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Abstract

This paper presents the limiting distribution theory for the GMM estimator when the esti-
mation is based on a population moment condition which is subject to non-local (or %xed)
misspeci%cation. It is shown that if the parameter vector is overidenti%ed then the weighting
matrix plays a far more fundamental role than it does in the corresponding analysis for cor-
rectly speci%ed models. Speci%cally, the rate of convergence of the estimator depends on the
rate of convergence of the weighting matrix to its probability limit. The analysis is presented for
four particular choices of weighting matrix which are commonly used in practice. In each case
the limiting distribution theory is di2erent, and also di2erent from the limiting distribution in a
correctly speci%ed model. Statistics are proposed which allow the researcher to test hypotheses
about the parameters in misspeci%ed models.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Generalized method of moments (GMM) (Hansen, 1982) provides a computationally
convenient approach to the estimation of nonlinear dynamic econometric models based
on the type of information provided by economic theory. In consequence, the GMM
estimator has been used to perform inference about the parameters of economic models
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in a wide variety of settings. These inference procedures build from the asymptotic
theory provided by Hansen (1982) in his original paper on GMM. Speci%cally, Hansen
establishes that if the model is correctly speci%ed then the estimator is

√
T -consistent

and asymptotically normally distributed. However, for some data series, the correct
model speci%cation has proved elusive and so many empirical models are misspeci%ed.
It is therefore important to develop an asymptotic theory for the GMM estimator in
misspeci%ed models.
There are two basic approaches to such an analysis. First, and by far the most com-

mon in econometrics, is to employ a local alternative analysis. Within this approach,
it is assumed that the data do not satisfy the population moment condition upon which
estimation is based for any %nite sample size, but do so in the limit as the sample
size goes to in%nity. Furthermore, the data are assumed to drift towards the model
used in estimation at a rate which ensures the misspeci%cation only manifests itself
in the mean of the asymptotic distribution of the estimator. All other aspects of the
limiting behaviour stay the same. Therefore, the probability limit of the estimator, the
asymptotic variance of the estimator and the probability limit of the covariance matrix
estimator are identical if the model is either correctly speci%ed or subject to local mis-
speci%cation. Such an analysis is often used to provide insights into the local power
properties of test statistics, and was %rst applied in the context of GMM by Newey
(1985). However, by its very nature, this type of analysis only provides guidance on
the behaviour of the estimator when the truth is just a small perturbation away from
the assumed model. This weakness can be addressed by using the second approach to
misspeci%cation analysis which is based on a non-local (or %xed) alternative. Within
this scenario, the nature of the misspeci%cation remains constant throughout the sample.
This approach is much rarer and to our knowledge has only been applied to GMM
in the special case of the instrumental variables (IV) estimator in linear models for
a particular choice of weighting matrix. In the latter context, Maasoumi and Phillips
(1982) show that the combination of overidenti%cation and misspeci%cation causes the
limiting distribution of the IV estimator to depend on the limiting distribution of the
elements of the weighting matrix. 1 However to date, Maasoumi and Phillips’s (1982)
analysis has not been extended to the GMM estimator. 2 The lack of such a theory
represents a considerable gap in our understanding of the estimator because there is no
reason to suppose in practice that all misspeci%cation is local in nature.
In this paper, we present a limiting distribution theory for the GMM estimator

in non-locally misspeci%ed models. It is shown that the combination of parameter

1 Maasoumi and Phillips (1982) only consider the case in which the weighting matrix is the inverse of
the instrument cross product matrix.

2 Gallant and White (1988) develop an asymptotic theory for a class of estimators in potentially misspeci-
%ed models under very weak assumptions on the dependence structure of the data. However, this class only
extends to GMM estimators of overidenti%ed parameters in misspeci%ed models if the weighting matrix is
*xed; see Gallant and White (1988, pp. 11–12). White (1994) develops a similar analysis for quasi maximum
likelihood estimator (QMLE). While the QMLE can be viewed as a special case of GMM, this interpretation
involves the restriction that the parameter vector is just identi%ed. Hall (2000) uses this framework to analyse
the large sample behaviour of the overidentifying restrictions test when the long run variance is estimated
by a member of the class of heteroscedasticity autocorrelation consistent covariance matrix estimators.
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overidenti%cation and misspeci%cation has two important consequences for the limiting
behaviour of the GMM estimator. First, the probability limit of the GMM estimator
depends on the limit of the weighting matrix. Second, the limiting distribution of the
GMM estimator depends on the limiting distribution of the elements of the weighting
matrix. While both %ndings are to be anticipated from Maasoumi and Phillips’s (1982)
analysis, our results indicate that the weighting matrix plays a far more fundamental
role in nonlinear dynamic models than is revealed by the aforementioned earlier study.
Speci%cally, it is shown that the limiting distribution of the estimator depends not only
on the probability limit of the weighting matrix—as it does in correctly speci%ed or
locally misspeci%ed models—but also on the rate of convergence of the weighting ma-
trix to this limit. This means that there is no one single limiting distribution theory for
the GMM estimator in misspeci%ed models. Instead, the analysis must be divided into
separate cases depending on large sample behaviour of the weighting matrix, WT . In
this paper, we explicitly consider four cases: (i) WT =W for all T ; (ii) T 1=2(WT −W )
converges to a normal distribution for some matrix W ; 3 (iii) WT is the inverse of a
centred heteroscedasticity autocorrelation consistent covariance (HACC) matrix estima-
tor; (iv) WT is the inverse of an uncentred HACC estimator. To summarize the limiting
behaviour that occurs, we use �̂T denote the GMM estimator and �∗, its probability
limit. It is shown that in cases (i) and (ii), T 1=2(�̂T − �∗) converges to a normal dis-
tribution. Furthermore, in each case the asymptotic variance is di2erent and in neither
does it equal the variance derived by Hansen (1982) for the correctly speci%ed case.
In case (iii), the limiting behaviour of the estimator depends on the rate of increase
of the bandwidth, bT . If bT does not increase too quickly (in a sense de%ned below)
(T=bT )1=2(�̂T − �∗) converges to a normal distribution. Otherwise, bkT (�̂T − �∗) con-
verges to a constant where k is a constant de%ned below. It is shown that in case (iv)
bT (�̂T − �∗) converges to a constant in most cases of practical relevance.
In practice, inference is most often based on the two-step or iterated estimator. In

correctly speci%ed models, these two estimators are asymptotically equivalent. However,
our results indicate this is not the case in misspeci%ed models. It is shown that in
situations covered by Case (ii) above then the asymptotic distribution of the estimator
on the ith step depends on the asymptotic distributions of the estimators on all previous
steps. Whereas in situations covered by Case (iii) above then this dependence only goes
back as far as the second step.
As would be imagined, these results have important implications for inference about

the parameter vector. Newey and West (1987a) propose Wald, likelihood ratio type and
Lagrange multiplier statistics for testing the hypothesis that the parameter vector satis-
%es a set of nonlinear restrictions. Under the joint null hypotheses that the restrictions
are satis%ed and the model is correctly speci%ed, Newey and West (1987a) show that
these statistics converge to a 	2 distribution. However, we show in Section 4 that this
limiting result no longer applies if the model is misspeci%ed even if the restrictions are
true. As a result, it is possible to reject incorrectly a set of parameter restrictions using
conventional statistics because of model misspeci%cation. Therefore, we also propose
two statistics which can be used to perform inference about the pseudo-parameters in

3 This case contains Maasoumi and Phillips’s (1982) analysis as a special case.



364 A.R. Hall, A. Inoue / Journal of Econometrics 114 (2003) 361–394

misspeci%ed models. Both have limiting 	2 distributions under the null, and the only
di2erence between them stems from the choice of weighting matrix.
Before we present the analysis, we wish to address a potential issue regarding the

interpretation and empirical relevance of our results. A referee has argued that there is
little interest in the limiting behaviour of the GMM estimator in misspeci%ed models
because the overidentifying restrictions test can be used to indicate misspeci%cation, and
once misspeci%cation is detected then the model is rejected. Clearly, such an empirical
strategy renders redundant the issue of inference in misspeci%ed models. While this
empirical strategy may be employed frequently by researchers, an inspection of the
literature reveals that it is by no means universally adopted. It is possible to %nd a
number of published studies in which inference is performed about the parameters of a
misspeci%ed model that has been estimated by GMM. Sometimes these inferences are
implicit in the sense that the GMM estimates and their standard deviations (or their
t statistics) are reported even though the model is rejected using the overidentifying
restrictions test; examples of this practice include Cochrane (1996) and Epstein and
Zin (1991). Sometimes these inferences are explicit as the following three examples
illustrate. Meghir and Weber (1996, p. 1173) perform hypothesis testing on structural
parameters even though Sargan’s test for overidentifying restrictions reject the null
with the p-value less than 1% for the transport/service marginal rate of substitution
equation. Ferson and Constantinides (1991, p. 221, Table 7) discuss the sign and
statistical signi%cance of the durability parameter even when the J test reject their
two-asset system. Durlauf and Maccini (1995, p. 78) discuss the signi%cance of certain
parameters in inventory models even though the overidentifying restrictions tests are
signi%cant. These citations provide clear evidence that applied researchers are interested
in performing inference in misspeci%ed models. However, to date, no statistical theory
is available to guide researchers in the interpretation of the types of results described
above or in the construction of suitable test statistics for those researchers who wish to
perform inferences about the pseudo-parameters in misspeci%ed models that have been
estimated by GMM.
Inspection of the literature also suggests that there is a growing interest in the devel-

opment of inference techniques in misspeci%ed models. White (1982, 1994) analyses
the behaviour of quasi-maximum likelihood estimators. As mentioned above, Maasoumi
and Phillips (1982) study the IV estimator in linear misspeci%ed models and Gallant
and White (1988) develop a statistical theory for a class of estimators in misspec-
i%ed models. In addition, Hansen and Sargent (1993), Watson (1993) and Diebold
et al. (1998) provide frequency-domain frameworks to evaluating misspeci%ed dynamic
economic models. Hansen and Jagannathan (1991), Hansen et al. (1995) and Hansen
and Jagannathan (1997) develop alternative measures of misspeci%cation for %nancial
models. Kitamura (1997) develops a framework to compare misspeci%ed models using
empirical likelihood. Our results contribute to this theoretical literature as well.
An outline of the paper is as follows. Section 2 describes the framework used to cap-

ture non-local misspeci%cation. Section 3 presents the limiting distribution theory for
GMM estimators in misspeci%ed models. Section 4 presents the limiting behaviour of
the conventional Wald, LR-type and Lagrange multiplier statistics in misspeci%ed mod-
els, and proposes statistics for testing hypotheses about the pseudo-parameters which
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have limiting 	2 distributions under the null. Section 5 contains some concluding re-
marks. All proofs are relegated to a mathematical appendix.

2. Non-local misspeci�cation within the GMM framework

To motivate the de%nition of misspeci%cation and the discussion of its consequences,
it is useful to de%ne %rst a correctly speci%ed model and also to summarize briePy
properties of certain important statistics in this case. 4 Throughout this paper we con-
sider the Generalized Method of Moments estimator

�̂T = argmin
�∈�

gT (�)′WTgT (�) (1)

where gT (�) = T−1∑T
t=1 f(vt ; �), f(vt ; �) is a q × 1 vector indexed by the p × 1

vector � and a vector of observed random variables vt , and WT is a weighting matrix.
To analyse the large sample properties of this estimator, it is necessary to impose
certain regularity conditions. For ease of exposition, we only highlight in the text
those assumptions which are crucial to the discussion and relegate the remainder to a
mathematical appendix. Following Hansen (1982), we impose the following conditions
on vt and WT .

Assumption 1. {vt ∈V; t = 1; 2; : : :} is a sequence of strictly stationary and ergodic
random vectors where V ⊆ Rs.

Assumption 2. {WT ;T = 1; 2 : : :} is a sequence of positive semi-de%nite matrices and
p limT→∞WT =W , a positive de%nite matrix of constants.

Within this framework, a correctly speci%ed model is de%ned as follows.

De�nition 1 (Correctly speci%ed model). The model is said to be correctly speci%ed
if there exists a unique value �0 in � ⊂ Rp such that E[f(vt ; �0)] = 0.

Notice there are two parts to De%nition 1: an “orthogonality” condition, that is
E[f(vt ; �0)] = 0, and an identi%cation condition, that is this condition only holds at
�0. In this case, it can be shown that subject to certain regularity conditions �̂T

p→ �0,
and T 1=2(�̂T − �0) converges in distribution to a normal mean zero random vector;
see Hansen (1982). If q¿p then the covariance matrix of this asymptotic distribution
depends on p limT→∞WT . Hansen (1982) proves that the optimal choice of WT equals
the inverse of a consistent estimator of the long run variance of the sample moment,

S = lim
T→∞

Var

[
T−1=2

T∑
t=1

f(vt ; �0)

]
: (2)

In practice this “optimal” estimator is constructed via at least a two-step procedure.
On the %rst step, GMM estimation is performed with a sub-optimal choice of WT to

4 This framework is also employed by Hall (2000).
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obtain a preliminary estimator of �0. This preliminary estimator is used to construct a
consistent estimator of S, ŜT say, and then Ŝ−1

T is used as the weighting matrix in the
second, “optimal” GMM estimation. This process can also be iterated.
A misspeci%ed model is de%ned as follows.

De�nition 2 (Misspeci%ed model). A model is said to be misspeci%ed if there is no
value of � which satis%es the orthogonality condition, that is E[f(vt ; �)] = �(�) where
� :�→ Rq such that ‖�(�)‖¿ 0 for all �∈�.

Two features of this de%nition should be noted. First, in line with Assumption 1,
E[f(vt ; �)] is assumed constant for all t, and so our framework rules out misspec-
i%cation due to structural instability. The constancy of this expectation rePects the
stationarity assumption in Assumption 1, and it should be noted that additional compli-
cations may arise if this assumption is relaxed; see Gallant and White (1988). Second,
the parameter vector must be overidenti%ed, i.e. q¿p, because if q = p then there
must exist some value of � such that E[f(vt ; �)] = 0 as we now demonstrate.

Proposition 1. Suppose that Assumptions A.1–A.6 hold and that the method of mo-
ment estimator is well de*ned, i.e., p= q and there is a sequence {�̂T}∞T=1 such that
(1=T )

∑T
t=1 f(vt ; �̂T ) = 0 a.s. Then there exists �∗ ∈� such that E[f(vt ; �∗)] = 0.

Assumptions A.1–A.6 are given in the mathematical appendix. While this result is
trivial in one sense, it shows that misspeci%cation in the sense of De%nition 2 occurs
in the method of moments framework only when the model is overidenti%ed. Thus,
we focus on the GMM estimator for overidenti%ed moments conditions from this point
on, and models are misspeci%ed in the sense of De%nition 2. This means for instance
that QML and linear projections are not misspeci%ed in our sense because they are
examples of GMM estimators with p=q. However, the two stage least squares (2SLS)
estimator does %t in our framework if the model is misspeci%ed and there are more
instruments than regressors.
By itself, De%nition 2 does not imply that �̂T has a well de%ned probability limit,

and so we also impose the following identi%cation condition.

Assumption 3 (Identi%cation condition for a misspeci%ed model): There exists �∗(W )
∈� such that Q0(�∗(W ))¡Q0(�); ∀�∈� \ {�∗(W )}, where Q0(�) = E[f(vt ; �)]′

WE[f(vt ; �)].

It should be noted that, unlike correctly speci%ed models, there is no reason to
suppose that di2erent choices of weighting matrix lead to minimands Q0(�) which are
minimized by the same value of �. 5 It is for this reason that we have indexed �∗ by
W . However, for most of the discussion, we can suppress the dependence of �∗ on W
for notational brevity because the meaning is clear from the context. Subject to certain
other regularity conditions, Hall (2000) establishes that �̂T

p→ �∗. However, he does not

5 This observation was made in the context of linear models by Maasoumi and Phillips (1982).
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establish any rates of convergence for �̂T nor any limiting distribution theory for the
GMM estimator.

3. The limiting behaviour of the GMM estimator in misspeci�ed models

Hansen (1982) establishes that if the model is correctly speci%ed then T 1=2(�̂T − �0)
converges in distribution to a normal random vector. For our purposes, it is useful
to emphasize that this asymptotic normality holds under very weak conditions on the
weighting matrix. Speci%cally, WT is assumed only to be a positive semi-de%nite for
%nite T which converges in probability to a positive de%nite matrix of constants W .
Most importantly, no assumption is needed about the rate at which WT converges to
W . In this section, it is shown that a very di2erent picture emerges in misspeci%ed
models. The analysis is divided into two parts. To begin, we derive a generic formula
for cT (�̂T − �∗) where cT is a sequence of constants which increases with T . From
this analysis, it emerges that the limiting behaviour of this statistic depends in general
on that of cT (WT −W ). We then use this result to deduce the limiting behaviour of
cT (�̂T − �∗) for a number of speci%c choices of WT which are commonly employed
in practice.
Suppose that the moment function f is di2erentiable. The %rst order conditions for

GMM estimation are

GT (�̂T )′WTgT (�̂T ) = 0; (3)

where GT (�) = 9gT (�)=9�′. If the Mean Value Theorem is used to expand gT (�̂T )
around gT (�∗) then after some rearrangement (3) implies

cT (�̂T − �∗) =−[GT (�̂T )′WTGT (�̂T ; �∗; �T )]−1GT (�̂T )′WTcTgT (�∗); (4)

where GT (�̂T ; �∗; �T ) is (q×p) matrix whose ith row is equal to the ith row of GT ( U�
(i)
T )

where U�(i)T =�(i)T �∗+(1−�(i)T )�̂T for some 06 �(i)T 6 1, and �T is the q×1 vector with
ith element �(i)T . It is convenient to rewrite (4) as

cT (�̂T − �∗) = H0;T{H1;T + H2;T}; (5)

where

H0;T =−[GT (�̂T )′WTGT (�̂T ; �∗; �T )]−1; (6)

H1;T = GT (�̂T )′WT (cT =T )
T∑
t=1

[f(vt ; �∗)− �∗]; (7)

H2;T = GT (�̂T )′WTcT�∗ = H2;T (1) + H2;T (2) + H2;T (3) + H2;T (4); (8)

H2;T (1) = cT [GT (�̂T )− GT (�∗)]′WT�∗;

H2;T (2) = cT [GT (�∗)− G∗]′WT�∗;

H2;T (3) = G′
∗cT (WT −W )�∗;
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H2;T (4) = cTG′
∗W�∗;

�∗ = E[f(vt ; �∗)];

G∗ = E[9f(vt ; �∗)=9�′]:

At this stage it is useful to note two simpli%cations. First, the population analog to the
%rst order conditions imply H2;T (4) = 0. Second, H2;T (1) can be written as 6

H2;T (1) = (�′∗WT ⊗ Ip)vec{cT [GT (�̂T )− GT (�∗)]}

= (�′∗WT ⊗ Ip)G
(2)
T (�̂T ; �∗;  T )cT (�̂T − �∗)

=MTcT (�̂T − �∗) say;

where G(2)
T (�̂T ; �∗;  T ) is the pq × p matrix whose ith row is the corresponding row

of (9=9�′)vec{9f(vt ; �̃(i)T )=9�′} with �̃(i)T =  (i)
T �̂T + (1−  (i)

T )�∗, 06 (i)
T 6 1, and  T

is the pq× 1 vector with ith element  (i)
T .

Taking advantage of these two simpli%cations, (5)–(8) can be used to deduce that

cT (�̂T − �∗) = [Ip − H0;TMT ]−1H0;T{H1;T + H2;T (2) + H2;T (3)}: (9)

This generic equation can lead to many possible types of behaviour for �̂T as we now
demonstrate.
In addition to some regularity conditions, we impose the following two assumptions.

Assumption 4. V = limT→∞ Var[T−1=2∑T
t=1 (f(vt ; �∗) − �∗)] is a positive de%nite

matrix of constants where E[f(vt ; �∗)] = �∗.

Assumption 5. A p× p matrix H∗ = G′
∗WG∗ + (�′∗W ⊗ Ip)G

(2)
∗ is nonsingular where

G∗ = E[9f(vt ; �∗)=9�′] and G(2)
∗ = E[(9=9�′)vec{9f(vt ; �∗)=9�′}].

Assumption 5 guarantees that the inverse matrix in (9) is well de%ned in the limit.
We consider four cases: (i) WT =W for all T ; (ii) T 1=2(WT −W ) converges to a

normal distribution for some matrix W ; (iii) WT is the inverse of a centred HACC
estimator; (iv) WT is the inverse of an uncentred HACC estimator.

Case (i): WT =W for all T :
The limiting distribution of the GMM estimator is given in the following theorem.

Theorem 1. Let WT =W and suppose that Assumptions 1–5 and Assumptions A.1–
A.10 (given in the appendix) hold. In addition, let {#ij}i; j=1;2 denote the asymptotic

6 Dhrymes (1984, Corollary 25, p. 103) and the Mean Value Theorem applied to the i − jth element of
GT (�̂T ).
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covariance matrix in
 T

−1=2
T∑
t=1

(f(vt ; �∗)− �∗)

T 1=2(GT (�∗)− G∗)′W�∗


 d→N

(
0;

(
#11 #12

#21 #22

))
(10)

(this asymptotic normality follows from Assumptions A.1–A.10). Then it follows that

T 1=2(�̂T − �∗)
d→N(0; %1)

where

%1 = H−1
∗ (G′

∗W#11WG∗ + G′
∗W#12 + #21WG∗ + #22)H−1′

∗ :

Theorem 1 includes the common choice of WT=I on the %rst step estimation. Notice
that this result contains the analogous result for correctly speci%ed models as a special
case, because if �∗ = 0 then the asymptotic variance reduces to

%C = (G′
∗WG∗)−1(G′

∗WVWG∗)(G′
∗WG∗)−1 (11)

which is the formula derived by Hansen (1982). It is remarked in footnote 1 above that
Gallant and White’s (1988) analysis extends to GMM estimators with %xed weighting
matrices. It is easily veri%ed that under our conditions our Theorem 1 coincides with
their Theorem 5.7. 7

Case (ii): T 1=2(WT −W ) converges to a normal distribution:
We now consider the case in which the weighting matrix depends on T and is√
T -asymptotically normally distributed.

Theorem 2. Suppose that Assumptions 1–5 and Assumptions A.1–A.9 hold. In addi-
tion, assume that


T−1=2

T∑
t=1

[f(vt ; �∗)− �∗]

T 1=2(GT (�∗)− G∗)′W�∗

T 1=2(WT −W )�∗




d→N


0(p+2q)×1;



#11 #12 #13

#21 #22 #23

#31 #32 #33




 : (12)

where the asymptotic variance covariance matrix is positive de*nite. 8

Then

T 1=2(�̂T − �∗)
d→N(0; %2);

where %2 = H−1
∗ #∗H−1′

∗ and

#∗ =G′
∗W#11WG∗ + #22 + G′

∗#33G∗ + G′
∗W#12

+G′
∗W#13G∗ + #21WG∗ + G′

∗#31WG∗ + #23G∗ + G′
∗#32:

7 Our result can be translated into Gallant and White’s (1988) notation via H∗ = limn→∞ A∗n and
G′∗WVWG∗ = limn→∞ B∗n .

8 (12) holds under more primitive conditions on dependence and moments similar to Assumptions A.9
and A.10.
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Theorem 2 covers two leading cases of empirical relevance: (a) �̂T is the %rst step
estimator calculated using the inverse of an instrument cross product matrix as the
weighting matrix; (b) �̂T is the second step estimator based on the assumption that
{f(vt ; �∗) − �∗} is a martingale di2erence sequence. We now discuss each of these
two cases in turn.
First, consider case (a). Let WT = [T−1∑T

t=1 ztz
′
t ]
−1, where zt is a vector of instru-

ments, and put Mzz = E[ztz′t ]. In this case, it follows that

T 1=2(WT −W ) =−M−1
zz T

−1=2

[
T∑
t=1

ztz′t −Mzz

][
T−1

T∑
t=1

ztz′t

]−1

: (13)

Therefore, this case is covered by Theorem 2 provided that T−1=2vech[
∑T

t=1(ztz
′
t −

Mzz)] converges to a mean zero normal distribution. Such behaviour is assumed by
Maasoumi and Phillips (1982) in their analysis of the IV estimator in linear models,
and Theorem 2 contains their result as a special case.
Now consider case (b). For this discussion, it is necessary to distinguish the %rst and

second step GMM estimators. Accordingly, let �̂T (i) denote the GMM estimator on the
ith step, and p limT→∞ �̂T (i) = �∗(i). In this case, the weighting matrix is WT = ,̃−1

0
where

,̃0 = T−1
T∑
t=1

[f(vt ; �̂T (1))− gT (�̂T (1))][f(vt ; �̂T (1))− gT (�̂T (1))]′: (14)

Using the same argument as (13), it can be shown that this case is covered by
Theorem 2 provided T 1=2vech[,̃0 − ,0] converges to a mean zero normal distribu-
tion where ,0 is the variance of f(vt ; �∗). However if we pursue this analysis further
it reveals a fundamental dependence between the %rst and second step estimators. Using
the Mean Value Theorem, it follows that

T 1=2vech[,̃0 − ,0] = T 1=2vech[,0(�∗(1))− ,0]

+
9
9�′ (vech{,0(�∗(1))})T 1=2(�̂T (1)− �∗(1)) + op(1); (15)

where ,0(�) = T−1∑T
t=1 [f(vt ; �)− gT (�)][f(vt ; �)− gT (�)]′. Eq. (5) combined with

Eq. (15) imply that the limiting distribution of T 1=2(�̂T (2) − �∗(2)) depends on the
limiting distribution of T 1=2(�̂T (1) − �∗(1)) via T 1=2vech[,̃0 − ,0] unless the partial
derivative matrix in (15) converges in probability to zero. In general there is no reason
to expect the latter condition to hold. A similar argument holds for the iterated estimator
discussed by Hansen et al. (1996). Eq. (15) can be applied recursively to deduce that
the limiting distribution of T 1=2(�̂T (i)− �∗(i)) depends on the limiting distributions of
{T 1=2(�̂T (j)− �∗(j)); j= 1; 2 : : : i− 1} in general. Theorem 2 also applies to the case
where {f(vt ; �∗)−�∗} is not a martingale di2erence sequence but its serial correlation
is neglected when computing the weighting matrix.
To conclude the discussion of Theorem 2, we note that it also encompasses the

case of correctly speci%ed models because if �∗ = 0 then #12 = #21 = #22 = 0q×q
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and the variance reduces to %C . Furthermore, it is easily veri%ed that if �∗ = 0 then
this eliminates the dependence of T 1=2(�̂T (i) − �∗(i)) on {T 1=2(�̂T (j) − �∗(j)); j =
1; 2 : : : i − 1}.

Case (iii): WT is the inverse of a centred HACC estimator.
We now consider the case in which the weighting matrix is the inverse of a centred

HACC matrix estimator, that is WT = V̂−1
T where

V̂ T =
T−1∑

i=−T+1

!(i=bT ),̃i (16)

and

,̃i = T−1
T∑

t=i+1

[f(vt ; �̂T (1))− gT (�̂T (1))]

×[f(vt−i ; �̂T (1))− gT (�̂T (1))]′ for i¿ 0

= T−1
T∑

t=−i+1

[f(vt+i ; �̂T (1))− gT (�̂T (1))]

×[f(vt ; �̂T (1))− gT (�̂T (1))]′ for i¡ 0:

It is assumed that the kernel, !(:), and bandwidth, bT , satisfy the following assumption.

Assumption 6. (i) For all x∈R, |!(x)|6 1, !(−x)=!(x), !(0)=1, !(x) is continuous
at zero and for almost all x∈R,

∫
R
!(x)2 dx¡∞,

∫
R
!(x)e−ix� dx¿ 0 for all �∈R;

(ii)
∫∞
−∞ !(x) dx= c where 0¡c¡∞; (iii)

∫
R
x!(x) dx¡∞; (iv) bT =o(T 1=2) and

bT → ∞.

Assumption 6(i) is standard in the HACC literature and satis%ed by all kernels
of interest in econometrics which yield positive semi-de%nite estimators for %nite T ;
see Andrews (1991), Hansen (1992). Assumption 6(ii) is imposed by Hall (2000) in
his analysis of the inverse of the uncentred HACC estimator. We impose it here for
simplicity because we need it later in our analysis. It is easily veri%ed that this re-
striction is satis%ed by the Bartlett (Newey and West, 1987b), Parzen (Gallant, 1987)
and the quadratic spectral (Andrews, 1991) kernels. Assumption 6(iii) is not typi-
cally imposed in the analysis of uncentred HACC estimators in correctly speci%ed
models, but is necessary for the analysis of centred HACC estimators in misspeci-
%ed models. It can be shown that this condition is satis%ed by the Bartlett, Parzen
and quadratic spectral kernels. Assumption 6(iv) gives the rate of increase of bT
used by Andrews (1991) in his proof of the consistency of ŜT in correctly speci%ed
models.
For this part of the analysis, it is necessary to impose the following assumption.
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Assumption 7. Let �̂T (1) be the %rst step GMM estimator, �∗ denote its probability
limit and �∗ = �(�∗).
(i) (

T
bT

)1=2
vech( UVT − VT )

d→N(0; #V ) (17)

lim
T→∞

bk(VT − V ) = C; (18)

where #V is a q(q+ 1)=2× q(q+ 1)=2 matrix, k ¿ 0 is the characteristic exponent of
the kernel !, 9

UVT = U,0 +
T−1∑
i=1

!(i=bT )( U,i + U,′
i);

VT = ,0 +
T−1∑
i=1

!(i=bT )(,i + ,′
i);

U,i = T−1
T∑

t=i+1

[f(vt ; �∗)− �∗][f(vt−i ; �∗)− �∗]′;

C =−lim
x→0

(
1− !(x)

|x|k
) ∞∑
j=−∞

|j|k,j ¡∞:

(ii) �̂T (1)− �∗ =Op(T−1=2).
(iii) max16i6T‖1=T

∑i
t=1 f(vt ; �∗)− �∗‖=Op(T−1=2).

Assumption 7(i) states that the spectral density estimator of f(vt ; �∗)−�∗ is asymp-
totically normally distributed and that the bias vanishes at an appropriate rate. More
primitive assumptions can be found in the classical work of Anderson (1994),
Brillinger (1975), Rosenblatt (1959) and Hannan (1970). More primitive conditions
are provided in the mathematical appendix (Proposition A.1). Assumption 7(ii) is sat-
is%ed if the weighting matrix on the %rst step satis%ed the assumptions imposed in
either Theorems 1 or 2. Assumption 7(iii) is satis%ed if the functional central limit
theorem holds for T−1=2∑[Tr]

t=1 [f(vt ; �∗)− �∗] in the space of cadlag functions on the
unit interval, for instance.

Theorem 3. Let �̂T (2) denote the second step GMM estimator based on WT = V̂−1
T ,

and �∗(2)=�∗(V−1). Also suppose that Assumptions 1, 3–7 and Assumptions A.1–A.9
hold. Then(

T
bT

)1=2
(�̂T (2)− �∗(2))

d→N( H−1
∗∗ G

′
∗∗C�∗∗; %3) if T 1=2=b1=2+kT → ∈[0;∞);

bkT (�̂T (2)− �∗(2))
p→H−1

∗∗ G
′
∗∗C�∗∗ if T 1=2=b1=2+kT → ∞;

9 See Anderson (1994, Section 9.3.2) for a de%nition of the characteristic exponent of a kernel.
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where %3 = H−1
∗∗ D

′B#VB′DH−1′
∗∗ , D = −(�′∗∗V

−1 ⊗ G′
∗∗V

−1), H∗∗ is the matrix H∗
in Assumption 5 evaluated at �∗ = �∗(2), G∗∗ = E[9f(vt ; �∗(2))=9�′] and B is the
selection matrix de*ned by vec(S∗) = B vech(S∗).

It is interesting to contrast this result with the correctly speci%ed case. If the model is
correctly speci%ed then �̂T (2) converges at rate T 1=2 to a normal distribution. However,
if the model is misspeci%ed and WT = V̂−1

T then H2;T (3) becomes dominant in the
limiting expression, and this causes the rate of convergence to be (T=bT )1=2 in the %rst
case and bkT in the second case. In the second case the bias of the HACC estimator
becomes dominant in the limiting expression of the GMM estimator, and this causes the
degenerate limiting behaviour. The di2erence in the rates of convergence also means
that Theorem 3 does not contain the appropriate result for the correctly speci%ed model
as a special case. This contrasts with Theorems 1 and 2 above.
This rate of convergence has important consequences for the iterated GMM estimator

discussed in Hansen et al. (1996). To consider the consequences, it is useful to recall
%rst that it is shown above that if WT = ,̃−1

0 then the asymptotic distribution of �̂T (i)
depends on the asymptotic distribution of the estimator on all previous steps. If WT =
V̂−1
T then a similar picture emerges except that this time the dependence only goes back

as far as the second step. The reason is that Assumption 7(ii) restricts the %rst step
estimator to converge faster than the second step estimator, and so

√
T=bT (�̂T (1) −

�∗(1))
p→ 0. However, using a similar Mean Value Theorem based argument to (15), it

can be shown that the limiting distribution of
√
T=bT vech[VT−V ] on step 3 depends on

the distribution of �̂T (2) and hence on the distribution of
√
T=bT vech[VT−V ] on step 2.

This e2ect cumulates so that in general the limiting distribution of
√
T=bT (�̂T (i)−�∗(i))

depends on the limiting distribution of {√T=bT (�̂T (j)− �∗(j)); j = 2; 3; : : : j − 1}.

Case (iv): WT is the inverse of a uncentred HACC estimator.
Finally, we consider the case in which the weighting matrix is the inverse of an

uncentred HACC matrix estimator, that is Ŝ−1
T where

ŜT =
T−1∑

i=−T+1

!(i=bT ),̂i (19)

and

,̂i = T−1
T∑

t=i+1

f(vt ; �̂T (1))f(vt−i ; �̂T (1))′ for i¿ 0

= T−1
T∑

t=−i+1

f(vt+i ; �̂T (1))f(vt ; �̂T (1))′ for i¡ 0:

In correctly speci%ed models, Ŝ−1
T is a valid weighting matrix because it is positive

semi-de%nite for %nite T by construction and converges in probability to the inverse
of the long run variance which is positive de%nite by assumption. However, the latter
property does not extend to misspeci%ed models. Hall (2000) shows that Ŝ−1

T converges
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in probability to

S∗ = V−1 − 1
�′∗V−1�∗

V−1�∗�′∗V
−1; (20)

where �∗ = E[f(vt ; �∗(1))]. Hall (2000) shows that S∗ has rank equal to q − 1 and
hence is singular. The form of this limit has an important implication for the GMM
estimator based on WT = Ŝ−1

T . The population analog to the minimand is

Q(2)
0 (�) = E[f(vt ; �)]′S∗E[f(vt ; �)]: (21)

Using (20) it can be seen that Q(2)
0 (�) attains its minimum possible value of zero at

� = �∗(1). For this minimum to be unique, there must be no other value of � which
generates a value of �(�) in the nullspace of S∗. Therefore we impose the condition.

Assumption 8. S∗E[f(v; �)] �= 0 for any �∈� \ {�∗(1)}.

This restriction serves as the identi%cation condition in the following result.

Theorem 4. Let �̂T (2) denote the second step estimator based on WT = Ŝ−1
T , and sup-

pose that Assumptions 1, 3–8 and Assumptions A.1–A.9 hold. Then (i) �̂T (2)
p→ �∗(1);

(ii) p lim bT [�̂T (2)−�∗(1)]=C∗ for some C∗ �= 0 if G′
∗V

−1�∗ �= 0; (iii) T 1=2(�̂T (2)−
�∗(1)) = Op(1) if G′

∗V
−1�∗ = 0; where G∗ = E[9f(vt ; �∗(1))=9�′] and �∗ = �(�∗(1)).

Theorem 4 (i) indicates that the second step GMM estimator converges to the same
probability limit as the %rst step estimator. This property would be exhibited in correctly
speci%ed models, but does not typically hold in misspeci%ed models. Its occurrence here
results directly from the singularity of W =S∗, and, more speci%cally, the nature of the
null space of S∗. Theorem 4(ii) and (iii) show that the rate of convergence depends on
the value of G′

∗V
−1�∗. This latter quantity can be recognized as the population analog

to the %rst order conditions based on WT = V̂−1
T , and it enters the analysis via the %rst

order conditions of the estimation. When WT = Ŝ−1
T then the population analog to the

%rst order conditions are given by

G(�)′S∗�(�) = G(�)′V−1�(�)− 1
�′∗V−1�∗

G(�)′V−1�∗�′∗V
−1�(�) = 0: (22)

Notice that �= �∗(1) is always a solution, because in that case (22) reduces to

G′
∗V

−1�∗ − G′
∗V

−1�∗ = 0: (23)

The di2erence between parts (ii) and (iii) of the theorem is that in part (iii) the left
hand side of (23) reduces to 0−0. In practice, this coincidence only occurs if the %rst
step weighting matrix is proportional to V−1, and so is likely to be rare. Therefore,
Theorem 4(ii) is likely to be the most generally applicable result.

4. Inference about the parameters in misspeci�ed models

As remarked in the introduction, it may be of interest to test hypotheses about the
parameters even in misspeci%ed models. In this section we discuss the implications of
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our results for this issue and also propose certain statistics which can be used to test
hypotheses about the parameters.
Consider testing for the null hypothesis

H0 : a(�∗(W )) = 0

against the alternative

H1 : a(�∗(W )) �= 0;

where

Assumption 9. a :� → Rr is continuously di2erentiable and A∗ = 9a(�∗(W ))=9�′ has
rank r.

Notice that the dependence of �∗ on W translates to the null and alternative hy-
potheses. Two referees argue that this dependence makes the null hypothesis hard to
interpret. We do not dispute this point. However, as pointed out in the introduction, a
number of published papers do report the results from inference based on conventional
test statistics even though there is clear evidence that the model is misspeci%ed. In the
%rst part of this section, we consider the behaviour of these conventional test statistics
if the model is in fact misspeci%ed, and thereby provide guidance on the interpretation
of these types of results. At the end of the section, we briePy consider alternative
methods for testing the null given above because, at the very least, researchers are
evidently interested in performing these types of inferences in misspeci%ed models.
It is left to potential users to demonstrate that the null hypothesis can be interpreted
meaningfully for the particular case in hand.
Let �̂T denote the unconstrained GMM estimator and U�T denote the constrained

GMM estimator:

U�T = argmin
�∈�

gT (�)′WTgT (�)

subject to a(�) = 0:

De%ne a Wald statistic, a LM statistic, and a LR-like statistic by

WaldT = Ta(�̂T )′{ÂT (Ĝ′
TWT ĜT )−1Â′

T}−1a(�̂T );

LMT = TgT ( U�T )′WT UGT ( UG′
TWT UGT )−1 UG′

TWTgT ( U�T );

LRT = T (gT ( U�T )′WTgT ( U�T )− gT (�̂T )′WTgT (�̂T ));

where ÂT=9a(�̂T )=9�′, ĜT=(1=T )
∑T

t=1 9f(vt ; �̂T )=9�′, and UGT=(1=T )
∑T

t=1 9f(vt ; U�T )=
9�′.
In practice, inference about the parameters is typically based on the two step or

iterated estimator. In view of the comments following Theorems 2 and 3, we con%ne
our attention to the two-step estimator. We consider the limiting behaviour of the tests
statistics above when the weighting matrix is based on three di2erent choices of long
run covariance matrix estimator. The %rst choice is the covariance matrix estimator
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constructed under a martingale di2erence assumption. The second and third choices
are the centred and uncentred versions of the HACC estimator.
We begin with the martingale di2erence case. As remarked above, this scenario is

covered by Case (ii) (cf. Theorem 2).

Theorem 5. Let WT = ,̃−1
0 and suppose that Assumptions 1–5, 9, and Assumptions

A.1–A.9 hold. In addition, suppose that {f(vt ; �∗)− �∗} is a mean-zero iid or mar-
tingale di=erence sequence and that (12) holds. Then under the null hypothesis,

WaldT
d→

r∑
i=1

�Wi u
2
i ;

LMT
d→

p∑
i=1

�LMi u2i ;

LRT
d→

p∑
i=1

�LRi u
2
i ;

where {�Wi } are the eigenvalues of the r × r matrix

%1=2
2 A′

∗(A∗(G′
∗WG∗)−1A′

∗)
−1A∗%

1=2
2 ;

{�LMi } are the eigenvalues of the p× p matrix

%1=2
4 (G′

∗WG∗)−1%1=2
4 ;

%4 = (G′
∗W − H∗M∗)#11(G′

∗W − H∗M∗)′

+(Ip − H∗M∗)(#22 + #23 + #32 + #33)(Ip − H∗M∗)′

+(G′
∗W − H∗M∗)(#12 + #13)(Ip − H∗M∗)′

+(Ip − H∗M∗)(#21 + #31)(G′
∗W − H∗M∗)′;

M∗ = H−1
∗ − H−1

∗ A′
∗(A∗H−1

∗ A′
∗)

−1A∗H−1
∗ ;

{�LRi } are the eigenvalues of the p× p matrix

#1=2
∗ H−1

∗ A′
∗(A∗H−1

∗ A′)−1A∗H−1
∗ G∗′

WG∗(H−1
∗ A′

∗(A∗H−1
∗ A′)−1A∗H−1

∗ )′#1=2
∗ ;

%2 and #∗ are de*ned in Theorem 2, and ui are iid standard normal random variables.

Theorem 5 reveals that the limiting distributions of the three statistics are mixtures
of iid 	2 distributions, but that the mixtures are di2erent in general for each statistic.
This contrasts with their behaviour if the model is correctly speci%ed, i.e. �∗=0. In the
latter case, Newey and West (1987b) show that the three statistics are asymptotically
equivalent and converge to a 	2r distribution. The di2erences in misspeci%ed models are
due to the dependence of the asymptotic distributions of the unrestricted and restricted
estimators upon the asymptotic distributions of the derivative matrix and weighting
matrix.
We now consider the case in which WT = V̂−1

T (Case (iii) and Theorem 3 above).
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Theorem 6. Let WT = V̂−1
T . Suppose that Assumptions 1, 3–7, 9 and Assumptions

A.1–A.9 hold and that the null hypothesis is true. If T 1=2=b1=2+kT →  ∈ [0;∞),

1
bT

WaldT
d→

r∑
i=1

�Wi u
2
i ;

1
bT
LMT

d→
p∑
i=1

�LMi u2i ;

1
bT
LRT

d→
p∑
i=1

�LRi u
2
i ;

where {�Wi } are the eigenvalues of the r × r matrix

%1=2
3 A′

∗∗(A∗∗(G′
∗∗WG∗∗)−1A′

∗∗)
−1A∗∗%

1=2
3 ;

{�LMi } are the eigenvalues of the p× p matrix

%1=2
3 H∗(Ip − H∗∗M∗∗)′(G′

∗∗WG∗∗)−1(Ip − H∗∗M∗∗)H ′
∗%

1=2
3 ;

M∗∗ = H−1
∗∗ − H−1

∗∗ A
′
∗∗(A∗∗H−1

∗∗ A
′
∗∗)

−1A∗∗H−1
∗∗ ;

{�LRi } are the eigenvalues of the p× p matrix

#1=2
V B′DH−1

∗∗ A
′
∗∗(A∗∗H−1

∗∗ A
′
∗∗)

−1A∗∗H−1
∗∗ G

′
∗∗WG∗∗

×(H−1
∗∗ A

′
∗∗(A∗∗H−1

∗∗ A
′
∗∗)

−1A∗∗H−1
∗∗ )′D′B#1=2

V ;

ui ∼ N (− %−1=2
3 H−1

∗∗ G
′
∗∗C�∗∗; 1) is iid, %3 and #V are de*ned in Theorem 3 and As-

sumption 7, respectively. If T 1=2=b1=2+kT → ∞, (b2kT =T )WaldT
p→ 5W , (b2kT =T )LMT

p→ 5LM
and (b2kT =T )LRT

p→ 5LR where 5W , 5LM and 5LR are some positive constants.

From Theorem 6 it can be seen that the three test statistics diverge to positive in%nity
even under the null hypothesis regardless of the rate of increase of the bandwidth.
We consider the case in which WT = Ŝ−1

T (Case (iv) and Theorem 4 above). For
brevity we concentrate on the most general case in which G∗V−1�∗ �= 0.

Theorem 7. Let WT = Ŝ−1
T , and suppose that G∗V−1�∗ �= 0. Suppose that Assump-

tions 1, 3–9 and Assumptions A.1–A.10 hold. Then under the null hypothesis,
(b2T =T )WaldT

p→ cW , (b2T =T )LMT
p→ cLM and (b2T =T )LRT

p→ cLR where cW ¿ 0, cLM ¿ 0
and cLR ¿ 0.

Theorem 7 implies that all three test statistics diverge to positive in%nity even under
the null hypothesis. This behaviour arises because both the restricted and unrestricted
GMM estimators converge at a rate slower than

√
T .

Theorems 5, 6 and 7 have the following two implications. First, traditional hypothesis
testing is invalid under misspeci%cation. Even when the test statistic has a well-de%ned
limiting distribution, the test does not have correct size. Second, in the case where
HACC estimators are used, it is impossible to perform inference about the parameters
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which is robust to model misspeci%cation. The reason is that the rate of convergence
of the test statistics depends on whether the model is correctly speci%ed or not. Note
that this conclusion holds regardless of whether the HACC estimator is uncentred or
centred. In contrast, it is possible to perform inference in the situations covered by
Theorems 1 and 2 as we now demonstrate. However, we remind the reader that if the
model is misspeci%ed then the null hypothesis depends on W and so the tests presented
below are for di2erent null hypotheses.
We consider two approaches to performing this inference. The %rst approach is

to use the usual statistics but calculate the appropriate critical value associated with
the appropriate mixture distribution given in Theorem 5. These critical values can
be simulated as follows. Let �̂ be the eigenvalues of a consistent estimator of the
appropriate matrix given in Theorem 5. 10 The 1006% critical value can be calculated
as the 100(1 − 6)th percentile of the simulated distribution of

∑p
i=1 �̂iz

2
i where z =

(z1; z2; : : : zp) ∼ N(0; Ip). 11 The second approach to inference involves using di2erent
statistics as a basis for inference. We consider Cases (i) and (ii) in turn. If WT =W
(Case (i)) then H0 can be tested using the statistic

Q1 = Ta(�̂T )′[A(�̂T )%̂1A(�̂T )′]−1a(�̂T ); (24)

where %̂1 is a consistent estimator of %1 (given in Theorem 1). If T 1=2(WT − W )
converges to a normal distribution (Case (ii)) then H0 can be tested using the statistic

Q2 = Ta(�̂T )′[A(�̂T )%̂2A(�̂T )′]−1a(�̂T ); (25)

where %̂2 is a consistent estimator of %2 = H−1
∗ #∗H−1′

∗ (de%ned in Theorem 2). The
following corollary to Theorems 1 and 2 gives the limiting distributions of these two
statistics under H0.

Corollary 1. (i) If the conditions of Theorem 1 hold, V̂ 1
p→V1, WT=W1, Assumption 9

holds for W =W1 and a(�∗(W1))=0 then Q1
d→ 	2r . (ii) If the conditions of Theorem 2

hold, V̂ 2
p→V2, WT

p→W2, Assumption 9 holds at W = W2 and a(�∗(W2)) = 0 then
Q2

d→ 	2r .

The matrices V̂ i can be constructed using consistent estimators of the components
of Vi. The derivative matrix G∗ can be consistently estimated by GT (�̂T ) and the co-
variance matrices can be estimated using an HACC applied to the appropriate partial
sums. There is no theoretical reason to prefer either version of the test as there is no
theory regarding the optimal choice of weighting matrix in misspeci%ed models. Since
Q1 involves WT = W , this statistic is likely to be computationally more convenient.
However, if the moment condition involves an instrument vector then it may be de-
sirable to set WT equal to the inverse of the instrument cross product matrix and use

10 It follows from Tyler (1983, Lemma 2.2) that if M̂
p→M then �i(M̂)

p→ �i(M) where �i(:) denotes the
ith ordered eigenvalue of the matrix in parentheses.
11 Note that is the model is correctly speci%ed then �̂i

p→ 1 for i = 1; 2 : : : p and so this method yields the
appropriate critical value.
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Q2. Either choice is likely to be preferred to WT = ,̃−1
0 in Eq. (14) because the latter

induces a dependence on the asymptotic distribution of the %rst step estimator. It is
left to future work to provide further guidance on the choice between Q1 and Q2, and
also on the interpretation of this type of hypothesis in misspeci%ed models.

5. Concluding remarks

In this paper, we present a limiting distribution theory for GMM estimators when
estimation is based on a population moment condition which exhibits non-local (or
%xed) misspeci%cation. It is shown that if the parameter vector is overidenti%ed then the
weighting matrix plays a far more fundamental role in the analysis than would be the
case in correctly speci%ed or locally misspeci%ed models. Speci%cally, the probability
limit of the estimator depends on the probability limit of the weighting matrix and
the rate of convergence of the estimator depends on the rate of convergence of the
weighting matrix to its limit. The latter means that there is no single distribution theory
for GMM estimators in misspeci%ed models. Rather the form of the limiting distribution
has to be derived on a case by case basis. In this paper, we explicitly consider four
cases: (i) WT =W for all T ; (ii) T 1=2(WT −W ) converges to a normal distribution for
some matrix W ; (iii) WT is the inverse of a centered HACC estimator; (iv) WT is the
inverse of an uncentred HACC estimator. It is shown that T 1=2(�̂T − �∗) converges to
a limiting normal distribution in cases (i) and (ii). However, in case (iii) the limiting
behaviour depends on the rate of increase of the bandwidth. If the bandwidth does not
increase too quickly then (T=bT )1=2(�̂T−�∗) converges to a limiting normal distribution;
otherwise, bkT (�̂T −�∗) converges to a degenerate limiting distribution. It is shown that
in Case (iv) bT (�̂T − �∗) converges in probability to a constant in most cases of
practical relevance.
In practice, inference is most often based on the two-step or iterated estimator. In

correctly speci%ed models, these two estimators are asymptotically equivalent. However,
our results indicate this is not the case in misspeci%ed models. It is shown that in
situations covered by Case (ii) above then the asymptotic distribution of the estimator
on the ith step depends on the asymptotic distributions of the estimators on all previous
steps. Whereas in situations covered by Case (iii) above then this dependence only goes
back as far as the second step.
It is interesting to contrast these results with others in the literature. First, as men-

tioned, none of the distributions equal the ones derived by Hansen (1982) for the
correctly speci%ed case or Newey (1985) for the locally misspeci%ed case. Second,
the array of limiting behaviour described is di2erent from that derived by either
Gallant and White’s (1988) and White (1994) in their investigations of certain es-
timators in nonlinear models or Maasoumi and Phillips (1982) in their investigation of
the IV estimator in linear models. All three studies %nd T 1=2(�̂T − �∗) converges to a
normal distribution. Although none of these studies impose stationarity, it is convenient
to do so here for the purposes of comparison. Gallant and White’s (1988) framework
does not cover the general case of GMM estimation in misspeci%ed models. However,
as they note, it does cover GMM with a %xed weighting matrix. Therefore, their
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results correspond to our case (i) above. White (1994) develops a limiting distribution
theory for the quasi maximum likelihood estimator (QMLE) in non-locally misspec-
i%ed models. While QMLE can be viewed as a GMM estimator, this interpretation
involves the restriction that p= q. In this case, our stationarity assumption would im-
ply �∗ = 0 (see Proposition 1 in Section 2). It is easily shown that this restriction
implies T 1=2(�̂T − �∗) converges to a normal result and thus accords with White’s
(1994) results. Finally, Maasoumi and Phillips’ (1982) analysis can be considered as
a special case of our case (ii) above.
In the introduction it is noted that there is a growing interest in performing inference

within misspeci%ed models. Our results imply that if the parameter vector is overidenti-
%ed then it is inappropriate to use conventional statistics derived under the assumption
that the model is correctly speci%ed. Therefore, we use our results to propose two new
statistics which can be used to test hypotheses about the pseudo-parameters. Both these
statistics are computationally convenient and have limiting chi-squared distributions
under the null.
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Appendix A. Mathematical appendix

We %rst list the additional assumptions for the Lemmas and Theorems presented in
the paper.

Assumption A.1. f :V×�→ Rq.

Assumption A.2. � is a compact set.

Assumption A.3. f(:; �) is measurable for each �∈� and f(v; :) is continuous on �
for every v∈V.

Assumption A.4. f(vt ; �) satis%es the Uniform Weak Law of Large Numbers on �.

Assumption A.5. f(v; �) is twice continuously di2erentiable with respect to � on
int(�), and 9f(:; �)=9�′ and 9=9�′vec{9f(:; �)=9�′} are measurable on V for each
�∈ int(�).
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Assumption A.6. There exists a measurable function b(v) such that |fi(v; �)|¡b(v),
|9fi(v; �)=9�j|¡b(v) and |92fi(v; �)=9�j9�k |¡b(v) in a neighbourhood of �∗, for all
i=1; 2; : : : ; q, j; k=1; 2; : : : ; p and E[b(v)2]¡D, a %nite constant; there exist constants
D, 7¿ 0 and r¿ 1 such that E[{supi|fi(v; �∗)|}4(r+7)]¡D.

Assumption A.7. vt is an 6-mixing sequence with size −3r=(r − 1), r ¿ 1.

Assumption A.8. �∗ is an interior point of �.

Assumption A.9. (i)

Xt =




f(vt ; �∗)

vec{ (9=9�′)f(vt ; �∗) }
vec[ (9=9�′)vec{ (9=9�′)f(vt ; �∗) } ]




is an 6-mixing process with size −3r=(r − 1) for r ¿ 1 and E[‖Xt‖4r]¡∞;
(ii) E[sup�∈� ‖(92=9�9�′)fi(vt ; �)‖]¡∞.

Assumption A.10.

lim
T→∞

1
T
Var

[
T∑
t=1

(
f(vt ; �∗)

vec{ (9=9�′)f(vt ; �∗) }

)]

exists and is positive de%nite.

Assumptions A.5–A.6 guarantee the Uniform Weak Law of Large Numbers for gT
and GT among other things. Assumptions A.7–A.10 are for the asymptotic normality of
the normalized sum of f and its derivatives. More primitive conditions for the Central
Limit Theorem and the Uniform Weak Law of Large Numbers can be found in inter
alia Wooldridge (1994).
The following is a vector generalization of Theorems 9.4.1 and 9.3.3 of Anderson

(1994).

Proposition A.1. Suppose that
1.

f(vt ; �∗) = �∗ +
∞∑

s=−∞
�s9t−s (A.1)

where
∑∞

s=−∞ ‖�s‖¡∞, {9t} is a sequence of iid random vectors with *nite
fourth moments.

2. !(0)=1, !(x)=0 ∀|x|¿ 1, !(x)=!(−x) and |!(x)|6M for ∀x and some M ¿ 0,
!(x) is continuous in x, and its characteristic exponent, k, satis*es k¿ 1.

3. Let k denote the characteristic exponent of !. Then
∑∞

j=−∞ |j|k‖,j‖¡∞ where
,s is the jth population autocovariance of f(vt ; �∗).

4. bT → ∞ as T → ∞ and bkT =T → 0.

Then Assumption 7(i) holds.
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Remark. The assumption of linear processes is not necessary but simpli%es the expo-
sition. More primitive conditions can be given in terms of stationarity, dependence and
moments (Rosenblatt, 1959).

Proof of Proposition 1. Suppose to the contrary that the model is misspeci%ed, i.e.,
‖�(�)‖¿ 0 for all �∈�. By assumption

1
T

T∑
t=1

f(vt ; �̂T ) = 0: (A.2)

Since � is compact by Assumption A.2 and �(�) is continuous in � by Assumptions
A.5 and A.6, the Weierstrass theorem implies that there is 7¿ 0 such that

76 ‖�(�)‖ (A.3)

for all �∈�.∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

f(vt ; �̂T )− �(�̂T )

∣∣∣∣∣
∣∣∣∣∣6 sup

�∈�

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

f(vt ; �)− �(�)

∣∣∣∣∣
∣∣∣∣∣ : (A.4)

It follows from (A.2)–(A.4) that

76 ‖�(�̂T )‖6 sup
�∈�

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

f(vt ; �)− �(�)

∣∣∣∣∣
∣∣∣∣∣ : (A.5)

However, the right hand side of (A.5) is op(1) by Assumption A.4. A contradiction.

Proofs for the results in Section 3.

Note. we suppress the dependence of �̂T and �∗ upon WT and W respectively for
notational brevity.

We use the following results in the proofs of Theorems 1, 2 and 3. Under Assump-
tions 1, 2, 4–6 and Assumptions A.1–A.6, it follows from standard arguments (e.g.
Newey and McFadden’s (1994, Theorem 2.1) and Wooldridge’s (1994, Theorem 7.1)
that

�̂T
p→ �∗: (A.6)

where �∗ is de%ned by Assumption 5 for the appropriate choice of W .
It follows from Assumptions 1, 4–6, Assumptions A.1–A.9, and Eq. (A.6) that

Ip − H0;TMT
p→ Ip + (G′

∗WG∗)−1(�′∗W ⊗ Ip)G(2)
∗ ) = (G′

∗WG∗)−1H∗:

Thus, by Assumption 7, we have

(Ip − H0;TMT )−1H0;T
p→ − H−1

∗ : (A.7)
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Proof of Theorem 1. Put cT=T 1=2. It follows from Assumption 1, 2, 4–5, Assumptions
A.1–A.3, A.5–A.6, A.8–A.9, the conditions of the theorem and WT =W that

H1;T + H2;T (2) + H2;T (3) = H1;T + H2;T (2) + op(1)

d→N(0; G′
∗W#11WG∗ + G′

∗W#12 + #21WG∗ + #22):
(A.8)

Therefore, the desired conclusion follows from (32) and (33).

Proof of Theorem 2. Similarly, with cT = T 1=2,

H1;T + H2;T (2) + H2;T (3)
d→N(0; #∗); (A.9)

where

#∗ =G′
∗W#11WG∗ + #22 + G′

∗#33G∗ + G′
∗W#12

+G′
∗W#13G∗ + #21WG∗ + G′

∗#31WG∗ + #23G∗ + G′
∗#32:

Thus, the desired conclusion follows from (7) and (9).

Proof of Theorem 3. Put cT = (T=bT )1=2. Since (1=(bTT 1=2))
∑T

t=1 [f(vt ; �̂T ) − �∗] =
op(1), (T=bT )1=2(WT − W ) becomes dominant in the limiting expression. If we show
that (

T
bT

)1=2
(V̂ T − UVT ) = op(1); (A.10)

then the %rst result will follow from Assumption 7 and the delta method. Let

Ṽ T = ,̃0(�∗) +
T−1∑
i=1

!(i=bT )(,̃i(�∗) + ,̃i(�∗)′);

where

,̃i(�) =
1
T

T∑
t=i+1

(f(vt ; �)− gT (�))(f(vt−i ; �)− gT (�))′:

First, we shall show that (T=bT )1=2(V̂ T − Ṽ T ) = op(1), and next we shall show that
(T=bT )1=2(Ṽ T − UVT ) = op(1). The (j; k) element of the q× q matrix

V̂ T − Ṽ T = ,̃0(�̂T (1))− ,̃0(�∗)

+
T−1∑
i=1

!(i=bT )(,̃i(�̂T (1)) + ,̃i(�̂T (1))′ − ,̃i(�∗)− ,̃i(�∗)′)

is

V̂ T; jk − Ṽ T; jk = ,̃0; jk(�̂T )− ,̃0; jk(�∗)

+
T−1∑
i=1

!(i=bT )(,̃i; jk(�̂T (1)) + ,̃i; kj(�̂T (1))− ,̃i; jk(�∗)− ,̃i; kj(�∗))
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=

{
9
9� ,̃0; jk( U�T ) +

T−1∑
i=1

!(i=bT )
(
9
9� ,̃i; jk(

U�T ) +
9
9� ,̃i;kj(

U�T )
)}′

×(�̂T (1)− �∗);

where U�T is a point between �̂T (1) and �∗ and ,̃i; jk(�) is the (j; k) element of ,̃i(�).
Notice that

9
9� ,̃i;jk(�̂T ) =

1
T

T∑
t=1

(fj;�(vt ; U�T )− gj;T;�( U�T ))(fk(vt−i ; U�T )− gk;T ( U�T ))

+
1
T

T∑
t=1

(fj(vt ; U�T )− gj;T ( U�T ))(fk;�(vt−i ; U�T )− gk;T;�( U�T ));

where fj;�(vt ; �) = (9=9�)fj(vt ; �) and gj;T;�(�) = (1=T )
∑T

t=1 fj;�(vt ; �), and so

9
9� ,̃0; jk( U�T ) +

T−1∑
i=1

!(i=bT )
(
9
9� ,̃i; jk(

U�T ) +
9
9� ,̃i;kj(

U�T )
)

can be viewed as another HACC estimator of zero-mean process {f�(vt ; U�T )−gT;�( U�T )}
and thus is well-behaved under our assumptions. Since �̂T (1)− �∗ =Op(T−1=2),

V̂ T; jk − Ṽ T; jk =Op(T−1=2);

and thus(
T
bT

)1=2
(V̂ T − Ṽ T ) = Op

(
1
bT

)
= op(1): (A.11)

The (j; k) element of ,̃i(�∗) is

,̃i; jk(�∗) =
1
T

T∑
t=i+1

(fj(vt ; �∗)− gT;j(�∗))(fk(vt−i ; �∗)− gT;k(�∗))

=
1
T

T∑
t=i+1

(fj(vt ; �∗)− �∗; j + �∗; j − gT;j(�∗))

×(fk(vt−i ; �∗)− �∗; k + �∗; k − gT;k(�∗))

=
1
T

T∑
t=i+1

(fj(vt ; �∗)− �∗; j)(fk(vt−1; �∗)− �∗; k) (A.12)

+ (�∗; j − gT;j(�∗))
1
T

T∑
t=i+1

(fk(vt−i ; �∗)− �∗; k) (A.13)

+ (�∗; k − gT;k(�∗))
1
T

T∑
t=i+1

(fj(vt ; �∗)− �∗; j) (A.14)

+
T − i
T

(�∗; k − gT;k(�∗))(�∗; j − gT;j(�∗)): (A.15)
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The %rst term on the right hand side (A.12) corresponds to the (j; k) element of U,i. The
second and third terms (A.13) and (A.14) are Op(T−1) uniform in i by assumption.
The fourth term (A.15) is Op(T−1). By the de%nition of Ṽ T and UVT , it follows that

Ṽ T = UVT +Op

(
bT
T

)

and thus(
T
bT

)1=2
(Ṽ T − UVT ) = Op

((
bT
T

)1=2)
= op(1): (A.16)

Therefore (A.10) follows from (A.11) and (A.16). Since

dvec(G′
∗∗V

−1�∗∗) =−vec(G′
∗∗V

−1dVV−1�∗∗)

=−(�′∗∗V
−1 ⊗ G′

∗∗V
−1)vec(dV ) (A.17)

it follows from Theorems 3 and 2 in Magnus and Neudecker (1991, p. 151 and p. 30,
respectively) that

9G′
∗∗V

−1�∗∗
9vec(V ) =−(�′∗∗V

−1 ⊗ G′
∗∗V

−1): (A.18)

The %rst result follows from (A.10), Assumption 7 and the delta method. If T 1=2=b1=2+kT
→ ∞ in the second case, then it follows from the above argument that

bkT (V̂ T − UVT ) = op(1): (A.19)

The second result follows from (A.19) and Assumption 7.

Proof of Theorem 4. Part (i) follows directly from Assumption 8 and standard proofs
of convergence in probability (e.g. Newey and McFadden’s (1994, Theorem 2.1) and
Wooldridge’s (1994, Theorem 7.1). Now consider part (ii). For simplicity set �∗ =
�∗(1). Notice that S∗�∗ = 0 implies that p limT→∞MT = 0. If this restriction and
cT = bT are substituted into (9) then we obtain

bT (�̂T − �∗) =−[GT (�̂T )′Ŝ−1
T GT (�̂T ; �∗; �T )]−1GT (�̂T )′Ŝ−1

T bTgT (�∗)

+ op(1): (A.20)

Under the conditions of the theorem, it follows that

[GT (�̂′T )Ŝ
−1
T GT (�̂T ; �∗; �T )]−1GT (�̂T )′

p→ [G′
∗S∗G∗]−1G′

∗ =O(1); (A.21)

where G∗ = E[9f(vt ; �∗)=9�′]. Notice that Assumption 8 implies G′
∗S∗G∗ is full rank

and so nonsingular. Now consider hT = Ŝ−1
T bTgT (�∗). It is convenient to rewrite hT as

hT = Ŝ−1
T (bT =T 1=2)

[
T−1=2

T∑
t=1

(f(vt ; �∗)− �∗) + T 1=2�∗

]
: (A.22)
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Under our conditions T−1=2∑T
t=1 (f(vt ; �∗)− �∗) =Op(1) and so the %rst term on the

right hand side of (A.22) is op(1). Now consider bT Ŝ−1
T �∗. It is convenient to rewrite

this term as

bT Ŝ−1
T �∗ = bTS−1

T �∗ + bT [Ŝ−1
T − S−1

T ]�∗; (A.23)

where ST = V + BT�∗�′∗ and BT =
∑T−1

−T+1 !(i=bT ). From Hall (2000, Theorem 1) it
follows that

bTS−1
T �∗ =

bT
1 + BT�′∗V−1�∗

V−1�∗: (A.24)

Also by similar arguments to the proof of Hall’s (2000, Theorem 2) it follows that
bT [Ŝ−1

T −S−1
T ]�∗=op(1). Therefore, if we combine this result with (A.20)–(A.24) then

it follows that

bT (�̂T − �∗) =−[G′
∗S∗G∗]−1G′

∗
bT

1 + BT�′∗V−1�∗
V−1�∗ + op(1) (A.25)

and so

bT (�̂T − �∗)
p→ − ;

�′∗V−1�∗
[G′

∗S∗G∗]−1G′
∗V

−1�∗ = C∗

where ; = limT→∞ bT =BT ¿ 0 by Assumption 6(ii).
Finally consider part (iii). Clearly if G′

∗V
−1�∗ = 0 then C∗ = 0. In this case, �̂T

converges faster than bT . Consider T 1=2(�̂T − �∗). If we repeat the same sequence of
steps as in the proof of part (ii), then it can be shown that

T 1=2(�̂T − �∗) =−[G′
∗S∗G∗]−1G′

∗S∗T
−1=2

T∑
t=1

(f(vt ; �∗)− �∗)

=− [G′
∗S∗G∗]−1G′

∗T
1=2(Ŝ−1

T − S−1
T )�∗ + op(1): (A.26)

Under our assumptions, [G′
∗S∗G∗]−1G′

∗ = Op(1). Therefore we focus on T 1=2(Ŝ−1
T −

S−1
T )�∗. It is convenient to write

T 1=2(Ŝ−1
T − S−1

T )�∗ = Ŝ−1
T T 1=2(ST − ŜT )S−1

T �∗ (A.27)

and then consider the terms on the right hand side of (A.27) in turn. From
Hall (2000, Theorem 1) we have Ŝ−1

T = Op(1), and from (A.24) S−1
T �∗ = O(b−1

T ).
Therefore T 1=2(Ŝ−1

T − S−1
T )�∗ =Op(1), and hence T 1=2(�̂T − �∗) =Op(1), if ST − ŜT =

Op(bT =T 1=2). The latter is established in the following lemma. 12

Lemma A.1. Under the Assumptions of Theorem 3, ST − ŜT =Op(bT =T 1=2).

Proof. First notice that

,̂0 = ,̃0 + gT (�̂T (1))gT (�̂T (1))′

12 This result is separated out because it is of interest in its own right.
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and

,̂i = ,̃i +
1
T

T∑
t=i+1

f(vt ; �̂T (1))gT (�̂T (1))′ + gT (�̂T (1))
1
T

T∑
t=i+1

f(vt−i ; �̂T (1))′

− T − i
T

gT (�̂T (1))gT (�̂T (1))′

= ,̃i +
1
T

T∑
t=1

f(vt ; �̂T (1))gT (�̂T (1))′ + gT (�̂T (1))
1
T

T∑
t=1

f(vt ; �̂T (1))′

− gT (�̂T (1))gT (�̂T (1))′

− 1
T

i∑
t=1

f(vt ; �̂T (1))gT (�̂T (1))′ − gT (�̂T (1))
1
T

T∑
t=T−i+1

f(vt ; �̂T (1))′

+
i
T
gT (�̂T (1))gT (�̂T (1))′

= ,̃i + gT (�̂T (1))gT (�̂T (1))′

− 1
T

i∑
t=1

f(vt ; �̂T (1))gT (�̂T (1))′ − gT (�̂T (1))
1
T

T∑
t=T−i+1

f(vt ; �̂T (1))′

+
i
T
gT (�̂T (1))gT (�̂T (1))′;

for i¿ 0. Therefore, it follows that

ŜT = V̂ T +
T−1∑

i=−T+1

!(i=bT )gT (�̂T (1))gT (�̂T (1))′

+2
T−1∑
i=1

!(i=bT )

{
− 1
T

i∑
t=1

f(vt ; �̂T (1))gT (�̂T (1))′

− gT (�̂T (1)) 1T
T∑

t=T−i+1

f(vt ; �̂T (1))′ +
i
T
gT (�̂T (1))gT (�̂T (1))′

}
:

If this result and ST = V + BT�∗�′∗ are substituted into ŜT − ST then we obtain

ŜT − ST = D1;T + D2;T + D3;T ; (A.28)

where

D1;T = V̂ T − V;

D2;T =
T−1∑

i=−T+1

!(i=bT )[gT (�̂T (1))gT (�̂T (1))′ − �∗�′∗];
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D3;T = 2
T−1∑
i=1

!(i=bT )

{
− 1
T

i∑
t=1

f(vt ; �̂T (1))gT (�̂T (1))′ − gT (�̂T (1))

× 1
T

T∑
t=T−i+1

f(vt ; �̂T (1))′ +
i
T
gT (�̂T (1))gT (�̂T (1))′

}
:

By Assumption 7 (i) and the proof of Theorem 3, it follows that D1;T =Op(
√
bT =T ).

By Assumption 6(ii)
∑T−1

i=−T+1 !(i=bT ) = O(bT ), and under our assumptions

T 1=2[gT (�̂T (1))gT (�̂T (1))′ − �∗�′∗] = T−1=2
T∑
t=1

[f(vt ; �̂T (1))− �∗]�′∗ + op(1)

= Op(1)

and so D2;T =Op(bT =T 1=2). So now consider D3;T . First notice that

D3;T = 2
T−1∑
i=1

!(i=bT )[E1;T (i) + E2;T (i) + E3;T (i)];

where

E1;T (i) = T−1
i∑
t=1

f(vt ; �̂T (1))gT (�̂T (1))′ − i
T
�∗�′∗;

E2;T (i) =−gT (�̂T (1)) 1T
T∑

t=T−i+1

f(vt ; �̂T (1))′ − i
T
�∗�′∗;

E3;T (i) =
i
T
gT (�̂T (1))gT (�̂T (1))′:

Now, with some rearrangement, we have

T 1=2E1;T (i) = T−1=2
i∑
t=1

[f(vt ; �̂T (1))− �∗]�′∗ + op(1)

and so under our assumptions T 1=2E1;T (i)=Op(1). A similar analysis implies T 1=2E2;T (i)=
Op(1). Therefore, from Assumption 8(ii), 2

∑T−1
i=1 !(i=bT )[E1;T (i) + E2;T (i)] =Op(bT =

T 1=2). Finally, consider 2
∑T−1

i=1 !(i=bT )E3;T (i) = 2E3;T . Under our assumptions, we
have gT (�̂T (1))gT (�̂T (1))′ =Op(1) and

T−1∑
i=1

i
T
!
(
i
bT

)
=
∫ 1

1=T
[Tr]!

(
[Tr]
bT

)
dr

=
b2T
T

∫ T=bT

1=bT
x!(x) dx

=O
(
b2T
T

)
:
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Therefore E3;T =Op(b2T =T ). Combining these results we have D3;T =Op(bT =T 1=2), and
so

ŜT − ST =D1;T + D2;T + D3;T

=Op(
√
bT =T ) + Op(bT =T 1=2) + Op(bT =T 1=2) = Op(bT =T 1=2):

Proofs for the results in Section 4.

Note. we suppress the dependence of �̂T and �∗ upon WT and W respectively for
notational brevity.

We shall use the following results in the proofs of Theorems 5, 6 and 7. By the
standard argument, one can show that the constrained GMM estimator is consistent
under the null hypothesis. De%ne a Lagrangian for the constrained GMM estimation by

L(�; �) =−gT (�)′WTgT (�)− �′a(�)

where � is a r-dimensional vector of Lagrange multipliers. The constrained GMM
estimator U�T and the Lagrange multiplier U�T satisfy the following %rst-order necessary
condition:[−GT ( U�T )′WTgT ( U�T )− UA′

T
U�T

−a( U�T )

]
=

[
0

0

]
;

where UAT = 9a( U�T )=9�′. De%ne
UH 1;T ; UH 2;T ; UH 2;T (1); UH 2;T (2); UH 2;T (3); UH 3;T ; UMT

by

H1;T ; H2;T ; H2;T (1); H2;T (2); H2;T (3); H3;T ; MT

with �̂T replaced by U�T , respectively. Applying the Mean Value Theorem to the
%rst-order condition yields[− UH 1;T − UH 2;T (2)− UH 2;T (3)

0

]
−

 UMT − UH−1

0;T
9a(�̃T )
9�

9a(�̃T )
9�′ 0


[

√
T ( U�T − �∗)
√
T U�T

]

=op(1);

where �̃T is a point between U�T and �∗. By the uniform convergence,[− UH 1;T − UH 2;T (2)− UH 2;T (3)

0

]
−
[
H∗ A′

∗

A∗ 0

][√
T ( U�T − �∗)
√
T U�T

]
= op(1):

Thus, [√
T ( U�T − �∗)
√
T U�T

]
=

[
H∗ A′

∗

A∗ 0

]−1 [− UH 1;T − UH 2;T (2)− UH 2;T (3)

0

]
+ op(1):
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Solving for
√
T ( U�T − �∗) yields

√
T ( U�T −�∗) = −[H−1

∗ −H−1
∗ A′

∗(A∗H−1
∗ A′

∗)
−1A∗H−1

∗ ][ UH 1;T + UH 2;T (2)+ UH 2;T (3)]

+ op(1)

=−M∗[ UH 1;T + UH 2;T (2) + UH 2;T (3)] + op(1): (A.29)

Combining the expression for
√
T (�̂T − �∗) and that for

√
T ( U�− �∗) gives

√
T (�̂T − U�T ) =−H−1

∗ A′
∗(A∗H−1

∗ A′
∗)

−1A∗H−1
∗ [H1;T + H2;T (2) + UH 2;T (3)]

+ op(1): (A.30)

Proof of Theorem 5. First, we consider the Wald test. Since

WaldT =
√
T (�̂T − �∗)′Â′

T{ÂT [GT (�̂T )′WTGT (�̂T )]−1ÂT )′}−1ÂT
√
T (�̂T − �∗);

Â′
T{ÂT [GT (�̂T )′WTGT (�̂T )]−1Â′

T}−1ÂT
p→A′

∗(A∗(G′
∗WG∗)−1A′

∗)
−1A∗; (A.31)

and
√
T (�̂T − �∗)

d→N(0; %2)

by Theorem 2, the desired conclusion immediately follows.

Second, we consider the Lagrange multiplier test. It follows from the Mean Value
Theorem and the %rst-order condition in population that

UG′
TWT

√
TgT ( U�T )

= UG′
TWT [

√
T (gT (�∗)− �∗) +

√
T�∗ + GT (�̃T )

√
T ( U�T − �∗)] + op(1)

= G′
∗W

√
T (gT (�∗)−�∗)+

√
T ( UGT −GT (�∗))′WT�∗+

√
T (GT (�∗)−G∗)′WT�∗

+ G′
∗
√
T (WT −W )�∗ + G′

∗WG∗
√
T ( U�T − �∗) + op(1); (A.32)

where �̃T is a point between U�T and �∗. As in the derivation of (9), we obtain
√
T ( UGT − GT (�∗))′WT�∗ = [(�′∗W ⊗ Ip)G(2)

∗ ]
√
T ( U�T − �∗) + op(1): (A.33)

Substituting (A.33) into (A.32) produces

UG′
TWT

√
TgT ( U�T )

=G′
∗W

√
T (gT (�∗)− �∗) +

√
T (GT (�∗)− G∗)′WT�∗ + G′

∗
√
T (WT −W )�∗

+ [G′
∗WG∗ + (�′∗W ⊗ Ip)G(2)

∗ ]
√
T ( U�T − �∗)
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=G′
∗W

√
T (gT (�∗)− �∗) +

√
T (GT (�∗)− G∗)′WT�∗ + G′

∗
√
T (WT −W )�∗

+H∗
√
T ( U�T − �∗): (A.34)

It follows from (A.29) that
√
T ( U�T − �∗) =−M∗[

√
T (gT (�∗)− �∗) +

√
T (GT (�∗)− G∗)′W�∗

+G′
∗(WT −W )�∗]: (A.35)

Substituting (A.35) into (A.34) yields

UG′
TWT

√
TgT ( U�T ) = (G′

∗W − H∗M∗)
√
T (gT (�∗)− �∗)

+ (Ip − H∗M∗)
√
T (GT (�∗)− G∗)′WT�∗

+(Ip − H∗M∗)
√
TG′

∗(WT −W )�∗: (A.36)

The desired conclusion follows from (12), (A.36) and the de%nition of the LM
statistic.
Lastly, we consider the Likelihood Ratio-like test. Since

LRT =
√
T ( U�T − �̂T )′Ĝ′

TWT

√
TgT (�̂T ) +

√
T ( U�T − �̂T )′Ĝ′

TWT ĜT

√
T ( U�T − �̂T )

+ op(1)

=
√
T ( U�T − �̂T )′Ĝ′

TWT ĜT

√
T ( U�T − �̂T ) + op(1);

where the second equality follows from the %rst-order condition for the unconstrained
GMM estimator, the desired conclusion follows from (A.30).

Proof of Theorem 6. The proof of Theorem 6 is analogous to that of Theorem 5 except
that Theorem 3 is applied and thus is omitted. If T 1=2=b1=2+kT → ∞, we have

b2kT
T

WaldT
p→ �′∗∗CG∗∗H−1

∗∗ A
′
∗∗(A∗∗(G′

∗∗WG∗∗)−1A′
∗∗)

−1A∗∗H−1′
∗∗ G′

∗∗C�∗∗

= 5W ;

b2kT
T
LMT

p→ �′∗∗CG∗∗(I − H∗∗M∗∗)′G′
∗∗WG∗∗(I − H∗∗M∗∗)G′

∗∗C�∗∗

= 5LM ;

b2kT
T
LRT

p→ �′∗∗CG∗∗H−1
∗∗ A

′
∗∗(A∗∗H−1

∗∗ A
′
∗∗)

−1A∗∗H−1
∗∗ G

′
∗∗WG∗∗

×(H−1
∗∗ A

′
∗∗(A∗∗H−1

∗∗ A
′
∗∗)

−1A∗∗H−1
∗∗ )′G∗∗C�∗∗

= 5LR:
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Proof of Theorem 7. It follows from (A.25) and (A.31) that

b2T
T

WaldT = C′
∗A

′
∗(A∗(G′

∗WG∗)−1A′
∗)

−1A∗C∗ + op(1):

Since

UH 1;T = GT ( U�T )′WTT−1=2
T∑
t=1

[f(vt ; �∗)− �∗] = Op(1);

UH 2;T (2) = T 1=2[GT (�∗)− G∗]′WT�∗ =Op(1);

and

bT√
T

UH 2;T (3) =G′
∗bT (WT −W )�∗

=G′
∗bT (Ŝ

−1
T − S−1

T + S−1
T − S∗)�∗

=G′
∗bT (Ŝ

−1
T − S−1

T )�∗ + G′
∗bTS

−1
T �∗

=G′
∗Ŝ

−1
T (ST − ŜT )bTS−1

T �∗ + G′
∗bTS

−1
T �∗

=
;

�′∗V−1�∗
G′

∗V
−1�∗ + op(1);

where the latter follows from the arguments following Eq. (A.27), Lemma A.1 and
G′

∗S∗�∗ = 0, it follows that

bT√
T
{ UH 1;T + UH 2;T (2) + UH 2;T (3)}= ;

�′∗V−1�∗
G′

∗V
−1�∗ + op(1): (A.37)

By (A.29), (A.30) and (A.37), we obtain

bT√
T
( U�T − �∗) =−;M∗G′

∗V
−1�∗

�′∗V−1�∗
+ op(1); (A.38)

bT√
T
(�̂T − U�T ) =− ;

�′∗V−1�∗
H−1

∗ A′
∗(A∗H−1

∗ A′
∗)

−1A∗H−1
∗ G′

∗V
−1�∗

+op(1): (A.39)

Therefore

b2T
T
LMT =

(
;

�′∗V−1�∗

)2
�′∗V

−1G∗M ′
∗(G

′
∗S∗G∗)M∗G′

∗V
−1�∗ + op(1);

b2T
T
LRT =

(
;

�′∗V−1�∗

)2
�′∗V

−1G′
∗H

−1
∗ A′

∗(A∗H−1
∗ A′

∗)
−1A∗H−1

∗

×G′
∗S∗G∗(H−1

∗ A′
∗(A∗H−1

∗ A′
∗)

−1A∗H−1
∗ )′G′

∗V
−1�∗ + op(1):
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