss of small sample results for the
test statistic distribution. See Gibbons, Ross, and Shanken (1989) and MacKinlay (1987) for
discussion of the small sample results.

15 Blattberg and Gonedes (1974) suggest the Student ¢ as a distribution for asset returns. The

, L -2
kurtosis of a multivariate Student ¢ distribution with » degrees of freedom is 3——21’ 4; which
y —
exists for » > 4 and will be greater than the kurtosis of a normal distribution.
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the multivariate Student ¢ is a return distribution for which mean-variance
analysis is consistent with expected utility maximization, making the choice
theoretically appealling.1®

In the multivariate Student ¢ case, the regression equations are the same
as for the multivariate normal case except that the conditional variance of
the error term ¢;, is no longer independent of Fpe (see Zellner (1971) p. 388).
With some manipulation to the formula given in Zellner, it can be shown
that

2
v— 2 (F f— M
var(§,|7,,) = | —||1 + 25| 14
(&l 7 [V-l][ (v—2)ap2} (14
where €, = (€1, €5, ... €x5,) and » is the degrees of freedom of the Student ¢.
Using this formula it is possible to calculate o, o ) and o¢, ;. 5 2) explic-
itly. These calculations result in the following expressmns

v — 2 1
Oz 70 = P y — 1 + y—1 1 ;= 0, (15)
1 E(rpt ”’p)4
_ 2
a(gitgjh 72y = y—1 o2 - 0Op |0jj- (16)
p
o . L2
By Student ¢ distribution properties, E(F, — p.p)4 = 30;( 1 ), and we
v —
can rewrite the second covariance as
202
D
OEee 720 = -2 0yj- (17)

Substituting these values into equation (13) for Q gives:
P P G )”” s. (18)
(-4 q

2
Using (18) and the sample estimates of M—; and I for the test statistic we

) ] a. (19)

have:

(r-2) i
v —4)

>
) m|‘u

—_

¢3 = T a4 = Té [(

16 See Ingersoll (1987) p. 104 for a discussion of this result.
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Comparing (19) with equation (4) we have:

I
1+6_§
? bo- (20)
1+ (r-2) & [
(v-4) &

Hence, with the multivariate Student ¢ distribution, we can examine a
case where the bias of the commen test statistic can be quantified. An
appropriate test statistic in an environment where returns are multivariate
Student ¢ can be expressed as the usual statistic scaled by a factor which
accounts for the conditional heteroskedasticity. The magnitude of the impact
of the contemporaneous conditional heteroskedasticity will depend on the
degrees of freedom of the Student ¢ and the sample Sharpe ratio of the
portfolio being tested. As the degrees of freedom become large, the Student ¢
is well approximated by the normal distribution, and the conditional het-
eroskedasticity will be reduced. Asymptotically, the conditional het-
eroskedasticity will vanish.

As can be seen from equation (20), the bias calculation involves the
population parameters u, and 0,. Since these parameters are unknown, we
assume that the sample estimates represent the population values in order to
get reasonable measures of the magnitude of the bias. Specifically, we take
sample estimates of the mean and variance on the CRSP equally weighted
index for 5-year intervals between January 1954 and December 1983 (see
MacKinlay (1987) p. 347). Since there is variation in the sample estimates of
the Sharpe measure across subperiods, the minimum and maximum of these
will tend to be downward and upward biased estimates of the population
Sharpe measure, respectively. The magnitude of the bias in the tests pre-
sented, therefore, should be interpreted cautiously.

For the analysis, we consider two values for the degrees of freedom of the
Student ¢, » = 5 and » = 10. These choices are motivated by the empirical
estimates of Blattberg and Gonedes (1974). Three values for the number of
assets are considered, N = 1, N = 5, and N = 10. Table I reports the results.
The misspecification can be substantial. For example, when » is 5 for the
January 1954 to December 1958 period, ¢, overstates ¢, by as much 35%. A
test using ¢, that would have a size of 5% if returns are i.i.d. multivariate
normal will have a size of 19.2% for Student ¢ returns with N = 10. With
one lefthand side portfolio (N = 1) the actual size would be 9.1%. The error
in the size of the test will increase as N increases and will decrease as the
degrees of freedom of the Student ¢ increase. The dependence of the bias
explicitly upon ;Lf, / ap2 is evident in this Table. In contrast to the 1954 to 1958
time period, the January 1974 to December 1978 sample value of p,f, / apz is
small and the bias is minimal.

The above example provides an analytical illustration of the potential for
incorrect inferences when returns are assumed to be i.i.d. and multivariate
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Table I

Misspecification of Tests of Mean-Variance Efficiency
Misspecification for tests of mean-variance efficiency which assume the distribution of excess
asset returns is i.i.d. multivariate normal and the distribution is actually i.i.d. Student ¢ with »
degrees of freedom. Values of the Sharpe measure squared (ﬁﬁ, / zfpz) are reported for the CRSP
equally weighted index. The bias is the ratio of the Wald test statistic to the Student ¢ test
statistic minus 1. The size of the test is reported for 1, 5, and 10 portfolios. This size is the actual
size of a test conducted using the 5% critical value for the Wald test with multivariate
normality.

P size-0.05 size-0.05 size-0.05
Time period v —5 Bias N=1 N=5 N=10
g,
(]
01/54-12/58 5 0.21 34.7% 0.091 0.145 0.192
10 5.8% 0.057 0.063 0.068
01/59-12/63 5 0.021 4.1% 0.055 0.059 0.062
10 0.7% 0.051 0.052 0.052
01/64-12/68 5 0.14 24.6% 0.079 0.114 0.144
10 4.1% 0.055 0.059 0.062
01/69-12/73 5 0.026 5.1% 0.056 0.061 0.066
10 0.8% 0.051 0.052 0.052
01/74-12/78 5 0.013 2.6% 0.053 0.056 0.058
10 0.4% 0.050 0.051 0.051
01/79-12/83 5 0.063 11.9% 0.064 0.078 0.090
10 2.0% 0.052 0.054 0.056

normal, yet are actually multivariate Student ¢. A solution for this misspeci-
fication is to use the GMM statistic which asymptotically has a chi-square
distribution under either assumption. In the next section, we explore the
differences between these statistics in the actual data.

IV. Empirical Results

In this section, we compare different test statistics of whether a given
portfolio is mean-variance efficient. Specifically, we compare inferences using
the Wald and F statistics’ which are based on ¢, with the GMM statistic ¢,
for the exactly identified case. The tests are applied to the CRSP value-
weighted and equally weighted portfolios. The F test is included to quantify
the extent to which the use of large sample theory is an issue. Similar
inferences using the F statistic and the Wald statistic indicate the use of
asymptotic theory is appropriate since the distribution for the F statistic is a
finite sample result. Throughout Tables II and III the Wald statistic and the
GMM statistic are scaled by (T — N — 1)/ T. This adjustment will not affect
the asymptotic properties and is intended to improve the finite sample
behavior of the Wald test. Without this adjustment, the Wald test will reject
too often in finite samples.'”

17 See Gibbons, Ross, and Shanken (1989).
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Table II
Empirical Tests of Mean-Variance Efficiency of CRSP Indices

Empirical tests of mean-variance efficiency of CRSP value-weighted and equally weighted
indices using 10 portfolios constructed and weighted on the basis of market value of equity.
Results are presented for monthly data from 01/26 to 12/88 and for two subperiods of equal
length. Three test statistics are reported: the F-test statistic, the Wald statistic, and the GMM
statistic. The p-values are below the statistics in parentheses.

~2
. . . “p . b b Wald
Portfolio p Time Period — p2 F Wald GMM GMM 1
Value-Weighted 01/26-12/88  0.0127 1.899 18.99 21.16 -10.2%
(0.042)  (0.040)  (0.020)
01/26-06/57 0.0165 1.750 17.50 20.45 -14.4%
(0.068)  (0.064) - (0.025)
07/57-12/88  0.0092 1.729 17.29 17.71 -2.4%
(0.073)  (0.068)  (0.060)
Equally Weighted  01/26-12/88  0.0169 1.620 16.20 19.66 -17.6%
(0.096)  (0.094)  (0.033)
01/26-06/57  0.0192 2.839  28.39 39.21 —27.6%
(0.002)  (0.002)  (0.00002)
07/57-12/88  0.0167 1.325 13.25 14.01 -5.4%

(0.215)  (0.210) (0.173)

 Under the null hypothesis distributed Fyq 5.
b . . '3 . 2
Under the null hypothesis asymptotically distributed xZ,.

We use the ¢, statistic defined in equation (10) for the GMM test. The
statistic is calculated using

1 T
t=1
1 T
Sp = > [€t€; ® xtxlt] ’ (22)

T =5

I

where x,= (1r,,) and the (N X 1) disturbance vectors (¢,) are calculated
using the OLS parameter estimates.

The tests are performed using monthly observations from January 1926 to
December 1988 on ten value-weighted portfolios. NYSE and AMEX firms are
allocated to portfolios based on their beginning of year market value of
equity. The results are presented in Table II. For the overall time period, the
Wald statistic understates the GMM statistic by 10.2% and 17.6% for the
value-weighted and equally weighted indices, respectively. This can have
important consequences for statistical inference at conventional levels of
significance. For example, the Wald and F statistics cannot reject the
mean-variance efficiency of the equal-weighted index at the 5% level, whereas
the GMM statistic with a p-value of 0.033 does reject. A similar pattern
holds for the results for the value-weighted index and for subperiods. The
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GMM statistic is consistently higher than the Wald statistic, providing
stronger evidence against the mean-variance efficiency of the indices. The
difference between the Wald test and the GMM test is more pronounced for
the January 1926 to June 1957 time period than for the July 1957 to
December 1988 period. This observation is consistent with the i.i.d. multi-
variate normality assumption for excess asset returns being a better approxi-
mation in the later time period.

Having established that inferences can be sensitive to the test statistic
considered, we now address the source of the difference. Is this difference due
to the inappropriateness of the Wald statistic or due to perverse small sample
behavior of the GMM statistic? Table III reports small sample behavior of the
Wald and GMM statistics under two different simulation scenarios. In all the
simulations the data is created so that portfolio p is mean-variance efficient.
Additionally, the parameters of the return generating process are selected to
match those of the actual data, that is, the 10 size portfolios and the specified
index. Each simulation consists of 10,000 replications. For a given index, the
Wald statistic and the GMM statistic are computed using the same simulated
returns.

For the first experiment the 10 portfolios returns and mean-variance
efficient candidate portfolio return are simulated from a multivariate normal
distribution using a random number generator. This distributional assump-
tion matches the most common assumption made in the literature for statisti-

‘cal inference. The results for this distributional assumption are given in
Table III Panel A. Both the Wald and GMM statistics are well-behaved for a
sample of 756 time series observations and 10 portfolios. For example, their
means are 10.01 and 10.02 using the value-weighted index parameters
versus a theoretical mean of 10.00; and at the 95th percentile the statistics’
simulated values are 18.16 and 18.18 versus 18.31 theoretically. More impor-
tant though, the small sample behavior of the Wald and GMM statistics is
almost identical. Therefore, the difference in the actual results does not seem
due to “perverse” small sample behavior on the part of the GMM statistic.

In order to empirically assess the possible misspecification of the Wald
statistic, a bootstrapping experiment is performed. In this simulation, the
returns are constructed by drawing with replacement the disturbance vector
&, and the efficient portfolio return 7,, from the empirical distribution of the
10 size portfolios’ market model residuals and the specified index.1® The
simulation relies on the temporal i.i.d. assumption but maintains any con-
temporaneous conditional heteroskedasticity and cross-correlation present in
the actual data. The results are reported in Table III Panel B. The Wald
statistic’s empirical critical values understate the theoretical critical values,
and the empirical sizes of the test are too low. For example, using the equally
weighted index, the Wald statistic’s mean drops from 10.02 to 8.89 and its

18 See equation (3) for the form of the market model. In addition, note that the B8; were chosen
to match those of the actual data while the «; were all set equal to zero.
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95th percentile falls from 18.46 to 16.70. In contrast, the GMM statistic’s
values increase only slightly.

The difference in the actual results in Table II seems, therefore, due to the
stronger distributional assumptions required for the Wald statistic. For
example, using the bootstrap distributions from the simulations used to
create Table III Panel B, the p-value of the Wald statistic for the efficiency of
the equally weighted index decreases from 0.094 to 0.057, whereas the GMM
statistic. p-value changes from 0.033 to 0.035. Much of the difference between
the Wald and GMM statistic can be explained from the simulation evidence.
However, the lower p-values for the GMM statistic in Table II may also
reflect differences in the properties of the statistics under alternative
hypotheses.

It is interesting to note that the biases introduced by violations of the i.i.d.
and multivariate normality assumptions can be in either direction. In the
example of Section III where excess returns are distributed multivariate
Student ¢, the conventional test will reject the null hypothesis too often. In
contrast, in the empirical example of this section, the conventional test
appears to accept the null hypothesis too often.

V. Conclusion

The finance literature contains many different test statistics for whether a
given portfolio is mean-variance efficient. Most of the multivariate tests
depend on the market model disturbance vector being conditionally ho-
moskedastic and i.i.d.. Under theoretically consistent distributional assump-
tions, this need not be the case. For example, in the presence of contempora-
neous conditional heteroskedasticity, there can be large enough divergences
from the true asymptotic variance to have substantial effects on the specifica-
tion of these multivariate statistics.

We illustrate that, using theoretical large sample critical values, conclu-
sions regarding the mean-variance efficiency of a portfolio can be materially
affected. In contrast, a more robust test statistic largely eliminates the above
problems. This statistic captures as special cases some of the more widely
used tests in the literature. Furthermore, to the extent that mean-variance
efficient testing is simply an application of linear regression techniques, this
paper has applications elsewhere in the literature.

Appendix A

Using Hansen (1982) and the serial independence assumption, it is possible
to derive the expression for the asymptotic variance-covariance matrix of the
estimators:

Var(8) = [ DyS;'D,] "
= Dy *[S§ + S§] Dyt
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above, the asymptotic variance-covariance matrix of & is

Since a =[Iy® (1 0)18, we can calculate the asymptotic variance-covari-
ance matrix of the & estimator explicitly. Performing the matrix operations

var(@) = Q=

=1+

) l\Ir
+ —
02

p



526 The Journal of Finance

where ¥ = N X N variance-covariance matrix of the €,, with (Z, j)th element
[0,- ,]]'
¥ = N X N “correction factor” matrix for contemporaneous condi-
tional heteroskedasticity, with (i, j)th element

2 2
Kp 9 1 Kp
? a(gitgj:’ fgt) - ”'P + _E a(gitgjt: fpt) -
p p
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