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Abstract

This study explores multivariate methods for investment analysis based on return his-
tories that differ in length across assets. The longer histories provide greater informa-
tion about moments of return, not only for the longer-history assets, but for the shorter-
history assets as well. To account for the remaining parameter uncertainty, or ‘estimation
risk’, portfolio opportunities are characterized by a Bayesian predictive distribution. Ex-
amples involving emerging markets demonstrate the value of using the combined sample
of histories and accounting for estimation risk, as compared to truncating the sample to
produce equal-length histories or ignoring estimation risk by using maximum-likelihood
estimates.
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Missing data
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1. Introduction

Historical rates of return are often used in investment analysis. Estimates of
moments of returns based on historical time series provide information useful in
selecting portfolios, evaluating investment performance, and investigating models
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of asset pricing. In many applications, the lengths of available histories differ
across the assets being analyzed, especially when the assets are traded on sep-
arate exchanges or in different countries. For example, substantial differences in
lengths of histories are likely to occur, virtually by definition, when the uni-
verse of assets includes investments in emerging markets. A typical approach
to this problem, especially in applications of multivariate methods, is to base
the historical analysis on a sample in which all return histories begin at a com-
mon date. That is, the longer return histories of the assets in the ‘developed’
markets are truncated, so that any returns observed before the available his-
tory of the emerging-market investments are simply discarded (e.g., Harvey,
1995).

In many cases, it is neither necessary nor desirable to discard returns. Sup-
pose, for example, that the researcher or decision maker would use some of
those discarded returns if the shorter-history assets were not included in the anal-
ysis. In other words, those returns would not be discarded due to a concern that
the stochastic framework assumed for the longer-history assets does not hold
for any period longer than that used in the truncated sample. (Empirical stud-
ies that do not include emerging markets, for example, seldom if ever choose
a first sample date that happens to coincide with the beginning of an emerging-
markets data set.) Then, in general, the discarded returns contain information
that is useful in an analysis that includes the shorter-history assets. Not only
do the discarded returns provide additional information about the longer-history
assets, but they generally provide information about the shorter-history assets
as well.

This study investigates multivariate methods that use a ‘combined’ sample in
which the lengths of return histories differ across assets. Although such meth-
ods could be developed under a variety of assumed probability distributions
for returns, the i.i.d. multivariate Normal model assumed here permits closed-
form analytic results that simplify the essential ideas. Moreover, that assumption
is often employed in studies that propose multivariate methods for samples of
equal-length return histories, such as the likelihood ratio test of a portfolio’s
mean-variance efficiency in Gibbons et al. (1989) and the Bayesian analysis of
a portfolio’s degree of inefficiency in Kandel et al. (1995). It is hoped that the re-
sults obtained here in the standard setting motivate extensions to richer stochastic
frameworks.

The paper is organized as follows. Maximum-likelihood estimates (MLEs) of
first and second moments are presented in Section 2, and the combined-sample
MLEs are compared to the more common truncated-sample estimates. When
the parameters of the return distribution must be estimated from a finite sam-
ple of returns, then the imprecision in those estimates presents an investor with
additional uncertainty, or ‘estimation risk’. This estimation risk is reflected in
the Bayesian predictive distribution of future returns. Section 3 derives the first
and second moments of that predictive distribution, conditioned on the combined
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sample. In order to focus on the essential concepts, the analyses in Sections 2
and 3 are limited to the case in which each asset’s history begins at one of
only two possible dates. In practice, starting dates are often more heterogeneous,
and Section 4 extends the results in Sections 2 and 3 to an arbitrary number of
starting dates.

Sections 5 and 6 illustrate the empirical methods using monthly data in portfolio
problems involving emerging markets. Section 5 analyzes a mean-variance opti-
mization problem with an asset universe consisting of one-month US Treasury
bills (assumed riskless) and three risky index portfolios: (i) Standard & Poor’s
composite index, (ii) Morgan Stanley Capital International’s index for Europe,
Australia, and the Far East, and (iii) the International Finance Corporation’s (IFC)
composite index for emerging markets. Returns beginning in 1970 are used for the
first two indices, whereas the emerging-market returns begin in 1985. An optimal
portfolio constructed using the combined sample and accounting for estimation
risk can be compared to a portfolio that is constructed using only the post-1985
data. If the latter construction ignores estimation risk as well, then an investor
with relative risk aversion equal to three would value that suboptimal portfolio
less than the optimal portfolio by about 23 basis points, in terms of certainty-
equivalent monthly return.

Section 6 considers the problem of constructing the minimum-variance port-
folio from a universe of 22 emerging-market index portfolios. Each index port-
folio is designed by the IFC to reflect the portion of a given country’s eg-
uity market that is accessible to foreign investors. For the 22 countries in-
cluded in this example, the first month of available data ranges from January
1989 to November 1993. To an investor who uses the combined sample of
all available histories and accounts for estimation risk, the minimum-variance
portfolio has a standard deviation of about 3.8% per month. That same investor
assigns a standard deviation of at least 6.1% to portfolios constructed using meth-
ods that either ignore estimation risk or discard returns on the longer-history
assets.

The examples in Sections 5 and 6 illustrate the conditional Bayesian decision
approach, wherein the investor bases decisions on the predictive distribution that
is conditioned on the single observed sample. As those examples demonstrate, the
predictive distribution can also be used to assess the costs associated with vari-
ous suboptimal choices, such as portfolios formed by methods that truncate the
sample or ignore estimation risk. An alternative ‘frequentist’ approach to eval-
uating the relative merits of various portfolio selection methods is to compare
their performances in repeated hypothetical random samples, where performance
is evaluated using ‘true’ moments of returns. Section 7 conducts such investiga-
tions in settings similar to those of the examples in Sections 5 and 6. The results
confirm the potentially substantial costs associated with truncating the sample or
ignoring estimation risk. Section 8 concludes the study with a brief discussion of
possible extensions.
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2. Maximum-likelihood estimation
2.1. Stochastic setting

Let the vector R;, contain the returns on N; assets in period ¢, and assume
there are T observations of these returns for periods 1,...,7. The T observations
of Ry, are assumed to be independent realizations from a multivariate normal
distribution with

E{R\}=E\, (1)

COV{RL,,RIU}= M. (2)

Let the vector R, contain the returns on another set of N, assets in period
t, and assume that these returns are observed only for periods s,...,7T, where
s=1. For any period #>s, let R,=[R|, R} ]’ denote the combined vector of
N =N;+ N, returns, and let S=7 — s+ 1 denote the number of observation of
this combined vector of returns. It is assumed that, given the starting period s,
the S observations of R, are independent realizations from a multivariate normal
distribution with

{12 2

Rl,r / / _ Vll VIZ —
{8, mal-[ ]

>

where V' is nonsingular. It is also assumed that S> max(N;,N,;+2). When,
as in the examples presented later, the historical data are used for investment
decisions, the above distribution is also assumed for the N returns in period
T+ 1.

The starting period s for the short-history assets is assumed to be either non-
stochastic or drawn from a distribution that does not depend on E or V, condi-
tional on the long-history asset returns R;,, t=1,...,T. This assumption per-
mits some randomness and endogeneity in the starting period, provided that
s does not contain information about £ and ¥V beyond that contained in the
sample of observed returns. This assumption is satisfied, for example, in the
simple case in which a function of the observed sample history of R;, deter-
mines s: high realized returns on existing assets might give rise to more assets.!
If, however, s also depends on realizations of returns on the short-history

V[ am grateful to Jay Shanken for suggesting this example.
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assets prior to s, returns not included in the sample, then the assumption made
here is generally not satisfied. For example, Goetzmann and Jorion (1996) ar-
gue that the IFC’s decision to add a country to its list of emerging markets
depends on previous returns on that country’s stock market. This type of endo-
geneity in the starting dates of short-history assets would violate the assumption
made here.

In some applications, it may be that the second set of N, assets existed before
period s but their returns are not included in the sample. In other cases, it may be
that those assets did not even exist before period s. In any case, it is not assumed
that those assets’ actual returns, if the assets did exist, or their hypothetical
returns, if they did not exist, obey the same joint distribution for all N assets
assumed after period s. If the moments of all N returns prior to period s are given
by (3) and (4), but with E,, ¥, and V;; replaced by additional free parameters,
such a change does not affect the likelihood function for £ and ¥ based on the
sample of returns used in the analysis. In fact, one might exclude the returns on
the N, short-history assets before period s, even when such returns are available,
because one suspects they are not drawn from the same joint distribution as those
beginning in period s> What is assumed regarding stationarity of distributions is
that the marginal distribution of returns on the N; long-history assets is the same
across all 7 periods.

One final point to be emphasized about the stochastic setting is that the inclu-
sion of any asset in the sample is, by construction, conditioned on the survival
of that asset through period 7. If there exist periods during an asset’s history
in which there were nonzero probabilities that the asset would disappear, then
the asset’s sample moments include ‘survival’ effects, which generally increase
with the probability of disappearance (see, for example, Brown et al., 1995). The
methods explored in this study do not incorporate survival probabilities. In that
sense, the normality assumption must be viewed as characterizing an asset’s re-
turn distribution for any period ¢, conditional on the asset’s surviving that period.
(Note that such a result does not obtain, for example, if the return’s uncon-
ditional distribution is normal and survival is determined by a minimum-return
threshold.) Of course, relying on such a conditional distribution for inference or
decision making without also incorporating the probability of disappearance could
be unwise, especially if that probability is substantial. An interesting direction for
future research would be to extend the methods presented here by incorporating
survival effects and more general endogeneity in the starting and stopping times
of asset histories.

21 am grateful to Ross Stevens of Goldman Sachs Asset Management (GSAM) for suggesting this
possibility. The Quantitative Research Group at GSAM has applied this paper’s methods in such
cases.
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2.2. Likelihood Junction

Define the S x N matrix

YA
lll,s IIaZ,s
R
1,5+1 2,541
k=[Ns Isl=| . : (5)
I. I'
LT 2,T
and the T x N; matrix
/
1,1
!
1,2
hir=| . |. (6)
;
LT

The joint density for Y,z and Y, 5, given E, ¥, and s, follows directly from the
assumed multivariate normality and independence across periods:

p(Yi1, Yo 5|E, V,5)

=TT ( Gy Pl o0 {3 R0 007 - B0} )

T 1 B 1 .
x 1I=Is <_~(2n)N/2 V|12 exp {—'Z-(R: —EYV YR, —E)}). (7)

When viewed as a function of the parameters, given s and the observed returns,
(7) is the likelihood function for E and V.

To see that the likelihood function in (7) obtains even when s is stochastic in
the sense described earlier, let { denote a vector of parameters, in addition to £
and ¥, that enter the joint density for returns and s. Then the latter joint density
can be written

p(Yi,7, Yo 5,8|E, V,0)
= p(Yy,1,8|E,V,() - p(Y2,5|Y1,7,5,E, V,{)
= p(s|Y, 0, E,V,0)- p(N,7|E,V,0) - p(Ya, 5101, 7,5,E, V,0)

= p(s|{Y1,7,0) - p(Y1,1, Yo 5|E, V,5), (8)

where the last equality follows from the assumed normal distributions of returns,
which do not depend on {, and the assumption that, conditional on Y; r, the
distribution of s does not depend on E or V. The likelihood function for E, V,
and { — the joint density in (8) viewed as a function of those parameters given
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the sample — involves £ and ¥ only in the second factor, which is the joint
density given in (7). The proportionality constant, p(s|Y¥; r,{), plays no role in
obtaining the maximum-likelihood estimators of £ and V.

2.3. Estimators

A common approach to estimating £ and V is to compute the ‘truncated-
sample’ maximum-likelihood estimators based on the § periods in which returns
on all N assets are observed. These truncated-sample MLEs of £ and V are
given by

o EIS 1 !
Eg=| " [==X
s [Ez,s] st €))

5 Mis Vas| 1 A\ 5

Vs [[721,8 I;ﬁﬁ:l-g(XS‘—ISEs) (¥s — 1sEy), (10)
where 15 denotes an S-vector of ones and the partitioning in (9) and (10) follows
that of Y5 in (5).

The above truncated-sample estimators do not use the first s — 1 observations
of Ry, which appear in the first factor in (7). Maximizing (7) with respect
to the elements of £ and V is complicated by the fact that £; and ¥, ap-
pear by themselves in the first factor but as submatrices of £ and ¥ in the
second factor. Following Anderson (1957), however, an analytic solution to
the maximization is obtained by performing a change of variables and rewrit-
ing the joint density p(Y; r,Y¥;s) as the product of the marginal and condi-
tional densities, p(Y1,7)- p(Ya.s|Y1,r) (see the appendix for details). In order to
state the resulting ‘combined-sample’ estimators, first define the coefficient ma-
trix from a multivariate regression of R, on R;,, estimated using the truncated
sample,

Al
é:[g']z(X’X )X Yy, (11)

where & is N, x 1, B is N, x Ny, and
X=[s Il (12)

The sample residual-covariance matrix from the regression is

N 1 a N
2=§(Y2,5—XC)I(Y2,S—XC)- (13)
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Proposition 1.  Given the likelihood function in (7), the maximum-likelihood
estimators of E and V are given by

. (B
E= [Ez] s (14)
vy v
p=| " 2], (15)
Var Vo
where
1 T
Ey=— ;Rl,t, (16)
Ey=E,s+B(E) - Ey ), (17)
1 T
V=D Ri = EDR - B (18)
=1
V=BV (=71y), (19)
I}22 =3 +§V11E,. (20)

Proof. see Anderson (1957) and the appendix.

It is easily verified that, if 7, and 2 are positive definite, the above combined-
sample MLE of the covariance matrix, 17, is positive definite as well? This
property is obviously desirable in an estimator of a covariance matrix, but it is
not necessarily satisfied by alternative estimators that use the combined sample.
For example,

VT . I7]1 I712,8 (21)
I}21,5 I722,S

need not be positive definite. Estimators of correlation matrices that use the com-
bined sample can confront similar difficulties. For example, if ‘1’11 denotes the

3 This follows by using (18) through (20) to rewrite V as

v |ty B4 |0
=15 uliy, B 1+ 0o 1

Observe that, for any nonzero real 1 X N vector z = [z; z;], where the partitioning conforms to that
of ¥, zVz’' 222222', and the latter quadratic form is greater than zero unless z; is the zero vector. In

that case, zPz =z ¥} 1z{>0.
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sample correlation matrix constructed from ¥;;, and ¥ denotes the (equivalently
partitioned) sample correlation matrix constructed from Vg, then

'jlll 'I’}IZ,S}

pi=| | .
Yo,s WPaus

(22)

need not be positive definite. Of course, since ¥ is positive definite, the corre-
sponding combined-sample MLE of the correlation matrix is positive definite as
well.

The combined-sample MLEs of expected returns can also be interpreted in
terms of the generalized method of moments (GMM) of Hansen (1982). Specif-
ically, £ is also the solution to

rrgn g Wy, (23)
where

s S (Riy — Ey)
g= , (24)

LT (R, - E)
A p 0o 17"
W= [T—S 11,8

(25)

Iy

L
0 Vs

In other words, E is the GMM estimator based on the moment conditions in (24)
and the weighting matrix in (25). Each diagonal block of W ~! corresponds to
the usual covariance matrix for a vector of sample means, where the covariances
are estimated using the truncated sample, and the zero off-diagonal blocks reflect
the assumed temporal independence of returns. (It can be shown that E is also
the GMM estimator when the weighting matrix in (25) is constructed using the
combined-sample MLEs 1711 and V in place of the truncated-sample estimators
Vn,s and 175.) The second subvector of g contains N just-identifying conditions
that, by themselves, would simply give Eg as the GMM estimator. The first
subvector of g contains an additional set of N; overidentifying conditions for E),
based on the first s — 1 observations of R, ,, and those overidentifying conditions
affect the estimation of both E, and E,.

2.4. The role of the longer histories

As noted earlier, the truncated-sample estimators in (9) and (10) ignore the
additional information in the other T — S observations of R; ;. Not surprisingly,
this additional information is useful in estimating £; and #;. More interesting
is that this additional information is also useful in estimating E,, V3, and F5).



294 R.F. Stambaugh! Journal of Financial Economics 45 (1997) 285-331

Using the above results, the combined-sample estimators of these quantities can
be written as

Ey=Ey5— B(E, 5 — E)), (26)
Via=Vas — B(P11,5 — V)8, (27)
Vo1 =Vas — B(Pi1,s — V). (28)

In general, if Ry, and R, exhibit nonzero correlations with each other, as re-
flected in the matrix of estimated regression slopes, B, then differences between
the combined-sample and truncated-sample estimates of the moments of R, ; pro-
duce corresponding differences in the estimated moments of Ry ;.

The basic ideas can be seen most clearly with only two assets (N; =N, =1),
since all of the quantities in Egs. (26)—(28) are then scalars. The additional
information in the first s — 1 returns on asset 1 enters the estimation of asset 2’s
expected return in a fairly obvious manner. Suppose, for example, that asset 1
experienced a higher average return during the more recent S periods than over
the entire T-period sample, i.e., E 1,S —Ey>0. The assumed i.i.d. behavior for the
returns on asset 1, coupled with the information from asset 1’s T-period history,
implies that the average return over the recent S periods, £ 1,5, is too high an
estimate of expected return when compared to the value of the more precise
estimator, £;. If the returns on assets 1 and 2 exhibit positive sample correlation
over their common histories, so l§>0, then Ez,s is also judged to be too high
an estimate of asset 2’s expected return, and the truncated-sample estimator is
adjusted downward by the amount B(E LS — E ). This adjustment follows the
same form as the relation,

Ey=E{Eys|E1 s} — B(E1s — E1) (29)

implied by the regression function under normality, where B = V5, V11 The right-
hand sides of (26) and (29) are similar, with E{£,s|E1 s}, E1, and B in (29)
replaced by the estimators £, S5 Ei, and B in (26). Note that such an adjustment
could even reverse the relative estimated expected returns on the assets. That is,
E, —El can have a different sign from E‘z —E, ,s- If, in the example discussed,
B>1, then one could observe Ezs —E1 s>0 but £, — E; <0.

Asset 1°s longer history also provides additional information about the variance
of asset 2’s return as well as the covariance between returns on the two assets.
Suppose, for example, that asset 1 experienced higher volatility during the most
recent § periods than over the entire sample, i.e., 17]1,5 — V11 >0. In other words,
I}n,s is too high an estimate of V|; when compared to the value of the more
precise estimator, ¥11. That information suggests that sz,s and 1721,3 are also too
high (in absolute value) as estimates of V5, and ¥;;. The adjustments in (27) and
(28) reflect the property that, if returns on the two assets are correlated, the high
ex post variance of R, , in the most recent S periods is likely to be accompanied
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by high ex post variance of R;, and high ex post covariance (in absolute value)
between R;, and R, ,. This statement follows from the properties
Vor =var{Ro,|(Ry,c — E1)*} = B*[(R1. — E1)* = Vi) (30)
Va=cov{Ri,, Ras|(Rie — E1)'} = Bl(Riy — E1)* — Vail, €2))
which are implied by the joint normality of R, ; and Rz,,.4 Note that the relations
in (27) and (28) are direct analogs of (30) and (31).
In the two-asset case, if asset 1 experiences higher ex post variance during the

more recent S periods than during its longer history, then the combined-sample
maximum-likelihood estimator of the correlation,

n Va

= T A A T 32

hrz (V11 V)2 2)
is less (in absolute value) than the truncated-sample estimator,

A Vas

Plas= 3% (33)

25T (PisVas)1?
Specifically, (27) and (28) imply
. -1
. n A Vi,s n
Pla="Ps |Pas+ —I}l*l”(l —Pis)| (34)

so Vips—Vii>0e ﬁfz, s> pt, (unless P12,s =0). In other words, the above ob-
servations about variance and covariance also apply to the correlation.

4Let =R;, — E|, and observe that, under normality, E{6|6°} =0. Then, by standard rules of
variance decomposition,

var{Ry ;|6°} = E{var{Ry,,|6}|6*} + var{E{Ry,|6}|6°}
=E{Vy — B*V1|8*} + var{E, + B8|6*}
= [V — B*Vi1]+ B*3?

= Vo + B8 — V1),

and
cov{Ry, 1, Ry,(|6°} = E{cov{Ry 1, Ro,¢|6}|8%} + cov{E{Ry (|8}, E{Ry,|6}10°}

= E{0|8*} + cov{E) + &, E; + B3|3*}
= (BW1 — BW1) + B

= Vo1 +B(& — W)
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3. Portfolio analysis with estimation risk
3.1. The Bayesian approach

The sample information observed through time T consists of &7 ={Y; 7,Y2 5,5},
the returns data and the starting period of the short-history assets. Consider an
investor with a one-period investment horizon who, after observing this sample,
must make an investment decision at the end of period 7. It is assumed that the
investor finds the historical evidence useful and assesses the characteristics of
potential investments in terms of the conditional distribution p(Rri;|®r). In the
multivariate normal setting, if the historical sample were infinitely long, or if the
investor somehow otherwise knew the true values of E and ¥, p(Rr.|®r) would
simply be the multivariate normal density with those parameters. In practice, the
sample @7 contains information that is useful to the investor, but, even after
observing that sample, the investor does not know the true values of £ and V.
Thus, part of the risk that the investor rationally perceives arises from parameter
uncertainty, or ‘estimation risk’, which would be neglected if the investor were
simply to view, say, the maximum-likelihood estimates as if they were the true
parameters. Moreover, in the presence of estimation risk, p(Rr..1|®r) is generally
not a multivariate normal density.

As illustrated by Zellner and Chetty (1965), Klein and Bawa (1976), and oth-
ers, portfolio opportunities can be assessed in a Bayesian framework, wherein the
conditional distribution p(Rr4i|®r) is obtained using standard Bayesian princi-
ples. First consider the case in which s is nonstochastic. Before observing the
sample @r, the investor has beliefs about £ and V represented by the prior
density p(F, V). The prior density is specified here as

PE VYo [V |~N+2, (35)

which is the standard diffuse prior used to represent ‘noninformative’ beliefs about
the parameters of a multivariate normal distribution (e.g., Box and Tiao, 1973).
The likelihood function in (7) is the density p(Y; 1, Y2,5|s,E, V), and the investor
uses this likelihood function along with @7 to form updated beliefs about £ and
V, represented by the posterior density,

P(E, V|®ryox p(E, V) p(Yy,1, Ya51s, E. V). (36)

When s is stochastic, it is assumed that {, the vector of additional parameters
in the joint distribution of returns and s, is independent of £ and ¥V in the joint
prior:

PEV, )= p(E, V) p(0). (37)

In that case, the product of the prior in (37) and the likelihood in (8) gives the
joint posterior for E, V, and (. Since { appears only in the first factor in (8),
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integrating that joint posterior with respect to { gives

PE, V| dr) = /C PE, V,[|67)dL
x /c PEV.0) p(Hrs Yas,s|E, V,0)dC

= (/CP(C)P(SM,T,C)dC)p(E,V)P(Yl,r, Vo.sls,E, V)

O(p(E> V)p(Yl,Ta Y2,S|S’E’ V), (38)

which is the same posterior for £ and ¥ as in (36).

To obtain the conditional density p(Rryi1|®r), known as the Bayesian
‘predictive pdf,” the posterior in (36) is first multiplied by p(Rri1|E,V, ®r) to
obtain

PRry1,E, V|®r)= p(Rr1|E,V, Pr) p(E, V|Pr). (39)

Integration of the joint density in (39) with respect to E and ¥ then gives the
predictive pdf,

PRy |Br) = / / P(Rys1,E, V|®r) dE dV. (40)
EJYV

This predictive pdf can be used to determine the portfolio that satisfies a given
investment objective, such as maximizing the expected value of a utility function.
The appendix provides the predictive pdf for Rr, that follows from the prior in
(35) and the likelihood function in (7).

3.2. The mean-variance setting

The examples presented in this study are confined to investment objectives in-
volving only the first and second moments of returns. As is well known, a mean-
variance characterization of investment opportunities is often a somewhat arbitrary
simplification. For example, a mean-variance objective function is not necessar-
ily consistent with expected-utility maximization. Indeed, except for the case of
quadratic utility, a mean-variance objective is likely to provide only an approx-
imation in this framework. In particular, the predictive distribution p(Rr1|®Pr),
given in the Appendix, does not generally belong to the class of elliptical dis-
tributions, for which mean-variance analysis can be given an expected-utility
justification (see, Ingersoll, 1987). A mean-variance framework is used here sim-
ply as a familiar setting in which to illustrate the essential aspects of investment
analysis when assets’ histories differ in length.
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The first and second moments of the predictive pdf for Rr,1,
E=E{Rr1|9r}, (41)
V =cov{Rrs1, Ry |Pr} (42)

are given in the following proposition.

Proposition 2. Given the prior density in (35), the likelihood function in (7),
and the sample &7 ={Y 1,V 5,5}, then

E=F, (43)
7 =cov { {2} (R, ;,,]|¢T} = [Z: gj : (44)
where

= (s )P 45)
Pro= (T—f;—l_i)ﬁu@ 7i), (46)
Vip=x-2+ (Tg-;—l_i)él}uél, (47)
(=) [ (i

+ (£ —El,s)'ﬂ:,ls(fl “EI,S)}) . (48)

and ‘v’ denotes the trace operator.
Proof. see the appendix.

Observe from (43) that estimation risk does not affect expected returns, in
the sense that the mean of the predictive pdf is simply the maximum-likelihood
estimate of E. Uncertainty about the true expected returns does contribute to

5 Barry and Brown (1985, pp. 409-410) give moments of the predictive pdf when the true covariance
matrix ¥ is known and the prior for E is diffuse. They state that E then contains the sample averages
of each asset’s return, but such a result would appear to hold only when the histories of returns on
the first N| assets do not overlap with the histories of the N, assets (contrary to the authors’ notation)
or when all elements of ¥}, are assumed to equal zero.
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the estimation risk incorporated in the predictive pdf. Estimation risk is reflected
in the covariance matrix of the predictive pdf, in the sense that ¥ exceeds the
maximum-likelihood estimator ¥ by a positive-definite matrix.> Estimation risk
also affects the shape of the predictive pdf, in that p(Rrii|®7) is not a mul-
tivariate normal density, although this effect does not enter the mean-variance
portfolio setting assumed here.

4. Multiple starting dates

Although the analyses in the preceding sections allow an arbitrary number of
N assets, each asset’s history is assumed to begin at one of only two possible
dates. This section generalizes those analyses to include a larger number of J
starting dates; the empirical examples presented in the next section include such
a case. Readers who are uninterested in the details of the methodology can skip
to the next section.

For j=1,...,J, let the vector R;, contain the returns on N; assets in period ¢,
and assume that the overall sample @7 includes S; observations of these returns
for periods T —S§; +1,...,T. The assets are ordered such that §; >8> --- >,
and we assume, as before, that the first observation of R;, corresponds to period
1, so S =T. The total number of assets is given by N == 2}:1 N;.

Let the vector Rj;, contain the returns on the first Ny =N + N+ --- +N;
assets in period ¢,

R(j],! :[Rll,t R,Z,: e R;',t 1, (49)

for £>T —S;. As in the previous analysis, it is assumed that, for j=1,...,J, each
observation Ry, is drawn independently from a multivariate normal distribution
with
E
E;
E{Rj.} =Ep=1| . |- (50)

E;

6 This follows by using (45) through (47) to obtain

s . [ N+3 In | - y . Joo

Since k> 1,V — ¥ is positive definite if ¥ is positive definite.
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i V2 - Wy

cov{R 1R 1, =Vi= T Wy
[/L.1> [j],t}_ 1= . : .. : s (51)

I

where the moments for the entire set of N assets are denoted by £ =Ej; and
V=¥
For the most recent S observations, S<.S;, define

R;', T-5+1 R L, T=S5+1
R}, T-S+2 RE jL.T—8+2 )
Yis= : , Yijs= : . Jj=1,...,J (52)
J !
Rir Rijpr

Let s=[s3,s3,...,5;] denote the vector of starting periods, where s;=
T —S8;+1. As before, s is permitted to be stochastic, where the joint distri-
bution of returns and s depends on a vector of additional parameters {. It is
assumed that, conditional on the returns on longer-history assets, the distribution
of a starting date for shorter-history assets does not depend on E or V:

P(Sj+1|Yl,Ta~-,Yj,Sj,Ea Va{)=p(sj+llYl,Ta-"7X]',SpC)7 .]= L...,J - L.
(53)

The joint prior for E, ¥, and { is again assumed to obey the independence
property in (37). Under these assumptions, the results given below continue to
apply when s is stochastic, for reasons that are straightforward extensions of those
given for the two-date analysis in the previous sections.

The likelihood function can be written as

J | T8

1
Yis, j=1,..,JIs,E, V)= S —
p( ,S;> J IS ) jl;ll 1=’Fl——£‘j+l ((Zn)NU]/Zl [J]l

1 _
X exp {—5 (Rijye — E)Y 57 R — Em)}) ) (54)

where, for notational convenience, S;y; =0.

As before, the analysis is facilitated by a set of regression statistics. A regres-
sion of R;, on Ry;_}, estimated using the most recent S; observations, produces
a coefficient matrix

, (55)

Al

a .

A —1 37 _ J
Ci =X ;5X05)” X5, Yis, = [ I
j
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where &; is N; x 1,B; is N x (N; + Ny + - - +N;_1), and

X =15, Yj-us 1 (56)
The disturbance covariance matrix estimated using the fitted residuals is

n 1 N A

%zgf&&—MﬂsQﬂ&@—XM&Ql (57)

The matrices £, and (X{j1.5,X1j1,5,) are assumed to be nonsingular, which re-
quires that S;> max(N;,N;_17). For the Bayesian analysis, it is assumed also
that §;>N — N1y + 2, so the requirements for S; can be summarized as

S;>max (Nj_ij, N = Njj_+2), j=1,...,J. (58)

The statistics o‘cj,B,-, and 2 j» computed for j=2,...,J, are useful in computing
the maximum-likelihood estimates of £ and ¥V as well as the moments of the
Bayesian predictive pdf of Rr,;.

Proposition 3. Given the likelihood function in (54), the maximum-likelihood
estimators of E and V are

E, Vi Voo Py
. £, ) Pa Vo - Py
E=1| and V= o . (59)
E‘J IA{Il I;}Z IA{]J
where
. N 1
Ey=Ep =X, ()
X N 1 Al 2y
V=P =2t — 2B} (N r ~ 10}, (61)
and, for j=2,...,J,
Ej=d&;+BiE y, (€2)
X Efjy
E 1= A 3 (63)
[j1 Ej
I711 I}12 I}lj
. I}21 I722 1721' 1}-—1 I}'~1]B"
o= S| S TenB D
B;Vij—y Zj+BjV[j—1]Bj

0
=

o ...
[\*]

-
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Proof. see the appendix.

In addition to the statistics defined above, a set of truncated-sample moments
is used in the computation of the moments of the Bayesian predictive pdf. For

j=2,...,J, define

A 1
B8 = S—jY[/f—JJ,Sj s, (63)
A 1 A , o

Vij-n,s = E;(Y[j—l],sj —15El 5 Y (V-5 — 15 E_1s)- (66)

Proposition 4. Given the prior density in (35), the likelihood function in (54),
and the sample ®r ={Y}s,, j=1,...,J, s}, then

E=E{Rru|®r}=E (67)
Vu Ve o Vi
N , Vo Voo oo Vo
V=cov{Rry1,Rp|9r}=| . . s (68)
Vn Vi oo W
where
. . T+1
=Vn=7——"V 69
Yi=Vu=gr—x_—3"n (69)
and, for j=2,...,J,
Pn Vi oo Py
. , Voo Voo oo Py
Vin=cov{Rir Ry 14|} =
LV T o Wy
r ~ ~ Al
Viie Vi,—nB;
=| Jumn Uy } (70)
| BiVij—u K2 +BiV-n5;
where
S; 1 N
;= L+ —[1+t(V; V-
i (Sj—N—l—N[,-_l]*Z)( s,-[ Vy-ns Vi-1)

N N a1 W o
+(Epj—1y — Efj-ns) Vj—us, Ey-1 — Ep-1s, )]) . (71)
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Proof. see the appendix.

5. Example 1: mean-variance efficiency
5.1. The optimization problem

Assume that R, denotes the vector of the returns on the N risky assets in
excess of the return on a riskiess asset (referred to hereafter as ‘excess’ returns).
Let w denote the N-vector of weights invested in the risky assets, so that the
excess return on the investor’s overall portfolio p in period T + 1 is given by

Ry 741 ='Rry1. (72)

The fraction 1 — 1, of the overall portfolio is invested in the riskless asset. The
investor’s optimal portfolio * is assumed to be the solution to

A
m{gx <E{R ,T+1|¢T} - E var{R ,T+1I¢T}> . (73)

Thus, the optimal portfolio is assumed to be mean-variance efficient. Grauer and
Hakansson (1993) present evidence suggesting that (73) can provide a reasonable
approximation to an expected-utility maximization over short-investment hori-
zons.” The parameter 4 will be referred to as the investor’s relative risk aver-
sion, defined with respect to the investor’s utility of wealth at the end of period
T + 1. Of course, such a characterization is also only an approximation, given a
mean-variance approximation to the expected-utility objective. This point is also
discussed by Grauer and Hakansson (1993).
The solution to (73) is easily verified to be

1
=y, 74
W' ==y (74)
where
1 1~
=—::—~V_1E, 75
Y WPIE (75)
e
i=JYE (76)
YVy

As is well known, the N-vector y contains the weights in the portfolio of risky
assets having the maximum Sharpe ratio, the ‘tangent’ portfolio, and 4 is the

7 Although such scenarios are not encountered here, Klein and Bawa (1977) observe that, for assets
with short enough histories (so that the estimation risk for those assets essentially becomes very large),
an expected-utility maximizer will, under certain additional conditions, choose to invest nothing in
those assets.



304 R F. Stambaugh ! Journal of Financial Economics 45 (1997) 285-331

ratio of the tangent portfolio’s expected excess return to its variance, or the
‘price of risk’ (see, for example, Ingersoll, 1987). A portfolio’s Sharpe ratio is
its expected excess return divided by its standard deviation of return. Technically,
y gives the portfolio with the highest absolute Sharpe ratio, and it is also assumed
that 14, V~'E # 0. The overall optimal portfolio is constructed by investing the
fraction A/4 in the tangent portfolio and the fraction (1 — A/4) in the riskless
asset.
If all N assets have return histories of the same length T, then

. T+1 .

V= (m)V “n
which can be obtained using (43)—(47) and then setting S=T. In that case, x
in (48) simplifies to

T+1

=T_N_% (78)

because when 7 =S, then £, :EI,S and tr(Vn"lSI}“)=N — N;. With (77), v in
(75) can be rewritten in terms of the maximum-likelihood estimators £ and 17,

. 1= 1
y= ~1 ~V“E=

Vg, 79
V-1E L V-IE (79

In other words, when all assets have equal-length histories, allowing for esti-
mation risk does not affect the weights in the tangent portfolio: treating the
maximum-likelihood estimates as the true parameters gives the same weights as
using the Bayesian predictive distribution. This special case corresponds to the
setting in Klein and Bawa (1976), who make the same observation about the
irrelevance of estimation risk in computing y. As those authors explain, allowing
for estimation risk simply lowers the fraction invested in the tangent portfolio,
since the price of risk in (76) can then be rewritten as

I vE _(T-N-2 yE (80
YV T+1 Jyvy

In the more general setting, in which assets have histories of different lengths,
both y and A are affected by estimation risk, since ¥ is then no longer simply ¥
multiplied by a scalar, as in (77).

5.2. The sample

The above optimization problem is illustrated here for an asset universe
consisting of US Treasury bills, assumed riskless, and three risky index port-
folios (N =3): Standard & Poor’s composite index (USA), Morgan Stanley
Capital International’s index for Europe, Australia, and the Far East (EAFE),
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and the International Finance Corporation’s composite index for emerging mar-
kets (EMERGE). The returns on each index portfolio are computed as monthly
US dollar returns in excess of the return on a one-month US Treasury bill. The
data for this study are from the Center for Research in Security Prices (CRSP)
and Datastream. The IFC emerging-market returns are available beginning in Jan-
uary 1985, whereas the data for the S&P and EAFE indices are available earlier.
The EAFE returns are available beginning in January 1970, and, in order to sim-
plify this example, that month is selected as the first observation for returns on
the S&P as well, even though returns on the latter index are obviously available
well before that date. Data for all three series are included here through December
1995. Thus, in this example, Ny =2 and 7 =312, as determined by the sample
period of January 1970 to December 1995 for the S&P and the EAFE indices,
while N =1 and § =132, as determined by the sample period of January 1985
to December 1995 for the emerging-markets index.

5.3. Parameter estimates

Table 1 reports the means, standard deviations, and correlations for the Bayesian
predictive pdf. Maximum-likelihood estimates of those parameters are also re-
ported. As discussed previously, the means of the predictive pdf are identical to
the maximum-likelihood estimates. When the truncated sample is used (panel B),
the correlations for the predictive pdf are also identical to the maximum-likelihood
estimates, since the variance-covariance matrix of the predictive pdf is then sim-
ply a scalar multiple of the maximum-likelihood estimate, as given in (77). In
that case, the weights in the tangent portfolio y, shown in the last column of
Table 1, are the same under the two sets of parameter values, as noted previ-
ously in Eq. (79). With the combined sample (panel A), the correlations from
the predictive pdf differ from the maximum-likelihood estimates, so the weights
in the tangent portfolio differ as well. In general, however, we see that the
parameters and tangent-portfolio weights from the Bayesian predictive pdf are
quite close to the maximum-likelihood estimates. In other words, with only three
assets, whose shortest history is 132 months, the effects of estimation risk do not
appear to be substantial. As will be illustrated in the example presented in the
next section, estimation risk becomes more important as the number of assets
increases relative to the lengths of the assets’ histories.

This example serves primarily to illustrate the potential effects of including ad-
ditional information provided by the longer-history assets. That is, the differences
in Table 1 between the combined-sample and truncated-sample results are more
substantial than the differences due to estimation risk. Observe that, for both the
USA and EAFE indices, the truncated period from 1985-1995 (panel B) pro-
duces higher estimates of mean excess returns than does the longer 1970--1995
period (panel A). Next observe that the same statement holds for the emerging-
markets index (EMERGE), keeping in mind that the data for that index do not
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Table 1
Parameter estimates and tangent-portfolio weights

The three return series are for (i) Standard & Poor’s composite index (USA), (ii) Morgan Stanley
Capital International’s index for Europe, Australia, and the Far East (EAFE), and (iii) the International
Finance Corporation’s composite index for emerging markets (EMERGE). All returns are monthly
US dollar returns in excess of the one-month T-bill rate. The combined sample (panel A) consists of
monthly returns from January 1970 to December 1995 for USA and EAFE and from January 1985
to December 1995 for EMERGE. The truncated sample (panel B) consists of monthly returns from
January 1985 to December 1995 for USA, EAFE, and EMERGE.

Correlations
Standard Tangent
Index Mean deviation EAFE EMERGE portfolio

A. Combined sample
Bayesian predictive pdf

USA 0.48 447 0.480 0.314 0.301

EAFE 0.59 5.04 0.286 0413

EMERGE 0.71 6.70 0.286
Maximum likelihood

USA 0.48 4.43 0.480 0.318 0.297

EAFE 0.59 4.99 0.290 0.410

EMERGE 0.71 6.56 0.293

B. Truncated sample

Bayesian predictive pdf

USA 0.89 435 0.429 0.306 0.528

EAFE 1.02 5.56 0.290 0.303

EMERGE 0.95 6.71 0.169
Maximum likelihood

USA 0.89 425 0.429 0.306 0.528

EAFE 1.02 543 0.290 0.303

EMERGE 0.95 6.55 0.169

exist before 1985. Incorporating the additional data prior to 1985 results in lower
means of USA and EAFE than obtained with the post-1985 data and, given the
positive association between EMERGE and those two indices, the pre-1985 data
produce a similar revision in the mean of EMERGE.

The manner by which the pre-1985 data on USA and EAFE supply information
about the expected return for EMERGE follows the earlier discussion (Section 2)
of the differences between the combined-sample and truncated-sample maximum-
likelihood estimates in Eq. (26). Based on the quantities reported in panel B
of Table 1, it is easily verified that, in a regression of EMERGE on USA and
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EAFE, the estimated slope coefficients are
B=[0344 0234] (81)

Given that, during the 1985-1995 period, R,, (EMERGE) exhibits this posi-
tive association with R;, (USA and EAFE), the negative differences between
the combined-sample and truncated-sample estimates for the means of USA and
EAFE produce a corresponding negative difference between the combined-sample
and truncated-sample mean for EMERGE,

0.55

Ey—Eys=—B(E s —E1)=-[0344 0234] [0 1

] =—0.24, (82)
using Eq. (26).
5.4. Portfolio implications

Portfolio optimization provides an economic basis for comparing the various
methods of estimating the first and second moments of the return distribution.
Fig. 1 displays the minimum-standard-deviation boundaries for portfolios that
combine USA, EAFE, and EMERGE. The higher means for the truncated sample
are evident in the relative positions of the boundaries for that period. For both
the truncated and combined samples, the boundaries based on the maximum-
likelihood estimates (dashed curve) are close to those based on the Bayesian
predictive pdf (solid curve), which again reflects the relatively minor role played
by estimation risk in this three-asset example.

The last column of Table 1 reports the weights in the tangent portfolio y im-
plied by the various sets of parameter estimates. In the combined sample, the
values for y based on the Bayesian predictive pdf differ slightly from those based
on maximum-likelihood estimates, but both approaches give portfolio weights of
about 30% for USA, 41% for EAFE, and 29% for EMERGE. As noted earlier,
when all return series are of the same length, as in the truncated sample, com-
puting y using the Bayesian predictive pdf produces the same result as using the
MLEs. In the truncated sample, the weights are 53% for USA, 30% for EAFE,
and 17% for EMERGE. Thus, an investor who uses the truncated sample instead
of the combined sample would place more weight in USA and less weight in
EAFE and EMERGE.

The tangent portfolio possesses the maximum Sharpe ratio within the universe
of investments considered. Panel A of Table 2 reports the value of the maximum
Sharpe measure as computed under the various sets of parameter estimates. The
maximum Sharpe ratio is 0.240 (Bayesian) or 0.245 (maximum likelihood) us-
ing the truncated-sample estimates, but the maximum Sharpe ratio is only 0.146
(Bayesian) or 0.148 (maximum likelihood) when using the combined-sample
estimates. Thus, an investor using the truncated sample would perceive a higher
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Fig. 1. Minimum-standard-deviation boundaries for three indices. The solid curves and dots are based
on the Bayesian predictive pdf, whereas the dashed curves and circles are maximum-likelihood es-
timates. The three return series are for (i) Standard & Poor’s composite index (USA), (ii) Morgan
Stanley Capital International’s index for Europe, Australia, and the Far East (EAFE), and (iii) the
International Finance Corporation’s composite index for emerging markets (EMERGE). All returns
are monthly US dollar returns in excess of the one-month US Treasury bill rate.

maximum Sharpe ratio than an investor who uses the combined sample. Sup-
pose, however, that we compute Sharpe ratios for all portfolios from the per-
spective of the latter investor, and that investor also accounts for estimation risk
(i.e., uses the Bayesian predictive pdf). Panel B reports the Sharpe ratios per-
ceived by that investor for the tangent portfolios constructed by investors using
other samples or estimation methods. Note that the portfolio thought to have a
Sharpe ratio of 0.245 by an investor using the truncated-sample MLEs is instead
thought to have a Sharpe ratio of only 0.141 by the combined-sample Bayesian
investor.

With the mean-variance objective function in (73), the optimal portfolio com-
bines investments in the tangent portfolio and the riskless asset, where, as dis-
cussed previously, the proportion in the tangent portfolio is equal to A/4 (recall
the discussion surrounding Egs. (74)—(76)). Panel C of Table 2 reports this
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Table 2
Combination of tangent portfolio and riskless asset

The three return series are for (i) Standard & Poor’s composite index (USA), (ii) Morgan Stanley
Capital International’s index for Europe, Australia, and the Far East (EAFE), and (iii) the Inter-
national Finance Corporation’s composite index for emerging markets (EMERGE). All returns are
monthly US dollar returns in excess of the one-month T-bill rate. The ‘combined sample’ consists of
monthly returns from January 1970 to December 1995 for USA and EAFE and from January 1985
to December 1995 for EMERGE. The ‘truncated sample’ consists of monthly returns from January
1985 to December 1995 for USA, EAFE, and EMERGE. The paramster A denotes the investor’s
(approximate) coefficient of relative risk aversion.

Combined sample Truncated sample
Bayesian Maximum Bayesian Maximum
pred. pdf likelihood pred. pdf likelihood

A. Maximum Sharpe ratio computed using the sample and method as indicated
0.146 0.148 0.240 0.245

B. Sharpe ratio of the tangent portfolio, where the Sharpe ratio is computed using the combined
sample and the Bayesian predictive pdf, but the tangent portfolio is constructed using the sample
and method as indicated

0.146 0.146 0.141 0.141

C. Tangent portfolio proportion (%) in the overall portfolio using the sample and method as indicated

A=1 361 369 610 639
A=3 120 123 203 213
A=5 72 74 122 128

D. Monthly certainty-equivalent loss (basis points) associated with the overall portfolio, where the
loss is computed using the combined sample and Bayesian predictive pdf, but the overall portfolio
is constructed using the sample and method as indicated

A=1 0 0.08 55.82 67.55
A=3 0 0.03 18.61 22.52
A=5 0 0.01 11.17 13.51

optimal proportion in the tangent portfolio, where the tangent portfolio’s com-
position (y) and price of risk (1) are computed using the various samples and
estimation methods. Results are presented for three values of 4 — one, three, and
five. Recall from Fig. 1 that, in this example, the truncated-sample means are sub-
stantially higher than the combined-sample means, whereas the truncated-sample
volatilities are fairly similar to the combined-sample volatilities. As a result, the
optimal proportion in the tangent portfolio is substantially higher when the trun-
cated sample is used. For example, an investor with 4 =5 invests 128% in the
tangent portfolio when using the truncated sample MLEs, whereas an investor
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with the same risk aversion who instead uses the combined-sample Bayesian
predictive pdf invests only 72% in the tangent portfolio.

The value to the investor of including the pre-1985 data and accounting for
estimation risk can be assessed at time 7 in terms of the objective function in
(73). Define the ‘certainty equivalent’ associated with any given portfolio ¢ as

A
Cq = E{Rq,]'_H |¢T} — 5 var{Rq, T+ll¢T}- (83)

That is, portfolio g achieves the same value for the objective function as does
a portfolio providing a riskless excess return of C,. If the combined-sample
Bayesian investor optimally chooses portfolio p, then that investor assigns a
certainty-equivalent loss of C, — C, to a suboptimal portfolio g. These certainty-
equivalent losses, as perceived by the combined-sample Bayesian investor, are
reported in panel D of Table 2, in which the suboptimal portfolio ¢ is con-
structed using the truncated sample and/or maximum-likelihood estimates.

When the combined sample is used, the certainty-equivalent losses associated
with using the maximum-likelihood estimates instead of the Bayesian predictive
pdf are very small, less than 0.1 basis points per month. These results are con-
sistent with the earlier observations about the modest role of estimation risk in
this three-asset example. Substantially larger losses are associated with portfolios
constructed using the truncated sample, ranging from 11 basis points per month
(4 =35, Bayesian predictive pdf) to over 67 basis points per month (4 =1, max-
imum likelihood). Moreover, when the truncated sample is used, a failure to
account for estimation risk adds nontrivially to the certainty-equivalent losses:
the differences between the Bayesian and MLE losses range from about 2.3 basis
points (4 =5) to nearly 12 basis points (4 = 1). In this example of mean-variance
optimization, truncating the sample and then ignoring estimation risk results in
a portfolio choice that is rather undesirable when evaluated by an investor who
uses the combined sample and accounts for estimation risk.

6. Example 2: variance minimization

The previous example illustrates how the longer histories of some assets can
provide useful information about expected returns on all assets. In that example,
the estimated covariance matrices of returns are fairly similar across the combined
and truncated samples, and, in either sample, estimation risk produces relatively
small differences between the covariance matrix of the predictive pdf and the
maximum-likelihood estimate of V. This section considers an investment problem
in which the optimal portfolio depends only on the covariance matrix of returns.
Moreover, in this example, the estimation risk included in the covariance matrix
of the predictive pdf plays an important role in the investment decision.
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6.1. The optimization problem

As in the previous example, R, denotes the vector of excess returns on the N
risky assets and w denotes the vector of weights on those assets, so R, ry1 =
w’'Rr41 again gives the portfolio’s excess return. In this example, the investor is
assumed to solve

magn var{R, r+1|®r}, (84)

s.t. iyo=1. (85)

The solution to this problem is the minimum-variance portfolio of the N risky
assets — the constraint in (85) excludes the riskless asset from the optimal port-
folio. Since

Val'{Rp, T+1 ’d)T} = Cl)/ 1760, (86)
the solution to the optimization in (84) and (85) is easily determined to be
=Ly

iVl

*

. (87)

Thus, unlike the previous example, in which estimated expected returns play a
key role, the optimal portfolio in (87) involves only the covariance matrix.

When all N assets have return histories of the same length 7', then the re-
sulting simplification of ¥ in (77) allows the solution in (87) to be rewritten
with ¥ replacing V. In other words, estimation risk does not affect the weights
in the minimum-variance portfolio when all assets have equal-length histories,
which corresponds to the same property for the tangent portfolio observed in the
previous section, As also observed there for the tangent portfolio, estimation risk
does affect the composition of the minimum-variance portfolio when assets have
histories of different lengths.

6.2. The sample

The above variance-minimization problem is illustrated here using a universe of
country-specific index portfolios for 22 emerging markets (N =22). The returns
on each country’s index are constructed by the International Finance Corporation
(IFC) to reflect the portion of the country’s equity market that is accessible to
foreign investors (see International Finance Corporation, 1993). In this example,
the returns data for all 22 of these ‘investable’ country portfolios extend through
December 1995. All returns are US dollar returns in excess of the one-month
US Treasury bill rate. The first sample month for ten of the country portfolios is
1/1989; the starting months for the remaining 12 countries range from September
1989 to November 1993. Thus, these emerging-market return histories range in
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length from 26 months to 84 months. A few countries in the IFC universe with
even shorter histories were excluded so as not to violate (58). Table 3 lists, for
each of the 22 countries, the first month of data and the number of observations.

6.3. Parameter estimates

Table 3 reports, for each country’s monthly excess return, the standard de-
viation computed using five different methods (labeled I through V). Methods
I and II use the combined sample, wherein the lengths of return histories dif-
fer across assets. Each of the standard deviations from the Bayesian predictive
pdf (method I) exceeds the corresponding maximum-likelihood estimate (method
IT). The differences, which reflect estimation risk, often run several hundred ba-
sis points or more. In the case of Peru, for example, incorporating estimation
risk produces nearly a two-thirds increase over the maximum-likelihood estimate
of standard deviation (23.4% versus 14.2%). Methods III and IV use only the
most recent 26 months of data for each country, so that each country’s return
history is truncated to be the same length as the return histories of China and
Zimbabwe. When the investor’s information about this set of 22 investments is
confined to this relatively short period, estimation risk becomes the dominant
source of volatility perceived by the investor. The Bayesian predictive standard
deviations in that case (method III) are 3.7 times the corresponding maximum-
likelihood estimates (method IV). Recall that, when all assets have histories of
length T, the difference between the covariance matrices from the two methods
is given by (77). Method V computes, separately for each country, the univariate
maximum-likelihood estimate of standard deviation using the history available for
each country.

Methods II, IV, and V do not incorporate estimation risk, so differences in
estimated volatilities across these methods simply reflect differences in ex post
variances (and covariances) across the various sample periods. By construc-
tion, methods II and V produce identical estimates for the first ten countries
(Argentina-Thailand), which all have return histories of 84 months. For the re-
maining 12 countries, which have shorter return histories, method II produces
higher estimated volatilities than method V in all but one case (Turkey). Sim-
ilarly, for the 12 shorter-history countries, method II also produces higher esti-
mates than method IV in all but one case (Taiwan). For the shorter-history assets,
the higher estimates produced by method II reflect information about volatility
provided by the longer-history assets. Many of those longer-history assets ex-
perienced less ex post variance during the more recent years than during the
earlier years. This general pattern can be seen in a comparison of the estimates
from methods Il and IV for the longer-history assets. Thus, for many of those
assets, the ex post variance of the more recent years is too low an estimate of
true variance when compared to the estimate based on the total period. Given
that the returns on many of the 22 countries exhibit positive correlations with
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each other (over periods of common recent history), the ex post variances of the
shorter-history assets are also judged to be too low as estimates of the true volatil-
ities. This reasoning, which is necessarily fuzzy with many assets and start dates,
follows the more precise argument given earlier in Section 2 for the two-asset
case.

The upper-right portion of Table 4 displays the correlations (x 100) based on
the combined-sample Bayesian predictive pdf. The lower-left portion displays,
for each pair of countries, the difference (x100) between the Bayesian predic-
tive correlation in the top portion and the bivariate truncated-sample maximum-
likelihood estimate computed using the jointly available history for a given pair
(so the length of the joint history is equal to the shorter of the two coun-
tries.) A simple approach to estimating the variance—covariance matrix might be
to combine the latter ‘available-history’ correlation estimates with the variance
estimates based on each country’s available history (reported under method V in
Table 3). Aside from other properties of such an approach, one potential problem
is that the correlation matrix estimated in this fashion (essentially Eq. (22) gen-
eralized to multiple starting dates), and thus the corresponding covariance matrix,
can fail to be positive definite. Indeed, that is the case in this example. Thus,
this approach is not included here among those used to construct the minimum-
standard-deviation boundary or the global minimum-variance portfolio.® The dif-
ferences between the combined-sample Bayesian predictive correlations and the
available-history correlation estimates are equal to zero for all pairs from the
ten countries (Argentina-Thailand) that have data beginning in January 1989,
the earliest month of the combined sample. Recall from (77) that, for those
countries, the Bayesian predictive covariance matrix is simply a scalar multiple
of the maximum-likelihood estimate of the covariance matrix, and thus the cor-
relations are identical under both methods. For many of the remaining assets,
especially those with the shorter histories, the values in the lower-left portion of
Table 4 are negative, indicating that the Bayesian predictive correlation is less
than the maximum-likelihood estimate based on the jointly available history.

6.4. Portfolio implications

The rightmost three columns of Table 3 display the weights in the minimum-
variance portfolio, in which the covariance matrix is estimated using methods
I-IV. Methods T and II both use the combined sample, but the differences in
weights between these two methods reveal that the estimation risk not incorpo-
rated in the maximum-likelihood estimates (method II) plays a significant role
in computing «* in (87). In this example, the weights based on the Bayesian
predictive pdf (method I) take less extreme values than the weights based on the

8 If the symmetric matrix 4 is not positive definite, then the solution to miny, w'4w s.t. w’'1=1 need
not exist and, in general, is not given by w* = (/414711



Table 4

Correlations among 22 emerging markets

The upper right portion gives correlations (X 100) based on the combined-sample Bayesian predictive distribution. The lower left portion gives those values minus
the maximum-likelihood estimates based on the jointly available history for a given pair (so the length of the joint history is equal to that of the shorter of the
two countries). The data consist of monthly returns on each country’s ‘investable’ equity portfolio, as constructed by the International Finance Corporation. All
returns are US dollar returns in excess of the one-month US Treasury bill rate. The ‘combined sample’ uses all available returns through December 1995, where

the data for ten countries begin in January 1989 but the data for 11 other countries begin at various later dates.

Arg Bra Chi Gre Jor Mal Mex Phi Prt Tha Tur Ven Ido Tai Col Pak Kor Ind Per Sri Cin Zim
Argentina -11 5 12 —-17 -4 32 7 15 13 6 17 -34 -6 -6 13 6 13 11 66 28 —~8
Brazil 24 28 —6 320 13 27 4 9 -9 33 25 35 -7 -29 36 1m -5 -10 13
Chile 10 6 16 20 23 16 28 -5 —15 23 16 -5 5 1 26 9 -1 —-12 -18
Greece 9 5 3 17 46 13 36 10 40 27 38 -3 0 58 —6 18 16 =31
Jordan 16 -3 15 -1 15 10 1 27 4 | 18 5 —4 22 =21 3 4
Malaysia 29 52 21 64 22 —-10 44 35 -5 21 6 6 2 —-10 42 3
Mexico 29 S 30 -4 -1 14 14 3 19 17 12 26 20 27 11
Philippines 19 56 1 -8 54 49 24 26 -20 15 14 -—-13 16 21
Portugal 17 23 -2 35 22 16 4 —13 34 -18 0 17 -—13
Thailand 17 -9 42 36 5 24 S 14 -1 3 55 28
Turkey 2 -3 -1 -4 0 -3 1 0 -3 =2 6 24 15 2 4 16 30 —12 19 30 -24
Venezuela 14 -4 0 3 0 1 4 1 3 2 4 -~16 —-14 27 ¢ 33 15 17 45 20 39
Indonesia  —26 16 -3 8 11 =2 1 0 3 -8 -3 -—18 39 26 4 —11 33 -15 =29 22 -7
Taiwan -7 15 0 8 3 -6 -1 | 6 -5 -2 —I5 0 17 5 8 9 15 —18 0 —13
Colombia —6 15 4 23 0 -9 | 3 3 -3 -3 -7 6 6 31 -2 53 —10 35 22 39
Pakistan 7 -8 -5 -3 5 =3 -1 1 1 -3 -3 -7 -7 -4 -8 1 27 4 31 21 -3
Korea 3 =27 -17 -3 -2 -11 -17 =22 -5 -13 0 13 -16 —-15 -5 -9 4 20 31 39 7
India 5 15 -30 37 -18 -12 -18 -4 0 —-11 16 -3 =2 4 23 -8 —18 —41 37 32 -10
Peru -8 —14 -34 -19 -3 -28 -47 -27 -42 -39 -8 -3 -36 -9 -20 —-17 -—-18 -50 4 -17 10
Sri Lanka 53 22 43 S =22 24 -22 -27 -12 -—14 4 11 -48 -33 -6 -1 -6 -23 -24 43 8
China 12 —-14 —-49 10 -7 —54 -20 -56 5 28 0 2 —46 -—-S57 25 15 2 -5 =36 23 —6
Zimbabwe —19 0 -33 -26 —-10 -10 —-19 -1 -—11 -33 9 7 —-10 -5 10 —18 10 -10 =29 -25 -—10
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Table 5
Minimum standard deviation of a portfolio combining 22 emerging markets

The data consist of monthly returns on each country’s ‘investable’ equity portfolio, as constructed by
the International Finance Corporation. All returns are US dollar returns in excess of the one-month
US Treasury bill rate. The ‘combined sample’ uses all available returns through December 1995,
where the data for ten countries begin in January 1989 but the data for 11 other countries begin at
various later dates. The ‘truncated sample’ consists of monthly returns on all 22 countries for the
26-month period from November 1993 through December 1995.

Combined sample Truncated sample
Bayesian Maximum Bayesian Maximum
pred. pdf likelihood pred. pdf likelihood

A. Minimum monthly standard deviation (%) computed using the sample and method as indicated
3.80 2.31 7.48 2.04

B. Monthly standard deviation (%) for the minimum-variance portfolio, where the standard devia-
tion is computed using the combined sample and the Bayesian predictive pdf., but the weights in
the minimum-variance portfolio are constructed using the sample and method as indicated

3.80 6.09 6.63 6.63

maximum-likelihood estimates. The Bayesian weights range from —14% to 45%,
with only one weight exceeding 25% in absolute value, whereas the maximum-
likelihood weights range from —53% to 82%, and 12 of the weights exceed 25%
in absolute value. Estimation risk does not affect the weights computed using the
truncated sample (methods III and IV). In that case, the Bayesian predictive co-
variance matrix is simply a scalar multiple of the maximum-likelihood estimate,
as explained previously, and the solution in (87) is unaffected by a scalar multi-
plication of V. The weights produced here by methods III and IV also take more
extreme values than those in method I. In this example, those truncated-sample
weights happen to resemble fairly closely the weights produced by method II.

Table 5 reports the global minimum standard deviation computed using the
various methods. For each method, the standard deviation is computed in two
ways. The first, shown in panel A, computes the minimum standard deviation
using the covariance matrix obtained under the given method. For example, sup-
pose the combined-sample maximum-likelihood estimator ¥ is used (in place of
V) to compute the minimum-variance portfolio (87), and the vector of resulting
weights is denoted & (given earlier in Table 3). Then (&'V&)"/? equals 2.31%,
as reported in the second column of panel A.

Each value in panel A of Table 5 corresponds to the leftmost point on the
minimum-standard-deviation boundary constructed with the moments obtained by
the given method. These boundaries are displayed in Fig. 2. Note that, although
estimated expected returns are not used elsewhere in this example, they are used
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Fig. 2. Minimum-standard-deviation boundaries for 22 emerging-market country indices. The data con-
sist of monthly returns on each country’s ‘investable’ equity portfolio, as constructed by the Inter-
national Finance Corporation. All returns are monthly US dollar returns in excess of the one-month US
Treasury bill rate. The boundaries are estimated using four methods: [ Combined sample (1/89-12/95),
Bayesian predictive pdf; II Combined sample (1/89-12/95), maximum likelihood; III Truncated
sample (11/93-12/95), Bayesian predictive pdf, IV Truncated sample (11/93-12/95), maximum
likelihood.

here to plot the boundaries. When maximum-likelihood estimators are used, the
boundary based on the combined sample (II) lies close to that based on the
truncated sample (IV), but the leftmost points of both boundaries lie at least
150 basis points to the left of the minimum standard deviation of 3.8% for the
combined-sample Bayesian predictive pdf (I). Thus, in this example, estimation
risk has a larger effect on volatility than does the inclusion of the additional data
in the combined sample. When only the truncated sample is used and estimation
risk is incorporated, then the resulting minimum-standard-deviation boundary (III)
lies quite far to the right, with a global minimum standard deviation of about
7.5% per month. Unlike the minimum-standard deviation boundaries computed
in the previous example (Fig. 1), the vertical locations of all four boundaries
in this example are similar. In other words, whereas the first example served
principally to illustrate how perceived portfolio opportunities can be affected by
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differences across methods in estimating expected returns, such differences exert
less influence on the opportunity sets constructed in this example.

Panel B of Table 5 displays the standard deviations of the same portfolios con-
structed for panel A, but the standard deviation of each portfolio is now computed
from the perspective of the combined-sample Bayesian investor. If, for example,
& still denotes the vector of weights obtained when ¥ is used in (87), then the
value in the second column of panel B, 6.09%, is equal to (&' ¥ ®)"2. The results
in panel B again reveal the dominant role of estimation risk in this example. To
the combined-sample Bayesian investor, the global minimum standard deviation
is less than 4%, but the portfolios constructed using the other three methods have
standard deviations between 6% and 7%. This second example differs in many
respects from the first but reaches a similar overall conclusion: the portfolios
constructed by the other methods are viewed as substantially suboptimal by an
investor who uses the combined sample and incorporates estimation risk.

7. Performance in repeated samples

The examples in the previous two sections illustrate the conditional Bayesian
decision approach, wherein the predictive pdf of returns, and thus the investor’s
portfolio decision, are conditioned on the single observed sample. As demon-
strated in the examples, the predictive pdf can be used by the conditional Bayesian
investor to assess the relative merits of various alternative portfolios, such as
portfolios formed by methods that truncate the sample or ignore estimation risk.

Another approach to comparing portfolios formed by various methods is to
view each method’s portfolio selection as a function of the sample and then
to compare the performances of the methods across repeated random samples.
In that approach, the typical performance of each method across repeated sam-
ples is computed based on one or more assumed true sets of return moments,
a computation that essentially yields the frequentist ‘risk’ function.® In prac-
tice, the true moments of returns are unknown, and an investor engaged in asset
allocation might observe only one sample per lifetime (although that sample
would be updated). Nevertheless, studies of portfolio-selection methods often re-
port repeated-sample comparisons, and such an analysis is included here in order
to provide a broader perspective on the proposed methodology. Previous studies
that investigate the frequentist risk of various portfolio-selection methods include
Brown (1979), Jorion (1986), and Frost and Savarino (1986).

9 Let (@) denote a portfolio decision rule, a function of the sample @, and let L(, w(®)) denote the
loss associated with a given sample @ and given parameter vector 8. The portfolio rule’s risk function
r(f), defined on the parameter space ©, is given by r(0) = E{L(6,x(®))}, where the expectation is
taken with respect to the distribution of @, given 0. Berger (1985) compares approaches based on
frequentist risk to those based on conditional Bayesian decision principles.
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This section reports two repeated-sample experiments, each corresponding to
one of the two examples presented earlier. In each experiment, the starting pe-
riods (s) for the shorter-history assets are held constant across the randomly
generated samples. In the first experiment, excess returns for three risky assets
are generated by a multivariate normal distribution whose moments are set equal
to the combined-sample maximum-likelihood estimates reported in Table 1. Each
generated hypothetical sample of monthly returns has the property that, as in the
actual sample in example 1, the first two assets have 312 observations (corre-
sponding to the period January 1970 to December 1995 for USA and EAFE),
whereas the third asset has only 132 monthly observations (corresponding to the
period January 1985 to December 1995 for EMERGE). For each generated sam-
ple, the weights in the optimal portfolio are computed under each of the four
methods analyzed previously (cf. Table 2), but the certainty equivalent for each
portfolio is computed based on the assumed true £ and ¥ used in generating the
returns. For example, let w* denote the weights in the optimal combined-sample
Bayesian portfolio p, which is the solution to (73) where @7 denotes the gener-
ated sample. Then, rather than using the predictive pdf to compute the certainty
equivalent for w*, as in (83), the certainty equivalent excess return is instead
computed as

A
Cp = E{RpJ} - Evar{prt}

=0"E~ S0 Vo, (88)
where £ and V' denote the assumed true moments. In this experiment, relative
risk aversion (4) is set equal to three. These calculations are repeated in each of
5000 independently generated samples.

The results of the first experiment are summarized in Table 6. Panel A reports,
for each of the four methods, the certainty-equivalent loss relative the optimal
portfolio constructed using the true £ and V. These results indicate, in a sense,
the extent to which an investor loses by not knowing the true £ and V. We see
that, although such losses are fairly substantial across all methods, the combined-
sample Bayesian method typically produces the smallest losses. The mean loss
for that approach is about 24 basis points (bp) per month, and mean losses for
the other methods range up to about 44 bp, for the truncated-sample maximum-
likelihood method. In panel B, the certainty-equivalent loss is computed relative
to the combined-sample Bayesian portfolio. That is, the loss is the certainty equiv-
alent for that portfolio minus the certainty equivalent for the portfolio based on
one of the other three methods, where the certainty equivalents for both portfolios
are computed as in (88), again using the true £ and V. The mean loss for the
combined-sample maximume-likelihood method is less than twobp, but the two
truncated-sample methods have mean losses of 15.5bp (Bayesian) and 19.4bp
(maximum likelihood). Thus, as observed previously for the predictive pdf based
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Table 6
Performance in repeated samples: mean-variance optimization

All values are true monthly certainty-equivalent losses (basis points) for portfolios constructed us-
ing the sample and method as indicated. Relative risk aversion {4) is set equal to three. Certainty
equivalents are computed based on the true moments of the multivariate normal distribution used to
generate the 5000 hypothetical samples of monthly returns. The number of assets, sample size, and
starting dates correspond to those used in example 1, and the true moments are set equal to the
combined-sample maximum-likelihood estimates from that example (Table 1).

Combined sample Truncated sample
Bayesian Maximum Bayesian Maximum
pred. pdf likelihood pred. pdf likelihood

A. Certainty-equivalent loss relative to the true optimal portfolio

Mean 2420 25.93 39.70 43.59
std. dev. 22.88 24.86 34.98 38.61
10th percentile 429 4.48 7.52 8.08
20 747 7.88 12.77 13.96
30 10.44 11.15 17.81 19.37
40 13.83 14.62 23.62 25.61
50 17.44 18.62 30.06 32.83
60 2217 23.44 38.17 41.79
70 27.93 29.90 47.02 52.05
80 36.13 38.50 60.21 66.45
90 52.04 56.10 83.71 91.16

B. Certainty-equivalent loss relative to the Bayesian combined-sample optimal portfolio

Mean 0 1.73 15.50 19.40
std. dev. 0 2.30 2545 28.33
10th percentile — —0.11 —6.37 —4.71
20 — 0.15 -1.39 0.08
30 — 0.42 1.70 3.58
40 — 0.70 4.98 7.52
50 — 1.03 8.99 11.97
60 — 1.43 13.80 17.36
70 — 1.92 19.98 23.96
80 — 275 29.41 34.46
90 — 445 45.49 52.81

on the actual data, ignoring estimation risk in this example is not as costly as
truncating the sample. In fact, the mean losses reported in panel B, which are
based on certainty equivalents computed with the assumed true moments, are
quite similar to the certainty-equivalent losses reported in panel D of Table 2,
which are based on the Bayesian predictive pdf for the actual sample.

The second experiment corresponds to the variance-minimization in example 2.
Returns are generated on 22 assets, and the lengths of histories for the assets are
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Table 7
Performance in repeated samples: variance minimization

All values are differences in true monthly standard deviations (in %), computed based on the covari-
ance matrix of the multivariate normal distribution used to generate the 5000 hypothetical samples of
monthly returns. The weights in the minimum-variance portfolios are computed using the sample and
method as indicated. The number of assets, sample size, and starting dates correspond to those used
in example 2 (cf. Table 3), and the true moments of returns are set equal to the combined-sample
maximum-likelihood estimates from that example.

Combined-sample, Combined-sample, Truncated-sample,
Bayesian maximum Bayesian pred. pdf &
predictive pdf likelihood maximum likelihood

A. Standard deviation for the minimum-variance portfolio, constructed using the sample and method
as indicated, minus the true global minimum standard deviation

Mean 291 423 3.77
std. dev. 2.02 292 239
10th percentile 1.16 1.73 1.62
20 1.46 220 2.04
30 1.76 2.61 243
40 2.06 3.02 2.82
50 2.39 352 322
60 2.79 4.04 3.65
70 3.26 4.70 4.21
80 3.96 5.69 5.03
90 5.21 7.42 6.49

B. Standard deviation for the minimum-variance portfolio, constructed using the sample and method
as indicated, minus the standard deviation for the minimum-variance portfolio constructed using
the combined-sample Bayesian predictive pdf

Mean 0 1.31 0.86
std. dev. 0 1.38 1.06
10th percentile — 0.26 0.02
20 — 0.42 0.18
30 — 0.57 0.31
40 — 0.73 0.46
50 — 0.92 0.62
60 — 1.16 0.81
70 — 1.47 1.05
80 — 1.93 1.40
90 — 2.74 2.02

the same as those of the emerging-market country indexes in that example. As
in the first experiment, 5000 independent samples are generated from a multi-
variate normal distribution, and the true £ and V for the 22 assets are assumed
to be equal to the combined-sample maximum-likelihood estimates for the actual
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data. For each generated sample, the weights in the minimum-variance portfolio
are computed using the various methods, and then the standard deviations of the
portfolios are computed using the assumed true covariance matrix V. Panel A
of Table 7 reports the differences between these standard deviations and the true
minimum standard deviation. The combined-sample Bayesian portfolio has a stan-
dard deviation that, on average, exceeds the true minimum standard deviation by
2.91%. In contrast, the combined-sample maximum-likelihood portfolio’s standard
deviation exceeds the true minimum by 4.23%, and the corresponding difference
for the truncated-sample portfolio is 3.77%. (Recall that, for the truncated sample,
the Bayesian and maximum-likelihood weights are identical.) Panel B of Table 7
reports the difference between the standard deviation of the portfolio constructed
by the indicated method minus the standard deviation of the combined-sample
Bayesian portfolio, where both standard deviations are based on the assumed true
covariance matrix V. The mean differences are 1.31% for the combined-sample
maximum-likelihood portfolio and 0.86% for the truncated-sample methods. Thus,
as observed previously for the predictive pdf based on the actual data, failure to
account for estimation risk, even when the combined sample is used, results in
a substantially higher volatility.

8. Concluding remarks

When some assets have shorter return histories than others, it is neither neces-
sary nor desirable to truncate the sample so that the lengths of all return series are
determined by the length of the shortest series. In general, the data in a longer-
history asset can provide information about the parameters of that asset’s returns
as well as the parameters of other assets’ returns. This point is illustrated here in
the context of an i.i.d. multivariate normal model, but it is likely that the same
concept can be demonstrated in other stochastic settings, such as when conditional
first or second moments fluctuate through time.

The basic factorization approach exploited here in deriving closed-form analytic
results (see the appendix) requires that the time periods covered by the vari-
ous series can be arranged as nested subsets. Little and Rubin (1987) provide
a deeper discussion of maximum-likelihood estimation in this case; they use the
term ‘monotone data’ to denote the nested-subset property. When this nesting
property fails, such as when one series has both an early starting date and an
early ending date, then the return moments can be obtained numerically using
data-augmentation methods, such as the E-M algorithm (to obtain maximum-
likelihood estimates) or the Gibbs sampler (to obtain the Bayesian predictive
pdf). Tanner (1993), for example, provides a discussion of such methods. With
more complicated stochastic settings, analytical results could be difficult to obtain
at all, whether or not the series are nested, and these numerical approaches could
then be useful in general.
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The concept of using the combined (nontruncated) sample could also be ex-
tended to the problem of making inferences about a pricing model or a given
portfolio’s mean-variance efficiency. In a frequentist setting, the likelihood func-
tion employed here could also be used to construct a likelihood-ratio test (LRT)
of the efficiency of a given portfolio, where the parameter restrictions are the
same as those investigated in previous studies. For example, Gibbons et al.
(1989) derive the finite-sample distribution of the LRT statistic when all assets
have equal-length histories; the finite-sample behavior of the LRT in the case of
unequal-length histories presents.a topic for future research.

Although the analysis and examples presented here rely on the diffuse prior
distribution for E and V in (35), an extension to an informative natural-conjugate
prior distribution is straightforward. A natural-conjugate prior for £ and ¥ can
be interpreted as the posterior distribution obtained by updating the diffuse prior
using 7o hypothetical observations of R,. Those hypothetical observations pro-
duce sample moments £ and V, where Ty, E, and V are the parameters to
be specified in the prior. The posterior distribution obtained by combining this
natural-conjugate prior with the actual data is the same as the posterior dis-
tribution obtained by combining the diffuse prior with a sample that appends
the hypothetical 7, observations to the actual data. In other words, the actual
data, where the N asset histories can have unequal lengths, is augmented by
an additional set of N histories of equal length 7y. The relevant first and sec-
ond sample moments from this new combined sample can be computed from
the moments of the actual and hypothetical data. In the case of two start dates,
for example, £, is simply replaced by a weighted average of E| and E|, where
the respective weights are 7/(T + Ty) and To/(T + Tp). Similarly, Eg is replaced
by a weighted average of Es and E, where the weights are S/(S+ 7Tp) and
Ty/(S + Tp). The expressions for the second moments, as well as extensions to
multiple starting dates, are more complicated, but they involve only the statis-
tics from the actual data required in the diffuse-prior analysis and the parameters
T, E, and V.

In a Bayesian setting, the posterior distribution of the parameters of the re-
turn distribution (given in the appendix) could be used to obtain the posterior
distribution of a given portfolio’s degree of mean-variance inefficiency. Stud-
ies by Shanken (1987), Harvey and Zhou (1990), and Kandel et al. (1995)
investigate this problem in samples in which all assets have histories of equal
length. When one selects ex ante a portfolio whose degree of inefficiency is
of particular interest, then the diffuse prior should probably be replaced by an
informative prior constructed with attention given to the implied prior beliefs
about the degree of inefficiency in the selected portfolio. Otherwise, as demon-
strated by Kandel et al. (1995), the implied prior beliefs about any given port-
folio are concentrated toward gross inefficiency, such that a very large sam-
ple is required in order to infer that any portfolio is close to being
efficient.
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Appendix

This appendix derives the Bayesian predictive pdf of Ry;, as well as the
first and second moments of that distribution. Proofs are given for the gen-
eral setting with J starting dates (Proposition 4); the result for two starting
dates follows directly as a special case (Proposition 2). Also included is a sum-
mary of Anderson’s (1957) method for computing maximum-likelihood estimates
(Proposition 1), which is straightforward to generalize to the setting with multiple
starting dates (Proposition 3). The change of variables employed in that method
also facilitates the derivation of the Bayesian results.

For j=2,...,J, define the change of variables

Bi=Uh H - KWy, (A1)
o« =E; — BiEj—, (A2)
Zj=V; — BiW;-nB;. (A3)

Let 6 denote the vector of original parameters in £ and ¥V, and let £ denote the
vector of parameters in E;, ¥, and {o;,B;,Z;; j=2,...,J}. The vectors & and ¢
have equal numbers of elements, and the Jacobian of the transformation is given
by

00
’55 = V|V Vg™ - - MgV
— lV“INJ+NJ_|+~-+N2|22|NJ+NJ—1+-"+N3 - IZJ_2|N1+NJ—1 |ZJ_1|NJ
= |V VM VN, |V g VN (A4)

which can be verified using Egs. (A.1) through (A.3) and the relation
Vinl = W-ul |V — B;W-1Bj]
= W-nl 1l (A5)
for j=2,...,J, where the first equality in (A.5) uses (51) and (A.1) and applies
a standard result for the determinant of a partitioned matrix (e.g., Anderson, 1984,
Theorem A.3.2), and the second equality uses (A.3). The relation in (A.5) can

also be used to write

V=¥l |22 - |Zs1- (A.6)



R F. Stambaugh/!Journal of Financial Economics 45 (1997) 285-331 325

Using (A.4) and (A.6), the prior for 6 in (35) is translated into a prior for ¢
given by

p&)=p(0) | 35
e |V|—(N+1)/2|I/“|N—N1 |Z‘2|N—N{z] . |ZJ-2|N—N[J_2]|Z“1_1|N—N[J7]}
J .
— |Vili(N_2Nl_l)/2 H Izjl(N—ZNm—l)/Z' (A.7)
j=2

Following Anderson (1957), the change of variables in (A.1) through (A.3)
allows the likelihood function in (54) to be rewritten as

p(Yj‘Sl, jzl,...,JiS,é)

J
=P rO I PG Mym15,005€)
=

J
=p(Yl,T|Ela I/il) I-Izp(Y.S}lY[j—l],Sps/aajaBj»zj)
]=

1 o 1 )

J

" ((zn)N,/2| 5

1 _
enp {30 (85 ~Xins Y (Tis ~Xins )2} ) (A8)
where
C,= a;
i= B} (A9)

Standard results for the multivariate normal model imply that maximizing the
first factor in (A.8) with respect to E; and ¥, gives the solutions in (60) and
(61). Similarly, standard results for the normal multivariate regression model
imply that, for j=2,...,J, maximizing the jth factor in (A.8) with respect to C;
and X; gives the solutions in (55) and (57). Reversing the change of variables
in (A.1)-(A.3) then gives the maximum-likelihood estimators in (62)—(64).
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Both the prior in (A.7) and the likelihood function in (A.8) are expressed as
products of J factors, where any given element of £ appears in only one factor.
Therefore, the posterior distribution for ¢ exhibits a similar property:

pl@r) o p(&)p(Ys, j=1,...,J]s,¢)

J
oc p(Er, Virl o) T1 p(Cj, 251 Y5, Yij—11.5,555)s (A.10)
j=2

where
PE, Wi, r)

oc |V | TN 2 exp {—Ltr (Y 7 — 17 E)) (Yr — irEDYT'E (ALLD)

P(C 2| Y s, Y j-11,555)
o | Z|THHNADZ exp {— Ltr (Y5, — X1j1,5,C)) (Yis, — X5 CHE ')
J=2,....J, (A.12)
Ly=S;—N+2Njj—N;, j=1,...,J. (A.13)

A useful property of the factorization in (A.10) is that each of the posterior
distributions in (A.11) and (A.12) is easily analyzed in a standard setting. For ex-
ample, it is straightforward to verify that, for j=2,...,J, (A.12) can be rewritten
as

P(CLZi|Y s, Y j-1),555)
—(Lj+N;j+1)72 1 A\ 5 —1
O(|Z]‘ 7T exp{—itr[Qj—l—(Cj—Cj)A,-(Cj-Cj)]Zj }, (A14)
where
A :X[’j]’%/\’[j],sj, (A.15)
Q=51 (A.16)

The right-hand side of (A.14) is identical to the posterior distribution for C;
and Z; in the standard multivariate regression model where a sample of length
L; generates (i) a matrix of cross-products of the independent variables equal
to A;, (ii) a matrix of least-squares coefficient estimates equal to ¢ ', and (iii)
a matrix of cross-products of fitted residuals equal to Q; (see, Zellner, 1971,
pp. 224-227). The diffuse prior used in that standard model is

Pp(C, Zj)oc | 2|2, (A.17)
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whereas, from (A.7), the marginal prior on those parameters is
P(C, Z;)oc | Z;| V=2Vt 1/2, (A.18)

Nevertheless, given the form of the posterior in (A.14), results for the standard
model imply that the predictive pdf for R;r.;, conditional on R[;_ij 741, is a
multivariate Student ¢ density (see, Zellner, 1971, pp. 233--236):
PR 711|R 13,741, Pr)
= PR r11|Rj—ny 741, Vs Yj-11.5)

<[V + (R, 141 = f 741V Gi(Rr1 — fy 7y )] "2, (A.19)

where
11 = Coxpprans (A.20)
Gy =[1 = x{ ;1 71 {(4)j + X0, 741X ) 741 ) i, T+1]Vij_1, (A.21)
X1 = Ry b (A22)

vi=Lj = Nj-11 = N;
ZS} — N+ Njj—q. (A.23)

The first two moments of the above conditional distribution are given by prop-
erties of the multivariate ¢ distribution (see, Zellner, 1971, pp. 331-332 and
p. 383):

E{R; 1R~y r41, Pr} = A 14y

=&+ B Ry 141, (A.24)
cov{R; 741, R} r 41 |R 1741, Pr} = vjvi 5 Gj—l
_ Y (1 +e 1+ u,»]) 3, (A25)
vi—2 S;
where
uj = (Ry—1y7+1 = Emns ) Vit s Ru—nre — Epyons)- (A.26)

Similarly, the posterior for £} and ¥; in (A.11) can be rewritten as

p(E, V|, 1)
o [Ph1 | TEHNAD2 expl— Ltr [0 (B — EDAE - EDY 'Y (A27)



328 R.F. Stambaugh/ Journal of Financial Economics 45 (1997) 285-331

where
A =T, (A.28)
O =TV,. (A.29)

As in the previous case, the posterior in (A.27) is identical to that obtained
in the standard multivariate regression model in which a sample of length L,
generates (i) a matrix of cross-products of the independent variables equal to 4,
(ii) a matrix of least-squares coefficient estimates equal to £/, and (iii) a matrix
of cross-products of fitted residuals equal to Q;. In this case, there is only one
independent variable, and that variable does not involve R;, for j>1. The diffuse
prior used in the standard model is

PEL, Vi) o [T |~M#D2, (A.30)
whereas, from (A.7), the marginal prior on those parameters is

P(EL, Viy)oc |[Fy [V =242, (A31)
Following the same analysis as before, we obtain

PR @) < [vi + (Rir41 — EVY Gi(Ry,ry — ED]TMT2, 0 (A32)
where

G =[1—(T+ 1" mo", (A.33)

vi=Ly =Ny, (A34)
and the first two moments of this predictive distribution are given by

E\=E{R, 11|97} =E\, (A.35)

. Vi —
, 1
Vii=cov{Ry 711, R 14|®r} = v — 2 Gy

T+1 o
="V A36
TN 3 i (A.36)

The predictive pdf for R4, can be factored as
J
PRr1|Pr)= p(Ry,111|P7) [] P(R;, r+1|Rj—13, 741, PT), (A.37)
j=2

so this density can be obtained simply by multiplying the densities in (A.19) and
(A.32). The product of the normalizing constants is equal to

vi2l[(v + ND/21IGHI 2 o V;]/ZF[(VJ + N))/21|Gy|'?
( 1 7[N1/2F(v1/2) Hj:Z 1'ENI/2F(Vj/2) . (A.38)
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This joint density’s first and second moments can be obtained progressively. At
each step j, for j=2,...,J, the moments of R; 7,1 in (A.24) and (A.25), which
are conditioned on Ry;_1) 741 as well as @7, are combined with the moments
of Ry;_1; 741 that are conditioned only on ®7. In the first step, where j =2, the
moments of Ry 7y conditioned on @7 are given in (A.35) and (A.36). Applying
this approach to obtain £;, the mean of R i, T+1, gives

E{R) r+1|®r} = E{E[R} 741|R[j—1,7+1, Pr)| D1}
=E{&; + BRj—1;,71|Pr}
=8; + By (A.39)

Applying (A.39) progressively for j=2,...,J and making use of (60), (62),
(63), and (A.35) establishes (67). The same analysis gives

Eg=E{R,r+1|®r}=E, j=1,...,J. (A.40)

Computing the variance—covariance matrix of R;ri; relies on the variance-
decomposition rule,

V; =cov{R; 41, R 71| @7}
=E{cov[R) 141, R},T+1|R[1—1],T+"¢T]|¢T}
+coV{E[R) 741|R(j—13,7+1, Pr), E[R; 1:41|R(j—1), 741, Pr) | D1}
(A.41)

From (A.25), computing the first term on the right-hand side of (A.41) requires
the expectation of u;, which can be rewritten as

wj =Vl s Ry r0 = Efjm) Rejonra — By’
+2E - — Ey-ns Y Vi Ly s Ru-n.r
+Elons Vitns Bu-ns — Eon P lo s Eu-n, (A.42)
and, using (A.40) and the definition of ¥;_y; in (70),
E{uj|®r} =t (V3L Viim) + 2B -1 — Ey—ns) Vit s Eu-u
+E; s ViinsEu-ns — E-nVitn s Eu-n
=t (VL5 V-1

+(Ejoy - Ejons) I7[;]_1],51(15?[1—1] —Efj_s) (A43)
Therefore, combining (A.25), (A.23), and (A.43) gives
E{coV[R; 7+1, R} 71 [Rj—11,741, Pr]| D7} =12, (A.44)
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where «; is defined in (71). From (A.24), the second term on the right-hand side
of (A.41) is equal to

coV{E[R) r41|R(j—1), 7+1> 7). B[R} 741 |Rj= 1), 741, P71 | D7}

=cov{B;R -1, T+1’Rfj—1], r+1BJ{|¢T}

=BV;_1B]. (A.45)
Combining (A.41), (A.44), and (A.45) gives
Vi=1,2+ BVi—nB, j=2,....J. (A.46)

The covariance between R; r1 and R[;_1), 741 is computed as

coV{R[ -1, 7+, R} 741|P1} = cOV{R 11,7+ 1, E[R) 71 |R -1y, 741, §7) | D7}
= COV{R[j-—l], T+1 ’Rfj—l], T+13“¢T}
=Vy-uB, Jj=2,....J, (A47)
using (A.24). Finally, combining (A.46) and (A.47) gives the result in (70).
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