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Abstract

We develop evidence on the finite sample properties of the Generalized Method of
Moments (GMM) in an asset pricing context. The models imply nonlinear, cross-
equation restrictions on predictive regressions for security returns. We find that a two-
stage GMM approach produces goodness-of-fit statistics that reject the restrictions too
often. An iterated GMM approach has superior finite sample properties. The coefficient
estimates are approximately unbiased in simpler models, but their asymptotic standard
errors are understated. Simple adjustments for the standard errors are partially successful
in correcting the bias. In more complex models the coefficients and their standard errors
can be highly unreliable. The power of the tests to reject a single-premium model is higher
against a two-premium, fixed-beta alternative than against a conditional Capital Asset
Pricing Model with time-varying betas.
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1. Introduction

Because of its simplicity, flexibility, and generality Hansen’s (1982) Generalized
Method of Moments (GMM) has become an important technique for estimating
and testing financial asset pricing models. While the asymptotic properties of
the GMM are well understood, evidence on its finite sample properties is
sparse. Existing studies include Tauchen (1986), Kocherlakota (1990), and Mao
(1991), who examine nonlinear consumption-based asset pricing models;
Flesaker (1993), who examines nonlinear term structure models; MacKinlay
and Richardson (1991), who examine zero restrictions on ‘market model’ re-
gression coeflicients, as implied by the Capital Asset Pricing Model (CAPM);
and Nelson and Startz (1990), who examine a simple linear regression model.

This paper develops evidence on the finite sample properties for models that
imply nonlinear, cross-equation restrictions on regressions that predict security
returns. The cross-equation restrictions can be motivated by latent variables asset
pricing models (Hansen and Hodrick, 1983; Gibbons and Ferson, 1985). They also
arise in versions of the consumption-based Capital Asset Pricing Model (Hansen
and Singleton, 1983; Ferson, 1983), and are used in a number of other economic
applications (see Aigner et al., 1984; Chamberlain and Goldberg, 1990).

Gibbons and Ferson (1985) do not reject a single-premium, latent-variable
model for stock returns. However, subsequent studies, based on large sample
theory, reject a single latent variable. Since these rejections are based on the
asymptotic distribution of the test statistics, it is important to verify that
rejections of the models are not the result of finite sample bias.

We focus on the size and power of the GMM test statistics, the sampling
properties of the coefficient estimators, their standard errors, and t-ratios. We
examine both two-stage and iterated GMM estimators. The two procedures
have the same asymptotic properties, and studies typically employ only one of
the two. We find that in larger models, the two-stage GMM tests reject the null
hypothesis too often, while an iterated GMM test statistic conforms more
closely to the asymptotic distribution. We find that the GMM coeflicient
estimators are approximately unbiased in the simpler models. However, the
standard errors for the coefficients are understated, using the asymptotic for-
mula from Hansen (1982). The understatement is more severe in systems with
large numbers of assets and small sample sizes. In more complex models, the
coefficient estimates and the standard errors can be biased by large amounts. We
investigate simple adjustments to reduce the finite sample bias.

We examine the power of the tests for a single latent variable against two
alternative models. Our first alternative is a two-latent-variables model (i.e., two
time-varying risk premiums with fixed betas). Our second alternative is a condi-
tional Capital Asset Pricing Model (CAPM) with time-varying market betas.
We find that the power of the tests against the CAPM with time-varying betas is
low and the power against the two-premium alternative is higher.
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The paper is organized as follows: Section 2 reviews latent variables models
and the cross-equation restrictions. Section 3 describes our methodology.
Section 4 describes the data, and Section 5 presents the simulation results.
Section 6 concludes.

2. Latent variables models of expected returns

We regress asset returns R;, over time on a vector of predetermined variables,
Z._.. We use the projections 8;Z,_, to model the conditional expected
returns. We study tests of cross-equation restrictions on the coefficients §;
to detect reduced dimensionality across assets in the time-varying expected
returns. The restrictions can be motivated by a class of beta pricing models,
including conditional versions of the CAPM, the Arbitrage Pricing Theory
(APT), and the intertemporal asset pricing models of Merton (1973), Long
(1974), Breeden (1979), and Cox, Ingersoll, and Ross (1985). Consider the model
in (1):

K

E(Ry|Z, 1) = 2o(Z:-1) + Zbijij(zhl), i=0,...,N, t=1,...,T,
i=1

(1

where A,(Z,_,) is a market-wide expected risk premium and b;,, ..., by are the
conditional betas of asset i relative to the K underlying, unobserved risk factors.
Z,_ is the vector of instruments for the information available when prices are
set at time r — 1, and E(R;|Z,_,) is the expected return conditional on this
information. In general, the b;; can depend on Z, _ ;. The latent variables models
specialize Eq. (1) by assuming that the betas are fixed parameters over time and
that the 1;(Z, ) are the latent variables.

Define the 7' x N excess return matrix r, with typical element r;, = R;, — Ry,
i=1,..., Nand t = 1,..., T, where Ry, is the return of an arbitrarily chosen
zeroth asset. Define the 7'x K matrix of the A;(Z,_,) as A(Z), where K is the
number of latent variables. Define the 7' x L matrix of Z,_,’s as Z. Assuming
fixed betas, Eq. (1) implies the following expression for the expected excess

! The first studies to interpret such asset pricing models were Hansen and Hodrick (1983) and
Gibbons and Ferson (1985). Foerster (1987), Ferson, Foerster, and Keim (1993), and Campbell and
Hamao (1992) examine stock returns using similar models. Stambaugh (1988) and Chang and
Huang (1990) examine bond returns. Campbell (1987) and Ferson (1989, 1990) study both stock
and bond returns. Forward currency premiums are examined by Hansen and Hodrick (1983),
Hodrick and Srivastava (1984), Cumby (1987, 1988), Campbell and Clarida (1987), and Jorion and
Giovannini (1987). Bessembinder and Chan (1992) study futures. International equity returns are
examined by Campbell and Hamao (1992), Harvey (1991), and Chang, Prinegar, and Ravichandran
(1992). See Wheatley (1989) for a critique of latent variable models of asset pricing and Ferson (1993)
for a recent review.
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returns:
E(rlZ) = A2)B, 2

where f is the K x N matrix of conditional betas for the excess returns
(Bij = bij — bo;) and E(r|Z) is the Tx N matrix of the E(r,|Z,_,), for =
I,...,Tandi=1,..., N.

Partition the excess returns as r = (r, r,), where r, is a Tx K matrix of
reference assets and ry is a T x (N — K) matrix of test assets. Partition the matrix
of betas conformably as § = (8, f,). The reference assets are chosen so that the
K x K matrix f, is nonsingular. From the partitioned Eq. (2), solve for the risk
premiums and substitute back A(Z) = E(r{|Z)B{!, to obtain the following
restrictions:

E(r|Z) = E(r|2)C, 3)

where C is a K x(N — K) matrix equal to 8;'B,. Following Gibbons and
Ferson (1985), assume that the conditional expected excess returns of the
reference assets are linear regression functions of the instruments. Eq. (3)
restricts the linear regressions as follows:

r1=251+u1, r22251C+u2, (4)

where Z includes a constant term, é; is an L x K matrix of regression coefh-
cients, and E(u,|Z) = E(u,|Z) = 0. The latent variable model in Eq. (4) implies
that if there are K common factors that describe expected excess returns over
time, then linear combinations of the regression functions that predict the excess
returns of K reference assets are sufficient to capture the predictable variation in
all returns.

3. Methodology
3.1. GMM estimation

Define the T'x N matrix of error terms from eq. (4) as v = (u; u,). The model
implies E(u|Z) = 0, therefore E(#'Z) = 0. Define an N x L matrix of sample
orthogonality conditions: Gy = (' Z/T). Partition Gy into rows of length L and
stack these into a column vector, gy, with a length equal to the number of
orthogonality conditions, N L. Obtain the GMM estimators by searching for the
parameter vector 0, consisting of the elements of é and C, that minimizes
a quadratic form g7 Wg;. The NL x NL weighting matrix W is the inverse of
a consistent estimate of the covariance matrix of the orthogonality conditions.
We use the sample weighting matrix described by Hansen (1982),
W= [(1/DZ(uu)(Z,~Z;-1)] "', where ® denotes the Kronecker product.
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Hansen showed that at the minimizing parameter vector, TgrWgr is asymp-
totically chi-square distributed. its degrees of freedom are equal to the difference
between the number of orthogonality conditions and the number of parameters:
NL — [KL + (N — K)K] = (N — K)L — K). A test of the model requires L in-
formation variables, where L > K, and N assets, where N > K. The GMM
estimator’s asymptotic variance matrix is [ T(dg/00) W(dg/08)] ~*.

Hansen and Singleton (1982) describe a two-step approach for implementing
the GMM. In the first step, they substitute the identity matrix for W to obtain
initial estimates of the parameters, and then use these parameters to form an
estimate of W. They use the estimate of W in the quadratic form, g7 Wyr,
to obtain second-stage estimates of the parameters, which they use to form a
second-stage estimate of the weighting matrix and the quadratic form. We call
this a Two-Stage GMM approach. In practice, it may be desirable to iterate,
repeatedly updating the weighting matrix until the procedure converges. We call
this approach Iterated GMM.

We find that the asymptotic standard errors are understated in finite samples,
and we therefore examine adjustment factors for the standard errors. These are
analogous to the usual bias adjustment for the maximum likelihood estimator of
a covariance matrix (e.g., Hinkley, 1977). The traditional adjustment is to multi-
ply the asymptotic variance by [TAT — P)], where T is the number of time series
observations and P = KL + (N — K)K is the number of model parameters. We
also evaluate an alternative adjustment, which is to multiply the asymptotic
variance by [(N + L)T/(N + L)T — Q)], where @ = P + [(NL)* + NL]/2. The
alternative adjustment accounts for the number of time series observations
provided by the instruments plus the assets, and for the number of model
parameters plus the number of elements in the weighting matrix.

3.2. The simulations

This paper’s approach complements that of Tauchen (1986), Cecchetti, Lam,
and Mark (1990), Kandel and Stambaugh (1990), Gallant and Tauchen (1989),
and others who simulate model economies. Those studies use discrete state
processes to approximate the forcing equations, and they calibrate the models
by matching selected moments of the data. As the GMM is likely to be sensitive
to moments in the data not matched by the artificial economies, we use a more
direct approach, resampling the data in a manner similar to the bootstrap
methods of Efron (1982). We make the artificial samples satisfy a given model by
restricting the particular moments that are the focus of the asset pricing
hypothesis. The procedure does not require us to completely specify a model
economy for each hypothesis, and it attempts to retain many of the statistical
properties of the original data. Qur approach, which is described in more detail
in the appendix, can also be used to examine finite sample issues in other
contexts.
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3.3. A single-premium economy

The following regression system describes our first economy, a conditional
CAPM with fixed betas:

i = BimE(rmlZi-1) + €4, i=1,...,N, t=1..,T, (5)
E(eqZ,-1) =0,
EB(rlZ:-1) = 6wl 1, t=1,..., T,

where r;, is the excess return of an asset, r,, is the excess return of the market
portfolio, and f;,, is the market beta coefficient of asset i. The instrument set is
Z,_ and J,, is a vector of coefficients. The restricted regression system, Eq. (4),
specializes when K = 1 as follows:

Fu=01Z, 1+ uy, (6)
rj!:Clj((s/IZI—l)+ujta t:1"’-’T9 j:2,...,N,

where r; is the reference asset excess return. The test asset excess returns are
Fa, ..., Iy, and Cq,, ..., Cyy are the test assets’ ‘relative betas’. The CAPM
implies that Cy; = f,n/B1m j = 2, ... . N. The return of the Center for Research
in Security Prices (CRSP) value-weighted common stock index, in excess of
a one-month Treasury bill return, is our proxy for r,,. While it is used to
generate the data for our simulations, we assume that the econometrician does
not observe the market index. Therefore, it is not included in the regression
system (6). We provide a more detailed description in the appendix.

In some of our simulations we reuse the Z,_,,t =1, ..., T, from the actual
data. This allows the artificial data to retain both the autocorrelation and the
cross-correlation properties of the instruments. For most of the experiments, we
resample at random with replacement to generate the vector of the error terms
{uj}.j =1, ..., N. This preserves the covariance structure across the assets, but
breaks the link between the error terms and Z,_; so that the artificial data will
satisfy the condition E(u|Z, - {) = 0. As a consequence, the artificial data will not
display conditional heteroskedasticity of the residual.

Of course, the GMM estimators do not assume homoskedasticity. One
reason for using the GMM in financial models is its generality, and in particular
its ability to handle conditional heteroskedasticity. We therefore examine sev-
eral refinements of the resampling scheme. In one we generate artificial data that
display conditional heteroskedasticity, which we describe in the appendix. We
also examine the sensitivity to conditioning on a particular sample path of the
instruments by modelling {r,, Z,-1} as a first-order vector autoregression
(VAR). We resample from the vector of residuals, using the unconditional means
as starting values, to generate a different series of the {Z,_,} for each sample of
the artificial data.
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4. The data

We design our experiments to be representative of the many latent-variable
studies that have used the GMM. We conduct simulations where the number of
observations T ranges from 60 to 720, the number of assets N ranges from 3 to
14, and the number of instruments L is either 3 or 8. Since the single-premium
model has received the most attention in the literature, we concentrate on this
case, although we also examine models with K = 2 latent variables.

The assets are the monthly returns on portfolios of common stocks and
bonds, measured in excess of the one-month U.S. Treasury bill rate. The data are
provided by CRSP. We use ten value-weighted New York Stock Exchange
common stock ‘size’ portfolios [grouped on market equity capitalization at the
beginning of each year] and twelve value-weighted industry portfolios [ grouped
by two-digit SIC codes, following Breeden, Gibbons, and Litzenberger (1989)].
We also include one long-term corporate and one government bond portfolio.
These are Ibbotson Associates data provided by CRSP.

The conditioning information available at time tr — 1, denoted by Z,_,,
includes a constant, the Treasury bill return for month ¢, and the lagged CRSP
value-weighted market return. This small instrument set contains the minimal
number of instruments to obtain overidentification in a two-latent-variable
model. We are interested in the sensitivity of the finite sample properties to
a strategy of using a larger set of instruments. The large instrument set includes
the small instrument set plus these additional variables: the yield spread of
a three-month over a one-month Treasury bill, the spread between the yields-
to-maturity of AAA-rated corporate bonds and the three-month bill, the spread
between the yields-to-maturity of BAA corporate bonds and the Composite of
corporate bond yields, the annual dividend yield of the CRSP value-weighted
common stock index, and a dummy variable for the month of January.

5. Simulation results
5.1. Evaluating the simulation methodology

The simulation technique may produce unreliable finite sample distributions,
especially when the number of assets, N, is relatively large and the number of
observations, T, is small. Therefore, we conduct an experiment to evaluate the
methodology.

Choosing N = 12 and T = 60, we generate 5,000 samples of artificial data
that satisfy the single-latent-variable model. We use the small instrument set. We
use a Monte Carlo approach similar to that described in the appendix, except
that a normal random number generator is used for the error terms. These 5,000
samples determine an idealized ‘true’ sampling distribution for the test statistic.
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Table 1
Experiments to assess the accuracy of the bootstrap procedure

Results of bootstrapping when the finite sample distribution of the test statistic is known. The
idealized ‘true’ sampling distribution is based on 5,000 simulation trials. The data for each trial
satisfy the single-latent-variable model. The sample size is 7' = 60, the number of assets is N = 12,
and the number of instruments is L = 3. The test statistic is the two-stage or iterated GMM
goodness-of-fit statistic for a single-latent-variable model. Five of the idealized data samples are
chosen at random, and each one is used (in experiments 1 through 5) as if it were the actual sample
date, to calibrate a bootstrap experiment with 1,000 trials.

Critical values are set to the following Summary statistics of
right-tail areas of chi-square distribution the goodness-of-fit tests

0.500 0250 0.100 0050 0.025 0010 Mean Median Std. dev.

Fraction exceeding critical values
Two-stage results

Idealized ‘true’ 0.836 0.560 0.263 0.128 0.058 0.015 27.169 26992 5853
Bootstrap simulation®
Experiment 1 0.809 0.535 0279 0138 0062 0014 27023 26716 6.145
Experiment 2 0.794 0508 0.235 0.113 0037 0.007 26356 26206 5873
Experiment 3 0939 0818 0.640 0523 0375 0.206 33.825 34362 7.850
Experiment 4 0939 0806 0.618 0480 0345 0.191 33.215 33520 7.838
Experiment 5 0.832 0579 0.295 0.148 0.069 0.017 27418 27.186 5989
Iterated results
idealized ‘true’ 0534 0.191 0035 0011 0005 0.002 22015 21761 4.730
Bootstrap simulation®
Experiment 1 0.566 0.215 0.041 0011 0007 0.002 22276 22060 4.838
Experiment 2 0.550 0.182 0.031 0.006 0000 0.000 21952 21925 4.582
Experiment 3 0.549 0.208 0.067 0.040 0025 0.016 22566 21837 5742
Experiment 4 0.556 0.220 0.043 0024 0017 0.011 22345 22075 5.392

Experiment 5 0.557 0200 0.047 0013 0005 0002 22308 22.112 4873

2An approximate standard error of the difference between the two fractions exceeding a critical value
®, based on n, and n, binomial trials, is [a(1 — a)/n, + ol — a)/n,]"2. For n, = 5000 and
n, = 1,000, and « values of 0.500, 0.250, 0.100, 0.050, 0.025, 0.010, the standard errors are 0.017,
0.015, 0.010, 0.008, 0.005, 0.003 respectively.

We select five of these samples at random from each of which we generate 1,000
replications of the bootstrap simulation. If the bootstrap simulation procedure
is reliable, the idealized true distribution should be revealed by the five boot-
strap experiments.

Table 1 reports the results of the experiments. The distributions of the
statistics are summarized by their means, medians, standard deviations, and the
tail areas to the right of various critical values. In most of the experiments, the
idealized true sampling distribution and the distributions generated by the
bootstrap procedures lead to similar impressions about the test statistics. The
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distributions conform better for iterated than for two-stage GMM. However,
some of the evidence (especially experiments 3 and 4) shows that the bootstrap-
ped p-values can differ from those of the true sampling distribution by a
significant amount. We therefore check the sensitivity of our bootstrap results
by using the traditional Monte Carlo simulation approach in a number of
experiments.

5.2. Coefficient estimators and goodness-of-fit statistics

Table 2 summarizes the results of using the GMM to estimate and test
a single-latent-variable model when the single-premium economy generates the
data. The table shows systems with N = 3 to N = 14 assets and samples of
T = 60, 120, and 720 time-series observations. The first (second) row reports
results for two-stage (iterated) GMM. The first column of Table 2 shows the
average percentage bias in the C coefficient estimates; the second column shows
the mean absolute percentage bias. We compute for each asset the average, over
the 1,000 bootstrap replications, of the percentage difference between the coeffi-
cient estimate and the true coefficient. The mean (mean absolute) percentage
bias is the average (average absolute) value across the assets. When T = 720, the
bias is small. The two-stage and iterated GMM results are similar. Even with
T = 60, the average bias of the estimators is small. Using the small instrument
set with three to twelve assets, the average bias is no larger than 3.4% of the true
coeflicient. The mean absolute bias is usually close to the mean bias. This shows
that when one asset’s coefficient is biased in a particular direction, the other
assets’ coefficients are usually biased in the same direction. With larger numbers
of assets, the bias tends to increase in absolute magnitude.

The right-hand columns of Table 2 evaluate the finite sample distributions of
the test statistics, and report fractions rejected at various nominal significance
levels. The fractions are the portion of the 1,000 replications of an experiment in
which the test statistic exceeded a critical value from the chi-square distribution.
With only three assets, the number of stages for convergence of iterated GMM is
small, the difference between the two statistics is small, and the results for either
set of instruments are similar. However, the results are sensitive to the number of
assets.

With larger numbers of assets, the number of stages for convergence is larger
and the differences between iterated and two-stage GMM are greater. With
T = 60 observations, the accuracy of the two-stage test statistic decreases
markedly as the number of assets increases. At a nominal 10% significance level,
the rejection rates for two-stage GMM are 19.2% when N = 3, increasing to
36.2% when N = 14 (small instrument set). While two-stage GMM rejects too
often, the iterated test statistic rejects too infrequently. This tendency is more
pronounced as the number of assets increases. In many of the experiments where
T = 60, the correct rejection frequency is ‘bracketed’ by the two test statistics.
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Table 2
Finite sample properties of the Generalized Method of Moments (GMM) in latent-variables models
for expected returns: properties of the coefficient estimators and the goodness-of-fit statistics

Results of estimating models with K = 1 latent variable, using artificial data generated so that
a single-latent-variable model is the true model. For the small instrument set, Z consists of a constant,
the one-month nominal Treasury bill rate, and the one-month lagged return on the CRSP value-
weighted stock index. For the large instrument set, Z comprises the small instrument set and these
additional variables: the lagged yield spread between a three-month and a one-month Treasury bill,
the spread between the yield-to-maturity of AAA-rated corporate bonds and the lagged three-month
Treasury bill return, the spread between the yield-to-maturity of BAA corporate bonds and the
composite of corporate bond yields, the dividend yield of the CRSP value-weighted stock index, and
a dummy variable for the month of January. The model is

ry =20+ uy, ry =230C + u,,

where r, represents the returns of the reference asset in excess of the one-month Treasury bill rate
and r, is the excess returns of N — 1 test assets. N is the number of assets. d is an L vector,and C is an
N — 1 vector of coefficients. Each C; element of C is the relative beta of asset i with respect to the
reference asset r,. The latent-variable model implies that E(u,u, | Z) = 0. The results are based on
1,000 bootstrap replications. For each replication, the test statistics are evaluated for both two-stage
and iterated GMM. The first row of numbers corresponds to two-stage GMM, the second row of
numbers corresponds to iterated GMM. The bootstrap experiments are calibrated using monthly
data. DI-D10 are the returns of value-weighted stock portfolios from market-value-ranked deciles.
D1 contains the smallest firms and D10 the largest firms. GB is a long-term government bond return
and CB is a long-term corporate bond return. //-{12 are value-weighted industry-grouped port-
folios, based on two-digit SIC codes. The returns are measured in excess of a one-month Treasury
bill return. Results for various subsets of the assets are presented, indicated as follows:

N: 3 5 10 12 14
Assets:  DI1.D5, D10 DI1,D3,D5,DI10,GB DI, ...,DI0 DI ... DI}GBCB I1,...,112,GB.CB

€ is the GMM estimate of C. The average values (and average absolute values) across the N assets of the average
over the 1,000 replications for each asset are shown under mean((C — C)/C) and mean(|(C — C)/CY).

Actual % rejected at the following nominal
% bias in C significance levels

Mean °/2 bias: Mean alzsolute:
N Mean((C — €))C) Mean((C — C)/C|) 0.500 0250 0.100 0050 0025 0010

Using the small instrument set
T = 60 time series observations (calibrated using 1982:1-1987.12)

3 —0.01% 1.00% 0642 0375 0192 009 0047 0.022
— 1.24% 1.32% 0573 0272 0089 0027 0015 0.003

5 0.34 0.67 0622 0338 0.141 0088 0043 0.013
0.15 1.39 0.518 0219 0072 0027 0009 0.001

10 —1.23 1.23 0.823 0574 0292 0.148 0074 0.027
— 333 3.33 0559 0214 0052 0016 0005 0.000

12 —0.71 0.86 0.855 0.612 0320 0.180 0.084 0.024
— 211 3.04 0570 0.196 0035 0015 0005 0.002

14 2.33 7.60 0.886 0.641 0362 0206 0.104 0.035

7.99 21.6 0.550 0.193 0044 0017 0004 0.002



W.E. Ferson, S.R. Foerster|/Journal of Financial Economics 36 (1994) 29— 55

T = 120 time series observations (calibrated using 1978:1-1987.12)

3 1.46 1.46 0.533 0255 0.098
1.79 1.92 0.527 0247  0.090
5 2.66 3N 0510 0254  0.091
5.98 7.73 0488 0221  0.069
10 0.08 043 0.581 0301 0.123
- 022 1.00 0509 0216 0.056
12 2.13 351 0615 0309 0114
6.14 717 0.505 0207 0054
14 4.80 S.14 0.647 0339  0.106
9.72 15.7 0.533 0210 0052

T = 720 time series observations (calibrated using 1928:1-1987:12)
3 —0.30 0.30 0503  0.230 0.090
—-034 0.34 0502 0229 0090
5 1.06 1.72 0504 0.254 0095
1.10 1.77 0504 0.251 0095
10 —-0.12 0.32 0.546 0260 0.116
—0.17 0.35 0541 0253  0.106
12 - 0.59 1.55 0.542 0266 0.104
—-0.59 1.71 0.533  0.253  0.097
14 —1.85 2.21 0526 0263 0.111

—2.12 2.55 0513 0248  0.098

Using the large instrument set

T = 60 time series observations (calibrated using 1982:1-1987:12)

3 0.12% 2.08% 0721 0405 0.164
1.44% 3.60% 0513  0.163 0038
S — 14.9% 16.9 0941 0.738  0.368
— 9.5% 18.4 0808 0415 0.124

T = 120 time series observations (calibrated using 1978:1-1987:12)
3 0.15 0.41 0.523 0263 0.081
0.34 0.34 0478 0209 0.047
5 — 278 2.78 0616 0308 0.109
—4.09 4.09 0459 0.167 0.028
10 0.16 0.42 0913  0.669  0.295
—0.54 0.66 0780  0.376  0.091

T = 720 time series observations (calibrated using 1927:2—-1987:12)
3 0.57 0.57 0.525 0.248 0093
0.57 0.57 0522 0246 0088
5 0.0t 1.77 0509 0.254  0.096
—0.26 1.86 0492 0239 009
10 0.81 0.81 0574 0295 0114
0.73 0.73 0.538 0.249 0.087
12 —0.01 1.90 0591 0308 0.122
—024 2.20 0.538 0.238  0.090
14 — 223 2.23 0559  0.281 0.096
—3.07 3.07 0492 0.197 0062

39

0049 0023  0.005
0032 0018  0.003
0051 0024  0.008
0030 0008 0.001
0051 0027 0011
0020 0006  0.003
0042 0017  0.001
0013 0004  0.000
0050 0020 0.006
0012 0005  0.001
0049 0022 0.009
0048 0021  0.009
0045 0022 0011
0044 0022 0011
0048 0024  0.009
0043 0021  0.008
0058 0027 0.008
0053 0022  0.005
0046 0025 0017
0038 0019 0011
0.074 0024  0.005
0012 0002  0.001
0.156 0056  0.004
0041 0014  0.001
0037 0011 0003
0011 0002  0.001
0046 0015  0.003
0.005 0002 0.001
0.122 0044 0006
0030 0012  0.001
0044 0020 0.007
0043 0020 0005
0047 0020  0.005
0040 0014  0.004
0057 0023 0.006
0040 0014  0.004
0060 0033 0017
0041 0023  0.007
0047 0026  0.009
0026 0010  0.005
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Increasing the number of time series observations to 7= 120, Table 2 shows
that the overrejection by the two-stage GMM has essentially vanished. With
T = 720 observations, the rejection frequencies are generally accurate.

Our experiments uncover another practical reason to prefer an iterated
GMM approach. Repeatedly updating the weighting matrix and searching to
find new parameter estimates reduces the chances that the algorithm will settle
on a local minimum. We infer this because some of our experiments for the
largest (N = 14) system were sensitive to the choice of the reference asset. If the
global minimum is attained, the sample value of the test statistic is invariant to
the reference asset (see Ferson, 1993).

Hansen (1982) derived the asymptotic properties of the GMM estimators and
test statistics by assuming ergodicity and strict stationarity of the data vector
{r, Z,_}. Our instruments include variables that are highly autocorrelated and
may be nearly nonstationary (e.g., the one-month Treasury bill). Other authors
have used similar instruments with the GMM in a number of empirical studies.
It is therefore comforting to find that the GMM coeflicient estimators and test
statistics conform well to some of the theoretical asymptotic properties, even
when the instruments may be nearly nonstationary.

5.3. Standard errors and t-statistics

Using 1,000 simulation trials, we compare the empirical standard deviations
of the estimation errors in the individual-asset C coefficients with the mean of
the 1,000 values of Hansen’s (1982) asymptotic standard errors. If the asymptotic
standard errors are reliable, the two should be similar. The second column of
Table 3 reports ratios of the mean GMM to the empirical standard errors,
averaged across the assets. Using the small instrument set and 7" = 720, we find
that the mean reported standard errors differ from the empirical standard
deviations only in the third decimal place, and that results for two-stage and
iterated GMM are virtually identical. The asymptotic standard errors are
understated by an amount that grows from approximately 3% to about 17%
when T is reduced from 720 to 60 (N = 3). The bias increases as N is increased.
For T = 60 and N = 14, the reported standard errors average about two-thirds
of the correct magnitudes.

Table 3 shows that the bias in Hansen’s (1982) standard errors is greater when
using the large instrument set. Even when T = 720, the ratios of the asymptotic
to the empirical standard errors are between 0.70 and 0.86. Thus, in models with
large numbers of equations or instruments, there is a serious risk of overstating
the significance of parameter estimates by relying on the asymptotic standard
errors. This sensitivity should not be surprising since the number of ortho-
gonality conditions, and therefore the complexity of the covariance matrix of the
parameters, is determined by the number of equations and the number of
instruments per equation.
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The understated standard errors motivate an investigation of the multiplica-
tive adjustment factors for the covariance matrix of the parameters. We examine
the traditional adjustment factor [7/7T — P)] and the alternative adjustment
factor [T(N + LY{T(N + L) — Q}].

For each of 177 cases (where a case is defined by a given asset for a given N, T,
and L) we compute the absolute difference between the competing standard
errors and the empirical standard deviations. Using the traditional adjustment,
the standard errors are closer to the empirical standard deviations than the
unadjusted ones in 98% of the cases. The alternative adjustment is superior to
the traditional adjustment in 90% of the cases. We divide the cases into
subsamples based on the choice of the instruments. Using the small (large)
instrument set, the alternative adjustment is superior to no adjustment in 86%
(100%) of the cases and superior to the traditional adjustment in 85% (100%) of
the cases.

Table 3 illustrates the effects of the adjustment factors. Each adjusted stan-
dard error is expressed as a fraction of the empirically determined standard
error. Ratios less than 1.0 indicate downward bias in the standard errors. The
table shows that the traditional adjustment factor is too small. The alternative
adjustment is better in most cases, but it overadjusts the standard error in some
cases. Those are extreme cases where T(N + L) is close to Q, and the adjustment
is too large because the effective degrees of freedom in the denominator are small
(e.g, T=60, N=14, L =3).

A standard error is typically used in conjunction with the point estimate of
a coefficient. Table 3 therefore provides an analysis of ¢-ratios. For each
simulation trial, we take the difference between the point estimate and the true
value of each individual C coefficient and divide this by a standard error. For
each adjustment we form a frequency distribution of the ratios, pooling them
across the assets and simulation trials. Asymptotically, the ¢-ratios should be
normally distributed with mean zero and unit variance.

Using T = 720 and the small instrument set, the unadjusted t-ratios have
means near zero and variances close to 1.0. The degrees-of-freedom adjustments
have little effect. The fractiles of the empirical distribution of the t-ratios (not
shown) are close to the values from the normal distribution. Iterated and
two-stage GMM results are similar. Decreasing the sample to 7 = 60, the
standard deviations of the unadjusted i-ratios are about 1.2 for N =3 and
increase to 2.2 for N = 14. When the large instrument set is used, the empirical
distribution of the t-ratios becomes more fat-tailed.

The traditional adjustment helps to reduce these biases, but the alternative
adjustment is better. Even the alternative adjustment is inaccurate in extreme
cases. The adjustment factor is too close to 1.0 for the large instrument set (the
adjusted t-ratios have standard deviations between 1.4 and 1.9 when T = 60),
and it is too extreme when T = 60 and N = 14, where the standard error of the
adjusted ¢-ratio is only 0.7.
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Table 3
Finite sample properties of the Generalized Method of Moments (GMM) standard errors in
a single-latent-variable model for expected returns

Results for models with K = 1 latent variable, using artificial data generated so that a single-
latent-variable model is the true model. The empirical standard errors are the sample standard
deviations of the errors in the coefficient estimates. The unadjusted standard errors are the average
across the 1,000 simulation trials of the asymptotic standard errors. The traditional adjusted
standard errors use the asymptotic variances multiplied by the adjustment factor [T/(T — P)], where
T'is the number of time series observations and P is the number of model parameters. The alternative
adjusted standard errors use the asymptotic variances multiplied by the adjustment factor
[T(N + L)/{TAN + L) — Q}], where N is the number of asset equations, L is the number of
instrvments, and @ is the number of model parameters plus the number of unique elements in the
GMM weighting matrix. The left-hand column for each case shows the average across the assets of
the mean ratio for 1,000 simulation trials of a particular standard error (Se:avg) to the empirical
(True) standard error. The Mean t-ratio is the average of 1,000 ratios, each formed as the difference
between the coefficient estimate and the true coefficient, each divided by the relevant standard error
of the coefficient estimate. Std. of t-ratio is the sample standard deviation of the 1,000 t-ratios. For
the small instrument set, Z consists of a constant, the one-month nominal Treasury bill rate, and the
one-month lagged return on the CRSP value-weighted stock index. For the large instrument set,
Z comprises the small instrument set and these additional variables: the lagged yield spread between
a three-month and a one-month Treasury bill, the spread between the yield-to-maturity on
AAA-rated corporate bonds and the lagged three-month Treasury bill return, the spread between
the yield-to-maturity of BAA corporate bonds and the composite of corporate bond yields, the
dividend yield of the CRSP value-weighted stock index, and a dummy variable for the month of
January. The model is

ry =26+ uy, ry =20C + u,,

where r | represents the returns of K reference assets in excess of the one-month Treasury bill rate
and r, is the excess returns of N — K test assets. d is an L vector, and C is an N — | vector of
coefficients. Each element C; of C is the relative beta of asset i with respect to the reference asset r, .
The latent-variable model implies that E(u,u, | Z) = 0. The results are based on 1,000 bootstrap
replications for iterated GMM. The bootstrap experiments are calibrated using the actual monthly
data. DI-DI0 are the returns of value-weighted stock portfolios from market-value-ranked deciles.
D1 contains the smallest firms and D0 the largest firms. GB is a long-term government bond return
and CB is a long-term corporate bond return. //-1/2 are value-weighted industry-grouped port-
folios, based on two-digit SIC codes. The returns are in excess of a one-month Treasury bill return.
Results for various subsets of the assets are presented, indicated as follows:

N: 3 5 10 12 14

Assets:  DI1,D5, D10 DI1,D3,D5,D10.GB Dl,...,Dl0 DI .. .DI0,GBCB 1,...,112,GB,CB

Unadjusted Traditional adjusted Alternative adjusted

Se:avg  Mean Std. of Se:avg  Mean Std. of Se:avg  Mean Std. of
N /True t-ratio t-ratio  /True t-ratio t-ratio  /True t-ratio t-ratio

Using the small instrument set
T = 60 time series observations (calibrated using 1982:1-1987:12)

3 0.829 0242  1.213 0.866 0232 1.161 0.893 0225  1.125
S 0.758 0257 1274 0.806 0242 1.197 0.884 0220 1.092
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10 0.647 0313  1.589 0.723 0280 1.421 1.037 0.195 0990
12 0.506 0374 1.891 0.578 0327  1.656 1.024 0.185 0935
14 0.678 0.101  2.208 0.792 0.086 1.891 2.154 0.032  0.695
T = 120 time series observations (calibrated using 1978:1-1987:12)

3 0.700 —0.147 1.108 0.715 —0.144 1.085 0.726 —0.142 1.069

5 0.773 —0.086 1.096 0.797 — 0084 1.063 0.830 —0.080 1.021
10 0.765 — 0127 1.183 0.807 —-0.121 1122 0.919 — 0106 0.986
12 0.619 — 0127 1.183 0.651 —0.125 1.153 0.785 —0.105 0.968
14 0.665 — 0121 1.247 0.714 —0.126 l.16t1 0.897 — 0101 0925
T = 720 time series observations (calibrated using 1928:1-1987:12)

3 0.970 0018 1.019 0.973 0.018 1.016 0.975 0.018 1.013

5 0.960 — 0020 1.039 0.965 — 0020 1.034 0.971 —0.020 1.027
10 0.950 0.039 1.049 0.958 0.039  1.040 0.975 0.038 1.022
12 0.951 0.034 1.035 0.960 0.033  1.025 0.983 0.033  1.002
14 0.954 —0.044 1.035 0.965 —0.044 1.026 0.992 —0.042 0999
Using the large instrument set
T = 60 time series observations (calibrated using 1982:1-1987:12)

3 0.216 —0.059 2611 0.237 —0.054 2.383 0.297 —0.043 1901

5 0.247 — 0179 5308 0.276 —0.160 4.748 0.955 —0.046 1371
T = 120 time series observations (calibrated using 1978:1-1987:12)

3 0.546 — 0213 1595 0.570 — 0204 1.527 0.624 —0.186  1.395

5 0.406 — 0516  2.002 0.428 — 0490 1.900 0.595 —0.353 1.368
10 0.196 —1.032  7.149 0.212 — 0956 6.623 0.275 —0.735 5095
T = 720 time series observations (calibrated using 1928:1-1987:12)

3 0.707 0206 1.166 0.717 0203  1.150 0.735 0198  1.121

5 0.853 0174 1179 0.860 0173 1.169 0.893 0.166 1.125
10 0.796 0209 1.259 0.806 0207 1.244 0.920 0.181  1.090
12 0.753 0215  1.351 0.711 0212 1.333 0.916 0.176  1.110
14 0.701 —0.281  1.366 0.763 —0.277 1346 0.906 —0.218  1.057

In summary, the empirical distribution of the t-ratios has more dispersion
than the normal in small samples. The alternative adjustment factor is useful,

provided that the number of instruments and assets is not too large, and that
T{N + L) is not too close to Q. However, the results should still be interpreted
with caution. This motivates future research to develop alternative variance
estimators with better small-sample properties.

5.4. Robustness of the results
We conduct a number of experiments to check the sensitivity of the results to

variations in the experimental design. In the first exercise, the artificial data
display conditional heteroskedasticity. Similar to the results in Table 2, we find
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that the two-stage GMM tests reject the model too often using the small
instrument set. The overrejeciion by the iwo-stage test statistics is worse than
before in the larger systems. The iterated GMM test statistics are more reliable,
but have a slight tendency to reject the model too infrequently. Thus, the results
reinforce the importance of using iterated GMM for goodness-of-fit tests in the
larger models.

When we introduce heteroskedasticity, the sampling distributions of the
t-ratios are more fat-tailed in the smaller samples than they are without the
heteroskedasticity (the t-ratios are well specified when T = 720). The downward
bias of the asymptotic standard errors and the average absolute bias in the
coefficient estimates are both worse than before. The alternative degrees-of-
freedom adjustment is useful for small N, but it does not completely eliminate
the fat tails of the ¢-ratios.

We replicate some of the experiments in Tables 2 and 3 using a traditional
Monte Carlo approach instead of resampling the residuals. The rejection rates
and the general patterns of the results are similar to those in Table 2, while the
standard errors and t-ratios are slightly better behaved than in Table 3. We also
replicate some of the experiments using a vector autoregression to generate
random samples of the lagged instruments. We do this as an alternative to
reusing the sample values in each replication. The results are similar to those in
tables 2 and 3.

5.5. The power of the tests

The empirical literature typically fails to reject latent-variables models with
small numbers of premiums. This suggests that either a small number of
common factors determine conditional expected returns or the tests are low in
power. To evaluate power we generate artificial data from two alternative
economies. In the first, expected returns are determined by a two-beta model
(K = 2) with fixed betas and two time-varying premiums. In the second, a condi-
tional version of the CAPM holds in which the conditional market betas are
time-varying. The appendix describes these alternative economies and summar-
izes the finite sample properties of the GMM when the null hypothesis is the
two-latent-variable model.

Figs. 1 through 4 provide some feel for the properties of the alternative
economies. Fig. 1 shows a time series plot of the expected market premium,
using the small instrument set and the 720 monthly observations of the actual
instruments from 1928 through 1987. In the single-latent-variable model, each
asset’s expected excess return is a constant beta multiplied by a similar expected
market premium, based on the simulated instruments. Fig. 2 shows the expected
interest rate premium in the two-latent-variables model. In the two-premium
model, each asset’s expected excess return is a constant linear combination of
two expected premiums, similar to Figs. 1 and 2. Fig. 3 plots examples of the
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Fig. 1. Time series of the expected market premium. The monthly fitted expected excess return is
obtained by regressing the return of the CRSP value-weighted index in excess of a one-month
Treasury bill on the small instrument set. The small instrument set consists of a constant, the lagged
level of the one-month bill, and the lagged excess return of the CRSP index. The 720 fitted values are
from 1928 to 1987. These fitted values are used as the true expected returns in the simulation
experiments.

betas for the time-varying beta CAPM economy. In this economy, an asset’s
expected excess return is the product of a changing beta and an expected market
premium, similar to Fig. 1. Fig. 4 illustrates differences in the expected returns
under two alternative models. We present two time series plots of fitted expected
return differences. Deviations from the horizontal line at zero indicate differ-
ences between the expected returns under the single-factor model and an
alternative. These are based on the actual sample of instruments. The series
denoted by the squares represents the two-factor, constant-beta alternative. The
mean difference is — 0.73% and the standard deviation of the difference is
0.33%. The series denoted by the ‘ + ’ signs represents the time-varying beta
model. The mean difference is 0.27% and the standard deviation is 0.40%. The
changing-beta expected returns differ from the null hypothesis by a smaller
average amount, and the variance of the departure is larger.

Table 4 presents the empirical power of the K =1 test. Under the null
hypothesis K = 1, the sampling distribution of the two-stage GMM test statistic
is more disperse than the iterated GMM (see Table 1). If we adjust the two-stage
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Fig. 2. Fitted expected interest rate risk premium. The monthly fitted expected excess return is obtained
by regressing the return of a two-month Treasury bill in excess of a one-month bill on the small
instrument set. The small instrument set consists of a constant, the lagged level of the one-month bill,
and the lagged excess return of the CRSP index. The 720 fitted values are from 1928 to 1987. These
fitted values are used as the expected interest rate risk premiums in the simulation experiments.

statistic for the correct size, we expect it to have inferior power. We therefore
concentrate on the power of iterated GMM. The power is computed for tests
with sizes of « = 0.10, 0.05, and 0.01. We find an adjusted critical value for the
test statistic for each case in the table. The adjusted critical value is the value
which is exceeded by « fraction of the statistics simulated under the null
hypothesis. The null hypothesis is the single-premium, constant-beta economy,
similar to that shown in Table 2. The empirical power is the fraction of 500 trials
in which a test using the adjusted critical value rejects the K = 1 hypothesis
when the data are generated from the alternative economies. To hold the
alternative hypothesis fixed while the sample size T is varied, we bootstrap from
the 7' = 720 sample for each alternative. We also use the vector autoregression
approach, which generates a different time series of the small instrument set in
each replication. We experiment with other methods of generating the alterna-
tives, and the overall impressions are similar.

Table 4 shows that the tests have more power to detect the two-premium
alternative than to detect the CAPM with time-varying betas. The power of
a 10% test to detect changing betas is less than 25% in all but two of the
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Fig. 3. Time-varying betas. Time series plots of time-varying betas on the CRSP value-weighted
market index are shown for the 720 months from 1928 to 1987. The plot in the center that uses
squares represents the market capitalization (size) portfolio of the largest firms. The betas for the
smallest decile are shown as a solid line. The betas are assumed to be a linear function of the small
instrument set, and are estimated by a regression of the returns on the CRSP value-weighted index
and the products of the instruments and the index. The small instrument set consists of a constant,
the lagged level of the one-month Treasury bill, and the lagged excess return of the CRSP
value-weighted stock index.

15 cases. In eight cases the power is less than 10%. The power of a 10% test for
the two-premium alternative exceeds 25% in eight of the 15 cases. In five cases it
exceeds 60%.

It is remarkable that the power can be high, since the tests focus on regres-
sions that explain a small fraction of the variance of the data — less than 10% in
most cases and often less than 1%. The explained variance is small because the
regressors are predetermined. In tests of unconditional beta pricing restrictions,
the regressors are contemporaneous and they explain much larger fractions of
the variance. The power of the GMM tests here to detect the two-factor
alternative is comparable to the power in a number of studies of unconditional
beta pricing restrictions.?

2 See Gibbons (1982), Jobson and Korkie (1982), MacKinlay (1987), Gibbons and Shanken (1987),
and Affleck-Graves and McDonald (1990).
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Fig. 4. Differences in expected returns under two alternative models. The squares represent the
differences between the expected returns for the common stocks of market capitalization (size)
portfolio five, under the single-latent-variable model versus the two-premium alternative. The * +°
signs represent the expected return differences for the same portfolio, between the single-latent-
variable model and the changing-beta CAPM alternative. We use the small instrument set, which
consists of a constant, the lagged level of the one-month Treasury bill, and the lagged excess return of
the CRSP value-weighted index. The 720 monthly observations are for 1928 to 1987.

5.6. Implications of the simulation evidence

Our results have important implications for studies that use the GMM.
Recent studies reject single-latent-variable models for the expected returns of
stock and bond portfolios. With two-stage GMM, the tests are likely to be
biased against the model in small samples if the size of the system is large. For
example, using the fourteen-asset system (small instrument set) and the data in
this study, a two-stage GMM test of the single-latent-variable model produces
an asymptotic p-value of 0.01. The bootstrapped p-value is 0.24. Our results
show that using iterated GMM is important to avoid such a bias. Fortunately,
much of the literature testing latent-variable models with large systems has used
iterated GMM.? Our results suggest that the rejections of single-latent-variable

3 Campbell (1987) used a two-stage GMM approach. He was kind enough to send us his data, so we
conducted his tests again using iterated GMM. The results were essentially identical. This is not
surprising, given our results and the small size of the systems in his paper.
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Table 4
Power of tests for a single latent variable

Fraction of 500 trials in which the test for K = 1 latent variable rejects the null hypothesis when
alternative models generate the artificial data. The instruments are a constant, the one-month
nominal Treasury bill rate, and the one-month lagged return on the CRSP value-weighted stock
index.

Alternative hypothesis: K = 2, Alternative hypothesis: K = 1,
fixed betas changing betas
Actual % rejected at the following Actual % rejected at the following
nominal significance levels nominal significance levels
N T 0.10 0.05 0.01 0.10 0.05 0.01
3 60 0.186 0.114 0.026 0.102 0.062 0.008
120 0.194 0.130 0.044 0.084 0.050 0.010
720 0.618 0.474 0.332 0.178 0.086 0.018
5 60 0.186 0.086 0.048 0.058 0.012 0.006
120 0.216 0.128 0.036 0.042 0.012 0.002
720 0.656 0.596 0.406 0.242 0.178 0.050
10 60 0.206 0.094 0.034 0.040 0.020 0.002
120 0.268 0.134 0.028 0.050 0.014 0.004
720 0.736 0.640 0.376 0.205 0.159 0.023
12 60 0.234 0.126 0.018 0.072 0.028 0.000
120 0.314 0.210 0.086 0.046 0.020 0.006
720 0.764 0.688 0.340 0.290 0.186 0.026
14 60 0.226 0.102 0.038 0.104 0.038 0.006
120 0.300 0.222 0.066 0.082 0.040 0.004
720 0.830 0.730 0.540 0.396 0.262 0.104

models using iterated GMM have a mild conservative bias because iterated
GMM rejects a latent-variable-model too infrequently.

Hansen’s (1982) asymptotic standard errors should be adjusted in small
samples to remove a downward bias. Studies that do not use such an adjustment
have probably overstated the significance of their estimates. The adjustments
can be applied ex post facto to evaluate the magnitude of the problem. Ferson
(1990, Table IV) reports coefficients for a single-latent-variable model with
T = 151 observations, N = 7 assets, and L = § instruments. Our alternative
adjustment factor is 3.46, so Ferson’s reported standard errors are probably far
too small. Dividing his z-ratios by the adjustment factor, we find that two of the
four t-statistics that are reported larger than 2.0 are no longer significant.
Harvey (1991, Table VI) reports coefficients for a single-latent-variable model
with T =232, N =15, and L = 6. All but one of the fifteen coefficients are
reported as more than 1.96 standard errors from zero. In Harvey’s case the
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adjustment factor is 6.44. Dividing his t-ratios by this factor, we find that all of
the fifteen coefficients have t-ratios below 2.

6. Concluding remarks

This paper develops evidence on the finite sample properties of the Generaliz-
ed Method of Moments (GMM). The GMM 1is used to estimate predictive
regressions for security returns and to test nonlinear cross-equation restrictions.
Subject to the caveat that it is hazardous to extrapolate the simulations beyond
this context, our experiments lead to several conclusions.

(1)

)

()

4)

)

(6)

In simple models with a small number of equations and instruments, the
GMM is reliable with as few as 60 time series observations. The coefficient
estimates are approximately unbiased, and the goodness-of-fit statistics
conform well to the asymptotic distribution.

In more complex models it is important to employ an iterated version of the
GMM, since a two-stage procedure rejects the models too often in small
samples. [terated GMM test statistics conform more closely to the asymp-
totic distribution, but they have a mild tendency to reject too infrequently.

Hansen’s (1982) standard errors are biased toward zero in small samples.
A simple adjustment factor reduces the bias in simpler models. The adjust-
ment multiplies the asymptotic variance by a ratio greater than unity, which
accounts for the number of parameters plus the elements in the GMM
weighting matrix. A traditional adjustment factor that does not account for
the size of the weighting matrix is too small.

When the numbers of instruments and assets are small, t-ratios that are
formed by using the adjustment factor can be evaluated with the unit normal
distribution. However, the total number of observations must not be too
close to the number of parameters plus the number of elements in the GMM
weighting matrix. When the number of assets and instruments is large even
the adjusted r-ratios are unreliable.

In more complex models, while the iterated GMM goodness-of-fit statistics
are reasonably well specified, the coefficient estimates should be viewed with
suspicion. They can be highly unreliable in small samples.

Even though the regression systems explain a small fraction of the variance
in returns, the power to detect the more complex cross-equation structure of
the coefficients implied by a two-beta model can be high. Given a changing-
beta CAPM that induces nonlinearities and heteroskedasticity, we found
that this alternative is closer to the single-factor null hypothesis and that the
GMM tests have low power. Low power against some alternatives is one
cost of the generality of the GMM approach.
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Appendix: The three economies

We generate data from the economy to satisfy the null hypothesis of a single
latent variable, using the following procedure:

(a) rn is regressed on monthly data for Z, ;. The OLS estimates of the coeffi-
cients, J,,, become the ‘true’ parameter values in Eq. (5) for the simulations.

{b) Excess asset returns, r;,, i = 1, ... , N, are regressed on an intercept, and the
fitted expected excess market returns, d,,Z, ; from (a). The slope coeffi-
cients, B, become the ‘true’ values of the assets’ betas on the market

portfolio.

(c) We form a T'x N sample of errors: ¢;, =1y, — Bimw Ol 1), t=1,..., T,
i=1,..., N. The vectors of the mean-centered error terms determine the
population distribution of the errors in the bootstrap experiments.

(d) To generate an observation of artificial returns foreach datet (t = 1, ... , T)

we draw a random integer t*, 1 < t* < T, and select e as the error vector
for time t. The artificial returns for asset i for time t are generated as
Fi = BimlOmZ:-1) + e€if.

(e) The restricted regression system of Eq. (6) is estimated by GMM on the
artificial returns. A two-stage and an iterated GMM test statistic are cal-
culated for each replication. We set the maximum number of stages to 30.
The criterion for convergence within a stage is a change in the objective
function less than 0.0001. The criterion for convergence across the stages is
0.001. If we encounter a nonsingularity in the GMM weighting matrix, we
start over at step (d) with a new replication. Such instances are rare.

(f) Steps (d) and (e) are repeated for a total of 1,000 replications.

To generate artificial data that display conditional heteroskedasticity and
satisfy a single-latent-variable model, we assume that the conditional correla-
tions of the portfolio returns are fixed, and we specify a factor structure for the
conditional heteroskedasticity. We estimate a model for the conditional vari-
ance of thé market portfolio return, {¢2,}, as a function of the instruments, Z, _,,
using the methods of Davidian and Carroll (1987). We then obtain the implied
conditional standard deviation series, for each portfolio return i, from the
identity: 6; = Gl Bim/Pim), Where B, is the conditional beta used in the simula-
tions and p;, is the correlation of the OLS residuals from the regressions of
ry and r,, on Z,_, in the sample data. The conditional covariance matrix for
date t, €, is formed from the products of the {o;} and the {p;;}. The vectors of
the unanticipated returns, e, that we randomly draw for date t in our original
experiments have a covariance matrix denoted by Z. To generate conditionally
heteroskedastic unanticipated returns with covariance matrix ,, we use the
transformation e'2~'/? Q! where X'/ and Q}/? are the Cholesky factoriza-
tions of X! and Q,, respectively.
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In our changing-beta economy the conditional market betas are constructed by
assuming the betas are linear functions of the instruments. The coefficients of the
linear functions are estimated by regressing the asset return on the market index
return and the product of the market index return with the lagged instruments.
We generate the artificial data using a strategy similar to the previous experi-
ments, except that we use the time-varying betas instead of fixed betas.

In our two-factor economy, the first factor is the (CRSP value-weighted)
excess market return and the second is the excess return of a three-month
Treasury bill. The conditioning information for the two expected premiums is
the same as before, and both are estimated by linear regressions on the sample
data. We generate artificial data using the two fitted premiums in step (b) and
two fixed betas in steps (c) and (d).

Mean-variance efficiency implies that the two-beta alternative is one in which
E(ralZ .~ 1) = BimEB(rmlZ,_1) + Bir E(rlZ,_ 1) can be expressed as another single-
factor, variable-beta model:

E(rylZ.-1) = Bipt E(rpt|Zt—l)’ i=1,..., N,
where

For = {wltrmt + WZtrrt}/(wll + Wy,

and the wj, are time-varying expected excess return-to-variance ratios for the
two-factor portfolios r,, and r,. The portfolio r, is a minimum variance
combination of the two-factor portfolios, and the betas with respect to r,, will
vary over time. Therefore, the results on power may be interpreted as providing
evidence about power against two different models of time-varying betas. The
power of the test should depend upon how much the betas vary over time, but the
distance of an alternative model from the null hypothesis cannot be measured
solely by variation in the betas. In a previous version of this paper, we provided
an analysis of the determinants of the power. These results are available by
request.

We use the two-premium economy to investigate the properties of a test for
K =2 latent variables under the null hypothesis. (Tables are available by
request.) We find that, as the number of assets increases, a two-stage GMM test
of a given nominal size rejects the model more and more often. The overrejection
becomes dramatic in the larger systems, even for the larger sample sizes. The
iterated GMM statistic is more accurate, tending to reject somewhat too
infrequently. Changing the reference assets has little effect on the rejection rates.
We also find that the coefficient estimates are biased. Even when N = 3 and
T = 720, the average absolute bias in one case exceeds 14%. We observed biases
in excess of 600% with smaller sample sizes and larger numbers of equations.
The empirical standard errors of the coefficient estimates are not always under-
stated in the K = 2 model, and the degrees-of-freedom adjustments do not
rectify the poor performance of the standard errors.
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The relatively poor performance of the estimators in the K = 2 economy
could be related to high correlation between the two expected premiums. We
therefore conduct an experiment in which we orthogonalize the two risk pre-
miums. The results are similar. In another experiment we use a maximum
correlation portfolio for the monthly growth rates of the total U.S. industrial
production index (from Citibase) as an alternative second risk factor. We
construct the portfolio by regressing the growth rates of the industrial produc-
tion index on the 25 monthly returns over the 1947.2-1987.12 period. The
regression slope coefficients are normalized to sum to unity, and the normalized
coefficients define a portfolio weight vector for the 25 assets. We use this return
and repeat a subset of the simulations. The results are again similar. If the
importance of a second premium is small in the actual data, the K = 2 model
may be overparameterized. It is therefore interesting to find that the (K = 1)
tests can have high enough power to detect a second premium in these data.
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