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Abstract 

We develop evidence on the finite sample properties of the Generalized Method of 
Moments (GMM) in an asset pricing context. The models imply nonlinear, cross- 
equation restrictions on predictive regressions for security returns. We find that a two- 
stage GMM approach produces goodness-of-fit statistics that reject the restrictions too 
often. An iterated GMM approach has superior finite sample properties. The coefficient 
estimates are approximately unbiased in simpler models, but their asymptotic standard 
errors are understated. Simple adjustments for the standard errors are partially successful 
in correcting the bias. In more complex models the coefficients and their standard errors 
can be highly unreliable. The power of the tests to reject a single-premium model is higher 
against a two-premium, fixed-beta alternative than against a conditional Capital Asset 
Pricing Model with time-varying betas. 
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1. Introduction 

Because of its simplicity, flexibility, and generality Hansen’s (1982) Generalized 
Method of Moments (GMM) has become an important technique for estimating 
and testing financial asset pricing models. While the asymptotic properties of 
the GMM are well understood, evidence on its finite sample properties is 
sparse. Existing studies include Tauchen (1986) Kocherlakota (1990) and Mao 
(1991) who examine nonlinear consumption-based asset pricing models; 
Flesaker (1993), who examines nonlinear term structure models; MacKinlay 
and Richardson (1991), who examine zero restrictions on ‘market model’ re- 
gression coefficients, as implied by the Capital Asset Pricing Model (CAPM); 
and Nelson and Startz (1990) who examine a simple linear regression model. 

This paper develops evidence on the finite sample properties for models that 
imply nonlinear, cross-equation restrictions on regressions that predict security 
returns. The cross-equation restrictions can be motivated by bent variables asset 
pricing models (Hansen and Hodrick, 1983; Gibbons and Ferson, 1985). They also 
arise in versions of the consumption-based Capital Asset Pricing Model (Hansen 
and Singleton, 1983; Ferson, 1983) and are used in a number of other economic 
applications (see Aigner et al., 1984; Chamberlain and Goldberg, 1990). 

Gibbons and Ferson (1985) do not reject a single-premium, latent-variable 
model for stock returns. However, subsequent studies, based on large sample 
theory, reject a single latent variable. Since these rejections are based on the 
asymptotic distribution of the test statistics, it is important to verify that 
rejections of the models are not the result of finite sample bias. 

We focus on the size and power of the GMM test statistics, the sampling 
properties of the coefficient estimators, their standard errors, and t-ratios. We 
examine both two-stage and iterated GMM estimators. The two procedures 
have the same asymptotic properties, and studies typically employ only one of 
the two. We find that in larger models, the two-stage GMM tests reject the null 
hypothesis too often, while an iterated GMM test statistic conforms more 
closely to the asymptotic distribution. We find that the GMM coefficient 
estimators are approximately unbiased in the simpler models. However, the 
standard errors for the coefficients are understated, using the asymptotic for- 
mula from Hansen (1982). The understatement is more severe in systems with 
large numbers of assets and small sample sizes. In more complex models, the 
coefficient estimates and the standard errors can be biased by large amounts. We 
investigate simple adjustments to reduce the finite sample bias. 

We examine the power of the tests for a single latent variable against two 
alternative models. Our first alternative is a two-latent-variables model (i.e., two 
time-varying risk premiums with fixed betas). Our second alternative is a condi- 
tional Capital Asset Pricing Model (CAPM) with time-varying market betas. 
We find that the power of the tests against the CAPM with time-varying betas is 
low and the power against the two-premium alternative is higher. 
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The paper is organized as follows: Section 2 reviews latent variables models 
and the cross-equation restrictions. Section 3 describes our methodology. 
Section 4 describes the data, and Section 5 presents the simulation results. 

Section 6 concludes. 

2. Latent variables models of expected returns 

We regress asset returns Ri, over time on a vector of predetermined variables, 

Z,-1. We use the projections SiZ,- 1 to model the conditional expected 

returns. We study tests of cross-equation restrictions on the coefficients 6i 
to detect reduced dimensionality across assets in the time-varying expected 
returns. The restrictions can be motivated by a class of beta pricing models, 
including conditional versions of the CAPM, the Arbitrage Pricing Theory 
(APT), and the intertemporal asset pricing models of Merton (1973), Long 
(1974), Breeden (1979), and Cox, Ingersoll, and Ross (1985). Consider the model 
in (1): 

K 

E(RitlZt-t) = 10(Zt-I) + 1 bijij(Zt-lX i=Q ,..., N, t=l,..., T, 
j=l 

(1) 
where ,?,(Z,_ i) is a market-wide expected risk premium and bil , . . . , biK are the 
conditional betas of asset i relative to the K underlying, unobserved risk factors. 
Z,_ 1 is the vector of instruments for the information available when prices are 
set at time t - 1, and E(Ri,IZ,_ J is the expected return conditional on this 
information. In general, the bij can depend on Z,_ 1. The latent variables models 
specialize Eq. (1) by assuming that the betas are fixed parameters over time and 
that the nj(z,_ r) are the latent variables.’ 

Define the TX N excess return matrix r, with typical element rit = Ri, - Rot, 
i= l,..., N and t = 1, . . . , T, where Rot is the return of an arbitrarily chosen 
zeroth asset. Define the T x K matrix of the Aj(Zt_ r) as 1(Z), where K is the 
number of latent variables. Define the T x L matrix of Z,- r’s as Z. Assuming 
fixed betas, Eq. (1) implies the following expression for the expected excess 

r The first studies to interpret such asset pricing models were Hansen and Hodrick (1983) and 

Gibbons and Ferson (1985). Foerster (1987), Ferson, Foerster, and Keim (1993), and Campbell and 
Hamao (1992) examine stock returns using similar models. Stambaugh (1988) and Chang and 

Huang (1990) examine bond returns. Campbell (1987) and Ferson (1989, 1990) study both stock 
and bond returns. Forward currency premiums are examined by Hansen and Hodrick (1983) 

Hodrick and Srivastava (1984) Cumby (1987, 1988), Campbell and Clarida (1987). and Jorion and 

Giovannini (1987). Bessembinder and Chan (1992) study futures. International equity returns are 
examined by Campbell and Hamao (1992), Harvey (1991) and Chang, Prinegar, and Ravichandran 
(1992). See Wheatley (1989) for a critique of latent variable models of asset pricing and Ferson (1993) 

for a recent review. 
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returns: 

E(rlZ) = n(Z)B, (2) 

where fl is the K x N matrix of conditional betas for the excess returns 
(/?ij = bij - b,j) and E(rlZ) is the T x N matrix of the E(ritlZ,_ r), for r = 
1, , Tand i= l,... , N. 

Partition the excess returns as r = (rl r2), where rl is a TX K matrix of 
reference assets and r2 is a T x (N - K) matrix of test assets. Partition the matrix 
of betas conformably as ,8 = (j?r /Iz). The reference assets are chosen so that the 
K x K matrix PI is nonsingular. From the partitioned Eq. (2) solve for the risk 
premiums and substitute back A(Z) = E(r,lZ)B;‘, to obtain the following 
restrictions: 

E&(Z) = E(r,lZ)C , (3) 

where C is a K x (N - K) matrix equal to /I; ‘fiz. Following Gibbons and 
Ferson (1985) assume that the conditional expected excess returns of the 
reference assets are linear regression functions of the instruments. Eq. (3) 
restricts the linear regressions as follows: 

rl = Zhl + ul, r2 = ZdlC + u2, (4) 

where Z includes a constant term, 6r is an L x K matrix of regression coeffi- 
cients, and E(u,lZ) = E(u~(Z) = 0. The latent variable model in Eq. (4) implies 
that if there are K common factors that describe expected excess returns over 
time, then linear combinations of the regression functions that predict the excess 
returns of K reference assets are sufficient to capture the predictable variation in 
all returns. 

3. Methodology 

3.1. GMM estimation 

Define the T x N matrix of error terms from eq. (4) as u = (ur ~4~). The model 
implies E(ulZ) = 0, therefore E(u’Z) = 0. Define an N x L matrix of sample 
orthogonality conditions: CT = (u’Z/T). Partition CT into rows of length L and 
stack these into a column vector, gT, with a length equal to the number of 
orthogonality conditions, NL. Obtain the GMM estimators by searching for the 
parameter vector 8, consisting of the elements of 6 and C, that minimizes 
a quadratic form g;Wg,. The NL x NL weighting matrix W is the inverse of 
a consistent estimate of the covariance matrix of the orthogonality conditions. 
We use the sample weighting matrix described by Hansen (1982) 

w= c~~/T)~:,~~,~;~o~z,-,z;-,~1-‘~ where @ denotes the Kronecker product. 
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Hansen showed that at the minimizing parameter vector, TgkWgT is asymp- 
totically chi-square distributed. Its degrees of freedom are equal to the difference 
between the number of orthogonality conditions and the number of parameters: 
NL - [KL + (N - K)K] = (N - K)(L - K). A test of the model requires L in- 
formation variables, where L > K, and N assets, where N > K. The GMM 
estimator’s asymptotic variance matrix is [ T(ag/aO), w(ag/ae)g - ‘. 

Hansen and Singleton (1982) describe a two-step approach for implementing 
the GMM. In the first step, they substitute the identity matrix for W to obtain 
initial estimates of the parameters, and then use these parameters to form an 
estimate of W. They use the estimate of W in the quadratic form, g; WgT, 
to obtain second-stage estimates of the parameters, which they use to form a 
second-stage estimate of the weighting matrix and the quadratic form. We call 
this a Two-Stage GMM approach. In practice, it may be desirable to iterate, 
repeatedly updating the weighting matrix until the procedure converges. We call 
this approach Iterated GMM. 

We find that the asymptotic standard errors are understated in finite samples, 
and we therefore examine adjustment factors for the standard errors. These are 
analogous to the usual bias adjustment for the maximum likelihood estimator of 
a covariance matrix (e.g., Hinkley, 1977). The traditional adjustment is to multi- 
ply the asymptotic variance by [T/( T - P)], where T is the number of time series 
observations and P = KL + (N - K)K is the number of model parameters. We 
also evaluate an alternative adjustment, which is to multiply the asymptotic 
variance by [(N + L)T/((N + L)T - Q)], where Q = P + [(NL)2 + NL]/2. The 
alternative adjustment accounts for the number of time series observations 
provided by the instruments plus the assets, and for the number of model 
parameters plus the number of elements in the weighting matrix. 

3.2. The simulations 

This paper’s approach complements that of Tauchen (1986) Cecchetti, Lam, 
and Mark (1990) Kandel and Stambaugh (1990) Gallant and Tauchen (1989), 
and others who simulate model economies. Those studies use discrete state 
processes to approximate the forcing equations, and they calibrate the models 
by matching selected moments of the data. As the GMM is likely to be sensitive 
to moments in the data not matched by the artificial economies, we use a more 
direct approach, resampling the data in a manner similar to the bootstrap 
methods of Efron (1982). We make the artificial samples satisfy a given model by 
restricting the particular moments that are the focus of the asset pricing 
hypothesis. The procedure does not require us to completely specify a model 
economy for each hypothesis, and it attempts to retain many of the statistical 
properties of the original data. Our approach, which is described in more detail 
in the appendix, can also be used to examine finite sample issues in other 
contexts. 
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3.3. A single-premium economy 

The following regression system describes our first economy, a conditional 
CAPM with fixed betas: 

Tit = BimE(rmtlZ,~ I) + eit, i=l , . . . , N, t = 1, . . , T, (5) 

E(eiJZt- I) = 0 2 

t = 1, . , T, 

where rit is the excess return of an asset, rmt is the excess return of the market 
portfolio, and Bim is the market beta coefficient of asset i. The instrument set is 
z,_ 1 and 6, is a vector of coefficients. The restricted regression system, Eq. (4), 
specializes when K = 1 as follows: 

rlf = S;Z,-, + ulr, (6) 

rjt = cIj(siZ,- 1) + Ujt, t=l,..., T, j=2 ,..., N, 

where r, is the reference asset excess return. The test asset excess returns are 

r2, . , rN3 and C12, . . . , GIN are the test assets’ ‘relative betas’. The CAPM 

implies that C,j = /Ijm/‘film, j = 2, . . . , N. The return of the Center for Research 
in Security Prices (CRSP) value-weighted common stock index, in excess of 
a one-month Treasury bill return, is our proxy for rmt. While it is used to 
generate the data for our simulations, we assume that the econometrician does 
not observe the market index. Therefore, it is not included in the regression 
system (6). We provide a more detailed description in the appendix. 

In some of our simulations we reuse the z,_, , t = 1, . , T, from the actual 
data. This allows the artificial data to retain both the autocorrelation and the 
cross-correlation properties of the instruments. For most of the experiments, we 
resample at random with replacement to generate the vector of the error terms 

{ujt),j = 1, . . . , N. This preserves the covariance structure across the assets, but 
breaks the link between the error terms and &, so that the artificial data will 
satisfy the condition E(u,lZ,_ 1) = 0. As a consequence, the artificial data will not 
display conditional heteroskedasticity of the residual. 

Of course, the GMM estimators do not assume homoskedasticity. One 
reason for using the GMM in financial models is its generality, and in particular 
its ability to handle conditional heteroskedasticity. We therefore examine sev- 
eral refinements of the resampling scheme. In one we generate artificial data that 
display conditional heteroskedasticity, which we describe in the appendix. We 
also examine the sensitivity to conditioning on a particular sample path of the 
instruments by modelling {r,, &l} as a first-order vector autoregression 
(VAR). We resample from the vector of residuals, using the unconditional means 
as starting values, to generate a different series of the {z,_ 1 > for each sample of 
the artificial data. 
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4. The data 

We design our experiments to be representative of the many latent-variable 
studies that have used the GMM. We conduct simulations where the number of 
observations T ranges from 60 to 720, the number of assets N ranges from 3 to 
14, and the number of instruments L is either 3 or 8. Since the single-premium 
model has received the most attention in the literature, we concentrate on this 
case, although we also examine models with K = 2 latent variables. 

The assets are the monthly returns on portfolios of common stocks and 
bonds, measured in excess of the one-month U.S. Treasury bill rate. The data are 
provided by CRSP. We use ten value-weighted New York Stock Exchange 
common stock ‘size’ portfolios [grouped on market equity capitalization at the 
beginning of each year] and twelve value-weighted industry portfolios [grouped 
by two-digit SIC codes, following Breeden, Gibbons, and Litzenberger (1989)]. 
We also include one long-term corporate and one government bond portfolio. 
These are Ibbotson Associates data provided by CRSP. 

The conditioning information available at time f - 1, denoted by s,_ i, 
includes a constant, the Treasury bill return for month t, and the lagged CRSP 
value-weighted market return. This small instrument ser contains the minimal 
number of instruments to obtain overidentification in a two-latent-variable 
model. We are interested in the sensitivity of the finite sample properties to 
a strategy of using a larger set of instruments. The larye instrument set includes 
the small instrument set plus these additional variables: the yield spread of 
a three-month over a one-month Treasury bill, the spread between the yields- 
to-maturity of AAA-rated corporate bonds and the three-month bill, the spread 
between the yields-to-maturity of BAA corporate bonds and the Composite of 
corporate bond yields, the annual dividend yield of the CRSP value-weighted 

common stock index, and a dummy variable for the month of January. 

5. Simulation results 

5.1. Evaluating the simulation methodology 

The simulation technique may produce unreliable finite sample distributions, 
especially when the number of assets, N, is relatively large and the number of 
observations, T, is small. Therefore, we conduct an experiment to evaluate the 
methodology. 

Choosing N = 12 and T = 60, we generate 5,000 samples of artificial data 
that satisfy the single-latent-variable model. We use the small instrument set. We 
use a Monte Carlo approach similar to that described in the appendix, except 
that a normal random number generator is used for the error terms. These 5,000 
samples determine an idealized ‘true’ sampling distribution for the test statistic. 
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Table 1 
Experiments to assess the accuracy of the bootstrap procedure 

Results of bootstrapping when the finite sample distribution of the test statistic is known. The 

idealized ‘true’ sampling distribution is based on 5,000 simulation trials. The data for each trial 

satisfy the single-latent-variable model. The sample size is T = 60, the number of assets is N = 12, 

and the number of instruments is L = 3. The test statistic is the two-stage or iterated GMM 

goodness-of-fit statistic for a single-latent-variable model. Five of the idealized data samples are 

chosen at random, and each one is used (in experiments 1 through 5) as if it were the actual sample 
data, to calibrate a bootstrap experiment with 1,000 trials. 

Critical values are set to the following Summary statistics of 
right-tail areas of chi-square distribution the goodness-of-fit tests 

0.500 0.250 0.100 0.050 0.025 0.010 Mean Median Std. dev. 

Fraction exceeding critical values 

Two-stage results 

Idealized ‘true’ 0.836 0.560 0.263 0.128 0.058 0.015 27.169 26.992 5.853 

Bootstrap simulation” 

Experiment 1 0.809 0.535 0.279 0.138 0.062 0.014 27.023 26.716 6.145 
Experiment 2 0.794 0.508 0.235 0.1 13 0.037 0.007 26.356 26.206 5.873 
Experiment 3 0.939 0.818 0.640 0.523 0.375 0.206 33.825 34.362 7.850 
Experiment 4 0.939 0.806 0.618 0.480 0.345 0.191 33.215 33.520 7.838 
Experiment 5 0.832 0.579 0.295 0.148 0.069 0.017 27.418 27.186 5.989 

Iterated resu1t.s 

idealized ‘true’ 0.534 0.191 0.035 0.011 0.005 0.002 22.015 21.761 4.730 

Bootstrap simulation” 

Experiment 1 0.566 0.215 0.041 0.011 0.007 0.002 22.276 22.060 4.838 
Experiment 2 0.550 0.182 0.031 0.006 0.000 0.000 21.952 21.925 4.582 

Experiment 3 0.549 0.208 0.067 0.040 0.025 0.016 22.566 21.837 5.742 
Experiment 4 0.556 0.220 0.043 0.024 0.017 0.011 22.345 22.075 5.392 

Experiment 5 0.557 0.200 0.047 0.013 0.005 0.002 22.308 22.1 12 4.873 

“An approximate standard error of the difference between the two fractions exceeding a critical value 

c(, based on n, and nz binomial trials, is [r(l - cc)/n, + a(1 - a)/nJ”‘. For n, = 5,000 and 

nz = 1,000, and CI values of 0.500, 0.250, 0.100, 0.050, 0.025, 0.010, the standard errors are 0.017, 
0.015, 0.010, 0.008, 0.005, 0.003 respectively. 

We select five of these samples at random from each of which we generate 1,000 
replications of the bootstrap simulation. If the bootstrap simulation procedure 
is reliable, the idealized true distribution should be revealed by the five boot- 
strap experiments. 

Table 1 reports the results of the experiments. The distributions of the 
statistics are summarized by their means, medians, standard deviations, and the 
tail areas to the right of various critical values. In most of the experiments, the 
idealized true sampling distribution and the distributions generated by the 
bootstrap procedures lead to similar impressions about the test statistics. The 
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distributions conform better for iterated than for two-stage GMM. However, 
some of the evidence (especially experiments 3 and 4) shows that the bootstrap- 
ped p-values can differ from those of the true sampling distribution by a 
significant amount. We therefore check the sensitivity of our bootstrap results 
by using the traditional Monte Carlo simulation approach in a number of 
experiments. 

5.2. Coejicient estimators and goodness-of--t statistics 

Table 2 summarizes the results of using the GMM to estimate and test 
a single-latent-variable mode1 when the single-premium economy generates the 
data. The table shows systems with N = 3 to N = 14 assets and samples of 
T = 60, 120, and 720 time-series observations. The first (second) row reports 
results for two-stage (iterated) GMM. The first column of Table 2 shows the 
average percentage bias in the C coefficient estimates; the second column shows 
the mean absolute percentage bias. We compute for each asset the average, over 
the 1,000 bootstrap replications, of the percentage difference between the coeffi- 
cient estimate and the true coefficient. The mean (mean absolute) percentage 
bias is the average (average absolute) value across the assets. When T = 720, the 
bias is small. The two-stage and iterated GMM results are similar. Even with 
T = 60, the average bias of the estimators is small. Using the small instrument 
set with three to twelve assets, the average bias is no larger than 3.4% of the true 
coefficient. The mean absolute bias is usually close to the mean bias. This shows 
that when one asset’s coefficient is biased in a particular direction, the other 
assets’ coefficients are usually biased in the same direction. With larger numbers 
of assets, the bias tends to increase in absolute magnitude. 

The right-hand columns of Table 2 evaluate the finite sample distributions of 
the test statistics, and report fractions rejected at various nominal significance 
levels. The fractions are the portion of the 1,000 replications of an experiment in 
which the test statistic exceeded a critical value from the chi-square distribution. 
With only three assets, the number of stages for convergence of iterated GMM is 
small, the difference between the two statistics is small, and the results for either 
set of instruments are similar. However, the results are sensitive to the number of 
assets. 

With larger numbers of assets, the number of stages for convergence is larger 
and the differences between iterated and two-stage GMM are greater. With 
T = 60 observations, the accuracy of the two-stage test statistic decreases 
markedly as the number of assets increases. At a nominal 10% significance level, 
the rejection rates for two-stage GMM are 19.2% when N = 3, increasing to 
36.2% when N = 14 (small instrument set). While two-stage GMM rejects too 
often, the iterated test statistic rejects too infrequently. This tendency is more 
pronounced as the number of assets increases. In many of the experiments where 
T = 60, the correct rejection frequency is ‘bracketed’ by the two test statistics. 
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Table 2 

Finite sample properties of the Generalized Method of Moments (GMM) in latent-variables models 

for expected returns: properties of the coefficient estimators and the goodness-of-fit statistics 

Results of estimating models with K = 1 latent variable, using artificial data generated so that 

a single-latent-variable model is the true model, For the small instrument set, Z consists of a constant, 

the one-month nominal Treasury bill rate, and the one-month lagged return on the CRSP value- 

weighted stock index. For the large instrument set, Z comprises the small instrument set and these 

additional variables: the lagged yield spread between a three-month and a one-month Treasury bill, 

the spread between the yield-to-maturity of AAA-rated corporate bonds and the lagged three-month 

Treasury bill return, the spread between the yield-to-maturity of BAA corporate bonds and the 

composite of corporate bond yields, the dividend yield of the CRSP value-weighted stock index, and 

a dummy variable for the month of January. The model is 

r, = Zfi + ulr r,=Z6C+uZ, 

where r, represents the returns of the reference asset in excess of the one-month Treasury bill rate 

and r2 is the excess returns of N - 1 test assets, N is the number of assets. 6 is an L vector, and C is an 

N ~ 1 vector of coefficients. Each C, element of C is the relative beta of asset i with respect to the 

reference asset r,, The latent-variable model implies that E(u,u* 1 Z) = 0. The results are based on 

1,000 bootstrap replications. For each replication, the test statistics are evaluated for both two-stage 

and iterated GMM. The first row of numbers corresponds to two-stage GMM, the second row of 

numbers corresponds to iterated GMM. The bootstrap experiments are calibrated using monthly 

data. Dl-DIO are the returns of value-weighted stock portfolios from market-value-ranked deciles. 

DI contains the smallest firms and DlO the largest firms. GB is a long-term government bond return 

and CB is a long-term corporate bond return. If&f12 are value-weighted industry-grouped port- 

folios, based on two-digit SIC codes. The returns are measured in excess of a one-month Treasury 

bill return. Results for various subsets of the assets are presented, indicated as follows: 

N: 3 5 10 12 14 

Assets: DI.DS.DIO DI,D3,DS.DIO.GB DI, ( DIO Dl, . DIO.GB,CB II. . 112,GB.C.B 

C? is the GMM estimate of C. The average values (and average absolute values) across the N assets of the average 

over the 1,000 replications for each asset are shown under mean((f ~ C)/C) and mean(l(6 - C)/Cl). 

Actual % reiected at the following nominal 

% bias in C significance levels 

Mean % bias: Mean absolute: 
N Mean((C - C)/C) Mean(l(i‘ - C)/Cl) 0.500 0.250 0.100 

Using the small instrument set 

T = 60 rime series ohseruations (calibratedusing 1982:1~1987:12) 

3 - 0.01% 1 .OO% 0.642 0.375 0.192 
- 1.24% 1.32% 0.573 0.272 0.089 

5 0.34 0.67 0.622 0.338 0.141 
0.15 1.39 0.518 0.219 0.072 

10 - 1.23 1.23 0.823 0.574 0.292 
- 3.33 3.33 0.559 0.214 0.052 

12 ~ 0.71 0.86 0.855 0.612 0.320 
- 2.11 3.04 0.570 0.196 0.035 

14 2.33 7.60 0.886 0.64 1 0.362 
7.99 21.6 0.550 0.193 0.044 

0.050 0.025 0.010 

0.096 0.047 0.022 

0.027 0.015 0.003 

0.088 0.043 0.013 

0.027 0.009 0.00 1 

0.148 0.074 0.027 

0.016 0.005 0.000 

0.180 0.084 0.024 

0.015 0.005 0.002 

0.206 0.104 0.035 

0.017 0.004 0.002 
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T = 120 time series observations (calibrated using 1978:1&1987:12) 

3 1.46 1.46 0.533 0.255 0.098 

1.79 1.92 0.527 0.247 0.090 

5 2.66 3.71 0.510 0.254 0.09 1 

5.98 7.13 0.488 0.221 0.069 

10 0.08 0.43 0.581 0.301 0.123 

- 0.22 1 .oo 0.509 0.216 0.056 

12 2.13 3.51 0.615 0.309 0.114 

6.14 7.17 0.505 0.207 0.054 

14 4.80 5.14 0.647 0.339 0.106 

9.72 15.7 0.533 0.210 0.052 

T = 120 time series observations (calibrated using 1928:1~1987:12) 

3 ~ 0.30 0.30 0.503 0.230 0.090 

- 0.34 0.34 0.502 0.229 0.090 

5 1.06 1.72 0.504 0.254 0.095 

1.10 1.77 0.504 0.25 1 0.095 

10 - 0.12 0.32 0.546 0.260 0.116 

- 0.17 0.35 0.541 0.253 0.106 

12 - 0.59 1.55 0.542 0.266 0.104 

- 0.59 1.71 0.533 0.253 0.097 

14 - 1.85 2.21 0.526 0.263 0.111 

- 2.12 2.55 0.513 0.248 0.098 

Using the large instrument set 

T = 60 time series observations (calibrated using 1982:1&1987:12) 

3 0.12% 2.08% 0.721 0.405 0.164 

1.44% 3.60% 0.513 0.163 0.038 

5 - 14.9% 16.9 0.941 0.738 0.368 
- 9.5% 18.4 0.808 0.415 0.124 

T = 120 time series observations (calihrared using 1978:1&1987:12) 

3 0.15 0.4 1 0.523 0.263 0.08 1 
0.34 0.34 0.478 0.209 0.047 

5 ~ 2.78 2.78 0.616 0.308 0.109 

- 4.09 4.09 0.459 0.167 0.028 

10 0.16 0.42 0.913 0.669 0.295 

- 0.54 0.66 0.780 0.376 0.09 1 

T = 720 time series observations (calibrated using 1927:2p1987:12) 

3 0.57 0.57 0.525 0.248 0.093 

0.57 0.57 0.522 0.246 0.088 

5 0.01 1.77 0.509 0.254 0.096 

- 0.26 1.86 0.492 0.239 0.090 

10 0.81 0.81 0.574 0.295 0.114 

0.73 0.73 0.538 0.249 0.087 

12 - 0.01 1.90 0.591 0.308 0.122 

- 0.24 2.20 0.538 0.238 0.090 

14 - 2.23 2.23 0.559 0.28 1 0.096 

- 3.07 3.07 0.492 0.197 0.062 

0.049 0.023 0.005 

0.032 0.018 0.003 

0.051 0.024 0.008 

0.030 0.008 0.001 

0.05 1 0.027 0.011 

0.020 0.006 0.003 

0.042 0.017 0.001 

0.013 0.004 0.000 

0.050 0.020 0.006 

0.012 0.005 0.001 

0.049 0.022 0.009 

0.048 0.021 0.009 

0.045 0.022 0.011 

0.044 0.022 0.011 

0.048 0.024 0.009 

0.043 0.021 0.008 

0.058 0.027 0.008 

0.053 0.022 0.005 

0.046 0.025 0.017 

0.038 0.019 0.01 I 

0.074 0.024 0.005 

0.012 0.002 0.00 1 

0.156 0.056 0.004 

0.041 0.014 0.001 

0.037 0.011 0.003 

0.011 0.002 0.001 

0.046 0.015 0.003 

0.005 0.002 0.001 

0.122 0.044 0.006 
0.030 0.012 0.001 

0.044 0.020 0.007 

0.043 0.020 0.005 

0.047 0.020 0.005 

0.040 0.014 0.004 

0.057 0.023 0.006 
0.040 0.014 0.004 

0.060 0.033 0.017 
0.041 0.023 0.007 

0.047 0.026 0.009 
0.026 0.010 0.005 



40 W.E. Ferson, S.R. FoerstrrlJournal of Financial Economics 36 (1994) 29- 55 

Increasing the number of time series observations to T = 120, Table 2 shows 
that the overrejection by the two-stage GMM has essentially vanished. With 
T = 720 observations, the rejection frequencies are generally accurate. 

Our experiments uncover another practical reason to prefer an iterated 
GMM approach. Repeatedly updating the weighting matrix and searching to 
find new parameter estimates reduces the chances that the algorithm will settle 
on a local minimum. We infer this because some of our experiments for the 
largest (N = 14) system were sensitive to the choice of the reference asset. If the 
global minimum is attained, the sample value of the test statistic is invariant to 
the reference asset (see Ferson, 1993). 

Hansen (1982) derived the asymptotic properties of the GMM estimators and 
test statistics by assuming ergodicity and strict stationarity of the data vector 
(r, z,_ I}. Our instruments include variables that are highly autocorrelated and 
may be nearly nonstationary (e.g., the one-month Treasury bill). Other authors 
have used similar instruments with the GMM in a number of empirical studies. 
It is therefore comforting to find that the GMM coefficient estimators and test 
statistics conform well to some of the theoretical asymptotic properties, even 
when the instruments may be nearly nonstationary. 

5.3. Standard errors and t-statistics 

Using 1,000 simulation trials, we compare the empirical standard deviations 
of the estimation errors in the individual-asset C coefficients with the mean of 
the 1,000 values of Hansen’s (1982) asymptotic standard errors. If the asymptotic 
standard errors are reliable, the two should be similar. The second column of 
Table 3 reports ratios of the mean GMM to the empirical standard errors, 
averaged across the assets. Using the small instrument set and T = 720, we find 
that the mean reported standard errors differ from the empirical standard 
deviations only in the third decimal place, and that results for two-stage and 
iterated GMM are virtually identical. The asymptotic standard errors are 
understated by an amount that grows from approximately 3% to about 17% 
when T is reduced from 720 to 60 (N = 3). The bias increases as N is increased. 
For T = 60 and N = 14, the reported standard errors average about two-thirds 
of the correct magnitudes. 

Table 3 shows that the bias in Hansen’s (1982) standard errors is greater when 
using the large instrument set. Even when T = 720, the ratios of the asymptotic 
to the empirical standard errors are between 0.70 and 0.86. Thus, in models with 
large numbers of equations or instruments, there is a serious risk of overstating 
the significance of parameter estimates by relying on the asymptotic standard 
errors. This sensitivity should not be surprising since the number of ortho- 
gonality conditions, and therefore the complexity of the covariance matrix of the 
parameters, is determined by the number of equations and the number of 
instruments per equation. 



W.E. Ferson, S.R. Foerster/Journal of Financial Economics 36 (1994) 29- 55 41 

The understated standard errors motivate an investigation of the multiplica- 
tive adjustment factors for the covariance matrix of the parameters. We examine 
the traditional adjustment factor [T/(T - P)] and the alternative adjustment 

factor [T(N + L)/(T(N + L) - Q}]. 
For each of 177 cases (where a case is defined by a given asset for a given N, T, 

and L) we compute the absolute difference between the competing standard 
errors and the empirical standard deviations. Using the traditional adjustment, 
the standard errors are closer to the empirical standard deviations than the 
unadjusted ones in 98% of the cases. The alternative adjustment is superior to 
the traditional adjustment in 90% of the cases. We divide the cases into 
subsamples based on the choice of the instruments. Using the small (large) 
instrument set, the alternative adjustment is superior to no adjustment in 86% 
(100%) of the cases and superior to the traditional adjustment in 85% (100%) of 
the cases. 

Table 3 illustrates the effects of the adjustment factors. Each adjusted stan- 
dard error is expressed as a fraction of the empirically determined standard 
error. Ratios less than 1.0 indicate downward bias in the standard errors. The 
table shows that the traditional adjustment factor is too small. The alternative 
adjustment is better in most cases, but it overadjusts the standard error in some 
cases. Those are extreme cases where T(N + L) is close to Q, and the adjustment 
is too large because the effective degrees of freedom in the denominator are small 
(e.g., T = 60, N = 14, L = 3). 

A standard error is typically used in conjunction with the point estimate of 
a coefficient. Table 3 therefore provides an analysis of t-ratios. For each 
simulation trial, we take the difference between the point estimate and the true 
value of each individual C coefficient and divide this by a standard error. For 
each adjustment we form a frequency distribution of the ratios, pooling them 
across the assets and simulation trials. Asymptotically, the t-ratios should be 
normally distributed with mean zero and unit variance. 

Using T = 720 and the small instrument set, the unadjusted t-ratios have 
means near zero and variances close to 1.0. The degrees-of-freedom adjustments 
have little effect. The fractiles of the empirical distribution of the t-ratios (not 
shown) are close to the values from the normal distribution. Iterated and 
two-stage GMM results are similar. Decreasing the sample to T = 60, the 
standard deviations of the unadjusted t-ratios are about 1.2 for N = 3 and 
increase to 2.2 for N = 14. When the large instrument set is used, the empirical 
distribution of the t-ratios becomes more fat-tailed. 

The traditional adjustment helps to reduce these biases, but the alternative 
adjustment is better. Even the alternative adjustment is inaccurate in extreme 
cases. The adjustment factor is too close to 1.0 for the large instrument set (the 
adjusted t-ratios have standard deviations between 1.4 and 1.9 when T = 60), 
and it is too extreme when T = 60 and N = 14, where the standard error of the 
adjusted t-ratio is only 0.7. 
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Table 3 

Finite sample properties of the Generalized Method of Moments (GMM) standard errors in 

a single-latent-variable model for expected returns 

Results for models with K = 1 latent variable, using artificial data generated so that a single- 

latent-variable model is the true model. The empirical standard errors are the sample standard 

deviations of the errors in the coefficient estimates. The unadjusted standard errors are the average 

across the 1,000 simulation trials of the asymptotic standard errors. The rraditional adjusted 

standard errors use the asymptotic variances multiplied by the adjustment factor [r/( T - P)], where 

Tis the number of time series observations and P is the number of model parameters. The alternative 

adjusted standard errors use the asymptotic variances multiplied by the adjustment factor 

[T(N + L)/{ T(N + L) - Q}], where N is the number of asset equations, L is the number of 

instrllments, and Q is the number of model parameters plus the number of unique elements in the 

GMM weighting matrix. The left-hand column for each case shows the average across the assets of 

the mean ratio for 1,000 simulation trials of a particular standard error (Se:at;g) to the empirical 

(True) standard error. The Mean t-ratio is the average of 1,000 ratios, each formed as the difference 

between the coefficient estimate and the true coefficient, each divided by the relevant standard error 

of the coefficient estimate. Std. qf!ft-rario is the sample standard deviation of the 1,000 t-ratios. For 

the small instrument set, Z consists of a constant, the one-month nominal Treasury bill rate, and the 

one-month lagged return on the CRSP value-weighted stock index. For the large instrument set, 

Z comprises the small instrument set and these additional variables: the lagged yield spread between 

a three-month and a one-month Treasury bill, the spread between the yield-to-maturity on 

AAA-rated corporate bonds and the lagged three-month Treasury bill return, the spread between 

the yield-to-maturity of BAA corporate bonds and the composite of corporate bond yields, the 
dividend yield of the CRSP value-weighted stock index, and a dummy variable for the month of 

January. The model is 

r,=Zh+u,, rz = Z6C + u2, 

where r , represents the returns of K reference assets in excess of the one-month Treasury bill rate 

and r2 is the excess returns of N - K test assets. fi is an L vector, and C is an N - I vector of 

coefficients. Each element Ci of C is the relative beta of asset i with respect to the reference asset r, 
The latent-variable model implies that E(u,u, 1 Z) = 0. The results are based on 1,000 bootstrap 

replications for iterated GMM. The bootstrap experiments are calibrated using the actual monthly 

data. DILDZO are the returns of value-weighted stock portfolios from market-value-ranked deciles. 

DI contains the smallest firms and DIO the largest firms. GB is a long-term government bond return 

and CB is a long-term corporate bond return. Il~Il2 are value-weighted industry-grouped port- 

folios, based on two-digit SIC codes. The returns are in excess of a one-month Treasury bill return. 

Results for various subsets of the assets are presented, indicated as follows: 

N: 3 5 10 12 14 

Assets: DI, 05, DIO DI, 03, D5. DlO. GB Dl, , DlO DI,. . DlO,GB,CB 11. II?.GB,C‘B 

Unadjusted Traditional adjusted Alternative adjusted 

Se:avg Mean Std. of Se:avg Mean Std. of Se:avg Mean Std. of 

N /True t-ratio t-ratio /True t-ratio r-ratio /True t-ratio t-ratio 

Using the small instrument set 

T = 60 time series observations (calibrated using 1982:1&1987:12) 

3 0.829 0.242 1.213 0.866 0.232 1.161 0.893 0.225 1.125 

5 0.758 0.257 1.214 0.806 0.242 1.197 0.884 0.220 1.092 
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10 0.647 0.313 1.589 0.723 0.280 1.421 

12 0.506 0.374 1.891 0.578 0.327 1.656 

14 0.678 0.101 2.208 0.792 0.086 1.891 

T = 120 time series observations (calibrated using 1978:1~1987:12) 

1.037 0.195 0.990 

1.024 0.185 0.935 

2.154 0.032 0.695 

3 0.700 - 0.147 1.108 0.715 - 0.144 1.085 

5 0.773 - 0.086 1.096 0.797 - 0.084 1.063 

10 0.765 - 0.127 1.183 0.807 - 0.121 1.122 

12 0.619 - 0.127 1.183 0.651 - 0.125 1.153 

14 0.665 - 0.121 1.247 0.714 - 0.126 1.161 

T = 720 time series observations (calibrated using 1928:1~1987:12) 

0.726 - 0.142 1.069 

0.830 - 0.080 1.021 

0.919 - 0.106 0.986 

0.785 - 0.105 0.968 

0.897 - 0.101 0.925 

3 0.970 0.018 1.019 0.973 0.018 1.016 0.975 0.018 1.013 

5 0.960 - 0.020 1.039 0.965 - 0.020 1.034 0.971 - 0.020 1.027 

10 0.950 0.039 1.049 0.958 0.039 1.040 0.975 0.038 1.022 

12 0.951 0.034 1.035 0.960 0.033 1.025 0.983 0.033 1.002 

14 0.954 - 0.044 1.035 0.965 - 0.044 1.026 0.992 - 0.042 0.999 

Using the large instrument set 

T = 60 time series observations (calibrated using 1982:1&1987:12) 

3 0.216 - 0.059 2.611 0.237 - 0.054 2.383 0.297 - 0.043 1.901 

5 0.247 - 0.179 5.308 0.276 - 0.160 4.748 0.955 - 0.046 1.371 

T = 120 time series observations (calibrated using 1978: I~1987:12) 

3 0.546 - 0.213 1.595 0.570 - 0.204 1.527 0.624 - 0.186 1.395 

5 0.406 - 0.516 2.002 0.428 - 0.490 1.900 0.595 - 0.353 1.368 

10 0.196 - 1.032 7.149 0.212 - 0.956 6.623 0.275 - 0.735 5.095 

T = 720 time series observations (calibrated using 1928:1-1987.12) 

3 0.707 0.206 1.166 0.717 0.203 1.150 0.735 0.198 1.121 

5 0.853 0.174 1.179 0.860 0.173 1.169 0.893 0.166 1.125 

10 0.796 0.209 1.259 0.806 0.207 1.244 0.920 0.181 1.090 

12 0.753 0.215 1.351 0.711 0.212 1.333 0.916 0.176 1.110 

14 0.701 - 0.281 1.366 0.763 - 0.277 1.346 0.906 - 0.218 1.057 

In summary, the empirical distribution of the t-ratios has more dispersion 
than the normal in small samples. The alternative adjustment factor is useful, 
provided that the number of instruments and assets is not too large, and that 
T(N + L) is not too close to Q. However, the results should still be interpreted 
with caution. This motivates future research to develop alternative variance 
estimators with better small-sample properties. 

5.4. Robustness sf the results 

We conduct a number of experiments to check the sensitivity of the results to 
variations in the experimental design. In the first exercise, the artificial data 
display conditional heteroskedasticity. Similar to the results in Table 2, we find 
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that the two-stage GMM tests reject the model too often using the small 
instrument set. The overrejection by the two-stage test statistics is worse than 
before in the larger systems. The iterated GMM test statistics are more reliable, 
but have a slight tendency to reject the model too infrequently. Thus, the results 
reinforce the importance of using iterated GMM for goodness-of-fit tests in the 
larger models. 

When we introduce heteroskedasticity, the sampling distributions of the 
t-ratios are more fat-tailed in the smaller samples than they are without the 
heteroskedasticity (the t-ratios are well specified when T = 720). The downward 
bias of the asymptotic standard errors and the average absolute bias in the 
coefficient estimates are both worse than before. The alternative degrees-of- 
freedom adjustment is useful for small N, but it does not completely eliminate 
the fat tails of the t-ratios. 

We replicate some of the experiments in Tables 2 and 3 using a traditional 
Monte Carlo approach instead of resampling the residuals. The rejection rates 
and the general patterns of the results are similar to those in Table 2, while the 
standard errors and t-ratios are slightly better behaved than in Table 3. We also 
replicate some of the experiments using a vector autoregression to generate 
random samples of the lagged instruments. We do this as an alternative to 
reusing the sample values in each replication. The results are similar to those in 
tables 2 and 3. 

5.5. The power qf the tests 

The empirical literature typically fails to reject latent-variables models with 
small numbers of premiums. This suggests that either a small number of 
common factors determine conditional expected returns or the tests are low in 
power. To evaluate power we generate artificial data from two alternative 
economies. In the first, expected returns are determined by a two-beta model 
(K = 2) with fixed betas and two time-varying premiums. In the second, a condi- 
tional version of the CAPM holds in which the conditional market betas are 
time-varying. The appendix describes these alternative economies and summar- 
izes the finite sample properties of the GMM when the null hypothesis is the 
two-latent-variable model. 

Figs. 1 through 4 provide some feel for the properties of the alternative 
economies. Fig. 1 shows a time series plot of the expected market premium, 
using the small instrument set and the 720 monthly observations of the actual 
instruments from 1928 through 1987. In the single-latent-variable model, each 
asset’s expected excess return is a constant beta multiplied by a similar expected 
market premium, based on the simulated instruments. Fig. 2 shows the expected 
interest rate premium in the two-latent-variables model. In the two-premium 
model, each asset’s expected excess return is a constant linear combination of 
two expected premiums, similar to Figs. 1 and 2. Fig. 3 plots examples of the 
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Fig. 1. Time series of the expected market premium. The monthly fitted expected excess return is 

obtained by regressing the return of the CRSP value-weighted index in excess of a one-month 

Treasury bill on the small instrument set. The small instrument set consists of a constant, the lagged 

level of the one-month bill, and the lagged excess return of the CRSP index. The 720 fitted values are 

from 1928 to 1987. These fitted values are used as the true expected returns in the simulation 

experiments. 

betas for the time-varying beta CAPM economy. In this economy, an asset’s 
expected excess return is the product of a changing beta and an expected market 
premium, similar to Fig. 1. Fig. 4 illustrates differences in the expected returns 
under two alternative models. We present two time series plots of fitted expected 
return differences. Deviations from the horizontal line at zero indicate differ- 
ences between the expected returns under the single-factor model and an 
alternative. These are based on the actual sample of instruments. The series 
denoted by the squares represents the two-factor, constant-beta alternative. The 
mean difference is - 0.73% and the standard deviation of the difference is 
0.33%. The series denoted by the ‘ + ’ signs represents the time-varying beta 
model. The mean difference is 0.27% and the standard deviation is 0.40%. The 
changing-beta expected returns differ from the null hypothesis by a smaller 
average amount, and the variance of the departure is larger. 

Table 4 presents the empirical power of the K = 1 test. Under the null 
hypothesis K = 1, the sampling distribution of the two-stage GMM test statistic 
is more disperse than the iterated GMM (see Table 1). If we adjust the two-stage 
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Fig. 2. Fitted expected interest rate risk premium. The monthly fitted expected excess return is obtained 

by regressing the return of a two-month Treasury bill in excess of a one-month bill on the small 

instrument set. The small instrument set consists of a constant, the lagged level of the one-month bill, 

and the lagged excess return of the CRSP index. The 720 fitted values are from 1928 to 1987. These 

fitted values are used as the expected interest rate risk premiums in the simulation experiments. 

statistic for the correct size, we expect it to have inferior power. We therefore 
concentrate on the power of iterated GMM. The power is computed for tests 
with sizes of c( = 0.10, 0.05, and 0.01. We find an adjusted critical value for the 
test statistic for each case in the table. The adjusted critical value is the value 
which is exceeded by a fraction of the statistics simulated under the null 
hypothesis. The null hypothesis is the single-premium, constant-beta economy, 
similar to that shown in Table 2. The empirical power is the fraction of 500 trials 
in which a test using the adjusted critical value rejects the K = 1 hypothesis 
when the data are generated from the alternative economies. To hold the 
alternative hypothesis fixed while the sample size T is varied, we bootstrap from 
the T = 720 sample for each alternative. We also use the vector autoregression 
approach, which generates a different time series of the small instrument set in 
each replication. We experiment with other methods of generating the alterna- 
tives, and the overall impressions are similar. 

Table 4 shows that the tests have more power to detect the two-premium 
alternative than to detect the CAPM with time-varying betas. The power of 
a 10% test to detect changing betas is less than 25% in all but two of the 
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Fig. 3. Time-varying betas. Time series plots of time-varying betas on the CRSP value-weighted 

market index are shown for the 720 months from 1928 to 1987. The plot in the center that uses 

squares represents the market capitalization (size) portfolio of the largest firms. The betas for the 

smallest decile are shown as a solid line. The betas are assumed to be a linear function of the small 

instrument set, and are estimated by a regression of the returns on the CRSP value-weighted index 

and the products of the instruments and the index. The small instrument set consists of a constant, 

the lagged level of the one-month Treasury bill, and the lagged excess return of the CRSP 

value-weighted stock index. 

15 cases. In eight cases the power is less than 10%. The power of a 10% test for 
the two-premium alternative exceeds 25% in eight of the 15 cases. In five cases it 
exceeds 60%. 

It is remarkable that the power can be high, since the tests focus on regres- 
sions that explain a small fraction of the variance of the data ~ less than 10% in 
most cases and often less than 1%. The explained variance is small because the 
regressors are predetermined. In tests of unconditional beta pricing restrictions, 
the regressors are contemporaneous and they explain much larger fractions of 
the variance. The power of the GMM tests here to detect the two-factor 
alternative is comparable to the power in a number of studies of unconditional 
beta pricing restrictions.2 

’ See Gibbons (1982), Jobson and Korkie (1982), MacKinlay (1987), Gibbons and Shanken (1987), 
and Affleck-Graves and McDonald (1990). 
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Fig. 4. Differences in expected returns under two alternative models. The squares represent the 
differences between the expected returns for the common stocks of market capitalization (size) 

portfolio five, under the single-latent-variable model versus the two-premium alternative. The ‘ + ’ 
signs represent the expected return differences for the same portfolio, between the single-latent- 

variable model and the changing-beta CAPM alternative. We use the small instrument set, which 

consists of a constant, the lagged level of the one-month Treasury bill, and the lagged excess return of 

the CRSP value-weighted index. The 720 monthly observations are for 1928 to 1987. 

5.6. Implications sf the simulation evidence 

Our results have important implications for studies that use the GMM. 
Recent studies reject single-latent-variable models for the expected returns of 
stock and bond portfolios. With two-stage GMM, the tests are likely to be 
biased against the mode1 in small samples if the size of the system is large. For 
example, using the fourteen-asset system (small instrument set) and the data in 
this study, a two-stage GMM test of the single-latent-variable mode1 produces 
an asymptotic p-value of 0.01. The bootstrapped p-value is 0.24. Our results 
show that using iterated GMM is important to avoid such a bias. Fortunately, 
much of the literature testing latent-variable models with large systems has used 
iterated GMM.3 Our results suggest that the rejections of single-latent-variable 

3 Campbell (1987) used a two-stage GMM approach. He was kind enough to send us his data, so we 

conducted his tests again using iterated GMM. The results were essentially identical. This is not 
surprising, given our results and the small size of the systems in his paper. 
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Table 4 

Power of tests for a single latent variable 

Fraction of 500 trials in which the test for K = 1 latent variable rejects the null hypothesis when 

alternative models generate the artificial data. The instruments are a constant, the one-month 

nominal Treasury bill rate, and the one-month lagged return on the CRSP value-weighted stock 
index. 

Alternative hypothesis: K = 2, Alternative hypothesis: K = 1, 

fixed betas changing betas 

Actual % rejected at the following Actual % rejected at the following 

nominal significance levels nominal significance levels 

N T 0.10 0.05 0.01 0.10 0.05 0.01 

3 60 0.186 0.114 0.026 

120 0.194 0.130 0.044 

720 0.618 0.474 0.332 

5 60 0.186 0.086 0.048 

120 0.216 0.128 0.036 

720 0.656 0.596 0.406 

10 60 0.206 

120 0.268 

720 0.736 

12 60 0.234 

120 0.314 

720 0.764 

14 60 0.226 

120 0.300 

120 0.830 

0.134 

0.640 

0.126 

0.210 

0.688 

0.102 

0.222 

0.730 

0.034 

0.028 

0.376 

0.018 

0.086 

0.340 

0.038 

0.066 

0.540 

0.102 

0.084 

0.178 

0.058 

0.042 

0.242 

0.040 

0.050 

0.205 

0.072 

0.046 

0.290 

0.104 

0.082 

0.396 

0.062 
0.050 

0.086 

0.012 

0.012 

0.178 

0.020 

0.014 

0.159 

0.028 

0.020 

0.186 

0.038 

0.040 

0.262 

0.008 

0.010 

0.018 

0.006 

0.002 

0.050 

0.002 

0.004 

0.023 

0.000 

0.006 

0.026 

0.006 

0.004 

0.104 

models using iterated GMM have a mild conservative bias because iterated 
GMM rejects a latent-variable-model too infrequently. 

Hansen’s (1982) asymptotic standard errors should be adjusted in small 
samples to remove a downward bias. Studies that do not use such an adjustment 
have probably overstated the significance of their estimates. The adjustments 
can be applied ex post&to to evaluate the magnitude of the problem. Ferson 
(1990, Table IV) reports coefficients for a single-latent-variable model with 
T = 151 observations, N = 7 assets, and L = 8 instruments. Our alternative 
adjustment factor is 3.46, so Ferson’s reported standard errors are probably far 
too small. Dividing his t-ratios by the adjustment factor, we find that two of the 
four t-statistics that are reported larger than 2.0 are no longer significant. 
Harvey (1991, Table VI) reports coefficients for a single-latent-variable model 
with T = 232, N = 15, and L = 6. All but one of the fifteen coefficients are 
reported as more than 1.96 standard errors from zero. In Harvey’s case the 
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adjustment factor is 6.44. Dividing his t-ratios by this factor, we find that all of 
the fifteen coefficients have r-ratios below 2. 

6. Concluding remarks 

This paper develops evidence on the finite sample properties of the Generaliz- 
ed Method of Moments (GMM). The GMM is used to estimate predictive 
regressions for security returns and to test nonlinear cross-equation restrictions. 
Subject to the caveat that it is hazardous to extrapolate the simulations beyond 
this context, our experiments lead to several conclusions. 

(1) In simple models with a small number of equations and instruments, the 
GMM is reliable with as few as 60 time series observations. The coefficient 
estimates are approximately unbiased, and the goodness-of-fit statistics 
conform well to the asymptotic distribution. 

(2) In more complex models it is important to employ an iterated version of the 
GMM, since a two-stage procedure rejects the models too often in small 
samples. Iterated GMM test statistics conform more closely to the asymp- 
totic distribution, but they have a mild tendency to reject too infrequently. 

(3) Hansen’s (1982) standard errors are biased toward zero in small samples. 
A simple adjustment factor reduces the bias in simpler models. The adjust- 
ment multiplies the asymptotic variance by a ratio greater than unity, which 
accounts for the number of parameters plus the elements in the GMM 
weighting matrix. A traditional adjustment factor that does not account for 
the size of the weighting matrix is too small. 

(4) When the numbers of instruments and assets are small, f-ratios that are 
formed by using the adjustment factor can be evaluated with the unit normal 
distribution. However, the total number of observations must not be too 
close to the number of parameters plus the number of elements in the GMM 
weighting matrix. When the number of assets and instruments is large even 
the adjusted t-ratios are unreliable. 

(5) In more complex models, while the iterated GMM goodness-of-fit statistics 
are reasonably well specified, the coefficient estimates should be viewed with 
suspicion. They can be highly unreliable in small samples. 

(6) Even though the regression systems explain a small fraction of the variance 
in returns, the power to detect the more complex cross-equation structure of 
the coefficients implied by a two-beta model can be high. Given a changing- 
beta CAPM that induces nonlinearities and heteroskedasticity, we found 
that this alternative is closer to the single-factor null hypothesis and that the 
GMM tests have low power. Low power against some alternatives is one 
cost of the generality of the GMM approach. 
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Appendix: The three economies 

We generate data from the economy to satisfy the null hypothesis of a single 
latent variable, using the following procedure: 

(a) rmt is regressed on monthly data for z,_,. The OLS estimates of the coeffi- 
cients, 6,, become the ‘true’ parameter values in Eq. (5) for the simulations. 

(b) Excess asset returns, riI, i = 1, . . . , N, are regressed on an intercept, and the 

fitted expected excess market returns, Sk & 1 from (a). The slope coeffi- 
cients, Bim, become the ‘true’ values of the assets’ betas on the market 
portfolio. 

(c) We form a T x N sample of errors: ei, = Tit - Jim (&,,z,_ i), t = 1, . . . , T, 
i = 1, . . . , N. The vectors of the mean-centered error terms determine the 
population distribution of the errors in the bootstrap experiments. 

(d) To generate an observation of artificial returns for each date t (t = 1, . . , T) 
we draw a random integer t*, 1 < t* < T, and select e,* as the error vector 
for time t. The artificial returns for asset i for time t are generated as 

Yif = PiA6Ln Zt - 1) + ef. 

(e) The restricted regression system of Eq. (6) is estimated by GMM on the 
artificial returns. A two-stage and an iterated GMM test statistic are cal- 
culated for each replication. We set the maximum number of stages to 30. 
The criterion for convergence within a stage is a change in the objective 
function less than 0.0001. The criterion for convergence across the stages is 
0.001. If we encounter a nonsingularity in the GMM weighting matrix, we 
start over at step (d) with a new replication. Such instances are rare. 

(f) Steps (d) and (e) are repeated for a total of 1,000 replications. 

To generate artificial data that display conditional heteroskedasticity and 
satisfy a single-latent-variable model, we assume that the conditional correla- 
tions of the portfolio returns are fixed, and we specify a factor structure for the 
conditional heteroskedasticity. We estimate a model for the conditional vari- 
ance of the market portfolio return, {o&}, as a function of the instruments, z,_ 1, 
using the methods of Davidian and Carroll (1987). We then obtain the implied 
conditional standard deviation series, for each portfolio return i, from the 
identity: hit = Omt(Pim/Pim), where Pim is the conditional beta used in the simula- 
tions and pi,,, is the correlation of the OLS residuals from the regressions of 
rif and r,,,, on z, 1 in the sample data. The conditional covariance matrix for 

date t, R,, is formed from the products of the {Oit} and the {pij]. The vectors of 
the unanticipated returns, e, that we randomly draw for date t in our original 
experiments have a covariance matrix denoted by C. To generate conditionally 
heteroskedastic unanticipated returns with covariance matrix 52,, we use the 
transformation e’Z_ ‘I2 52:‘*, where C-lj2 and 52:j2 are the Cholesky factoriza- 
tions of C-i and Q,, respectively. 
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In our changing-beta economy the conditional market betas are constructed by 
assuming the betas are linear functions of the instruments. The coefficients of the 
linear functions are estimated by regressing the asset return on the market index 
return and the product of the market index return with the lagged instruments. 
We generate the artificial data using a strategy similar to the previous experi- 
ments, except that we use the time-varying betas instead of fixed betas. 

In our two-factor economy, the first factor is the (CRSP value-weighted) 
excess market return and the second is the excess return of a three-month 
Treasury bill. The conditioning information for the two expected premiums is 
the same as before, and both are estimated by linear regressions on the sample 
data. We generate artificial data using the two fitted premiums in step (b) and 
two fixed betas in steps (c) and (d). 

Mean-variance efficiency implies that the two-beta alternative is one in which 

E(rAZt- 1) = Bi,E(rAZ,m 1) + Dir E(rJZ,- ) 1 can be expressed as another single- 
factor, variable-beta model: 

E(rAZ, - I) = Bipt W,,lZ, - I ), i = 1, . . . , N, 

where 

rpt = {witrmt + wZrrAl(wIr + ~zJ, 

and the wjt are time-varying expected excess return-to-variance ratios for the 
two-factor portfolios r,t and rrt. The portfolio rp, is a minimum variance 
combination of the two-factor portfolios, and the betas with respect to rpf will 
vary over time. Therefore, the results on power may be interpreted as providing 
evidence about power against two different models of time-varying betas. The 
power of the test should depend upon how much the betas vary over time, but the 
distance of an alternative model from the null hypothesis cannot be measured 

solely by variation in the betas. In a previous version of this paper, we provided 
an analysis of the determinants of the power. These results are available by 
request. 

We use the two-premium economy to investigate the properties of a test for 
K = 2 latent variables under the null hypothesis. (Tables are available by 
request.) We find that, as the number of assets increases, a two-stage GMM test 
of a given nominal size rejects the model more and more often. The overrejection 
becomes dramatic in the larger systems, even for the larger sample sizes. The 
iterated GMM statistic is more accurate, tending to reject somewhat too 
infrequently. Changing the reference assets has little effect on the rejection rates. 
We also find that the coefficient estimates are biased. Even when N = 3 and 
T = 720, the average absolute bias in one case exceeds 14%. We observed biases 
in excess of 600% with smaller sample sizes and larger numbers of equations. 
The empirical standard errors of the coefficient estimates are not always under- 
stated in the K = 2 model, and the degrees-of-freedom adjustments do not 
rectify the poor performance of the standard errors. 
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The relatively poor performance of the estimators in the K = 2 economy 
could be related to high correlation between the two expected premiums. We 
therefore conduct an experiment in which we orthogonalize the two risk pre- 
miums. The results are similar. In another experiment we use a maximum 
correlation portfolio for the monthly growth rates of the total U.S. industrial 
production index (from Citibase) as an alternative second risk factor. We 
construct the portfolio by regressing the growth rates of the industrial produc- 
tion index on the 25 monthly returns over the 1947.2-1987.12 period. The 
regression slope coefficients are normalized to sum to unity, and the normalized 
coefficients define a portfolio weight vector for the 25 assets. We use this return 
and repeat a subset of the simulations. The results are again similar. If the 
importance of a second premium is small in the actual data, the K = 2 model 
may be overparameterized. It is therefore interesting to find that the (K = 1) 
tests can have high enough power to detect a second premium in these data. 
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