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AN IMPROVED HETEROSKEDASTICITY AND AUTOCORRELATION
CONSISTENT COVARIANCE MATRIX ESTIMATOR

By DonALD W. K. ANDREWS AND J. CHRISTOPHER MONAHAN !

1. INTRODUCTION

THIS PAPER CONSIDERS A NEW cLASS of heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimators. The estimators considered are prewhitened kernel
estimators with vector autoregressions (VARs) employed in the prewhitening stage. The
paper establishes consistency of the estimators when a fixed or automatic bandwidth
procedure is employed. Monte Carlo results show that prewhitening is very effective in
reducing bias, improving confidence interval coverage probabilities, and reducing over-
rejection of ¢ statistics constructed using kernel HAC estimators. On the other hand,
prewhitening is found to inflate the variance and MSE of the kernel estimators. Since
confidence interval coverage probabilities and over-rejection of ¢ statistics are often of
primary concern, prewhitened kernel estimators provide a significant improvement over
the standard kernel estimators.

Considerable attention has been paid in recent years to HAC covariance matrix
estimation; see L. P. Hansen (1982), Levine (1983), White (1984), Gallant (1987), Newey
and West (1987), Andrews (1991), Robinson (1991), Keener, Kmenta, and Webber
(1991), Wooldridge (1991), and B. E. Hansen (1992). As shown in the Monte Carlo
results of Andrews (1991), however, the kernel estimators considered in the above papers
all perform quite poorly in certain contexts. In particular, kernel HAC covariance matrix
estimators often yield confidence intervals whose coverage probabilities are too low
(equivalently, test statistics that reject too often) and this phenomenon is not attributable
to a particular choice of kernel or bandwidth parameter. The problem is especially
severe when there is considerable temporal dependence in the data. This finding suggests
that the standard class of kernel HAC estimators is too restrictive and that one needs to
consider a larger class of estimators if an improved HAC estimator is to be found. In this
paper, we consider such a class, viz. the class of VAR prewhitened kernel HAC
estimators.

Prewhitening has a long history in the time series literature and dates from the work
of Press and Tukey (1956). Additional references include Blackman and Tukey (1958)
and Grenander and Rosenblatt (1957). The idea behind prewhitening is as follows:
Suppose one is nonparametrically estimating a function f(A) at A, by taking unbiased
estimates of f(A) at a number of points A in a neighborhood of A, and averaging them.
If the function f(A) is flat in this neighborhood, then this procedure yields an unbiased
estimator of f(Ag). If f(A) is not flat in this neighborhood, however, then the procedure
is biased and the magnitude of the bias depends on the degree of nonconstancy of f(A).

Suppose the data and the function f(A) can be transformed such that the transformed
function f*(A) is flatter in the neighborhood of A, than is f(A). Then, using the
transformed data, one can estimate f*(A,) by averaging unbiased estimates of f*(A) at
points A in the neighborhood of A,. The bias incurred by doing so should be less than
that incurred by estimating f(A) as described above, since f*(A) is flatter than f(A).
Finally, one can apply the inverse of the transformation from f(A) to f*(A) to obtain an
estimator of f(A) from the estimator of f*(A).
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the National Science Foundation via Grant Nos. SES-8821021 and SES-9040137.
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In the time series literature, the idea of prewhitening has been applied to nonpara-
metric estimators of the spectral density function. In this case, one tries to transform
(filter) the data in such a way that the transformed data is uncorrelated, since an
uncorrelated sequence has a flat spectral density function. The estimand of interest in
this paper is just the spectral density function at frequency zero in the special case where
the observations are second order stationary and no parameters are estimated. Thus, it is
natural to consider using a prewhitening procedure that attempts to transform the data
into an uncorrelated sequence before applying a kernel estimator when constructing a
HAC covariance matrix estimator.

The remainder of this note is organized as follows: Section 2 defines the estimand of
interest, introduces the VAR prewhitening procedure, and presents the consistency
results for the prewhitened HAC estimators. Section 3 describes a Monte Carlo experi-
ment that is designed to assess the effectiveness of prewhitening. Throughout the paper,
.all limits are taken as T — .

2. VAR PREWHITENED HAC ESTIMATORS

First, we introduce the estimand of interest. Many parametric estimators 6 in
nonlinear dynamic models satisfy

(1) (BpJrBy) VAT (6-6,) > N(0,1,),  where

1 T T
= Z ZEVs(go)V:(oo)"
Ts=1t=1

B, is a nonrandom ¢ X p matrix, and V(6) is a random p-vector for each 0@ cRr’
Usually it is easy to construct estimators BT of Br such that BT B; % 0. The sample
analogue of By with 6, replaced by 9 is usually sufficient. Thus, one can consistently
estimate the “asymptotic variance” of VT (6 — 6,), viz., B;J; By, if one has a consistent
estimator of Jy. It is the estimation of J; that concerns us here.

A second scenario where estimands of the form J, arise quite frequently is in the
analysis of linear models with deterministic and/or stochastic trends, in particular, unit
root and cointegration models, e.g., see Phillips (1987). The estimators that we consider
here are also applicable in these scenarios.

We define a class of VAR prewhitened HAC estimators of J; as follows: Suppose 0 is
a VT -consistent estimator of 6. First, one estimates a bth order VAR model for V(O)

b
(22) V()= X AV, (6)+V*(@) for t=b+1,..,T,
r=1

where A for r=1,...,b are p Xp parameter estimates and {V*(0) t=b+1,...,T}
are the correspondmg re51dua1 vectors. For example, {A r=1,...,b} could be the least
squares (LS) estimators.? The estimated VAR model is not meant to be an estimate of a
true model. It is used as a tool to “soak up” some of the temporal dependence in {V(0)}
and to leave one with residuals {V*(t‘))} that are closer to white noise than are the rv’s

6.

2 We suggest defining the estimators {A } in such a way as to ensure that I, — xb_ 1A is not too
close to smgulanty For example, for the Monte Carlo results of Section 3, we use an eigenvalue
adjusted version of the LS estimator. See Section 3 for details.
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Second, one computes a standard kernel HAC estimator, call it f}‘(fr), based on the
VAR residual vectors {V;*(6)}. Let

T-1

(2.3) f;‘(AT)=T%. Y k(sé)f*(j), where
j=—-T+1 T
1 r o
T t=§1 VxVE, forj>0,
=y, r o
T r—§+1 VAV for j <0,

V* =V*(6), k(-) is a real-valued kernel in the set J¥; defined below, and S, is a
data-dependent bandwidth parameter. The factor T/(T — ¢) is a small sample degrees of
freedom adjustment that is introduced to offset the effect of estimation of the {-vector
bo. A

Third, one recolors the estimator J#(S;) to obtain the VAR prewhitened kernel
estimator of J;:

b -1
@4)  Fou(Sy) =DiE(S;)D',  where D= (zp ¥ /f,) .
r=1

Once a kernel k is chosen and a data-dependent bandwidth §T is specified (e.g., as in
Section 3 below), this yields an operational VAR prewhitened kernel estimator of J;.

We mention two reasons why we have chosen a VAR model to do the prewhitening.
First, VARs have been found in the econometrics literature to yield reasonable approxi-
mations of a wide variety of vector-valued time series processes. Second, it has been
found in the statistical literature that autoregressive spectral density estimators provide
reasonable estimators of the spectral density functions of more general stationary time
series processes; see Parzen (1984) for references. Of course, if prior information
suggests that a model different from a VAR model may give a better approximation in a
given situation, then it may be preferable to use this model to do the prewhitening.

Next, we establish the consistency of prewhitened kernel HAC estimators. We
consider the following classes of kernels:

2.5) HKi={k(:): R->[-1,1]lk(0) =1, k(x) =k(—x)Vx ER,
fw |k(x)ldx <o, k(-) is continuous at 0 and at all but a finite

number of other points} and

1
K= {k(-) e #;: (i) lk(x)l < C|x|~® for some B> 1+ 2 and some
C, <, where g € (0,») is such that k, = lim (1—-k(x))/Ix|’€
x—0
(0,), and(i)lk(x) —k(y)l< Cylx —yIVx, y €R for some

constant C, < oo}.3

3The classes .%; and ¥, are numbered to correspond to the numbering in Andrews (1991).
The class %, of Andrews (1991) is not considered here. Note that %] in Andrews (1991) should be
defined with [k?(x)dx < = replaced by [|k(x)| dx < =, as it is here.



956 D. W. K. ANDREWS AND J. C. MONAHAN

¥, contains the quadratic spectral (QS), truncated, Bartlett, Parzen, and Tukey-
Hanning kernels among others. %3 contains all of these kernels except the truncated
kernel. For the QS, Parzen, and Tukey-Hanning kernels, g is 2. For the Bartlett kernel,
q is 1. For fixed sequences of bandwidth parameters our consistency results hold for all
kernels in %]. For data-dependent sequences {S;}, they hold for all kernels in %3.

Let V,=V,(0y). Let k,p.4(t,t +j,t +1,t +n) denote the fourth order cumulant of
Vot VorajsVersts Varon)s Where V,, denotes the ath element of V,. Let f@=
i _alil®sup, ,IEVV, |l Let A, (A) denote the maximum eigenvalue of A. Let
|| 4|l denote the Euclidean norm of a vector or matrix A4 (i.e., the square root of the sum

of squares of its elements).
We now introduce a number of assumptions from Andrews (1991) plus one from B. E.
Hansen (1992). See Andrews (1991) for discussion of these assumptions.

AssumptioN A: {V}} is a mean zero sequence of rv’s with X2 gsup, |EVV;_jll <
and X7 X7 Xy 1 Sup, oK apea(t, t +j t +1,t +0)| <o Va,b,c,d <p.

AssumpTioN B: Either (i) VT (6 — 00)=0,(1) and sup, ., E sAup‘,E(.)Ila/aH’V,(a)Il2 < oo,
where © C R® is some neighborhood of 6, or (i) V(8) =V, — (6 — 00)X,,sup, . 7llA7 X,ll
=0,(1), and VT (6 — 0)Ar! = O,(1), where {Ar: T > 1} is some sequence of nonrandom
nonsingular matrices.

AssumptioN C: S7=@GTY/@9* D, where & satisfies & = O,(1) and 1/& = O,(1).

Assumption D: (i) VT(A4,-A4,)= 0,(1) for some A, € RP*PNr=1,...,b. (ii) I,—
Yb_,A, is nonsingular. X

As shown in Andrews (1991, Lemma 1), Assumption A and f{ <« are implied by
a-mixing and moment conditions. Part (i) of Assumption B is used for nonlinear dynamic
models without deterministic or stochastic trends. Part (i) of Assumption B is used for
linear models with trends and is due to B. E. Hansen (1992). The rate of growth specified
in Assumption C of the automatic bandwidth parameter, viz. T1/?9*D, is the optimal
rate determined in Andrews (1991). A particular sequence of data-dependent bandwidth
parameters that satisfies Assumption C is described in Section 3 below. Assumption D is
the only assumption that is not used in the proof of consistency of standard kernel HAC
estimators.

The main result of this section is the following:

Tueorem 1: Suppose k € ¥, with q>1/2, f9 <o, and Assumptions A-D hold.
Then prw(S\T) - JT E’ 0.

ComMENT: Additional asymptotic properties of prewhitened kernel HAC estimators
are established in Andrews and Monahan (1990). In particular, prewhitened kernel
estimators are shown to converge to the estimand at the same rate as standard kernel
estimators, their asymptotic truncated mean square error is established, and conditions
are given under which prewhitening improves asymptotic truncated MSE.

3. MONTE CARLO RESULTS

. In this section, Monte Carlo methods are used to evaluate the performance of the
VAR prewhitened HAC estimator introduced above. We compare the prewhitened
HAC estimator to the nonprewhitened HAC estimator and to a parametric estimator.
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We consider several linear regression models, each with an intercept and four
regressors, and the least squares (LS) estimators 6 for each of these models:

T -1r
(31)  Y,=X0,+U, t=1,...,T, é=[ZX,X,' Y X,Y,, and
1 1

Var(VT (6 - 6,)1X)

-1 -1

1T 1 T T 1T
- (; ZX,X,') 7 L LEuxuxin|; Lxx)
1 s=1¢t=1 1
The estimand of interest is the variance (conditional on X =(Xj,..., X7)) of the LS
estimator of the ﬁrstAnonconstant regressor. (That is, the estimand is the second diagonal
element of Var(yT (6 — 6,)| X).)
~ Seven basic regression models are considered: AR(1)-HOMO, in which the errors and
regressors are homoskedastic AR(1) processes; AR(1)-HET1 and AR(1)-HET2, in which
the errors and regressors are AR(1) processes with multiplicative heteroskedasticity
overlaid on the errors; MA(1)-HOMO, in which the errors and regressors are ho-
moskedastic MA(1) processes; MA(1)-HET1 and MA(1)-HET?2, in which the errors and
regressors are MA(1) processes with multiplicative heteroskedasticity overlaid on the
errors; and MA(m)-HOMO, in which the errors and regressors are homoskedastic
MA(m) processes with linearly declining MA parameters. (Details are given below.) A
range of different parameter values is considered for each model. Each parameter value
corresponds to a different degree of autocorrelation.

Three variance estimators are considered. The first, denoted QS-PW, is a prewhitened
kernel HAC estimator defined using the QS kernel (defined below), a first-order VAR
prewhitening procedure (b =1), and an automatic bandwidth procedure (defined below).
The underlying 1v’s {V(B)} upon which QS-PW is constructed (see (2.2)), are defined by
V(O) y, - X'0)X The dimension, p, of V(O) is 5. The p X p estimator A(= Al) that
is used to carry out the prewhltemng is deﬁned as follows: Let A Ls denote the LS
estimator from the regression of ¥,(6) on V,_(6) for t=2,...,T. The LS estimator A g
is adJusted using its singular value decomposition to obtam an estimator A for which
I, — A is not too close to singularity. In particular, let B and C denote p X p orthogonal
matrices whose columns are eigenvectors of A ,_SA LS and A LSA LS» respectlvely Let

A s be the dnagonal p Xp matrix defined by A,_S—BA LSC By constructlon, A g=
B4 LSC" Let 4 be the p Xp diagonal matrix constructed from A Ls by replacing any
element of A, ¢ that exceeds .97 by .97 and any element that is less than —.97 by —.97.

Then, let A=BAC'* Note that this eigenvalue adjustment has no effect on the
consistency of the estimator QS-PW. QS-PW is consistent even if the probability limit of
A, ¢ has some eigenvalues closer to 1 than .97.

The QS kernel is defined by

25 sin (67x/5)

G2 kos(¥) =553 "omnss

—cos(6mx/5)].

The QS kernel yields an estimator prw(fr) that is necessarily positive semi-definite.

* This adjustment procedure guarantees that the engenvalues of I, —A are >.03 in absolute
value To see this, suppose A is an eigenvalue of A with correspondmg eigenvector x. Then
Ar=Ax and |lx|=1. Thus, we have |A|=IlAx|l=(x'A'dx)"/?=(x'C'4%Cx)"/? = (y'A2y)/? =
(z2 182 212 < 9N(y'y)'/? = 97, where y = Cx and y'y =x'x = 1. The eigenvalues of 1, —A are
of the form 1 — A and, hence, are > .03 in absolute value.
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This kernel possesses some large sample optimality properties; see Andrews (1991). It
does not suffer from the drawbacks of the truncated kernel (advocated by White (1984, p.
152)) and the Bartlett kernel (advocated by Newey and West (1987)). (The former kernel
does not necessarily generate positive semi-definite estimates and the latter yields an
estimator with a slower rate of convergence, and hence lower asymptotic efficiency, than
the QS kernel; see Andrews (1991).)

The bandwidth parameter that we use is a data-dependent plug-in estimate of an
optimal value determined in Andrews (1991). The optimal value is

(3.3) Sk = (qua*(tI)T/ka(x) dx)l/(2q+1)

b

where ¢, k,, and [k*(x) dx are known values that depend on the kernel k£ and a*(q) is
an unknown scalar quantity that depends on the covariances of the sequence {V;*}. For
the QS kernel, g =2, k, = 1421223, and [k*(x)dx =1.
In brief, the data- dependent bandwidth parameter is defined as follows: First, we
specnfy D univariate approximating parametric models for {V}} for a=1,...,p (where
=(VE,..., ,,,)') Second, we estimate the parameters of the approxnmatlng paramet-
r1c models by standard methods. Third, we substitute these estimates into a formula
(given below and in Andrews (1991)) that expresses a*(q) as a function of the parame-
ters of the parametric models. This yields an estimate @*(q) of a*(g). The estimate
@*(q) is then substituted into the formula (3.3) for the optimal bandwidth parameter S5
to yield the data-dependent bandwidth parameter S3:

. 1/Q2q+1)
G4 - (e @1/ [ () &)

For the QS kernel, we have

(35)  S¥=13221(a*(Q)T)"°.

The approximating parametric models we use are first order autoregressive (AR(1))
models for {V,,}, a =1,..., p (with different parameters for each a) These models have
advantages of par51mony and computational simplicity. Let (p,,0,2) denote the autore-
gressive and innovation variance parameters, respectively, for a = 1,..., p. Let {(3,, 2):
a=1,..., p} denote the corresponding estimates. Then, for g =2, we have

36)  &@)= Lw, /Z (I_M,

a=1 (1_

where {w,: a=1,..., p} are specified weights (which determine the weight attached to
the estimation of each of the p diagonal elements of J;). The choice of (w,...,ws) used
here is (0,1,...,1), which gives no weight to the intercept term. (Formulae analogous to
(3.6), but for ARMA(1, 1), MA(m), and VAR(m) approximating parametric models are
given in Andrews (1991, eqns. (6.4)-(6.9)).)

Plugging ¢*(2) from (3.6) into (3.5) completely determines ST Our VAR prewhitened
kernel HAC estimator is then defined using (2.3), (2.4), (3.5), and (3.6) to be

(37 Jr,.(S¥)=Di¥(S§)D.
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The second estimator used in the Monte Carlo experiments, denoted QS, is the
nonprewhitened kernel HAC estimator that is defined exactly as is QS-PW except that
A(=4)=0.

The third estimator used in the experiments, denoted PARA, is a parametric estima-
tor that is based on the assumption that the errors are homoskedastic AR(1) random
variables. By definition,

17 I
(3.8) PARA=[(?ZI‘,X,X,) (mzl‘,tjﬁ)

1 T T 1T -1
x|z X XXX || = XXX ,
T oo TA 2

where U, =Y, — X0, p, ¢ is the LS regression parameter estimator from the regression of
UonU._ for t=2,...,T, p =min(.97,5,), and [-],, denotes the (2,2) element of -.
The QS and PARA estimators are the same estimators as in the Monte Carlo study
reported in Andrews (1991).

For each variance estimator and each scenario, the following performance criteria are
estimated by Monte Carlo simulation: (1) the exact bias, variance, and MSE of the
variance estimator and (2) the true confidence levels of the nominal 99%, 95%, and 90%
regression coefficient confidence intervals (CIs) based on the ¢ statistic constructed using
the LS coefficient estimator and the variance estimator.® The control variate method of
Davidson and MacKinnon (1981) is used to estimate the true confidence levels in (2).
The sample size is 128. One thousand repetitions are used for each scenario.

The distributions of all of the variance estimators considered here are invariant with
respect to the regression coefficient vector 8, in the model. Hence, we set 6, = 0 in each
model and do so without loss of generality.

Next we describe the models used in the Monte Carlo study. The AR(1)-HOMO
model consists of mutually independent errors and regressors. The errors are mean zero,
homoskedastic, AR(1), stationary (i.e., the initial error distribution is chosen to yield a
stationary sequence), normal random variables with variance 1 and AR parameter p. The
four regressors are generated by four independent draws from the same distribution as
that of the errors, but then are transformed to achieve a diagonal (1/T)C7_, X, X!
matrix.% A new set of regressors is randomly drawn for each repetition of the experiment
(to ensure that the results are not sensitive to the selection of a single, pgrhaps atypical,
matrix of regressors). In consequence, the value of the estimand Var(yT (6-6,)|X) (which
is used in calculating the bias and mean squared error of the estimators considered)
varies across repetitions. Its average value across the repetitions is reported in the tables.
(This method was also used in Andrews (1991).) The values considered for the AR(1)
parameter p are 0, .3, .5, .7, .9, .95, —.3, and —.5.

5The nominal 100(1 — a)% Cls are based on an asymptotic normal approximation. For the
PARA estimator, this normal approximation is valid asymptotically only in the AR(1)-HOMO
model. Also, note that the bias, variance, and MSE of the estimators are well-defined since
El(X'X)~Y||?> < o when T = 120.

The transformation used is described as follows. Let ¥ denote the T X 4 matrix of pretrans-
formed, randomly generated, AR(1) regressor variables. Let ¥ denote ¥ with its column means
subtracted off. Let x =%((1/T)%'%)~ /2 Define the T X 5 matrix of transformed regressors to be
X =[17:x]. By construction, X'X = TI;.

Since Ex =0 and Ex'% = I, this transformation should be close to the identity map. With this
transformation, the estimand and the estimators simplify and the computational burden is reduced
considerably.
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TABLE I

Bias, VARIANCE, AND MSE oF QS-PW, QS, aAnD PARA ESTIMATORS AND
TrRUE CONFIDENCE LEVELs OF NOMINAL 99%, 95%, AND
90% CoNFIDENCE INTERvVALs CoNsTRUCTED UsING THE QS-PW, QS,
AND PARA EstiMaTORs FOR THE AR(1)-HOMO MopeL—T = 128

Average
Value of

P Estimand Estimator Bias Variance MSE 99% 95% 90%
QS-PW .005 .079 .079 98.5 93.9 88.1

0 1.00 Qs —.060 .044 048 98.6 93.3 87.7
PARA —.002 .017 .017 98.8 94.8 89.1

QS-PW .010 15 15 98.8 93.1 88.3

3 1.18 Qs -.14 .090 11 98.0 91.7 86.5
PARA -.029 .043 044 98.7 93.9 89.2

QS-PW —.040 .39 .39 97.7 93.4 88.1

5 1.60 Qs -.35 21 33 96.9 90.6 84.0
PARA -.14 A1 13 98.1 93.9 88.3

QS-PW -.21 1.84 1.89 97.1 91.3 84.4

7 2.63 Qs -.90 . 1.52 95.3 85.5 78.2
PARA —.48 51 74 98.2 91.0 83.5

QS-PW -1.93 29.4 331 90.4 83.0 753

9 6.40 Qs —4.04 2.55 18.9 82.5 72.0 64.4
PARA —3.08 341 129 90.2 81.6 73.5

QS-PW —4.03 42.7 58.9 84.1 74.8 66.5

95 8.75 Qs -6.69 3.00 47.8 72.9 60.6 53.1
PARA =5.75 5.11 38.2 82.1 71.8 63.6

QS-PW .030 19 .19 98.4 94.1 88.6

-3 1.19 Qs -.13 A1 13 97.7 93.1 86.2
PARA —.008 .044 .044 98.8 95.2 89.4

QS-PW .018 49 49 98.2 93.1 88.0

-5 1.63 Qs -.30 .28 37 96.5 90.1 84.6
PARA —.038 15 .16 98.7 93.9 89.3

The AR(1)-HET1 and AR(1)-HET2 models are constructed by introducing multiplicg-
tive heteroskedasticity to the errors of the AR(1)-HOMO model. Suppose {x,,U,
t=1,...,T} are the nonconstant regressors and errors generated by the AR(1)- HOMO
model (where X,=(1,x)). Let U =|x,0|XU,. Then, {x,U: t= ,T} are the
nonconstant regressors and errors for the AR(l) HET1 and AR(1)- HET2 models when
»=(1,0,0,0Y and @ =(1/2,1/2,1/2,1/2) respectively. In the AR(1)-HET1 model, the
heteroskedasticity is related only to the regressor whose coefficient estimator’s variance
is being estimated, whereas in the AR(1)-HET2 model, the heteroskedasticity is related
to all of the regressors.” The same values of p are considered as in the AR(1)-HOMO
model.

The MA(1)-HOMO, MA(1)-HET1, and MA(1)-HET2 models are exactly the same as
the AR(1)-HOMO, AR(1)-HET1, and AR(1)-HET2 models, respectively, except that
stationary MA(1) processes replace stationary AR(1) processes everywhere that the latter
arise in the definitions above. The MA(1) processes have variance 1 and MA parameter

7 When the regressor transformation map is the identity map, the errors in the AR(1)- HETl and
AR(1)-HET2 models are mean zero, variance one, AR(1) sequences with AR parameter p? and
innovations that are uncorrelated (unconditionally and conditionally on {X,}) but are not indepen-
dent. Hence, the errors have an AR(1) correlation structure even after the introduction of
heteroskedasticity.
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TABLE II

Bias, VARIANCE, AND MSE oF QS-PW, QS, aNnp PARA ESTIMATORS AND
TRUE CONFIDENCE LEVELS OF NOMINAL 99%, 95%, AND
90% ConrFIDENCE INTERVALS ConsTRUCTED UsING THE QS-PW, QS,
AND PARA EstiMATORS FOR THE AR(1)-HET1 MopeL—T = 128

Average
Value of

P Estimand Estimator Bias Variance MSE 99% 95% 90%
QS-PW -.21 1.66 1.70 975 93.9 85.9

0 2.94 Qs -.25 51.31 1.37 97.6 93.8 85.8
PARA -1.94 .048 3.82 86.0 75.6 67.2

QS-PW -.90 1.92 2.74 96.6 89.9 83.1

3 3.86 Qs —1.09 1.42 2.61 96.2 89.9 82.0
PARA -2.79 .066 7.83 82.9 68.1 60.4

QS-PW —1.58 4.85 7.34 95.2 88.8 81.6

5 5.28 Qs —2.06 2.79 7.05 94.0 86.7 79.0
PARA —4.00 14 16.1 80.0 68.7 59.6

QS-PW —3.50 17.0 29.3 92.7 83.1 71.3

7 8.82 Qs —4.52 8.57 29.0 90.7 80.3 72.8
PARA -7.11 44 50.9 74.8 61.0 514

QS-PW —14.7 240. 455. 81.4 70.0 60.9

9 235 Qs —18.0 24.4 347. 75.1 62.5 53.4
PARA -20.9 2.77 441. 58.6 45.7 38.1

QS-PW —-314 123. 1107. 70.6 575 50.5

.95 39.3 Qs —345 17.8 1208. 61.9 48.9 41.9
PARA —36.8 3.81 1356. 49.0 39.0 334

QS-PW .88 3.04 3.81 98.9 95.4 92.0

-3 241 Qs .61 2.18 2.55 98.8 95.3 91.0
PARA -1.28 0.079 1.72 88.8 78.8 69.9

QS-PW 2.23 6.02 11.0 99.3 96.5 92.8

-5 1.89 Qs 1.61 3.49 6.08 99.0 95.7 91.9
PARA —.49 19 43 94.7 87.4 80.1

¢ (and are parameterized as U, = ¢, + e, _,). The values of ¢ that are considered are .3,
5,.7,.99, -3, —.5, —.7, and —.99.

The MA(m)-HOMO model is exactly the same as the AR(1)-HOMO model except
that the errors and the (pre-transformed) regressors are homoskedastic, stationary
MA(m) random variables with variance 1 and MA parameters ¢,,.. .»¥,, (where the
MA(m) model is parameterized as U, = ¢, + 7, §,¢,_,). The MA parameters are taken
to be positive and to decline lmearly to zero (ie., y,=1—r/(m+1) for r=1,...,m).
The values of m that are considered are 3, 5, 7, 9, 12, and 15.

The Monte Carlo results for the parameter/model combinations discussed above are
given in Tables I-V. For the MA(1) models, however, no results are reported for the
negatlve ¥ values, since they are very nearly the same as for the corresponding positive ¢
values.® In addition, Monte Carlo results have been computed, but are not reported, for
MA(m)-HET1 and MA(m)-HET2 models (defined analogously to the MA(m)-HOMO

8 The reason for this is that for the nonintercept regressors {V;} = {U, X,} has autocorrelations
given by the product of the autocorrelations of {U,} and {X,}, and hence, these autocorrelations are
independent of the sign of ¢. Thus, for the nonmtercept regressors, the distribution of {V} (U X,}
depends on the sign of  only due to the effect of the sign of  on the distribution of the dev1atlons
U U,.
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TABLE III

Bias, VARIANCE, AND MSE oF QS-PW, QS, AND PARA ESTIMATORS AND
TRUE CONFIDENCE LEVELS OF NOMINAL 99%, 95%, AND
90% CoNFIDENCE INTERVALS CoNsTRUCTED UsING THE QS-PW, QS,
AND PARA EstiMaTORS FOR THE AR(1)-HET2 MopeL—T = 128

Average
Value of

P Estimand Estimator Bias Variance MSE 99% 95% 90%
QS-PW .0072 .66 .66 98.2 93.5 87.6

0 1.47 Qs -.14 .60 .63 98.4 92.0 85.8
PARA —.49 .044 .29 96.3 88.6 81.0

QS-PW .0080 .84 .84 98.1 92.7 86.3

3 1.66 Qs —-.24 49 .55 97.8 91.0 84.2
PARA -.59 .070 41 95.5 87.8 80.1

QS-PW —.098 1.78 1.79 97.9 92.2 85.8

5 2.13 Qs -.54 72 1.01 96.7 88.6 81.8
PARA -.87 13 .89 94.5 85.3 78.2

QS-PW —.36 5.89 6.02 95.8 89.9 83.4

7 3.29 Qs -1.20 1.80 323 94.3 86.0 78.4
PARA -1.60 45 3.01 91.8 83.3 75.9

QS-PW —2.32 38.2 435 89.6 80.5 71.5

9 7.15 Qs —4.45 4.93 24.8 84.4 72.5 63.4
PARA —4.64 233 239 84.5 73.0 64.7

QS-PW -3.53 246. 258. 83.9 74.1 66.9

95 9.58 Qs -17.01 7.15 56.2 75.6 62.0 53.9
PARA —6.99 5.00 53.8 77.6 65.8 57.9

QS-PW .034 .89 .89 98.7 94.5 88.7

-3 1.68 Qs -.24 49 .55 98.2 93.1 86.4
PARA -.57 .080 40 97.0 89.1 82.0

QS-PW .050 2.46 2.46 97.8 92.0 87.0

=5 2.17 Qs —.48 93 1.16 95.9 88.6 83.0
PARA -.79 19 .81 94.7 87.9 80.5

model). These results are not reported because they are qualitatively quite similar to the
AR(1)-HET1 and AR(1)-HET? results.

Inspection of Tables I-V shows a number of clear patterns in the relative perfor-
mance of the three estimators QS-PW, QS, and PARA. First, in almost all
model /parameter cases, QS-PW has the smallest bias. In a number of cases, its bias is
much less than that of the other two estimators. In the HOMO models (whether AR(1),
MA(1), or MA(m)), PARA has the next smallest bias, while in the HET1 and HET2
models, QS has the next smallest bias. Second, PARA always has the smallest variance,
often by a considerable margin. QS has the next smallest variance in each case. Third, in
the HOMO and HET2 models, PARA has the smallest MSE, followed by QS. In the
HET1 models, QS has the smallest MSE, followed by QS-PW. In sum, prewhitening has
the desired effect on bias, but it inflates variance sufficiently that its MSE is always worse
than that of the nonprewhitened estimator QS. The parametric estimator PARA per-
forms well in terms of MSE in the homoskedastic models, but does poorly in the
heteroskedastic models, especially the HET1 models.

_ Next we discuss the patterns in the confidence interval coverage probabilities exhib-
ited in Tables I-V. In almost all cases, the true coverage probabilities are less than the
nominal asymptotic coverage probabilities. In these cases, the best CI coverage probabili-
ties are the largest ones. The estimator QS-PW yields the best CI coverage probabilities
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TABLE IV

Bias, VARIANCE, AND MSE ofF QS-PW, QS, aND PARA ESTIMATORS AND
TRUE CoNFIDENCE LEVELS OF NoMINAL 99%, 95%,
AND 90% CoNFIDENCE INTERVALS CONSTRUCTED USING THE QS-PW, QS,
AND PARA EsTIMATORS FOR THE MA(1)-HOMO anp MA(1)-HET1 MopeLs—T = 128

Average
Value of

Model [ Estimand Estimator Bias Variance MSE 9% 95% 90%
QS-PW .00019 A3 13 9.1 933 880
3 1.14 Qs —.178 .059 091 973 911 855
PARA —.032 .034 035 983 943 894
QS-PW 042 .24 25 9.1 941 888
5 1.30 Qs -.25 .10 17 970 911 855
PARA —.060 .050 053 983 943 889

MA(1)-
HOMO QS-PW 055 .28 .28 988 934 89.1
7 1.42 Qs -.27 .14 22 978 909 85.1
PARA -.073 .074 079 99.2 939 894
QS-PW .082 34 .35 95 939 885
.99 1.47 Qs -.27 19 .26 971 910 843
PARA —.091 072 081 987 933 887
QS-PW —.44 1.74 1.93 976 914 854
3 3.29 Qs —.66 1.16 1.59 975 906 844
PARA -2.25 .061 5.11 840 715 62.5
QS-PW —.41 2.67 2.84 972 909 844
) 3.70 Qs —.86 1.58 2.33 9.8 883 828
PARA —2.56 .082 6.61 842 712 635

MA(1)-
HET1 QS-PW —.49 - 3.16 3.40 975 918 847
7 4.00 Qs —1.06 1.99 3.11 96.2 837 812
PARA -2.79 .098 7.91 832 715 625
QS-PW -.37 16.6 16.7 972 925 8438
.99 4.19 Qs —1.08 2.64 3.81 955 838 818
PARA —2.94 11 8.76 832 722 619

in almost all cases except for the AR(1)-HOMO and MA(1)-HOMO models. In these
models, QS-PW is just slightly worse than PARA. In many model/parameter combina-
tions, QS-PW is better than QS by a considerable margin in terms of CI coverage
probabilities. In addition, QS-PW is better than PARA in the HET1 and HET2 models
by a considerable margin.

The good performance of QS-PW in terms of CI coverage probabilities is due to its
relatively small bias. It is apparent from the tables that the magnitude of an estimator’s
bias is much more important than its variance in determining its corresponding CI
coverage probabilities. In sum, QS-PW is clearly the best estimator of the three in terms
of CI coverage probabilities. PARA does well in the homoskedastic models, but performs
poorly in the heteroskedastic models.’

Based on the Monte Carlo results reported here, the choice between the QS-PW and
QS estimators is evident. If one desires lower variance and MSE, then QS is preferable.

® We note that the QS-PW and QS estimators each provide a different tradeoff between bias and
variance. Correspondingly, they provide different performance re CI coverage probabilities. Monte
Carlo results using a wide grid of different fixed bandwidth parameters for the QS estimator show
that the same tradeoff cannot be attained (or even approached) simply by using a different
bandwidth parameter for the QS estimator.
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TABLE V

Bias, VARIANCE, AND MSE or QS-PW, QS, anD PARA ESTIMATORS AND
TrRUE CONFIDENCE LEVELS OF NOMINAL 99%, 95%,
AND 90% CoNFIDENCE INTERVALS CoNSTRUCTED UsING THE QS-PW, QS,
AND PARA EsTIMATORS FOR THE MA(1)-HET2 anp MA(m)-HOMO MobeLs—T = 128

Average
or Value of
Model m Estimand Estimator Bias Variance MSE 99% 95% 90%
QS-PW .052 .96 .97 97.7 93.1 89.3
3 1.62 Qs -.25 .39 45 97.5 922 86.1
PARA —.56 .060 .38 94.9 87.8 81.4
QS-PW .16 3.77 3.80 99.0 93.2 87.6
5 1.82 Qs -.32 .66 .76 98.4 91.2 83.8
PARA —.66 .087 .53 96.6 86.7 81.1
MA1)-
HET2 QS-PW 18 2.10 2.13 97.5 93.2 88.1
7 1.95 Qs -.39 7 .86 96.6 90.6 84.0
PARA -.73 11 .65 95.7 88.5 80.4
QS-PW 13 2.19 2.21 97.7 92.8 88.5
.99 2.00 Qs —.42 92 1.10 96.2 90.2 83.6
PARA =.75 12 .68 95.0 87.3 79.8
QS-PW 34 133 1.45 98.2 94.6 89.5
3 2.11 Qs —.49 43 .67 96.7 89.8 82.9
PARA —.18 .26 29 98.5 93.1 875
QS-PW .54 4.01 4.30 98.2 94.3 88.9
5 292 Qs -.92 1.00 1.86 95.0 86.8 79.3
PARA -.39 .69 .84 98.1 93.2 86.8
QS-PW .60 8.54 8.90 98.2 93.6 88.5
7 3.68 Qs —1.38 1.73 3.63 93.8 84.6 77.4
PARA -.76 1.13 1.71 97.1 90.5 83.4
MA(m)-
HOMO QS-PW 77 17.5 18.1 97.4 92.5 86.5
9 445 Qs -1.83 2.42 5.79 90.9 82.6 74.8
PARA —1.00 2.10 3.11 96.3 90.5 82.4
QS-PW .073 274 274 94.2 89.1 83.2
12 5.50 Qs —2.81 321 11.1 88.6 772 70.5
PARA —1.89 3.01 6.60 94.0 86.0 78.8
QS-PW -.28 322 323 94.1 87.8 80.9
15 6.46 Qs -3.56 455 17.2 875 75.9 68.2
PARA —2.65 4.30 11.3 92.4 83.7 76.0

If one desires lower bias and better CI coverage probabilities, then QS-PW is preferable.
In many cases, CI coverage probabilities and the rejection rates of ¢ statistics are of
primary concern, and hence, the prewhitened estimator QS-PW is preferred.

Cowles Foundation, Yale University, P.O. Box 2125 Yale Station, New Haven, CT 06520,
US.A.

Manuscript received June, 1990; final revision received March, 1992.

APPENDIX

Proor oF THEOREM 1: Let
b

1 T T
(Al == X ¥ BV and  Vr=V,- LAV,
Ts=b+lt=b+1 r=1



COVARIANCE MATRIX ESTIMATOR 965

It is straightforward to show that

b b . 1 T T 1 T T .
(A2)  JF-D7U D=3 YAz L X BV V-3 Y LEVV|A4,-0
r=0u=0 s=b+1t=b+1 s=11t=1

where A—,=Ip for r=0 and A,= —A, for r=1,...,b. Given this result and Assumption D, it
suffices to show that

(A3)  Fx(S$r)-1x3o0.

To establish (A.3) under part (i) of Assumption B, we apply the results of Section 8 of Andrews
(1991) to the estimator J#(S;) of J# with 0 and 6, elongated to include (A,..., 4,) and
(Ay,..., Ap) respectively. To do this, Assumptions A and B(i) must hold with {V/,;} replaced by {V,*}
and with 6 and 6, elongated as above. It is not difficult to show that if A and B(i) hold as stated,
then they also hold with {V;} replaced by {V;*}. Furthermore, if A and B(i) hold as stated, then they
also hold with 6 and 6, elongated provided Assumption D(i) holds. Thus, the results of Section 8 of
Andrews (1991) establish (A.3). o A .

Next, to establish (A.3) under part (ii) of Assumption B, let J#(S7) denote J}“(ST) when 6 and
A, are replaced by 6, and A, for r=1,...,b respectively. Then, J—}‘(ST) ¥ 50 by Theorem 1
using part (i) of Assumption B. Hence it suffices to show that J $p) - JT(ST) =0 or that
(‘/—/STXJ’T"(ST) ~J¥Sy=0 (1) (since ST/T—>O under the assumptlons) One can show the
latter by writing out the left- hand side expression using the definitions of J(S7) and J (ST) and
bounding each of the resultant terms using the assumptions (especially Assumption B(ii)) and using
the fact that

T
¥ k(i/Se)l[Sr5 [lk(x)ldr. Q.E.D.
T

j=-
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