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HETEROSKEDASTICITY AND AUTOCORRELATION
CONSISTENT COVARIANCE MATRIX ESTIMATION

By DonaLD W. K. ANDREWSs!

This paper is concerned with the estimation of covariance matrices in the presence of
heteroskedasticity and autocorrelation of unknown forms. Currently available estimators
that are designed for this context depend upon the choice of a lag truncation parameter
and a weighting scheme. Results in the literature provide a condition on the growth rate
of the lag truncation parameter as T — o that is sufficient for consistency. No results are
available, however, regarding the choice of lag truncation parameter for a fixed sample
size, regarding data-dependent automatic lag truncation parameters, or regarding the
choice of weighting scheme. In consequence, available estimators are not entirely opera-
tional and the relative merits of the estimators are unknown.

This paper addresses these problems. The asymptotic truncated mean squared errors
of estimators in a given class are determined and compared. Asymptotically optimal
kernel /weighting scheme and bandwidth /lag truncation parameters are obtained using
an asymptotic truncated mean squared error criterion. Using these results, data-depen-
dent automatic bandwidth /lag truncation parameters are introduced. The finite sample
properties of the estimators are analyzed via Monte Carlo simulation.

Keyworps: Asymptotic mean squared error, autocorrelation, covariance matrix esti-
mator, heteroskedasticity, kernel estimator, spectral density.

1. INTRODUCTION

THIS PAPER CONSIDERS heteroskedasticity and autocorrelation consistent (HAC)
estimation of covariance matrices of parameter estimators in linear and nonlin-
ear models. A prime example is the estimation of the covariance matrix of the
least squares (LS) estimator in a linear regression model with heteroskedastic,
temporally dependent errors of unknown form. Other examples include covari-
ance matrix estimation of LS estimators of nonlinear regression and unit root
models and of two and three stage LS and generalized method of moments
estimators of nonlinear simultaneous equations models.

The paper has several objectives. The first is to analyze and compare the
properties of several HAC estimators that have been proposed in the literature;
see Levine (1983), White (1984, pp. 147-161), White and Domowitz (1984),
Gallant (1987, pp. 533, 551, 573), Newey and West (1987), and Gallant and
White (1988, pp. 97-103). Currently the consistency of such estimators has been
established, but their relative merits are unknown.

The second objective is to make existing estimators operational by determin-
ing suitable values for the lag truncation or bandwidth parameters that are used
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to define the estimators. At present, no guidance is available regarding the
choice of these parameters for a given finite sample situation. This is a serious
problem, because the performance of these estimators can depend greatly on
this choice.

The third objective of the paper is to obtain an optimal estimator out of a
class of kernel estimators that contains the HAC estimators that have been
proposed in the literature. An optimal estimator, called a quadratic spectral
(QS) estimator, is obtained using an asymptotic truncated mean squared error
(MSE) optimality criterion.

The fourth objective of the paper is to investigate the finite sample perfor-
mance of kernel HAC estimators. Monte Carlo simulation is used. Different
kernels and bandwidth parameters are compared. In addition, kernel estimators
are compared with standard parametric covariance matrix estimators.

The class of kernel HAC estimators considered here includes estimators that
give some weight to all 7 — 1 lags of the sample autocovariance function. Such
estimators have not been considered previously. As it turns out, the optimal
estimator is of this form.

The consistency of kernel HAC estimators is established under weaker
conditions on the growth rate of the lag truncation/bandwidth parameter S,
than is available elsewhere. Instead of requiring S;=o(T'/*) or O(T'/%), as in
the papers referenced above, or S;=o0(T'/?), as in Keener, Kmenta, and
Weber (1987) and Kool (1988), we just require S; =o(T) as T — . Our results
also provide rates of convergence of the estimators to the estimand.

To achieve the objectives outlined above, the general approach taken in this
paper is to exploit existing results in the literature on kernel density estimation
—both spectral and probability—whenever possible. For this purpose, the
following references are particularly pertinent: Parzen (1957), Priestley (1962),
Epanechnikov (1969), and Sheather (1986).

We note that the results of this paper are used in a recent paper by Andrews
and Monahan (1990) to investigate a class of prewhitened kernel HAC covari-
ance matrix estimators. Prewhitened estimators have not been considered
previously in the literature on HAC covariance matrix estimation, but have been
used for some time in the spectral density estimation literature. Prewhitened
HAC estimators turn out to have some advantages over the kernel estimators
considered here and elsewhere in the econometrics literature in terms of the
accuracy of nominal confidence levels-and significance levels of confidence
intervals and test statistics formed using the HAC estimators.

The remainder of the paper is organized as follows: Section 2 describes the
estimation problem of concern and introduces the class of kernel HAC estima-
tors under study. Section 3 presents consistency, rate of convergence, and
asymptotic truncated MSE results for these estimators. Section 4 establishes the
optimality of the QS kernel. Section 5 determines asymptotically optimal
sequences of fixed bandwidth parameters. Section 6 introduces data-dependent
“automatic” bandwidth parameter estimators using a plug-in method. Section 7
establishes consistency, rate of convergence, and asymptotic truncated MSE
results for kernel HAC estimators based on these automatic bandwidths.
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Section 8 extends many of the results of Sections 3—7, which apply to uncondi-
tionally stationary random variables, to nonstationary random variables. Section
9 presents Monte Carlo results regarding the finite sample behavior of the
estimators considered in earlier sections. Section 10 provides a summary of the
results of the paper. An appendix contains proofs of results given in the paper.

Those interested primarily in the definition of the preferred HAC estimator
—a HAC estimator with QS kernel and automatic bandwidth—should read
Sections 2 and 6.

2. A CLASS OF ESTIMATORS

To motivate the definition of the estimand given below, consider the linear
regression model and LS estimator:

(21) Y, =X/0,+ U, (t=1,...,T),

X, X/ X,Y,, and
Z Z tot

t=1 t=1

Var(\/—(O—BO))
= (‘1‘ XTZX,X,’)_ _ i iEljsXs(UtXt) (1 ZXX')_ :

Tt=1 Ts=lt=1 t=1
Since X, is observed, consistent estimation of Var (VT (6 — 6,)) just requires a
consistent estimator of (1/T)X!_, ¥'_, EU, X (U, X,).
More generally, many parameter estimators 6 in nonlinear dynamic models
satisfy

(2.2) (BTJTB})_I/Z\/_(é—B ) iN(ﬂ,Ir) as T — ©, where

== Z Z EV,(65)V,(80) ,
s—lt—l

By is a nonrandom rXp matrix, and V,(8) is a random p-vector for each
6 € ® CR’. Often it is easy to construct estimators BT such that BT B, —?0
as T — . The estimators B, usually are just sample analogues of B, with 6,
replaced by 8. See Hansen (1982), Gallant (1987, Ch. 7), Gallant and White
(1988), Andrews and Fair (1988), and Andrews (1989) for the treatment of
broad classes of parameter estimators and models that satisfy these conditions.?
Since consistent estimators of B, exist, one can estimate the “asymptotic
variance” of VT (§ — 0,), viz., B;J; B}, if one has a consistent estimator of J;.
In consequence, we concentrate our attention on the estimation of J;.

The primary ingredient of J; is the vector V,(8). For LS estimation of a linear
regression model, V,(0) = (Y, — X,;0) X,. For pseudo-ML estimation, V,(8) is the
score function for the ¢th observation. For instrumental variables estimation of

In particular, the estimand J; is given by Var((1 / VN 'N)ZN_,w,) in Hansen (1982), by I1,(A%)
and §,(A%) in Gallant (1987, pp. 549 and 570), by B’ in Gallant and White (1988, p. 100), and by

Var (\/— Tri(6y,7y)) in Andrews and Fair (1988) and Andrews (1989).
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a dynamic nonlinear simultaneous equation model, V,(6) is the Kronecker
product of the vector of model equations evaluated at # with the instrumental
variables. For unit root models, the LS estimator does not satisfy (2.2). Never-
theless, one still needs to estimate the value of an expression that has the same
form as J, with V(8)=Y,-Y,_, or V(6) =Y, — 0Y,_,, where {Y,} is the unit
root process; see Phillips (1987).

By change of variables, the estimand J; can be rewritten as

T—1
(23) Jp= Y, TIy(j), where
j=—-T+1
1 T
= X EVV., forj>0,
t=j+1
T
Y, EV,.Vy forj<Oo,
t=—j+1
and V,=V\0,),t=1,...,T.
When {V}} is second order stationary, it has spectral density matrix

I'y(j)=

1
T

24) f(r)= Zi i r(j)e ", where r'(j)=EVV.,;

m .

j=—o

and i=vV—1. The limit as T— o of the estimand J, equals 27 times the
spectral density matrix evaluated at A =0. This fact motivates the use of
spectral density estimators to estimate J, as noted by Hansen (1982, p. 1047)
and Phillips and Ouliaris (1988) among others. Furthermore, in the second
order stationary context with known 6, the estimators of White (1984, p. 152),
Gallant (1987, p. 533), and Newey and West (1987) correspond to kernel
spectral density estimators evaluated at A =0. The aforementioned authors
have established consistency of their estimators, however, in the more general
context in which {V,(8)} is non-stationary and 6,, is estimated.

The class of estimators we consider corresponds to Parzen’s (1957) class of
kernel estimators of the spectral density matrix. We consider estimators of the
form

(2.5) fT=fT(ST) =

! J\a
Y k(—)F(j), where

T—r;.57 \Sr
1 r .
= Y V., forj>0,
AL Tt=j+l
F(h=y, =
T Y V.V forj<o,

V,=V,6), k() is a real-valued kernel in the set %, defined below, and S is a
band-width parameter. The factor T/(T —r) is a small sample degrees of
freedom adjustment that is introduced to offset the gffect of estimation of the
r-vector 0. In Sections 3-5, we consider estimators J, for which S is a given
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nonrandom scalar. In Sections 6 and 7, we consider “automatic” estimators J,.
for which S, is a random function of the data.
The class of kernels %] is given by

(2.6) %={k(~):R—>[—1,1]lk(0)=1,k(x)=k(—x)VxeR,
fw k%(x)dx <o, k() iscontinuous at 0 and at all

but a finite number of other points} .

The conditions k(0) =1 and k(-) is continuous at 0 reflect the fact that for j
small relative to T one wants the weight given to I'(j) to be close to one.
Examples of kernels in %] include the following:

for |x| <
2.7) Truncated: k _
7 e i) = {0 otherw15e
Bartlett: kg (x) = x| for |x] <1

otherwise,

Parzen: kpr(x) =

{1—6x +6lx|> for0< x| <1/2,

2(1—|x|) for1/2< x| <1,

0 otherwise
Tukey-Hanning: kpp(x)= (1+cos(mx)) /2 for lx <

0 otherw1se,

sin (67x/5)
6mx/5

The estimators fT corresponding to the truncated, Bartlett, and Parzen kernels
are the estimators proposed by White (1984, p. 152), Newey and West (1987),
and Gallant (1987, p. 533) respectively. The Tukey-Hanning and QS kernels
have not been considered in the literature concerning HAC estimation. The
Tukey-Hanning kernel is popular in the spectral density estimation literature,
however, and the QS kernel has been considered in the spectral and probability
density estimation literature by Priestley (1962) and Epanechnikov (1969) re-
spectively.

If k(x)=0 for |x| > 1 (and k(x) # 0 for some |x| arbitrarily close to 1), then
Sy is referred to as the lag truncation parameter, because lags of order j > S,
receive zero weight.® Since some kernels in J#, are nonzero for arbitrarily large

Quadratic Spectral:  kyg(x) = 12 ( —cos(67x/5)|.
’7T

3The lag truncation parameters of White (1984, p. 152), White and Domowitz (1984), Newey and
West (1987), Gallant (1987, pp. 533, 551, 573), and Gallant and White (1988, p. 97), viz., I, I, m, I(n),
and m,, respectively, are equal to S — 1 in our notation when Sy is an integer. The aforementioned
authors consider only integer-valued lag truncation parameters, but there is no reason to restrict the
estimators in this way and our formulae below for optimal S; values yield real-valued parameters.

For example, Newey and West (1987) define their weights as 1 —j/(m +1) for j<m and 0
otherwise, where m is an integer. In our notation, their weights are 1—j/Sy for j<Sr and 0
otherwise, where S is real-valued. If S, is an integer, then these weights are equivalent when
Sr=m+1.
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Ficure 1.—Comparison of kernels.?

2These kernels have been renormalized as described in the text below equation (2.7).

values of x, it is not possible to normalize all kernels in ¥ such that k(x) =0
for |x| > 1. Thus, lag truncation parameters do not exist for all kernels in J%7].
The QS kernel is an example.

Figure 1 graphs the five kernels of (2 7), but renormalized such that each
yields the same asymptotic variance of JT—only their asymptotic biases vary.*
(The renormalization is necessary for comparative purposes in order to make
any given S, value equally suitable for each kernel.) For a given value of S, the
figure 1llustrates the different weights the renormalized kernels k() put on the
lagged covariances. For example, if S;=3, then kBT(l /3) kpr(2/3),..., are
the weights the renormalized Bartlett kernel puts on 1'(1), ro,....

For some results below, we consider a subset of %. Let

Fy={k(*) € Z|K(A) =0V ER}, where
1 .
K(A) == A dx.
(A) . _mk(x)e dx

The function K(A) is referred to as the spectral window generator corresponding
to the kernel k(-). The set %, contains all kernels in %] that necessarily

By construction, a renormalized kernel k(-) satisfies i k2(x)dx =1. The renormalized
kernels of (2.7) are given by k(x) = k,(c,x) for a =TR, BT, PR and TH, where c, = [k2(x)dx,
crr=2, cgr=2/3, cpr= 539285 and cTH—3/4 The QS kernel satisfies [kz(x)dx—l and
hence, does not need to be renormalized.
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generate positive semi-definite (psd) estimators in finite samples. (To see this,
note that estimators of the form (2.5) are weighted averages of the periodogram
matrix at different frequencies A with weights given by K(A), e.g., see PriestleAy
(1981, pp. 580-581). Since the periodogram is psd, so is an estimator J,
provided K(A)>0 VA €R.) As emphasized by Newey and West (1987), this
property usually is highly desirable. ¥, contains the Bartlett, Parzen, and QS
kernels, but not the truncated or Tukey-Hanning kernels.

3. FIXED BANDWIDTH HAC ESTIMATORS

In this section, consistency, rate of convergence, and asymptotic truncated
MSE properties of fixed bandwidth kernel HAC estimators are determined.
Results due to Parzen (1957) for spectral density estimators are utilized. The
results of this section and those of Sections 4-7 apply to unconditionally fourth
or eighth order stationary random variables (rv’s), as specified below. This
allows for conditional heteroskedasticity. Many of the results are extended in
Section 8 to cover unconditionally nonstationary rv’s.

We begin by introducing the basic assumption that controls the temporal
dependence of {V,}. Let k., (¢,¢t+j,t+m,t+n) denote the fourth order
cumulant of (V,,,Vy, 1, Ve ms Var+n), Where V,, denotes the ath element of V.
That is,

(3.1) ket t+j,t+m,t+n)
=E( Ve — EVat)(Vbt+j —EVbt+j)(I/ct+m _’EVct+m)(th+n _Eth+n)

~

E(I}at _EVat)(I}ij —El;bt+j)(l/ct+m _El}c‘t+m)(l7dt+n _EI}dt+n)’

where {V}} is a Gaussian sequence with the same mean and covariance structure
as {V}}. Let ||| denote the Euclidean norm of a vector or matrix.

AssumpTION A: {V}} is a mean zero, fourth order stationary sequence of rv’s
with ©7_ _ IIF()Il < » and Y o e X —wKapea(0,j,m,n) <o Va,b,c,d
<p.

Assumption A allows for conditional heteroskedasticity, as well as autocorre-
lation, but prohibits unconditional heteroskedasticity.

The cumulant condition of Assumption A is standard in the time series
literature; e.g., see Anderson (1971, pp. 465, 520, 531) and Hannan (1970,
p. 280). In fact, Brillinger (1981) assumes that the cumulant condition of
Assumption A holds not only for the fourth order but for all higher orders as
well throughout his book (see his Assumption 2.6.1, p. 26). In the Gaussian case,
the fourth order cumulants are zero, so the cumulant condition is satisfied
trivially. In addition, it is well known that fourth order stationary linear
processes (with absolutely summable coefficients and innovations whose fourth
moments exist) satisfy the cumulant condition of Assumption A (e.g., see
Hannan (1970, p. 211)). The following lemma shows that the cumulant condition
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of Assumption A also is implied by an a-mixing (i.e., strong mixing) condition
plus a moment condition:

LemmA 1: Suppose {V,} is a mean zero (not necessarily fourth order stationary)
a-mixing sequence of rv’s. If sup, EIWVI* < o and iy Jla(HE~V/" < for
some v > 1, then ¥} 0sup,>1||EV Vil < and
Z Y Z sup |k pea(tst +j,t+m,t +n)|<e Va,b,c,d<p.
j=1m=1n=11t>1

In particular, if {V,} also is fourth order stationary, then Assumption A holds.

ComMmMENT: The condition on the mixing numbers in Lemma 1 is satisfied if
they are of size —3v/(v — 1) (i.e., a(j) = O(j~¢~%/¢~D) for some ¢ > 0). The
latter condition is slightly stronger than that used by White (1984, Theorem
6.20, p. 155), Newey and West (1987), and Kool (1988). (These authors use the
same condition but with 3 replaced by 2.)

Let J, denote the pseudo-estimator that is identical to J; but is based on the
unobserved sequence {V,} ={V,(0,)} rather than {I;',} = {V,(é)} and is defined
without the degrees of freedom correction 7/(T — r):

T-1
(32 Jr= X k(j/SpI(j)) and

j=—-T+1

T

IR AL for j>0,
t=j+1
T
Y, V.,V forj<o.

J
t=—j+1

I'(j)=

N]I'-‘ '~]l

First, we summarize well known results for the psegdo-estimator fT. Then, we
show that analogous results hold for the estimator J;.

The asymptotic bias of kernel estimators depends on the smoothness of the
kernel at zero and on the smoothness of the spectral density matrix f(A) of {V,}
at zero. Following Parzen (1957), define

. 1—=k(x)
(33) k,=lim ——— for ge€[0,»).
x—0 Ix |
The smoother is the kernel at zero, the larger is the value of g for which k, is
finite. If g is an even integer, then
1 d%(x)

g q! dx1 [~°
and k, <o if and only if k(x) is g times differentiable at zero. For the

truncated kernel, k, = 0 for all g < . For the Bartlett kernel, k, = 1, k, = 0 for

g<1, and k, == for g> 1. For the Parzen, Tukey-Hanning, and QS kernels,
k, =6, 772/4 and 1.421223, respectively, k, = 0 for g <2, and k, =« for g > 2.
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The smoothness of f(/\) at A =0 is indexed by

(34) f(q)“ P Z j19r(j)  for g e<[0,%).

]——oo

If g is even, then

f(q) ( l)q/Z f(/\) A0

and || f?|| < « if and only 1f f()t) is g times differentiable at A = 0.
Let f denote the spectrum of {V,} at zero, i.e., f=f(0). Define

~ T i N
(35)  MSE(T/Sy, /7, W) = <—Evec(Jp—Jr)W vee (/7= Ir),
T

where W is some p? X p? weight matrix and vec(-) is the column by column
vectorization function. Let tr denote the trace function and ® the tensor (or
Kronecker) product operator. Let K pp denote the p? X p? commutation matrix
that transforms vec(A) into vec(A4'), ie., K,,=¥XF_ | LF_ e;e] ® e;e], where ¢;
is the ith elementary p-vector; see Magnus and Neudecker (1979). Unless
indicated otherwise, all limits in the paper are taken as 7 — .

The following results for J; are due to Parzen (1957) for the scalar V, case.
Hannan (1970, pp. 280, 283) gives the corresponding vector V, results.

ProposiTiON 1: Suppose k()€ %,, Assumption A holds, S;— » and
St/T — 0. Then, we have:
(a) lim; _ (T/S;) Var(vec J7) = 472 [k*(x) dx(I + K, )f ® f.
(®) If $4/T—0 for some q€[0,) for which k,, |f@€l[0,), then
limy ., SE/.—J;) = =27k, f@.
(©) If$29*1 /T - y €(0,) for some q € (0,%) for which k, || fP|| < «, then
lim MSE(T/ST,JT,W)

T—o0

=4m(k2(vec fO)YWvec f@/y + [k*(x) dx tt W(I+K,,)f®f).

ComMENT: By Proposition 1(a), the covariance between the (a, b) and (c, d)
elements of J; is 474 k*(x) dx(f,.fou+ faafs.), Where f,, denotes the (a,b)
element of f.

Next we state additional assumptions used to obtain results for the estimator
of interest J The first assumptlon below, together with Assumption A, is
sufficient for consistency of J when S, =0(T'/?). Let O denote some convex
neighborhood of 6,,.

Assumption B: () VT (8 — 6y) = 0,(1). (i) sup,,, EIV,I* < . (iii)
sup,  , E sup, < i3 ,/80W,(0)II* < . (iv) [°° |k(x)| dx < oo.

Assumption B is not overly restrictive and Ausually is easy to verify. Its first
part follows from asymptotic normality of V7 (§ — 6,). Its second and third parts
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are common conditions used to obtain asymptotic normality of VT é- 6,). Its
fourth part is satisfied by each of the kernels of (2.7) and by almost all other
kernels that have been used in practice. The first three parts of Assumption B
are identical to assumptions of Newey and West (1987).

The next assumption needs to be imposed in place of Assumption A in order
to obtain sharp rate of convergence results and to obtain consistency of J,
when S, is only required to satisfy S;=o(T).

AssumptioN C: (i) Assumption A holds with V, replaced by

t
F F A
Vt”VeC(ﬁVt(%)—EﬁVx(oo) :

(i) sup, ., E sup,col(82/30 90, (O* < VYa=1,...,p, where V(0) =
(Vlt(o)’ c pt(B))l

Suppose V,(9) is of the form V(Z,,6) for some rv Z, and some (measurable)
function V(-,-). In this case, Assumption C(i) holds if EV,=0 Vi>1,
V,,vec((3/36"W,(6,))) is fourth order stationary, {Z,: ¢ > 1} is strong mixing
with £7_; j2(j)* /" <, and

t>1

4y
sup(EIIV,II‘“’+E” ) <o for some v > 1.

Under the assumptlons above, the effect of usmg 6 rather than 6, when
constructing JT is at most o (1) Nevertheless, if § has infinite second moment
(as occurs, e.g., with the two stage LS estimator in some scenarios) its Juse can
dominate the MSE criterion of (3.5). To circumvent undue influence of 6 on the
criterion of performance, we replace the MSE criterion with a truncated MSE
criterion. Define

b h} b

(3.6)  MSE,(T/Sr,J7r,Wr)

T A A

5 vee (Jr=Jr) Wy vec(Jp=Jr)

T

where W is a p? X p? weight matrix that may be random. The criterion that we
use for the optimality results is asymptotic truncated MSE with arbitrarily large
truncation point, viz., lim, _, ,lim;_,,MSE,(T/S,, JT, W ). This criterion ylelds
the same value as the asymptotic MSE criterion of Proposition 1 when 6 has
well defined moments, but does not blow up when 6 has infinite second
moments.

To obtain the desired asymptotic truncated MSE results, we impose an
additional assumption. Let V,, denote the ath element of V,. Let k, ..,
, jy5---,J,) denote the cumulant of (V, 0 Va e as ) (e.g., see Brillinger
(1981, p. 19)), where ay,...,ag are posmve 1ntegers less than p+1 and
Jp»- -+, J, are integers.

=Emin{
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AssumptioN D: (i) {V}} is eighth order stationary with

®©

E “ e E Kal“Aas(O,jlau.-’j7)<w.

ji=—® Jp=—c

Gi) W, 5 w.

As noted above, Assumption D(i) is part of the assumption utilized by
Brillinger (1981, p. 26). It seems likely that an analogue of Lemma 1 could be
established which would show that a-mixing plus a moment condition implies
Assumption D(i). Without Assumption D(i), the right-hand side of (3.5) with the
expectation removed is L' bounded. Assumption D(i) is used only to ensure
that it is also L'*? bounded for some & > 0. Any other assumption that suffices
for this result could be used in place of Assumption D().

Utilizing the assumptions above, we have the following theorem.

THEOREM 1: Suppose k(-) € % and S; — .

(a) If Assumptions A and B hold and S3/T —0, then J,—J, 50 and
J —J 5 0.

(b) If Assumptions B and C hold and S7°*' /T — y € (0, %) for some q € (0, )
for which k,, ||f @l <o, then ,/T/ST(JT Jp)=0,1) and \JT/S;(Jp—Jp)
%0.

(¢) Under the conditions of part (b) plus Assumption D,

lim lim MSE, (T/ST,JT, Wr)

h—oo Tox

= lim lim MSE,(T/Sy,J7,Wr)

h—0o Tox

= lim MSE(T/Sy, 7, W)

T—

= 47r2(k§(vec f@YW vec f@/y
+ [K2(x) dx t W(I+K,,)f®f |.

ComMmenTs: 1. In contrast to the results of White (1984, pp. 147-161) and
Newey and West (1987), the consistency results of Theorem 1(a) apply to
kernels with unbounded support and to bandwidth parameter sequences that
grow at rate o(T'/?) rather than o(T'/*). These extensions are useful, because
the optimal kernel discussed below has unbounded support and the optimal
growth rate of the bandwidth parameters for the Bartlett kernel considered by
Newey and West (1987) exceeds o(T'/4). (It equals O(T'/3).)

2. Theorem 1(b) yields consistency of fT with S, only required to be o(T).
This extension is of theoretical interest, but is of little practical import, because
optimal growth rates typically are less than T'/? (see Section 5 below), and
hence, are covered by the results of Theorem 1(a) under weaker assumptions.
The main contribution of Theorem 1(b) is the rate of convergence results that it
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delivers. These rates are identical to those in the case where no parameters 6
are estimated. As indicated by Theorem 1(c), the rates are sharp. If the
bandwidth parameters are chosen to grow at the optimal rate determined in
Section 5 below, then the rate of convergence for the Bartlett, Parzen, Tukey-
Hanning, and QS kernels are T'/3, T?/5 T?/5, and T?/5 respectively. In
contrast, the rate for parametric estimators typically is 7'/2.

3. The expression given in Theorem 1(c) for the asymptotic truncated MSE of
fT is identical to that of Proposition 1(c) for the asymptotic untruncated MSE of

J;. Theorem 1(c) is used below in determining an asymptotically optimal kernel
and sequence of fixed bandwidth parameters (see Sections 4 and 5), as well as in
determining automatic bandwidth parameters (see Sections 6 and 7).

4. AN OPTIMAL KERNEL

In this section, we show that the QS kernel is best with respect to asymptotic
truncated MSE in the class %, of kernels that necessarily generate psd
estimates. This optimality property holds for any psd (limiting) weight matrix W
and any distribution of {V;} such that Assumptions B-D hold.

The asymptotic truncated MSE criterion utilized here 1s justifiable if JT is
used to construct a standard error or variance estimator for 8 anq one views this
as an estimation problgm in its own right. If one wants to use J; in forming a
test statistic involving 6, however, the suitability of the truncated MSE criterion
is less clear. A weak argument in its favor is that the asymptotics typically used
with such test statistics treat the estimated covariance matrix as though it equals
its probability limit. In consequence, in many cases the closer is the covariance
matrix estimator to its probability limit, as measured, for example, by truncated
MSE, the better is the asymptotic approximation. This is true in the context of
the Monte Carlo experiments reported in Section 9 below. On the other hand,
there are cases where the deviation of one part of a test statistic from its
limiting behavior is offset by the deviation of another part of the statistic from
its limiting behavior. In such cases, the argument above breaks down.

The focus on the asymptotic truncated MSE of JT for J; rather than of
BTJTBT for BTJTBT can be justified when the rate of convergence of BT is
faster than that of JT, as is usually the case. In particular, one can choose the
welght matnx Wy in such a way as to obtain asymptotlc truncated MSE results
for B,J, B} from the corresponding results for J,; see (6.9) and the discussion
following it below.

In addition to the results of this section, the QS kernel has been shown to
possess optimality properties in the context of spectral density estimation (see
Priestley (1962; 1981, pp. 567-571)) and probability density estimation (see
Epanechnikov (1969) and Sacks and Yvisacker (1981)). The results of Priestley
and Epanechnikov are for an asymptotic maximum relative MSE criterion
(where the maximum is over different frequencies or points of support) rather
than for a criterion of asymptotic truncated MSE at a given point as is used
here. In addition, the present results establish optimality for any given band-
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width sequence {S;}, whereas each of the other results referred to above
establishes optimality only for a particular bandwidth sequence that is optimal
in some sense.

Since the kernels in %, are not subject to any normalization, it is meaning-
less to compare two kernels using the same sequence of bandwidth parameters
{S;}. For example, two kernels that are the same but scaled differently would
yield nonidentical results in such a comparison. To make comparisons meaning-
ful, one has to use comparable bandwidths. The latter are defined as follows:
Given k(-)€.%,, the QS kernel ky4(-), and a sequence {S;} of bandwidth
parameters to be used with the QS kernel, define a comparable sequence {S;,}
of bandwidth parameters for use with k() such that both kernel/bandwidth
combinations have the same asymptotic truncated variance when scaled by the
same factor T/Sy. (That is, Sy, is such that

lim lim MSE, (T/Sy, Josr(Sr) — EJpsr(Sr) +J7,Wr)

h—o0 THow
= lim lim MSE, (T/Sy, Jr(Spi) — EIr(Sri) + 77, Wr),
h—ow T—oo
where the subscript QS denotes the estimator is based on the QS kernel.) This
definition yields

(41)  Sp=Sg/ [k*(x)dx.

(See footnote 4 for the value of [k?(x)dx for the kernels of (2.7).)

Note that for the QS kernel ko5(*), Sg;, = S7, since [kps(x)dx =1. Also
note that the use of the QS kernel as the standard for comparability is made for
convenience only and does not affect the optimality results.

Let fQST(ST) denote J;(S;) when the latter is based on the QS kernel.

THEOREM 2: Suppose Assumptions B—D hold, || f®|| < «, and W is psd. For
any sequence of bandwidth parameters {Sy} such that Sp.— » and S3/T -y for
some vy € (0, ) and for any kernel k() € %, that is used to construct J;, the QS
kernel is preferred to k(-) in the sense that

lim lim (MSE,(T/Sz, (S1:),Wr)

h-—>00 T—oHo

—MSE,, (T/ST’ jQST(ST) ’ WT))

4
= 47rz(vecf(z))’ercf(z)[kg(sz(x) dx) —k3ps

e
>0

provided (vec fPYW vec f® > 0. The inequality is strict if k(x)# kyg(x) with
positive Lebesgue measure.

ComMENT: The requirement of the Theorem that || f?|| < « is not stringent.
Nevertheless, if || f@|| < « only for some 1 <g <2, then Theorem 2 does not
apply, but the results of Theorem 1 can be used to show that any kernel with
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k,=0 has smaller asymptotic truncated MSE than a kernel with k,>0. In
particular, the QS, Parzen, and Tukey-Hanning kernels have k, =0for1 <gq <2,
whereas the Bartlett kernel has k,>0 for 1<g <2. Thus, the asymptotic
superiority of the former kernels over the Bartlett kernel holds even if || f(?]| <
only for 1 <g <2.

5. OPTIMAL FIXED BANDWIDTH PARAMETERS

In this section, sequences of fixed bandwidth parameters are determined that
are optimal in the sense of minimizing asymptotic truncated MSE for a given
psd (limiting) weight matrix W. The results apply to each kernel k(-) in %] for
which k, € (0,%) for some g € (0,). This excludes the truncated kernel, but
includes all of the other kernels of (2.7). The results are obtained as a simple
corollary to Theorem 1(c) above.

Define the optimal bandwidth parameters {S*} as follows: Let

2(vec f @YW vec f@

(5.1) a(q) = i W(1+Kpp)f®f and

)1/(2q+1)

62 st=(wieor1/ [P0 @

a(q) is a function of the unknown spectral density matrix f(A). Hence, the
optimal bandwidth parameter S} also is unknown in practice. For this reason,
estimates of a(q) are considered in Sections 6 and 7 below in order to obtain a
feasible analogue of S.

COROLLARY 1: Suppose Assumptions B-D hold. Consider a kernel k(-) € %,
for which k€ (0,%) for some q € (0,). Suppose || f©|| <, a(g) € (0,%), and
W is psd. For any sequence of bandwidth parameters {S;} such that S29*' /T — y
for some y € (0,), the sequence {S;}} is preferred to {S;} in the sense that

lim lim (MSE, (T29/@9%D, [, (S;), Wy)

h—ow T—>x
—MSE,, (T24/@4%D, [ (S%),Wr)) > 0.

The inequality is strict unless Sp= S + o(T1/?4%D),

CommMmenTs: 1. The values of g in Corollary 1 for the Bartlett, Parzen,
Tukey-Hanning, and QS kernels are 1, 2, 2, and 2, respectively. Thus, we have

1/3
(53)  Bartlett kernel: ¥ =1.1447(a(1)T) ",
1/5

Parzen kernel: SF=26614(a(2)T) / ,

1/5

Tukey-Hanning kernel: SF=17462(a(2)T) ,

1/5
Quadratic Spectral kernel: SF=13221(a(2)T) .
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TABLE I

AsyYMPTOTICALLY OPTIMAL LAG TRUNCATION / BANDWIDTH VALUES S#
FOR THE BARTLETT, PARZEN, TUKEY-HANNING, AND QS ESTIMATORS
ForR AR(1) {V,} PROCESSES WITH PARAMETER 7®°

Bartlett Estimator Parzen Estimator
(Newey-West (1987)) (Gallant (1987))
p 2 3 5 7 9 .95 2 3 5 7 9 .95
T n .04 .09 .25 49 81 .90 .04 .09 25 49 .81 .90
32 7 1.2 24 43 10.2 16.6 2.0 2.9 5.1 9.0 244 43.4
64 9 1.5 3.0 5.4 12.9 20.9 23 33 5.8 104 28.0 49.9
128 1.1 1.8 38 6.8 16.2 26.3 2.6 3.8 6.7 119 322 57.3
256 1.4 23 4.8 8.6 20.4 331 3.0 44 7.7 13.7 36.9 65.8
512 1.7 2.9 6.0 10.9 25.7 41.7 35 5.0 8.8 15.8 42.4 75.6
1,024 2.1 3.7 7.6 13.7 324 52.6 4.0 5.8 10.2 18.1 48.7 86.8
Tukey-Hanning Estimator Quadratic Spectral Estimator
p .2 3 5 7 9 .95 2 3 5 7 9 .95
T n .04 .09 25 49 .81 .90 .04 .09 25 49 .81 .90
32 1.3 1.9 33 59 16.0 28.5 1.0 14 25 45 12.1 21.6
64 1.5 2.2 3.8 6.8 18.4 32.7 1.1 1.6 29 5.2 13.9 24.8
128 1.7 2.5 44 7.8 21.1 37.6 1.3 1.9 33 5.9 16.0 28.5
256 2.0 29 5.0 9.0 24.2 432 1.5 2.2 3.8 6.8 18.4 32.7
512 23 33 5.8 10.3 27.8 49.6 1.7 2.5 4.4 7.8 21.1 375
1,024 2.6 3.8 6.7 11.9 320 57.0 2.0 29 5.0 9.0 242 43.1

2 The given values of ST are optimal for an iid linear regression model with AR(l) regressors and errors each with AR
parameter p. This corresponds to {V;} (= {U, X,}) being AR(1) with parameter n = p°.
® The truncation parameters m and I(n) of Newey and West (1987) (Bartlett estimator) and Gallant (1987, pp. 533, 551,
573) (Parzen estimator), respectively, correspond to ST — 1; see footnote 3.

2. For illustrative purposes, Table I tabulates S} for the Bartlett, Parzen,
Tukey-Hanning, and QS kernels for a linear regression model in which the
regressors and errors are mutually independent, homoskedastic, first order
autoregressive (AR(1)) random variables each with autoregressive parameter p.
For this model each element of V, (except that corresponding to the intercept)
has correlation structure identical to that of an AR(1) process with parameter
n = p>. The weight matrix Wy is taken to be a diagonal matrix that gives weight
one to the diagonal elements of J —J; that correspond to nonconstant regres-
sors and weight zero to all other elements,

3. When the optimal bandwidth parameters {S}} are used, the asymptotic
truncated MSE is such that the squared bias equals 1/(2q + 1) of the total MSE
(for any limiting psd weight matrix W). Thus, the bias of the Bartlett kernel
accounts for a greater fraction of its MSE asymptotically than do the biases of
the Parzen, Tukey-Hanning, and QS kernels.

4. When {S}} is used, the Parzen and Tukey-Hanning kernels are 8.6% less
and .9% more efficient asymptotically than the QS estimator, respectively, for
any distribution of {V;} and any limiting psd weight matrix W. (Since the
Tukey-Hanning kernel does not necessarily generate psd estimates, i.e., k;;(x)
& %, the latter result does not violate Theorem 2.) Also, the Bartlett kernel is
100% less efficient asymptotically than the Parzen, Tukey-Hanning, and QS
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kernels, since its MSE converges to zero at a slower rate. In particular finite
sample situations, however, the Bartlett kernel may not perform nearly so
poorly in relative terms, depending on the magnitudes of T, £, f®, and f.

5. The only kernels for which k, < for g>2 are kernels that do not
necessarily generate psd estimates. (To see this, note that k, = [* A2K(A) dA /2.
Since k, <o for g > 2 implies k, = 0, this implies that K(A) must be negative
for some A € R. The discussion of the last paragraph of Section 2 now estab-
lishes the assertion.) Thus, the maximal rate of convergence to zero of the
truncated MSE for kernels in %, is T%°. In contrast, the rate is T for
parametric estimators.

6. For asymptotically optimal higher order adjustments to the bandwidth
parameters {S;}, see Andrews (1988, Theorem 4).

6. AUTOMATIC BANDWIDTH ESTIMATORS

This section introduces automatic bandwidth HAC estimators of J;. These
estimators are the same as the kernel estimators of Sections 2-5 except that the
bandwidth parameter is a function of the data.

In the density estimation literature, several automatic bandwidth methods
have been developed. The two main types are cross-validation (e.g., Beltrao and
Bloomfield (1987) and Robinson (1988)) and the “plug-in” method (see
Deheuvels (1977) and Sheather (1986)). In the context of spectral density
estimation, two additional methods have been suggested by Wahba (1980) and
Cameron (1986). Cross-validation and the methods of Wahba and Cameron are
suitable if one is interested in estimating a density over an interval, such as the
real line, rather than estimating a density at a single point. Hence, they are not
well suited to the problem at hand.

Plug-in methods are characterized by the use of an asymptotic formula for an
optimal bandwidth parameter (in our case S7 of (5.2)) in which estimates are
“plugged-in” in place of various unknowns in the formula (a(g) of (5.1)). The
estimates that are plugged-in may be parametric or nonparametric. The former
yield a less variable bandwidth parameter than the latter, but introduce an
asymptotic bias in the estimation of the optimal bandwidth parameter due to
the approximate nature of the specified parametric model. (Note that this bias
has no effect on the consistency or rate of convergence of the density estimator.)

The automatic bandwidth parameters considered here are of the plug-in type
and use parametric estimates. They deviate from the finite sample optimal S,
values due to error introduced by estimation, the use of approximating paramet-
ric models, and the approximation inherent in the asymptotic formula em-
ployed. Good performance of a HAC estimator, however, only requires the
automatic bandwidth parameter to be near the optimal bandwidth value and not
precisely equal to it. The reason is that the MSE’s of kernel HAC estimators
tend to be somewhat U-shape functions of the bandwidth parameter S;. This is
illustrated in Figure 2, which shows the MSE of the QS estimator as a function
of S, for the AR(1)-HOMO model with p =0.0, .3, .5, .7, .9, and .95. More
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FiGURE 2.—Mean squared error as a function of Sy for the QS estimator in the AR(1)-HOMO
model with p = 0.0 — .95.

precisely, for each value of p, Figure 2 graphs the percentage increase in MSE
for different S, values over the minimum MSE over all possible bandwidth
values. (As described in Section 9 below, the AR(1)-HOMO model is a linear
regression model with regressors and errors that are homoskedastic AR(1) rv’s
both with AR(1) coefficient p.) The automatic bandwidth parameters consid-
ered here are designed to produce parameters that are on the flat part of the
MSE function even if they are not at the point of minimum MSE.

The automatic bandwidth parameters are defined as follows: First, one
specifies p univariate approximating parametric models for {V, } fora=1,...,p
(where V, = (Vy,,...,V,,)) or one specifies a single multivariate approximating
parametric model for {V}}. Second, one estimates the parameters of the approxi-
mating parametric model(s) by standard methods. Third, one substitutes these
estimates into a formula (see below) that expresses a(q) as a function of the
parameters of the parametric model(s). This yields an estimate &(g) of a(qg).
a(q) is then substituted into the formula (5.2) for the optimal bandwidth
parameter Sjt to yield the automatic bandwidth parameter S

)1/(2q+1)

(61)  Sr= (qkzo?(q)r/ JH3(x) ax
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For the kernels of (2.7), we have

(6.2) Bartlett kernel: Sr=1.1447(&(1)T) 1/3,
Parzen kernel: $r=2.6614(&(2)T) 1/5,
Tukey-Hanning kernel: S;=1.7462(&(2)T) 1/5,
Quadratic Spectral kernel: S, =1.3221(&(2)T) Vs

For general purposes, the suggested approximating parametric models are
first order autoregressive (AR(1)) models for {V,}, a =1,..., p (with different
parameters for each a) or a first order vector autoregressive (VAR(1)) model
for {V}. These models are parsimonious. If some other model(s) seem more
appropriate for a particular problem, however, they should be used instead. For
example, it may be necessary to use models that allow for seasonal patterns or it
may be preferable to use first order autoregressive moving average (ARMAC(1, 1))
or mth order moving average (MA(m)) models.

The use of p univariate approximating parametric models has advantages of
simplicity and parsimony over the use of a single multivariate model, but
requires a simple form for the weight matrix W that appears in the formula (5.1)
for a(q). In particular, it requires that W give weight only to the diagonal
elements of J;. Let {w,: a=1,..., p} denote these weights. In this case, (5.1)
reduces to

p p

(63)  a(a)= L w(f) [ ¥ wafle

1 =1

where f{? and f,, denote the ath diagonal elements of f© and f respectively.
The usual choice for w, is one for a =1,...,p or one for all a except that
which corresponds to an intercept parameter and zero for the latter. In linear
regression models, the latter choice of weights has the advantage that it yields a
scale invariant HAC estimator of the covariance matrix of the LS estimator,
provided the estimator @(q) (defined below) is scale invariant.

We now provide formulae for @(q) for several different approximating para-
metric models for {V,,}. First, consider AR(1) models for {V,,}. Let (p,,0?)
denote the autoregressive and innovation variance parameters, respectively, for
a=1,...,p. Let {(p,,62): a=1,...,p} denote the corresponding estimates.

5 An automatic bandwidth parameter fT is not given in (6.2) for the truncated kernel, because
the formula (5,2) for S# does not apply with this kernel. Monte Carlo results, however, show that
the formula S;=.6611(&(2)T)'/° works quite well for the truncated kernel. This formula is
obtained by treating the truncated kernel as though its value of k, is finite and equal to the
corresponding value for the QS kernel (i.e., k, = kzgs/(sz(x) dx)?=.3553).

See Footnote 3 for the relation between the bandwidth parameters S; and S used here and
the lag truncation parameters as defined by White (1984), Newey and West (1987), Gallant (1987),
and Gallant and White (1988).
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Then,
p 4'\2 A4 j2 a4
(6.4) @(2) = Z (1_ a) /E: (—1—_7 and

S 4536 cf:
i) = Tw, L

(1-5)°(1+5,)° ~5a)’*

For ARMA(l 1) models w1th ARMA parameters (p,,,) and innovation
variance o fora=1,...,p,” we have

» 4(1+pa )(pa+¢,)~* 2o (1+4,) 6

(65) aR)= Y w, Yw,———=  and
a=1 (1 _pa) a=1 (1_pa)4
A N2 A N2 A4
) o AL+, (B d)EE [ 2 (1+4,) 6
(6.6)  &(1)= L w, e ZWE
a=1 (1_pa) (1+pa) = (1—pa)
For MA(m) models with MA parameters {i,,: u =1,..., m} and innovation
variances o- fora=1,..., p, we have
p m . m—j A 2
E wa 2 Z]q (»baj+ Z waudjau-kj)} &a4
(6.7)  a(q)=——L 71 o 5
p m m—|jl
Z Wa[ Z (d’a|”+ Z (»hauwauﬂjl)} 4'
a=1 j=-—m

Next, consider a VAR(1) model with p Xp AR parameter matrix 4 and
p X p innovation covariance matrix 3. Wlth this multivariate approximating
parametric model one can use any psd p? X p? weight matrix W;. We have

2(vec f(")) W, vec f@

~ h
trWr(I+K,,)fef where

(6.8) d(q) =
fegm(1=A) " $(1-A) "
FO= S (1-A) (A4S + 254 + 428~ 6 ASA + (A’
+A3(A) +3A)1-4)7,

A0 1 A A A A2 A AL N
fP=-—(H+H), and H=(I-A)"AY Ai3(4).
2 j=0
" The ARMA(, 1) model is parametrized as V,, =p,V,, _ 1+x-:,,, +c//a ar—1 With Var(e,,) =02

The MA(m) model considered below is parameterlzed as Vo, = E0_ o Wau€ai_y With Y q=1 and
Var(e,,) = o
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As above, K, is the p? X p? commutation matrix; see Magnus and Neudecker
(1979).
A natural choice for the weight matrix W, in this case is

(6.9) W= (BT®BT)’W(BT®BT),
where ﬁT is the estimator defined just below (2.2) and W is an r2 X r? diagonal
weight matrix. This choice of W, corresponds to the loss function
vec(1§ J By ~B,J ﬁ;)’W vec(éTfTé}—ﬁTJTﬁ})

where B,J, B} is the covariance matrix estimator of 6.1f B,—B,=o0 (Sr/T)
(as is usually the case, since BT is usually a VT -consistent parametric estimator
of B;), _then the asymptotic truncated MSE with this loss function is the same as
when BTJTBT is replaced by BrJ;Bj in the loss function. Thus, the choice of
loss function (6.9) for JT gives the asymptotic truncated MSE of BTJ BT for
estimating BjJ; B} with weight matrix w. The dlagonal matrix W should be
chosen to suitably weight the elements of BT]TBT For example to give equal
weight to each nonredundant element of BTJTBT, one takes W to have ones for
diagonal elements that correspond to nondiagonal elements BTJTBT and twos
for diagonal elements that correspond to diagonal elements of BTJTBT

Last, consider a VAR(m) model V,=X7. 4V, ;+3%,, where {4;: j=
1,...,m} are p X p parameter matrices and 3, is a p X 1 innovation vector with
covariance matrix 3. In this case, @(2) is as in (6.8) with g =2,

f"(l/ZW)(I—ZA) j(l— iAAj)_, and
j=1
fo= ZL( M, + 2+A;I2’), where
2(1 iAA) (%1;41.)(1—'2"‘,,4,.) 2(1—%4;)
i=1 j=1 j=1

x| X jA;

i=1

j=1

>
——
~
I
- M 3
\b-\:)
\_./

-1

k)

(£ NF§A”+

-1

_ E/;j)
j=1

-1

X f,‘bf,)(!— iA‘,.) 2(1— .’Zn:AA;.)

(The latter formulae were provided by Ken Vetzal.)
The choice between using p univariate approximating parametric models
(such as AR(1) models) or a single multivariate model (such as a VAR(1)
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model) depends upon a tradeoff between simplicity and parsimony on one hand
and flexibility in the choice of weight matrix on the other. For the Monte Carlo
results of Section 9 below, AR(1) univariate approximating models are used.
In practice, the value of a HAC estimator can be sensitive to the choice of the
bandwidth parameter. Hence, it often is wise to calculate several bandwidth
values centered about the automatic bandwidth value given by (6.1) in order to
assess the degree of sensitivity of the estimator. These additional bandwidth
values can be chosen by replacing the estimated parameters of the approximat-
ing parametric models used in (6.1) by the estimated parameters plus or minus
one or two standard deviations of their values. For example, with AR(1)
approximating models, one would replace p, by g, + 1/ VT or P, 2/ VT.

7. PROPERTIES OF THE AUTOMATIC BANDWIDTH ESTIMATORS

In this section, we establish consistency, rate of convergence, and asymptotic
truncated MSE results for kernel HAC estimators that are constructed using
the automatic bandwidth parameters {S;} introduced in Section 6.

The results of this section apply to kernels in the following class:

Hy={k(-)e #: @ |k(x)|<C,lx| " forsome b>1+1/q

(7.1) and some C, <o, where g€ (0,%) is such that

’ k,€(0,), and (i) |k(x) —k(y)|<C,lx—yl| Vx,
y €R for some constant C, < }.

This class contains the Bartlett, Parzen, Tukey-Hanning, and QS kernels, but
not the truncated kernel, because the latter does not satisfy the Lipschitz
condition. A

For consistency of J;(S7), @(g) only needs to satisfy the following assump-
tion.

AssumpTiON E: d(q) = 0p(1) and 1/a(q) = O,(1).

For rate of convergence and asympAtotic truncated MSE results, stronger
conditions on d&(g) are needed. Let ¢ denote the estimator of the param-
eter of the approximating parametric model(s) introduced in Section 6. (I:‘or
example, with univariate AR(1) approximating parametric models, ¢ =
(p1,6L,..., P, 67).) Let £ denote the probability limit of £. d(g) is the value of
a(q) that corresponds to £. The probability limit of @&(q) depends on ¢ and is
denoted a,. For the results referred to above, we make the following assump-
tion.

AssumpTion F: VT (&(q) — a,) = 0,(1) for some a, € (0,).

Note that @, equals the optimal value a(q) if the approximating parametric
model indexed by ¢ actually is correct. In general, however, a, deviates from
a(q).
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The fixed bandwidth sequence that is closest to {ST} is defined by replacing
@(q) by a, in the definition of ST Let

1/Q2q+1)
(72)  Ser=(gk2e,T sz(x)dx)

The asymptotic properties of JT(ST) are shown to be equivalent to those of
Fr(S,p).

For the rate of convergence and asymptotic truncated MSE results, we also
require the following assumption. Let A___(A4) denote the largest eigenvalue of
the matrix A.

max

AssumpTION G: A, (I'(j)) < C3j™™ Vj > 0, for some C; < % and some m >
max{2,1+2q/(q + 2)}, where q is as in 5.

If {V} is strong mixing with mixing numbers of size —max{2,1+ 2q/(q + 2)}
Xv/(v —1/2) for some v > 1 such that sup, EIIVIIA" < «, then Assumption
G holds. In particular, in the cases of interest g <2, so the size condition is
—3v/(v —1/2). This is less stringent than the size condition —3v/(v —1)
which is sufficient for Assumption A.

The main result of this section is the following:

THEOREM 3: Suppose k() € %5, q is as in ¥, and || f @] < .

(a) If Assumptions A, B, and E hold and q > 1/2, then JT(ST) —J =7 0.

(b) If Assumptions B, C, F, and G hold, then ‘/T/Sgr(JT(ST) Jr)=0,1)
and \[T/S 7 (Jr($7) = 7 (Sgr) =7 0.

(c) If Assumptions B-D, F, and G hold, then

lim lim MSE, (T/S;7,Jr(S7),Wr)

h—o Tow

= lim lim MSE, (T/S, Jr(S¢r), Wr)

h—o T—Hoo

=4 (k;(vec f@OYW vec fD /v,

+ [k?(x) dx tr W(I+Kpp)f®f),
where v, = qk2a,/ [ k*(x) dx.

If @(q) —>*alq) (ie., a;=al(q)), as occurs if the approximate parametric
model indexed by ¢ is correct, then s 7} exhibits some optimality properties as a
result of Theorem 1(c) and Corollary 1. In particular, given a kernel k(-) € %5,
let {ST} be any sequence of automatic bandwidth parameters such that for some
fixed sequence {S;}, which satisfies S29*1 /T — y for some y € (0, ), we have
(7.3) 11m lim (MSE,, (Tzq/(zq”),fT(ST),WT)

h—>ow Tooo

—MSE,, (T?1/@9+D, f1(8;),W;)) =0
Then, {S"\T} is preferred to {ST}:
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CoroLLARY 2: Suppose Assumptions B-D, F, and G hold. Consider a kernel
k(-) € %;. Let q be as in %. Suppose ||f@|| <, a(qg) €(0,%), and W is psd.
Let {S;} be any sequence of automatic bandwidth parameters that satisfies (7.3). If
a;=a(q) (i.e., if &(q) converges in probability to the optimal value a(q)), then
{8} is preferred to {S;} in the sense that

lim lim (MSE, (T29/@9*D, J,.(S7), W)

h—o Tox
—~MSE,, (TZq/(2q+1), fT(S‘T), WT)) > 0.

The inequality is strict unless S; = S# + o(T'/?a+D),

8. EXTENSION TO NONSTATIONARY RANDOM VARIABLES

Thus far this paper has considered unconditionally weakly stationary rv’s
(Assumption A). We now make note of sufficient conditions for the consistency
and rate of convergence results of the paper to hold for unconditionally
heteroskedastic rv’s. Here we do not discuss asymptotic truncated MSE results
or optimality results for kernels and bandwidth sequences for unconditionally
nonstationary rv’s. Such results can be found in Andrews (1988). They use lower
and upper bounds on the MSE and a minimax MSE criterion for optimality.

Consider the following generalizations of Assumptions A, C, and G:

AssumpTiOoN A*: {V,} is a mean zero sequence of rv’s with

Yy supllEV,V, Il <o and
j=0 t>1
Y XY sup|kgue(t,t+j,t+m,t+n)| <o Va,b,c,d<p.

1 m=1n=1 t>1

J

AssumpTION C*: Assumption C holds with reference to Assumption A* rather
than Assumption A in part (i).

AssumpTION G*: Assumption G holds with A, (I'(j)) replaced by
Suptzll\max(EVtVt;j)'

By Lemma 1, Assumption A* holds if {V}} is a mean zero a-mixing sequence
of rv’s with sup, ., ElIV;|* <o and I7_, j%a(j)®~ /" < o for some v > 1.

If V(6) is of the form V(Z,,0) for some rv Z, and some (measurable)
function V(-, - ), then Assumptions A* and C* hold if (i) E V,=0Vt>1, (D) {Z,

t > 1} is a-mixing with

X j%a(j)" ™" <o and sup (EIV,I* +Ell(3/30") V,(6,)I) <
j=1 t>1
for some v > 1, and (iii) sup, . E sup, cll9?V,,(0)/3030'|* < Va =1,..., p.
If, in addition, ¢ <2 in Assumption G* (as is the case for the QS, Parzen,
Tukey-Hanning, and Bartlett kernels), then Assumption G* also holds.
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Now, under Assumption A* rather than A, Proposition 1 continues to
hold by Lemmas 1 and 2 and Theorem 1 of Andrews (1988) with the following

changes: In part (a), lim,_.,vec/;, =, and (I+K,)f®f are replaced
by Tim;_,, bJ;b, <, and 2(b'fb), respectively, for arbitrary b e RP.
In part (b), [If9l, limy_,, (EJ;—J;), =, and f@ are replaced by

(1/2mE5- _ljl? sup, . ([EB'V,V,, ;bl, Timy ., |Eb'Jb—bTbl, <, and
(1/2m)L7_ _,lil* sup, ., |Eb'V,V,, |, respectively, for arbitrary b € R”. In part
©), Il f9]| is changed as above and the result is changed to: Vb € R?,

T .
im —~E(b'Vzb = bU;b)"

T—o YT

j=—o t>1

2
1 oo
<4m?|k2|=— X lil%sup|EbVV,/;b]| [
27

+ [K2(x) dx 2(b'fp)*].

Theorem 1(a) continues to hold with Assumption A replaced by Assumption
A*. Theorem 1(b) continues to hold with Assumption C replaced by Assump-
tion C* and || f?|| replaced by (1/2m)L7_ _,, |j|? sup, . ,IlEV,V;, Il. The proof of
these results is a trivial extension of the proof of Theorem 1(a) and (b) in the
Appendix using the results of the previous paragraph.

Theorem 3(a) and (b) continues to hold if ¢ and Assumptions A, C, and G
are replaced by (1/2m)L7_ _,ljl? sup, .1 A (EV,V), ;) and Assumptions A*,
C*, and G* respectively. Using the results of the previous paragraph and
Lemmas 1 and 2 of Andrews (1988), the proof is a straightforward extension of
that given in the Appendix for Theorem 3(a) and (b). Thus, automatic band-
width kernel estimators are consistent with nonstationary as well as fourth order

stationary rv’s.

9. MONTE CARLO RESULTS

In this section, simulation methods are used to evaluate the asymptotic results
obtained in Sections 3-8. In particular, we are interested in evaluating the
results of Theorem 2 regarding the optimal kernel and of Theorem 3 and
Corollary 2 regarding automatic bandwidth parameters.

The models we consider are linear regression models, each with an intercept
and four regressors; see (2.1). The estimand of interest is the variance of the LS
estimator of the first nonconstant regressor. (That is, the estimand is the second
diagonal element of Var (VT (§ — 6,)) in (2.1).) Four basic regression models are
considered: AR(1)-HOMO, in which the errors and regressors are homoskedas-
tic AR(1) processes; AR(1)-HET1 and AR(1)-HET?2, in which the errors and
regressors are AR(1) processes with multiplicative heteroskedasticity overlaid
on the errors; and MA(1)-HOMO, in which the errors and regressors are
homoskedastic MA(1) processes. (Details are given below.) A range of six to
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eight parameter values are considered for each model. Each parameter value
corresponds to a different degree of autocorrelation.

Estimators based on the five kernels of (2.7) are evaluated. They are:
truncated (TRUNC), Bartlett (BART), Parzen (PARZ), Tukey-Hanning (TUK),
and quadratic spectral (QS). The performance of each kernel estimator is
determined for a variety of different bandwidths. These bandwidths include the
asymptotically optimal bandwidth of (5.2), the automatic bandwidth of (6.1)
based on univariate AR(1) approximating models with ( pa> 02) estimated by LS
for each a, and a grid of fixed bandwidths that are used to obtain the finite
sample optimal bandwidth. For the former two bandwidths, the weights {w,} are
taken to be zero for the intercept and one for the others.

For comparative purposes, three estimators are considered in addition to the
kernel estimators described above: the heteroskedasticity consistent estimator of
Eicker (1967) and White (1980), denoted INID; the standard LS variance
estimator for iid errors, denoted IID; and a parametric estimator that assumes
that the errors are homoskedastic AR(1) random variables, denoted PARA.
More specifically,

1T oy oo . 1T -1
(9‘1) INID = (—T— ZXtXt’) (__ Z UtZX,X,’)(—]: ZXIXI’) »
22

t=1 t=1

Nl =
M=~
M~
>

t=1

1z !
Is_t'Xth’) (? Z XtXt,) s
22

where l7, =Y,—X/6, PLs is the LS estimator of p from the regression of U, on
U_, for t=2,...,T, p=min(97,5,,), and [-1,, denotes the (2,2) element
of -8

For each variance estimator and each scenario, the following performance
criteria are estimated by Monte Carlo simulation: (i) the exact bias, variance,
mean squared error (MSE), and mean absolute error (MAE) of the variance
estimator and (ii) the true confidence levels of the nominal 99%, 95%, and 90%
regression coefficient confidence intervals (CI's) based on the ¢ statistic con-
structed using the LS coefficient estimator and the variance estimator. (The
nominal 100(1 —a)% CI’s are based on an asymptotic normal approximation.
For the INID, IID, and PARA estimators, this normal approximation is not
valid asymptotically in some of the scenarios under consideration.) The control

® The truncated estimator B, rather than § 5, is used to construct PARA because we do not want
the performance of PARA to be dominated by a few observations for which PLs is near or greater
than one. Since j, ¢ has a large downward bias when p is large (say .9 or .95), the truncation at .97
occurs seldomly even when p is large.
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variate method of Davidson and MacKinnon (1981) is used to estimate the true
confidence levels in (ii). Sample sizes of 64, 128, and 256 are investigated. One
thousand repetitions are used for each scenario.

The distributions of all of the variance estimators considered here are
invariant with respect to the regression coefficient vector 6, in the model.
Hence, we set 6, =0 in each model and do so without loss of generality.

Next we describe the four models used in the Monte Carlo study. The
AR(1)-HOMO model consists of mutually independent errors and regressors.
The errors are mean zero, homoskedastic, stationary, AR(1), normal random
variables with variance 1 and AR parameter p. The four regressors are gener-
ated by four independent draws from the same distribution as that of the errors,
but then are transformed to achieve a diagonal (1/7)X7_, X, X, matrix.” The
values considered for the AR(1) parameter p are 0, .3, .5, .7, .9, .95, —.3, and
—-.5.

The AR(1)-HET1 and AR(1)-HET2 models are constructed by introducing
multiplicative heteroskedasticity to the errors of the AR(1)-HOMO model.
Suppose {x,, U,: t=1,...,T} are the nonconstant regressors and errors gener-
ated by the AR(1)-HOMO model (where X,=(1,x})). Let U,= |x;{| X U,.
Then, {x,,U,: t=1,...,T} are the nonconstant regressors and errors for the
AR(1)-HET1 and AR1)-HET2 models when ¢ =(1,0,0,0 and ¢ =
(1/2,1/2,1/2,1/2) respectively. In the AR(1)-HET1 model, the heteroskedas-
ticity is related only to the regressor whose coefficient estimator’s variance is
being estimated, whereas in the AR(1)-HET?2 model, the heteroskedasticity is
related to all of the regressors.!? The same values of p are considered as in the
AR(1)-HOMO model.

The MA(1)-HOMO model is exactly the same as the AR(1)-HOMO model
except that the errors and the (pretransformed) regressors are homoskedastic,
stationary, MA(1) random variables with variance 1 and MA parameter ¢. The
values of ¢ that are considered are .3, .5, .7, .99, —.3, and —.7.

The first table of simulation results, Table II, provides a comparison of the
five kernels of (2.7). The table presents ratios of the finite sample MSE’s of the
TRUNC, BART, PARZ, and TUK estimators to those of the QS estimator for
each model scenario and T = 128. Each estimator has its bandwidth parameter

® The transformation used is described as follows. Let & denote the T X 4 matrix of pretrans-
formed, randomly generated, AR(1) regressor variables. Let ¥ denote X with its column means
subtracted off. Let x =%(¥'%/T)~ /2 Define the T X 5 matrix of transformed regressors to be
X =[17: x]. By construction, X'X = TI;.

Since EX = 0 and EX'% = I, this transformation is close to the identity map with high probability.
With this transformation, the estimand and the estimators simplify and the computational burden is
reduced considerably. The estimand becomes just the product of the second diagonal elements of
the three 5X 5 matrices multiplied together in (2.1). Two of these diagonal elements are
known—only one has to be estimated, viz., the second diagonal element of the J, matrix. Without
the transformation, one has to compute all twenty-five elements of the estimated J, matrix, rather
than a single element, in order to compute the performance criteria described above.

10 When the regressor transformation map is the identity map, the errors in the AR(1)-HET1 and
AR(1)-HET2 models are mean zero, variance one, AR(1) sequences with AR parameter p? and
innovations that are uncorrelated (unconditionally and conditionally on {X,}) but not independent.
Hence, the errors have an AR(1) correlation structure even after the introduction of heteroskedas-
ticity.
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TABLE II

RATIO OF MSE OF TRUNCATED, BARTLETT, PARZEN, AND TUKEY-HANNING ESTIMATORS
TO MSE OF QS EsTIMATOR UsING FINITE SAMPLE OPTIMAL S, VALUES — T = 128

Model Estimator 0 3 .5 7 9 95 -3 -5
TRUNC 1.00 1.09 .93 .93 .95 .97 1.09 .94
AR(1)-HOMO BART 1.00 1.00 1.05 1.09 1.06 1.04 1.01 1.05
PARZ 1.00 1.01 1.01 1.02 1.01 1.01 1.01 1.01
TUK 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00
TRUNC 1.00 1.03 .98 97 97 .98 1.02 1.13
AR(1)-HET1 BART 1.00 1.00 1.02 1.04 1.03 1.02 1.02 1.13
PARZ 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.13
TUK 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.13
TRUNC 1.00 1.00 1.07 .98 .96 .98 1.00 1.09
AR(1)-HET2 BART 1.00 1.00 1.00 1.03 1.04 1.03 1.00 1.00
PARZ 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00
TUK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
v

3 5 7 .99 -3 -7

TRUNC 1.04 1.02 .99 .99 1.02 .98

MA(1)-HOMO BART .99 .99 1.04 1.05 .99 1.02

PARZ .99 .99 1.01 1.02 .99 1.00

TUK .99 .97 1.00 1.00 .99 .99

set equal to its nonrandom finite sample optimal value (determined by grid
search) to ensure comparability of the kernels.

The table shows that the QS estimator is slightly more efficient than the
PARZ estimator and very slightly more efficient than the TUK estimator in the
scenarios considered. These results are basically consistent with the asymptotic
results for kernel comparisons given in Theorem 2 and Corollary 1 Comment 4.
The finite sample advantage of the QS kernel over the PARZ kernel, however,
is clearly less than its asymptotic advantage. For these kernels, results corre-
sponding to those of Table II, but for sample sizes T =64 and T = 256, are
quite similar to those of Table II.

In Table II, the three estimators QS, PARZ, and TUK consistently exhibit a
distinct, but not large, advantage over the BART estimator. This advantage is
predicted by the asymptotic results of Theorem 1 (also see Corollary 1 Com-
ment 4). It is interesting to note that for sample size T = 256 (not reported
here), the MSE advantage of the QS, PARZ, and TUK estimators over the
BART estimator is more pronounced than in Table II where T = 128. This is
expected given the asymptotic results.

For all of the estimators, the results of Table II are not changed much when
the MSE criterion is replaced by the MAE criterion. The only change is that the
differences between the estimators are somewhat less pronounced.

The TRUNC estimator exhibits wide fluctuations in its MSE relative to that
of the QS estimator and the other three estimators. In the AR(1)-HOMO
model, it ranges from being 9% less efficient to 7% more efficient than the QS
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estimator. For most scenarios, however, it is more efficient than the QS
estimator. This is what is suggested by the asymptotic results (see Proposition
1(b) and Theorem 1(c)), since the bias of the TRUNC estimator declines at a
faster rate than it does for the other estimators. Results corresponding to Table
II but with sample sizes T= 64 and T = 256 show that the relative efficiency of
the TRUNC estimator is increasing with T (i.e., the ratios of MSE’s are
declining) in most scenarios, but at a fairly slow rate.

Comparisons of the true confidence levels of the CI’s constructed using the
five different variance estimators are not given in the tables, because they are
quite similar to the comparisons based on MSE’s given in Table II. In all cases,
the true confidence levels of the CI’s fall short of their nominal confidence
levels. Thus, the best CI's are the ones whose confidence levels are the largest.
Of the BART, PARZ, TUK, and QS-based CI’s, the QS-based CI’s are fairly
consistently the best, but only by a slight margin over the PARZ and TUK-based
CI’s. The margin is larger with respect to the BART-based CI’s. There are two
reasons why the BART-based CI's do worse than the other CI’s. First, the
BART variance estimator has greater MSE’s than do the other estimators, and
second, its squared bias-variance ratio is significantly larger than that of the
other estimators in most cases. The latter property is to be expected given the
asymptotics (see Corollary 1 Comment 3).

The true confidence level results for the TRUNC-based CI’s are similar to
the TRUNC estimator’s MSE results. In some scenarios they are the best and in
some scenarios they are the worst. The scenarios in which they are best and
worst are the same scenarios where the TRUNC estimator has lowest and
highest MSE’s, respectively, in Table II.

One drawback of the TRUNC estimator (as well as the TUK estimator) is
that it does not necessarily generate nonnegative variance estimates. In the
Monte Carlo experiments, however, a significant number of negative estimates
arise only when there is very heavy autocorrelation. For example, in the
AR(1)-HOMO model with p =.95, the percentages of negative TRUNC esti-
mates are 7.6, 1.2, and 0 for T = 64, 128, and 256, respectively (using the finite
sample optimal bandwidth parameter). For smaller values of p and for the TUK
estimator, the percentages are zero for all sample sizes considered.

For brevity, we only discuss results for the QS estimator in the remainder of
this section. For the most part, in the tables that follow, the relative perfor-
mances of the other kernel estimators in comparison with the QS estimator
follow patterns similar to those observed in Table II. Tables analogous to those
given here, but including the other kernel estimators, are available from the
author upon request.

Table III assesses the performance of the automatic bandwidth procedure §T
of (6.1). In all scenarios, the approximating parametric models used by the
automatic bandwidth procedure are univariate AR(1) models.

Table III shows that in general the .fT bandwidth values work very well. This
is true in both the homoskedastic and heteroskedastic cases. The S, values
work much better with positive serial dependence than with negative serial
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TABLE III

RaTIO OF MSE OF QS ESTIMATOR USING AUTOMATIC S VALUE, §T,
1o MSE oF QS EstiMATOR UsSING FINITE SAMPLE OPTIMAL S VALUE

Model T 0 3 5 7 9 95 -3 -.5

64 1.09 1.16 1.07 1.02 1.01 1.01 1.17 1.09
AR(1)-HOMO { 128 1.05 1.14 1.14 1.05 1.01 1.01 1.23 1.12
256 1.06 1.10 1.05 1.06 1.03 1.01 1.14 1.07

64 1.12 1.02 1.00 1.01 1.01 1.01 1.45 3.05
AR(1)-HET1 { 128 1.10 1.02 1.02 1.02 1.01 1.01 1.68 4.18
256 1.01 1.03 1.03 1.04 1.03 1.01 1.93 5.17

64 1.06 1.13 1.07 1.02 1.01 1.01 1.20 1.34
AR(1)-HET2 {128 1.05 1.16 1.17 1.04 1.03 1.01 1.18 1.10
256 1.07 1.23 1.07 1.12 1.01 1.02 1.22 1.22

3 5 7 .99 -3 -7

64 1.15 1.05 1.12 1.14 1.15 1.23
MA(1)-HOMO { 128 1.02 1.16 1.17 1.32 111 1.21
256 1.05 1.21 1.28 1.47 1.06 1.29

dependence. No clear improvement or deterioration of the MSE ratios occurs
as T increases from 64 to 128 to 256.

The analogue of Table III (not reported here) that uses true confidence levels
rather than MSE’s as the performance criterion puts the automatic bandwidth
parameter §T in an even better light than does Table III. In virtually every case,
the use of §; incurs only a small reduction in the true confidence level from the
true level obtained using the best fixed S, value. (The latter confidence level, in
turn, is always less than or equal to the nominal level.) For example, in most
scenarios, the reduction in the confidence level for the nominal 95% CI’s is in
the range of 0 to 1%. )

In conclusion, the automatic bandwidth procedure S, performs quite well in
terms of MSE and true confidence levels in comparison with the optimal finite
sample bandwidth (in the models considered).

Tables IV-VI aim to show how well kernel HAC estimators perform in
comparison with other types of variance estimators, viz., INID, IID, and PARA.
The kernel estimator used for all three tables is the QS estimator with the
automatic bandwidth parameter S, discussed above. The results for other
kernels and other bandwidth choices (such as S} and the finite sample optimal
S; value) can be deduced reasonably well from the comparative results given
above.

Table IV presents detailed results for the AR(1)-HOMO model with sample
size T = 128. Table V presents analogous, but less detailed, results for a subset
of parameter values in the AR(1)-HET1, AR(1)-HET2, and MA(1)-HOMO
models with T = 128. Table VI presents a selected set of results for all four
models with T = 256.
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TABLE IV

Bias, VARIANCE, aND MSE oF QS ESTIMATOR WITH AUTOMATIC St VALUE, fT, AND TRUE
CoNFIDENCE LEVELS OF NOMINAL 99%, 95%, AND 90% CONFIDENCE INTERVALS CONSTRUCTED
UsING THE QS ESTIMATOR WITH AUTOMATIC St VALUE FOR THE AR(1)-HOMO MobEL ~ T = 128

Value of
P Estimand Estimator Bias Variance MSE 99% 95% 90%
Qs —.050 .045 .047 98.2 93.9 88.0
0 1.00 INID —.048 .043 .045 98.1 93.8 88.3
IID .0040 .016 .016 98.5 94.5 89.4
PARA .0045 .017 .017 98.5 94.5 89.5
Qs -.15 .088 11 97.7 91.5 85.5
3 1.18 INID —-.24 .044 .10 97.4 90.8 83.9
IID -.19 .018 .56 97.9 92.0 86.4
PARA -.032 .037 .038 98.9 94.0 88.9
Qs -.31 25 34 97.2 89.7 83.3
5 1.59 INID —.68 .050 51 94.5 84.6 76.8
IID —.62 .026 41 95.3 86.2 78.9
PARA —.095 14 15 98.8 94.1 87.5
Qs -.88 .66 1.44 94.6 86.5 79.4
7 2.65 INID -1.81 .057 332 84.6 73.5 64.4
IID -1.74 .037 3.07 85.7 75.9 66.4
PARA —.43 .56 5 97.1 91.2 84.8
Qs —-3.94 343 19.0 85.9 74.9 65.9
9 6.41 INID -5.79 071 33.6 56.2 44.2 38.0
IID —-5.72 .059 328 60.1 472 39.7
PARA —2.96 4.23 13.0 92.8 82.7 75.7
Qs -6.52 331 45.8 74.3 63.1 55.8
95 8.62 INID —-8.18 .059 67.0 43.8 335 27.9
IID -8.13 .065 66.1 47.1 35.6 29.8
PARA —5.58 5.01 36.1 83.1 72.2 65.0

The first feature of note in Tables IV-VI is that the QS estimator basically
dominates INID, and PARA basically dominates IID, over all model scenarios.
When p or  equals zero, INID and IID are at most slightly better than QS and
PARA, respectively. When p or ¢ is nonzero, QS and PARA usually are
distinctly superior to INID and IID, respectively. Thus, when no autocorrelation
is present, one pays a small price for using a HAC estimator with an automatic
bandwidth parameter rather than a heteroskedasticity consistent estimator of
the Eicker-White form. On the other hand, when autocorrelation is present, one
stands to gain significantly from the use of a HAC estimator rather than an
Eicker-White type estimator.

The next feature of note in Tables IV-VI is the very poor performance of all
of the estimators in the AR(1) models when p =.9 or .95. This is expected for
INID and IID, but it also is true for QS and PARA. For the QS estimator, this
poor performance is not due to poor choices of S; or to the choice of
kernel—the results are improved little or none if §T is replaced by the finite
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TABLE V

Bias anp MSE oF QS EsSTIMATOR WITH AUTOMATIC S VALUE, §T, AND TRUE CONFIDENCE LEVEL
OF NOMINAL 95% CoNFIDENCE INTERVAL CONSTRUCTED USING THE QS ESTIMATOR WITH
AutomaTic S; VALUE ForR THE AR(1)-HET1, AR(1)-HET2, ano MA(1)-HOMO MobELs —

T=128

Model /Estimator Bias MSE 95% | Model/Estimator Bias MSE 95%
AR(D-HET1 QS -32 135 928 | AR(1)-HET1 QS -11 29 890
p=0 INID -33 123 929|p=.3 INID -12 29 880
(2.94) 11D -195 386 754 (3.89) 11D -29 85 69.6

PARA -195 386 75.0 PARA  -28 80 711
AR(1)-HET1 QS -20 7.5 874 | AR(1)-HET1 QS —18. 352. 60.5
p=.5 INID -27 90 826 (p=.9 INID -22. 478. 38.8
(5.31) IID —-44 190 587 (23.4) 11D —23. 515. 27.7

PARA —-40 166 64.7 PARA -21. 442, 46.2
AR(1)-HET2 QS -.15 34 915 | AR(1)-HET2 QS -.23 59 910
p=0 INID -.15 32 916 | p=.3 INID -.32 .50 90.4
(1.47) 11D —-.49 .28 886 | (1.67 11D —.70 54 86.7

PARA —-.49 29 885 PARA —.61 44 873
AR(D-HET2 QS -.52 117 895 | AR(D-HET2 QS —-4.5 265 713
p=.5 INID -85 109 858 |p=.9 INID -6.3 40.5 487
2.15) IID -1.19 147 813 | (7.18) IID -6.5 421 45.6

PARA  —.88 91 87.6 PARA —46 253 722
MA(1)-HOMO QS —-.24 16 91.3 | MA(1)-HOMO QS —-.22 27 91.0
y=.5 INID -.37 A8 89.2 | =99 INID —.55 35 855
(1.3D) 11D -.32 A3 912 (1.48) IID —.49 27 884

PARA  —-.049 .058 93.7 PARA —.064 .089 94.4

2 The numbers in parentheses in columns 1 and 6 are the values of the estimand.

sample optimal S, value or if the QS kernel is replaced by any of the other four
kernels.

A comparison of the QS and PARA estimators for sample size T = 128
(Tables IV and V) shows that PARA is better than QS in the AR(1)-HOMO
and MA(1)-HOMO models in terms of MSE and true confidence levels. The
differences in MSE are quite large for p < .7; the differences in true confidence
levels are much smaller. In the AR(1)-HET1 model, the reverse is true. The QS
estimator is much better than PARA in terms of both MSE and true confidence
levels over the entire range of p values. In the AR(1)-HET2 model, neither QS
nor PARA is dominant. PARA enjoys an edge in MSE, but QS is better in
terms of true confidence levels.

In sum, for T = 128, the PARA is the best all-round estimator if one ignores
the AR(1)-HET1 model. Even PARA performs very poorly in each of the AR(1)
models, however, when p =.9 or .95. If one includes the AR(1)-HET1 model,
then the QS estimator is the best all-round estimator, since PARA does very
poorly in this model. Nevertheless, the QS estimator pays a significant price for
attaining its versatility, as the comparison with PARA in the AR(1)-HOMO
model attests.
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TABLE VI

Bias aND MSE ofF QS ESTIMATOR WITH AUTOMATIC S VALUE, §T, AND TRUE CONFIDENCE LEVEL
oF NoMINAL 95% CoNFIDENCE INTERVAL CONSTRUCTED UsING THE QS ESTIMATOR WITH
AutoMatic S VALUE For THE AR(1)-HOMO, AR(1)-HET1, AR(1)-HET2, ano MA(1)-HOMO

MopeLs — T = 256

Model /Estimator Bias MSE 95% | Model/Estimator Bias MSE 95%
AR(1)-HOMO QS -.03 025 93.7 | AR(1)-HOMO QS -.119 062 93.0
p=0 INID -.03 024 93.7|p=.3 INID -.23 076 91.2
(1.00)? 11D -.00 .0098 945 (1.19) 11D -.20 .049 922

PARA —-.00 .0098 94.5 PARA -.01 022 95.0
AR(1)-HOMO QS —-3.54 19.0 81.0 | AR(1)-HOMO QS -82 79. 70.9
p=2.9 INID —6.96 485 454 1 p= 95 INID -123 152. 32.7
(7.72) 11D —-6.90 47.6 46.6 | (12.9) 11D -123 150. 343

PARA -223 11.6 88.8 PARA -63 54. 79.4
AR(1)-HET1 Qs -.81 173 92.2 | AR(1)-HET1 Qs -1.7 53 89.7
p=23 INID -1.11 189 904 |p=.5 INID -2.7 8.1 83.4
3.92) IID —-292 854 71.9 | (5.44) 11D —4.5 20.0 59.3

PARA -280 791 74.3 PARA —4.1 16.8 66.9
AR(1)-HET2 QS -.14 .38 933 | AR(1)-HET2 QS -.36 .61 919
p=23 INID -.26 31 922|p=25 INID -.82 .86 87.6
(1.70) 11D -.71 .53 84.8 | (2.22) 11D -1.24 1.57 803

PARA -.60 40 87.0 PARA -.87 .83 874
MA(1)-HOMO QS -.17 089 92.7 | MA(1)-HOMO QS —.086 17 933
Yy=.5 INID -.34 140 904 | y=.99 INID -.53 31 879
(1.31) IID -.32 110 90.1 | (1.49) 11D -.50 26 888

PARA -.026 .026 95.2 PARA -.039 .043 944

2 The numbers in parentheses in columns 1 and 6 are the values of the estimand.

Next we discuss the changes that occur in the results when the sample size is
increased from 128 to 256 (see Table VI). For the INID and IID estimators,
there is not much change. When p = 0 or ¢ = 0 there are improvements in their
MSE’s and some improvements in their true confidence levels. But, when p > 0
or ¢ >0, there is not much improvement in either. In consequence, the
dominance of QS over INID and PARA over IID is enhanced when the sample
size is increased.

For the QS and PARA estimators, the increase in sample size from 128 to
256 causes a substantial improvement in their MSE’s and true confidence levels
in the AR(1)-HOMO model, especially for large values of p. The gap between
the true confidence levels of the QS and PARA estimators is narrowed. In the
AR(1)-HET1 and AR(1)-HET?2 models, the QS estimator exhibits similar im-
provements when the sample size is increased. The PARA estimator, however,
shows no improvement in the AR(1)-HET1 model and only small improvements
in the AR(1)-HET2 model. In consequence, the dominance of QS over PARA
in the AR(1)-HET1 model is accentuated when T =256, and the lack of
dominance of either QS or PARA in the AR(1)-HET2 model when T = 128 is
replaced by dominance of QS when T = 256. In the MA(1)-HOMO model, QS
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and PARA both improve in MSE with the sample size increase; QS also
improves in true confidence levels, but PARA does not.

In sum, the increase in sample size from 128 to 256 improves the overall
performance of the QS estimator absolutely and relatively to the PARA, INID,
and IID estimators. As when T = 128, QS has the best overall performance of
the four estimators when T =256 if one includes the AR(1)-HET1 model.
PARA is the best estimator overall if this model is excluded. In the latter case,
the preference for PARA over QS in terms of true confidence levels is much
less when T = 256 than when T = 128.

10. CONCLUSION

The results of this paper are summarized as follows:

(i) The paper establishes the consistency of kernel HAC estimators under
conditions that are more general in most respects than other results in the
literature. In particular, they are more general with respect to the class of
kernels considered and the allowable rate of increase of the bandwidth parame-
ters. In addition, the paper establishes rate of convergence and asymptotic
truncated MSE results for kernel HAC estimators.

(ii) The paper compares different kernel HAC estimators in the literature via
asymptotic and simulation methods. The paper establishes an asymptotically
optimal kernel, viz., the QS kernel, from the class of kernels that generate psd
estimates. The latter includes the Bartlett and Parzen kernels. The Monte Carlo
results (including those reported here and those available from the author upon
request) substantiate the optimality of the QS kernel within this class in terms
of both MSE and true confidence level performance. The Monte Carlo results
indicate, however, that the differences between the kernels are not large. They
indicate that the Bartlett kernel, used by Newey and West (1987), is somewhat
inferior to the other kernels considered.

(iii) The paper determines suitable fixed and automatic bandwidth parame-
ters for use with HAC estimators. The latter are based on the plug-in method.
They are found to perform surprisingly well in most cases in the simulations.

(iv) The paper compares the performance of kernel HAC estimators to that
of other types of covariance matrix estimators via Monte Carlo simulation. The
other estimators considered are the Eicker-White heteroskedasticity consistent
estimator, the standard LS covariance matrix estimator (IID), and a parametric
estimator (PARA) that assumes that the errors are homoskedastic and ARQ).
The QS HAC estimator more or less dominates the Eicker-White estimator and
is the most versatile estimator of those considered. But, it pays a significant
price for its versatility, as is illustrated by its performance relative to that of
PARA in those scenarios for which PARA is designed.

All of the estimators considered perform very poorly in an absolute sense
when the amount of autocorrelation is large. For the HAC estimators, this is
found to be true even if the finite sample optimal bandwidth parameters are
used.
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APPENDIX

Proor oF LEMMA 1: First, consider the case where {V,} is fourth order stationary. For notational
simplicity, suppose p = 1. Using a standard a-mixing inequality (see Hall and Hyde (1980, Corollary
A.2, p. 278)), we obtain the first condition of Assumption A:

— a v 1/v N v
(A1) Y IEVY,_ i< X 8(EIWVI™) Ta() T <.

j=— j=—x

To establish the cumulant condition of Assumption A, it suffices to show that

(A2) H=Y Y Y IEV¥VV,—EVVV,V,l<
J=1lm=1n=1
and the analogous result with ¥%_, replaced by X! _ . The latter follows by a similar argument to
that used to prove (A.2). Hence we only prove (A.2) here.
There are 3! orderings of (j, m, n). Hence,

(A3) H<3|Z Z Z |EVV V.V, — EVQV,V, V|

=1m=jn=m

=6 Z Z V;V;+m j+m+n EVOVJI;;+mV

j=1m

]+m+n|

nMS

0n

<6 (IEVO( V+mVj+m+n)I+|EI70 I;]I;;+ I;_H—m+n)|)

Oosm,n<j

+6 (1EVOV,(VismVivmsn) = EVOVEV, sV, imn |

0<j,n<m

+IEV0V( J+m J+m+n)_EV0VEVJ+m J+m+n|)
+6 Z (IE(VO +m) j+m+n | +|E(V0 +m) Jj+m+n |)
0<j,m<n

The last inequality uses the fact that {V,} and {V,} have the same autocovariances.
Using the mixing inequality referred to above, we get

AP VY2

(A4) |EVo(VV, emV,smen) | <B(EIVOI™) ()P,
v /v v— v
|EV0V( J+m j+m+n) _EVOI/E‘V]+mI/]-+-m-+-n|<8(E|V0|4 ) a(m)( B/ ’

|E(VoV}Vs )V1+m+,,|<8(E|V|4u) a(n)®~V7”,

By expressing EVOVV] mV,+m+n in terms of the covariances of W, ],I/;+,,,,V,+m+,,) which
equal the covariances of (Vy, ¥}, V> V)4 m+,)> and by bounding the latter covariances using the

mixing inequality, we get

(AS) IEVO j+mV;+m+n C(aT(j)aT(n) +a7(j + m)a"(m +")
+a’(j+m+n)a™(m)),
IEI;I;;I;_] I7j+m+n EVOVEI//+mI/;+m+n <C(a’(j+m)a’(m+n)

+a™(j+m+n)a’(m))
for some C < o, where 7= (v —1)/v.
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Next, we have

(A6) T ()< ¥ Z Za(f)(" "< Z(H-l) a(j)* V" <,

O<sm,n<j j=0m=0n=0

Equations (A.3)-(A.6) combine to yield (A.2).
It is straightforward to adjust the above proof for the case where {V,} is not fourth order
stationary. For example, in (A.2), E|VV,V,V,, — EVV;V, V,| is replaced by

sup EleVt+jV1+mV1+n‘EI;;I71+jI;1+mI;;+n‘- Q.E.D.
t>1

PrOOF oF ProposiTioN 1: For the scalar V, case, part (a) is given by Theorem 5A of Parzen
(1957). For the vector case, Theorem 9 of Hannan (1970, p. 280) gives the asymptotic covariance
between any two elements of J;. The commutation-tensor product formula of part (a) is obtained by
observing that the asymptotic covariances between [JT] and [J7]),,, for i,j,m,n<p are of the
same form as the covariances between X, X, and X, X,,, where X =(X,..., X,) ~N(,2) (e.g.,
see Muirhead (1982, p. 20)). By Magnus and Neudecker (1979, Theorem 4.3(iv)), Var (vec XX') =
Var(X®X)=(+K,,)3 ®3. The given formula follows.

For the scalar V, case part (b) of the Theorem is given by Theorem 5B of Parzen (1957). For the
vector case, it is given by Theorem 10 of Hannan (1970, p. 283). (Note that the proofs of Hannan’s
Theorems 9 and 10 go through even if £(+) is not continuous everywhere, as he assumes, but only at
zero and all but a finite number of points.)

In part (c), T/Sp=S27/(S39*1/T) = §29 /(y + o(1)). Thus,

(A7) lim MSE(T/Sz, 7, W)
T >0

= T“l“ms%q(EiT —JrYW(EIr—Jr) /(v +o(1)) + Jim S—TT tr W Var (vec J7).
Part (c) now follows from parts (a) and (b). Q.E.D.
The following two simple lemmas are used in the proof of Theorem 1:
Lemma Al: If {£4) is a bounded sequence of rv’s such that 7 —% 0, then E£7 — 0.

Proor oF LEMMA Al: Convergence in probability to zero implies weak convergence to zero. For
bounded rv’s, the latter implies convergence of expectations to zero by the definition of weak
convergence. Q.E.D.

Lemma A2: Let {X7} be a sequence of nonnegative rv’s for which supy,  EX}*% < for some
8> 0. Then, lim,, _, ,lim_,, (E min{X, h} — EX7) = 0.

Proor oF LEMMA A2: The following establishes the Lemma:
(A.8) 0< lim lim E(XT— min {X7,h}) < lim lim EX;1( X7 > h)
h—>o0 Towx h—owo Towo

< lim lim (Ex}*2)"0*®

h—ow Tow

P(XTZ h)5/(1+5)

1/(1+8)
< ( sup EX;”) lim lim (EXp/h)%/ 49 =0, Q.E.D.
T=1 h—o Towx
ProoF oF THEOREM 1: By definition of .¥; and Assumption A, k,=0 and |f®| < . Hence,
under the assumptions of Theorem 1(a), Proposition 1(a) and (b) (with g =0 in the latter) gives
Jr—Jr= 0,(1). Similarly, under the assumptions of Theorem 1(b), Proposition 1(c) yields /7/S Ur
—Jr)=0,(1). Thus, Theorem 1(a) and (b) holds if the second result stated in each of these parts
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holds. The latter hold if and only if they hold with JT —Jr replaced by b'JTb b’JTb for arbitrary
b € RP?. In consequence, we suppose J; and JT are scalars without loss of generality. In addition,
we suppose JT is defined without any degrees of freedom adjustment since this simplifies the
expressions without affecting the results.

We now show that (T /S;XJr—J)=0 ,(1) provided S;— » and Assumption B holds. This
yields the second result of Theorem 1(a). Lef JT(H) denote the “estimator” calculated using &(-),

Sz, and {V(8)}. A mean value expansion of J;(8) (=J;) about 6, yields

VT . . 1
(A9) S_T(JT‘JT) -5, 09,17(9)‘/—(9 8o)
1 Tl .
=5 x k(J/Sr)ge—,F(l) VT (6-6,)
T j=—-T+1 0=8
for some 6 on the line segment joining 9 and 0. In addition, we have
d . T
(A.10)  sup Er(j)u! _=supf= Y, (V(o) V(@) +V,_ IJ,(e) V(o))
j=1 6=6 j>1 r=ljl+1

212
707 (®) ) =0,(1),
where the second equality follows using Assumption B(ii) and (iii) by applymg Markov’s inequality
to each of the terms in parentheses (and noting that sup, . | E supee@HV(B)II < o under Assump-
tions B(ii) and (iii) by a mean value expansion argument). This result, Assumption B(i), and the fact
that (1/SP)ET2 1 1kG/SPI = 20 1k(x)| dx < o imply that the right-hand side of (A.9) is
0,(1) and the proof of Theorem 1(a) is complete.

Next we show that /T/S (Jr=Jp)=o0 ,(1) under the assumptions of Theorem 1(b). A two-term
Taylor expansion gives

(A.11) VT/8: (Fr—J7) = [%fr(oo)/\/g]ﬁ(é‘eo)
+= J'(e 90)[ aH,JT(e)/‘/E]\/_(e 80)

1 T 2r T
<2(? Z sup 1/12(6)) (7 Z sup

t=10€0 1=10€0

R 1 N A
=Li7VT (6-6,) + FVT (6= 00)"LarT (8- 6o),

where Li7(€ R?) and L,;(€ RP*?) are defined implicitly and 8 lies on the line segment joining 8
and 6,. Manipulations similar to those of (A.10) and Assumptions B(ii), B(iii), and C(ii) yield

1 172 -1 1 T 2
(A.12) ILyrll< ( ) Z Ik(f/ST)l* Z sup —V,(0)V,_ | |(0)
T T, geol0d0 )

ST 1/2 1 T-1
=(7) (? > |k(l'/51)|)0p(1)=0n(1)

T j= —T+1

(using Markov’s inequality to show that the sample averages that arise are O (D).

To obtain Lz =o0,(1), we use Assumption C(i) and apply Proposition 1(a) and (b) to J with the
latter constructed usmg V/,dV,/36'— E(3V,/30")) rather than just V,. The first row and column of
off-diagonal elements of thls JT matrix (written as column vectors) are

T-1 P
(A.13) Y k(]/ST)? Z V(ae A A) and

Jj=—-T+1 t=|jl+1

): (g X (mviea)in

=-T+1 1 1jl+1
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where A = E(3/360)V,. By Proposition 1(a) and (b), these vectors are O,(1). L,z is equal to the sum
of the two expressions in (A.13) times 1/ ‘/ST plus DyA, where

(Al4) Dy= Z k(//Sr)— Z (Vi+ Vi) /57 -

Jj=-T+1 r=|jl+1

In consequence, L;7=0,(1) if Dy =o0,(1). We have

1 T— -1 4 T T
(A15)  EDi<o L L |kG/Sk(i/SDlm X L IEVY
Ti=-T+1j=-T+1 s=11=1
Spf 1 7=l 2 1
<7ls X k(S X IT@wl=o0(1).
T j=-T+1 u=-T+1

Since L, and L,, are 0,(1), so is the right-hand side of (A.11) and the proof of Theorem 1(b) is
complete.
To establish the first equality of Theorem 1(c), we apply Lemma Al with

T N ~
(A.16) §T=min{s—|vec(lT—JT)’WTvec(JT—JT)l,h}
T

T - -
— min {S—T| vec(JT—JT)’WTvec(JT—JT)I,h}~

Since /T/S;(Jr—Jr)=0,(1) and /T/S;(Jr—J7)=0,(1) by Theorem 1(b), &7—7 0. Also,
|é7] < h. Herce, E¢— 0. Since this holds for all A, the first equality of Theorem 1(c) holds.
The second equality of Theorem 1(c) is obtained by showing that

(A.17) Ilm lim (MSE, (T/S;,J7,Wr) —MSE, (T/S7,/7,W)) =0  and
h—>x THx
(A.18) lim nm MSE,, (T/Sz, 77, W) = llm MSE (T/Sz, /7, W).

h—x

Under Assumption D(i), (A.17) holds by applying Lemma Al. Equation (A.18) holds by applying
Lemma A2 with X7= |(T/Sy )vec(JT—JT) W vec(Jp—Jp)|. We get supy . | EX? < , as required
by Lemma A2, if EG/T/S¢[ JT Jrlp)t=0Q) Ya,b <p, where [-],, denotes the (a, b) element of
the matrix. This fourth moment equals «kzy + 4kpsky; + 3k2, + 6kpok2) + K5y, Where Kk, denotes
the jth cumulant of /T/S7[ Jr—1J7]as (2., see Stuart and Ord (1987, p. 86)). Under Assumption
D(i), k3 and kg4 are o(1) by the proof of Theorem 7.7.1 of Brillinger (1981, pp. 262, 441-444).
(Note that Brillinger’s Assumptions 2.6.2(1) and 7.7.1, which are assumed in his Theorem 7.7.1 but
are not assumed here, are used in his proof only for the results concerning first and second order
cumulants, and hence, are not needed here.) Also, x;; and k, equal the mean and variance of
VT/S710r—=J7l,p, and hence, are O(1) by Proposition 1(c). In consequence, supy . ; EX? < = and
the second equality of Theorem 1(c) holds.

The third equality of Theorem 1(c) holds by Proposition 1(c). Q.E.D.

ProoF OF THEOREM 2: We apply Theorem 1(c) with the kernel k(-), the bandwidth sequence
{S74), and g =2. Since S3,/T - v/(fk*(x)dx)® and T/S;=(1/[k*(x)dx)T /S, Theorem 1(c)
gives

(A.19) Jim lim MSE,, (T/S7,Jr(Sri), Wr)

= 4m?(k3(Jk3(x) dx) ' (vec F@YW vee f@/y + tr W(I+K,,)f@ )

provided k, < . Since [k és(x) dx = 1, this yields the equality in the result of Theorem 2. If k, = o,

then the left-hand side of (A.19) equals infinity since the bias term is unbounded. This can be
proved along the lines of Andrews (1988, Lemma 2).
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Let K(-) and KQS(~) denote the spectral window generators of k(-) and k os(-) respectively (as
defined at the end of Section 2). By standard calculations, we have k,= [~ _A2K(A)dA, k(0)=
12K da, and [Z k?*(x)dx = [ . K?(A)dA. Thus,

(A.20) kz(sz(x)dx)z >kyps forall k(-) €%,

if and only if Kyg(-) minimizes

(A21) jj’ AZK(A)dA(j_w Kz(/\)d)\)z

subject to (a) [?,K(A)dA=1, (b) K(A)>0 VA€R, and (c) K(A)=K(—2A) VA €R, where
Kps(A)=(5/87X1 — A?/c?) for |A| <c and Kys(A) = 0 otherwise for ¢ = 6 /5.

The minimization problem (A.21) is the same as that which arises in a result of Priestley (1981,
p. 570) who considers a maximum (over different frequencies) relative MSE criterion. Using a
calculus of variations argument, Priestley shows that K¢(-) solves (A.21). Hence, (A.20) holds and
combined with (A.19) this establishes the inequality in the result of the theorem. If k(x) # ky5(x)
with positive Lebesgue measure, then (A.20) holds with a strict inequality and so does the result of
the Theorem. Q.E.D.

Proor orF CoroLLARY 1: By Theorem 1(c) and the fact that

T2a/Qa+1) _ (S%qﬂ/T)I/(MH’T/ST: (71/(20+ Dy o())T/Sy,
we get

(A22)  lim lim MSE,, (T24/@4+1, [ (S1), Wr)

= yl/(z"“)4'n'2(k§(vec F@YWvee f@/y + sz(x)dx tr W(I+ K,,,,)f@f).

It is straightforward to show that the last line above is uniquely minimized over y € (0,%) by
y* =qk§a(q)/[k2(x)dx (provided 0 < a(g) < and W is psd) and that a sequence {S;} satisfies
§29%1 /T — y* if and only if S;= S§ + o(T1/@9+D), Q.E.D.

Proor oF THEOREM 3: First we establish Theorem 3(b). By Theorem 1(b), {/T/S (S —
1 I

Jr)=0,(1). Hence, it suffices to establish the second result of Theorem 3(b). Without loss of
generality, assume V, is a scalar rv and no degrees of freedom correction is made to J;. Let v be a
constant in the interval (max{1 + 1/Q2b —2),q/(m — 1)},1+ q/2) and let r(T) = [(Sgr)"], where []
denotes the integer part of -. We have

r(T)
(A23) Tq/(zqﬁ)(fr(SAT) _fT(SgT)) =2779/@9+D y7 (k(f/§1) - k(f/sgr))f(l')
j=1

T-1
+279/C@a+h N k(j/S)T())
J=r(T)+1

T-1

—T9/Qa+1D) E k(j/Sgr)f(j)
j=r(T)+1

=2Mp+ 2Myp— 2 My
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We show M;;—7 0 as follows: Using the Lipschitz condition on k(-),

r(T)
(A24)  IMyg| <TVCTV Y C|1/87— 1/S,7 i1 ()|
J=1
r(T)
<OVT &(q)l/(2q+l)_aé/(Zqul)l(aA(q)ag) *I/(2q+l)T73/(4q+2) Z jlr(f)|
j=1

for some constant C <o. By Assumption F and the delta method, it suffices to show that
Gir+ Gyr+ G3r—7 0, where

rnT)
(A25)  Gp=T ¥+ Y P -F(),
j=1
r(T) _
Gor =T34 3 jIF(j)=T(j)|,  and
j=1
(T)

Gy =T34+ 3 j| ().
J=1

By a mean value expansion, we have

r(T)
(A.26) Gir< T~3/(4q+2)~1/2r(T) Z

'
=1\ ae

(if(j)L:é)ﬁ(é—oU)

< CT(3-Qa+D+40)/Ga+Dgyp ﬁllé—ﬂo”—’” 0,

d Sy
%F(])L‘J:é

121

since v <1+q/2, VT — 6,lt=0,(1) by Assumption B(i), and sup, . ||(3/60)f(j)|g=§|| =0,(1) by
(A.10) and Assumption B(ii) and (iii), where 6 is on the line segment joining 6 and 6.
We have

(A27)  EG3r<T ¥/Ca*D=14(T)ysupT Var (I(j)) < CT~>/@a+D-1+4c/Qa+D o

j=1

for some C <, since sup, T Var(I'(j)) = O(1) by Hannan (1970, equation (3.3), p. 209) and
v<1+gq/2. Also, using Assumption G,

(A28)  Gup<T™¥/Ga+dC Y jlom S,
j=1
since m > 2 implies that ¥7_, j1~™ < . Equations (A.24)—(A.28) imply M;; -7 0.
We show M, —7 0 as follows: M,r=Ar+A,r+ Az, where
T-1 ;
(A~29) A1T=Tq/(2q+l) Z k(j/ST)(F(j)_F(j))’
j=r(T)+1
T-1 )
App=T9/@*D ¥ k(i/S)(F(j)=Tr(j)), and
j=r(T)+1
T-1

Aszr= T9/Ga*D Z k(f/SAT)FT(f)-
j=r(T)+1
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By a mean value expansion and the definition of K3,
T-1 .
(A30) |4yl <T9/@a+D=12 ¥ (/8
J=r(T)

(o, s

o
=Tﬂ/(2q+1)~1/2+b/(24+1)( Z j‘b)Op(l)
j=r(T)

~2g~1+2b-2u(b—1
= TR9-2q-1+2b-2u(b ))/(4‘“2)0”(1)—)”0,

where the first equality uses (A.10) and Assumption B, and the convergence to zero uses v > (2b —
1)/(2b — 2). Again by the definition of Hs,

T-1
(A31) Ayl <T9/@D Y ¢(j/§y) "\ F(G) - Ir(i)
j=r(T)
b/Qq+1) = <
=C1(qk3&(q)) /2a+ Db~ 1)/(4q+2) Y VTIFG)-Te(j)|  and

j=r(T)

2
T-1
><E(T(Zbl)/(4q+2) Z j‘b\/f’f(])—rr(/”)

j=r(T)

2
T-1
(a32) <r<2bl>/<24“>( > rbﬁVarw(r‘m))

Jj=r(T)

w 2
< T(2b—1)/(2q+1)( Z j»b) o(1) = T(Zb—1-2u(b-1))/(2q+1)0(1) -0,
J=r(T)

since v>1+1/(2b—2) and sup,.; T Var (I'(j)) = O(1) as above. Equations (A.31) and (A.32)
combine to yield 4,;—7 0, since a(q) = o,(1).
Using Assumption G and |k(-)| <1, we obtain
T-1
(A33) |45 < T9/Ga+D Z Cyj ™ < CT(q-U(m-1))/(24+l)agv(m-l)/(ZqH) -0
J=r(T)

for some constant C < e, since v > q/(m — 1) and ag>0.

Equations (A.29)-(A.33) combine to give M, —” 0. An analogous argument yields My —-? 0.
Combined with M, —” 0 and (A.23), these results complete the proof of Theorem 3(b).

Next we prove Theorem 3(a). For arbitrary a; €(0,), Jr(ng) —Jr=0,(1) by Theorem 1(a)
(since g >1/2 implies $2/T — 0). Hence, it suffices to show (S —fT(SgT) =0,(1). This result
differs from the result of Theorem 3(b) only because the scale factor 79/29+D does not appear,
Assumption F is replaced by Assumption E, Assumption G is not imposed, and g > 1/2. The proof
of Theorem 3(b) goes through with the following changes: v € (1 — (2q — 1)/(2b—2),1); T?/R4+D
is deleted in (A.23) and (A.24);

A A 1/Qq+1)
&(q)/@" 0~ al/CrD|(a(q)ag) O - 0,(1)

in (A.24) by Assumption E; T~3/(44+2 js replaced by T-1/@9+D in (A25), (A.26), and (A.28);
T=3/@a+D s replaced by T~2/@9+D in (A.28); (A.26) and (A.27) hold provided v <3/4 +q/2;
(A.28) is replaced by

r(T) @
(A.34) T-1/Qq+D E ]l FT(I)] < T'l/(2q+l)r(T) Z ”"(j)l = CT@=D/Qa+1 _,
j=1 j=1
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since v <1; T9/?9+D js deleted in (A.29)—(A.31) and (A.33); (A.30) holds since v>1—Qq—
1)/(2b — 2); T@b—D/®a+2) js replaced by T@?~24-D/(49+2 jn (A.32); (A.32) holds since v >1—
2q-1/@2b~-2); (A31), (A32), and the assumption a(q)=0,(1) yield A,r—" O; (A33) is
replaced by

T—-1 oo
(A35) Y k(i/So)Ir(D|< X Il -0,
j=r(T)+1 j=r(T)

which concludes the proof of Theorem 1(a).

The first equality of Theorem 3(c) holds by applying Lemma Al in the same way as in the proof
of the first equality of Theorem 1(c) (with the reference to Theorem 1(b) changed to Theorem 3(b)).
The second equality of Theorem 3(c) holds by Theorem 1(c). Q.E.D.

Proor oF CoroLLAaRrY 2: By (7.3) and Theorem 3(c), the left-hand side of the result of the
Corollary equals

(A.36) hlim lim (MSEh(TZ”/(2”+‘),fT(ST),WT)—MSE,,(TZ”/(24+1’,fT(S§T),WT)).

—00 T —o

Since, a; = a(q) implies S¢r =87, Corollary 1 implies that the expression in (A.36) is > 0 with the
inequality being strict unless Sy = S + o(T1/24+D), Q.E.D.
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