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This paper provides a covariance matrix estimator for the ordinary least squares coefficients of a 
linear time series model which is consistent even when the disturbances are heteroscedastic. This 
estimator does not require a formal model of the heteroscedasticity. One can also obtain a direct 
test of heteroscedasticity, although Monte Carlo experiments show that it may have low power. 

1. Introduction 

White (1980) provided a covariance matrix estimator of the ordinary least 
squares coefficients which is consistent even when the error term is 
conditionally or unconditionally heteroscedastic. However, White’s proofs are 
valid only for those cases when the regressors are independent over 
observations. This paper shows that the same covariance matrix estimator 
can be used in a time series model, provided certain conditions are met. 

In fact, this result is an extension of a special case considered in Hansen 
(1982), who assumes that the error terms are unconditionally homoscedastic 
but may be conditionally heteroscedastic. Here, we replace the stationary 
assumption with moment bounds. This allows the errors to be conditionally 
or unconditionally heteroscedastic.’ 

The next section provides the conditions needed to extend the results in 
Hansen (1982) and White (1980). Section 3 modifies White’s tests of 
heteroscedasticity to allow for heterokurtic errors. Monte Carlo experiments 
are performed in section 4. Some concluding remarks are offered in section 5. 

2. Extension of Hansen’s and White’s estimator 

The proofs make use of two standard results in martingale theory. The 
first is the weak law of large numbers: 

*The author is grateful to Lars Hansen for pointing out an error in an earlier draft. 
‘At the first draft of this paper, the author was unaware of the work by Domowitz and White 

(1981). They prove the existence of a heteroscedasticity-consistent covariance estimator for non- 
linear regressions. Although this paper only deals with linear regressions, which is a special case 
of Domowitz and White (1981), the conditions are slightly weaker because of linearity (see 
footnote 2). In addition, some interesting Monte Carlo results are presented here. 
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Theorem 1. Let Z, be a (uniuariate) stochastic process, such that: 

(t) ECZ,IZ,-I,... ] = 0, with probability one (w.p. I) for all t; 

(ii) there exists M>O such that E[jZ,(‘] 5 Mfor all t. 

Then 

t$l W-+0 in probability T+oo. 

Theorem 1 is a straightforward application of Doob (1953, p. 155, theorem 
4.1). The second is a martingale central limit theorem: 

Theorem 2. Let Z, be a stochastic process such that: 

(iii) E[Z, 1 Z, _ r , . . .] =O, w.p. 1, for all t; 

(iv) there exists 6 >O, M>O, such that E[~Z,\““] SMfor all t. 

Denote 

S,= f Z, and st= t E[Z:]. 
t=1 f=l 

Assume s$/T+s2 >O, as T+oo, and 

~~~ECIECZ:I-ECZ:/Z,-,,...lll=O(s:). 

Then Sr/sr+@, as T+oo where @ is a standard normal distribution, 

The proofs of Theorem 2 and subsequent theorems are provided in a 
mathematical appendix. Note that Theorems 1 and 2 also hold for the 
multivariate stochastic process Z, = [Z,,, . . ., Zkt]’ when stated in terms of all 
linear combinations o!Zt, where a is any vector in RK. 

Now we turn to the standard linear model, 

y,=x;p+e, for t=l,2,...,T, 

where yI and e, are scalars, and x, and p are vectors of length K. 

We make the following assumptions: 

(1) 

A.1. 
A.2. 
A.3. 

ECetIxt,...,e,- r ,... ]=O, w.p. 1, for all t. 
There exists M >O, such that E[letxn,12] 6 M for all n and t. 
(X’X/T)+A>O in probability as T+ co, where X is the matrix formed 
by stacking the row vectors xi, t = 1,. . ., T 

(The notation ‘A>O’ means ‘A is a positive definite matrix’.) 
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Theorem 3 (Consistency of OLS). Under AJ-A.3, bT=(X’X)-l(X’y) is a 
consistent estimator of /?. 

Condition A.1 assures that x, and e, are not correlated 
contemporaneously, and that e, is not correlated with past x, and e,. This is 
often assumed in time series models, especially autoregressions. Under this 
condition, we also know that e,x, is a multivariate martingale difference. In 
order to show consistency, we make use of the law of large numbers, and so 
we put second moment bounds on e,x, (i.e., A.2). 

Condition A.3 is stronger than required for this theorem. It can be relaxed 
as follows. Let A,=(X’X/T). If the determinant of A, is bounded away from 
zero for sufficiently large 7; then Theorem 3 is still true. We do not state the 
theorem in this way, because (later) A, will appear as a component of the 
estimate of the asymptotic covariance of OLS, which is sensible only when 
AT converges. 

To prove the asymptotic normality of OLS, we need to make some further 
assumptions: 

A.4. There exists 6 >O, M>O, such that E[(e:x,,x,l(l +“I IM for all m, n, 
and t. 

AS. B,= f E[e:x,x;]/T-+B>O as T-co. 
t=1 

A.6 f 5 f E[/E[ 2 ' 
i=l jzlt=l 

e, XitXj,O(ij] -E[e:xi,~jr~lij 1 X, _ 1). . .) e, _ 1,. . .]I] 

=O ~ ~ (BT)ij”ij ) f 
i=l j=l > 

or any sequence of real numbers crij. 

Theorem 4 (Asymptotic normality of OLS). Under A.l-A.6, T*(b,-B) is 
asymptotically distributed as a normal variate with mean 0 and covariance 
A-‘B(A-‘)‘. 

Condition A.4 allows us to apply Liapunov’s central limit theorem when 
(x,,e,) are independent. Theorem 4 requires more stringent conditions, i.e., 
A.5 and A.6, because independence is not assumed. It is likely that A.5 can 
be relaxed in a manner analogous to that of A.3. However, since (later) B, 
will appear as a component of the estimate of the asymptotic covariance of 
OLS, this is sensible when B, converges. Condition A.6 requires that the 
conditional and unconditional expectations of e:x,xi be ‘close’ to each other. 
This is a standard assumption for martingale central limit theorems.2 

‘This condition is weaker than the mixing conditions required by Domowitz and White 
(1981), because of the linearity assumption. 
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In order to obtain an estimate of the covariance of OLS, we need one 
further assumption: 

A.7. There exists M>O such that 

ECJetXitXjtXktlY SM for all i, j, k, and t, 

E[JXitXjtXktX,rl’] 5 M for all i, j, k, m, and t. 

Theorem 5 (Consistency of the covariance estimator). Under A&A.7, CT 

=ct’=l ufx,x;/T+B in probability as T+oo, where u,=y,-x;bT. 

As a result, the matrix 

V,,=(X’X/T)-’ c (~flu?x,SIT)(Xtxjr)L (2) 

is a consistent estimate of A-‘B(A-I)‘. This shall be referred to as the HC 
matrix. Note that there is no need to specify the structure of 
heteroscedasticity of e,, either conditioned or unconditioned on the x,‘s. 

If the errors are conditionally homoscedastic, i.e., E[e: [x,, . . ., e,_,, . . .] 
= CJ’ < 00, w.p. 1 for all t, then they are unconditionally homoscedastic, and 
the asymptotic covariance of bT is a2A-‘, which can be estimated by the 
usual covariance matrix estimator, 

Voc= 

and shall be referred to as the OC matrix. 
Note that our results have been stated for the single equation model. But 

they easily extend to the several equations context, if we also take into 
account the contemporaneous correlation between the disturbances across 
equations. 

3. Test of heteroscedasticity 

In comparing HC and OC, White (1980) pointed out that the difference 
between these two estimators tends to zero if and only if the ef is 
uncorrelated with [x,x;]. To test this, White runs the following regression: 

u:=a++;y+vl,, (4) 

where c1 is a constant, and II/, is the vector of distinct elements of [x,x;], 
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excluding any constant term. He tests if y=O. His test statistic requires that 
the error terms qt be homoscedastic, i.e., e, is homokurtic3 

In order to relax this requirement and allow e, to be heterokurtic (since, 
after all, e, is allowed to be heteroscedastic), we should run OLS on (4), 
compute the HC covariance for y, and test if y=O. This procedure is justified 
if e, and x, satisfies the following conditions: 

A.8. There exists M>O such that E[le,2$itll/jt$kt/2] 5 M for all i, j, k and t, 
and E[Jll/i,~j,ll/k,lcII,123 SM for all i,i, k, 1 and t. 

~9. f 2 f: ECECe,4~i,J/j,CLijl--ECe,41Clitrl/itaij jxt-l,...,et-,ll i=l j=lr=l 

=O 2 f f E[e@it$ijaij] . 
i=l j=lt=1 > 

In other words, eq. (4) must satisfy A.l-A.7. 

4. Monte Carlo results 

To study the properties of the HC covariance and the test of 
heteroscedasticity, we use the first-order Markov process, yr = pyt _ I + e,, 
where p= 0.05, and e, is a serially uncorrelated error term, normally 
distributed with mean and variance ct . ’ We shall consider the cases when af 
is bounded away from zero and infinity, 0 < a2 5 8: 5 ii2 < co. Then it is easily 
verified that the assumptions A.1 through A.9 are satisfied. Hence the OLS 
estimate of p is consistent, and the heteroscedastic-consistent covariance 
matrix estimator can be used to test restrictions on /?. 

We performed some Monte Carlo runs of this first-order Markov process. 
A total of 500 draws of 200 observations were used. The following types of 
heteroscedasticities were considered: 

v.l. f$=l; 
V.2. Q, normally distributed, with mean 0.1 and variance 10; 
V.3. af = sin (t)2; 
V.4. 0: increased from 0.005 to 10 in steps of 0.005; 
V.5. 0: equaled 100 for t= 1,. . ., 100, and equaled 1 for 1 = 101,. . .,200. 

Two sets of results are presented. Table 1 summarizes the tests of the 
hypothesis p=O.5, using the various covariance estimators. The first column 
reports the average OLS coefficients for the 500 draws. The second and third 
columns give the average standard errors of the estimate computed under 
V,, and V,,. The last two columns list the percent of the 500 draws in which 
the hypothesis p=O.5 was rejected at the 5-percent significance level. 

3This is similar to Glejser (1969) and Goldfeld and Quandt (1972). 
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Table 1 

Comparison of OC and HC in Monte Carlo experiments. Regression: 
J+ = By, - 1 + e, ,a 

Average Average standard error 
estimated 
coefficient OC’ HCd 

Percent of draws 
rejecting fl =0.5b 

Oc’ HCd 

v.l 0.495709 0.061391 0.060635 4.6 4.8 
v.2 0.498803 0.061216 0.059902 6.2 6.8 
v.3 0.495486 0.061685 0.048180 2.0 6.2 
v.4 0.487716 0.062284 0.079632 13.8 6.0 
v.5 0.493473 0.061116 0.084245 15.0 6.4 

“These are averages for 500 draws of 200 observations. 
bAt the 5-percent asymptotic significance level. 
‘Using the usual covariance matrix (I&.), given in (3). 
“Using the heteroscedasticity-consistent covariance matrix (V,,,), given 

in (2). 

Table 2 

Tests of heteroscedasticity in Monte Carlo experiments. 
Regression: 14: = a + yy:_ 1 + q, .a 

Percent of draws rejecting 
Average y=Ob 
estimate 
of Y OC’ HCd 

v.l -0.004155 1.69 6.60 
v.2 -0.01051 1.40 20.00 
v.3 0.08863 47.00 23.40 
v.4 -0.05483 0.60 52.80 
v.5 0.11965 67.20 65.20 

“These are averages for 500 draws of 200 observations. 
bAt the 5-percent asymptotic significance level. 
‘Using the statistic proposed by White (1980). 
dUsing the alternative statistic proposed in section 3. 

In both V.l and V.2, the rejection rates for ,8=0.5 do not differ 
substantially between the two covariance estimators, and both are reasonably 
close to the asymptotic rejection rate of 5%. In V.3, OC tends to overestimate 
the true covariance, rejecting /?=0.5 only 2% of the time. On the other 
hand, HC is closer to the true covariance since it rejects /? =0.5 at 6.2%. In 
V.3 and V.4, OC underestimates the true covariance, rejecting p=O.5 at 
13.8% and 1,5.0%, respectively, while HC is again closer to the true 
covariance, rejecting fi = 0.5 at 6.0% and 6.4%, respectively. 

This first set of results shows that there may be little loss of power by 
using HC rather than OC to conduct tests on the estimated coefficients. In 
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addition, HC leads to a consistent test, while OC may not. Since there is 
little theory to guide us in making assumptions about the variances of the 
error terms, it is more prudent to use HC. 

Table 2 gives the results of the tests of heteroscedasticity using various test 
statistics. Since the errors are homokurtic, White’s (1980) test as well as the 
one proposed in section 3 are both consistent. (However, if the errors are not 
homokurtic, then only the second test is consistent.) The results are very 
disappointing. The rate of rejecting homoscedasticity is very low, even in the 
cases where there is heteroscedasticity: V.3, V.4, and VS. An obvious 
suggestion is to lower the requirements for rejection, i.e., set the significance 
level to be 10, 20, or even 30 percent. Another suggestion is to use the HC 

covariance in all circumstances, regardless of whether homoscedasticity is 
rejected or not. 

5. Concluding remarks 

We have shown that the heteroscedasticity-consistent covariance matrix 
estimator for OLS in Hansen (1982) and White (1980) can be extended to 
include time series regression. This estimator can be used without the need to 
specify the structure of the heteroscedasticity. Also we have extended White’s 
test of heteroscedasticity to allow for heterokurtic disturbances. 

Some Monte Carlo runs were performed to study the properties of this 
new covariance estimator and the test of heteroscedasticity. At least in the 
context of the first-order Markov process, the results indicate that there is 
little loss of power in using the HC covariance even if the errors were 
homoscedastic. But there is a gain in consistency if we are testing restrictions 
on the coefficients of the model. Furthermore, the tests of heteroscedasticity 
seem to have little power to discriminate between homoscedasticity and 
heteroscedasticity, at least at the 5-percent significance level. One way to 
counteract this is to use larger significance levels. Another way is to abandon 
the heteroscedasticity test, and to use always the HC covariance, because an 
error of the second kind in the heteroscedasticity test (i.e., accepting 
homoscedasticity even though the error term is truly heteroscedastic) is much 
more serious than an error of the first kind (i.e., rejecting homoscedasticity 
while the error term is truly homoscedastic). 

Mathematical appendix 

Proof of Theorem 2 

We note that the moment bound condition implies that 2, satisfies the 
Lindberg condition. Hence we can apply Theorem 1 in Chow and Teicher 
(1978, p. 313). 
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Proof of Theorem 3 

(b,-p)=(X’X/T)-‘(X’e/T). We have (X’X/T)+A in probability, where 
A>O. We want to show (X’e/T)-+O in probability. Now take any CC, a vector 
in RK. Define 2, = a’x,e,. Then, 

E[Z,)Z,_,,...]=O, 

EClZ,121 = EC~a’x,efllS f 
k=l 

Hence CT= 1 Z,/T+O in probability as T-r 00. Q.E.D. 

Proof of Theorem 4 

T*(b,-/?)=(X’X/T)-l(X’e/T*). We want to show (X’e/T*) converges 
a normal distribution. Pick any a in RK. Define Z, = a’x,et . Then, 

E[Z,(Z,_,,...]=O, 

6[ ,fl b”ki’+‘] M. 

Hence apply Theorem 2, getting cT=r Z,/T* converges in distribution 
N(0, a’&). Q.E.D. 

Proof of Theorem 5 

To prove Theorem 5, we need the following lemma: 

Lemma 1. Let X,, Y, be two stochastic processes, such that 

(a) x+0 in probability as T-too. 

(b; There exists 6 > 0, M > 0 such that 

E[IX,\‘+6] 5 M for all t. 

Then X,F+O in probability as T-co. 

to 

to 
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Proof: Pick any E > 0. 

Pr {IX, Ij > E} _I Pr {IX, XI >E and IX,/ <8/k) 

+Pr{IX,l/t(>E and jx,(Z~/k) for any k>O, 

~Pr{IE;I>k)+Pr{lE;(~E/k) 

5 Pr {(x;I >k) +E[(Xtll +s]/ls/kl’ +’ 

We can pick k s.t. 

Mk’tS/cl +“<E/2. 

Since Y,+O in probability, we can find t large enough so that 
Pr (1 x] > k) < 42. Hence 

Pr {(X,Y,(>&) <E. Q.E.D. 

To prove Theorem 5, we proceed as foollows: First, we show that the 
following expression tends to zero in probability: 

t$l (ufx,x;-e:x,xj)/T= 4 e,x;(P-bdx,x;,‘T 

+ i L-~;(P-W21xtx;l’T: 
t=1 

Now take any sequence of each number “ii, i= 1, . . . , k, j = 1, . . . , k. We want 
to show that 

(4 etXtuaijXirXjt/‘T lIP~-b~rl+O 
1 

in probability as T-co, 

in probability as T-+oo. 

We know for each k, (&--bkT)+O in probability as T+co. 
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Now 

E [I 
l+d 

I 1 
g i f i [E(e~xj~Xi~xj~~ij(l”“d’]‘fd 

l+d 

1 I i-1 i-6 

i=l j=lr=l 

Apply Lemma 1 to establish (a). Similarly, (b) is established. 

Hence 

in probability as T-CO. Now 

i efx,x;/T-+B 
t=1 

in probability as T+co by A.5 and A.6. Q.E.D. 
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