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ABSTRACT

Costs of equity for individual firms are estimated in a Bayesian framework using
several factor-based pricing models. Substantial prior uncertainty about mispric-
ing often produces an estimated cost of equity close to that obtained with mispric-
ing precluded, even for a stock whose average return departs significantly from
the pricing model’s prediction. Uncertainty about which pricing model to use is
less important, on average, than within-model parameter uncertainty. In the ab-
sence of mispricing uncertainty, uncertainty about factor premiums is generally
the largest source of overall uncertainty about a firm’s cost of equity, although
uncertainty about betas is nearly as important.

THE EXPECTED RATE OF RETURN on a firm’s stock, the cost of equity, is an im-
portant input for making decisions affecting the firm. Because it affects the
discount rate at which expected future cash f lows are valued, the cost of
equity plays a key role in the firm’s investment decisions. For a public util-
ity, the estimated cost of equity capital has a direct impact on how the prices
of the firm’s services are regulated by its state public utility commission.

The cost of equity is equal to a riskless interest rate plus the expected
excess return on the firm’s stock. One approach to estimating the latter
quantity uses a standard asset-pricing model, in which the expected excess
return hinges on sensitivities of the firm’s stock return to market-wide fac-
tors.1 If rt denotes the stock’s excess return and ft denotes a K 3 1 vector of
the factors, all realized in period t, then the stock’s sensitivities, or “betas,”
are the slope coefficients in the regression

rt 5 a 1 b ' ft 1 et , ~1!
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1 Such models include the Capital Asset Pricing Model ~CAPM! of Sharpe ~1964! and Lintner
~1965!, the intertemporal CAPM of Merton ~1973!, and the Arbitrage Pricing Theory of Ross ~1976!.
An issue beyond the intended scope of this study is the selection of the appropriate riskless rate
for computing the total cost of equity. See, for example, Cornell, Hirshleifer, and James ~1997!.
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where et is the mean-zero regression disturbance. When the factors appro-
priate to the given model are constructed as excess portfolio returns or pay-
offs on zero-investment positions, as is the case in the models analyzed below,
then the pricing model implies a 5 0.2 That is, the pricing model implies
that the stock’s expected excess return, m, is given by b 'l, where l is the
vector of “factor premiums,” the expected values of the factors.

The elements of b and l must be estimated, so the true cost of equity is
uncertain. Moreover, even if b and l were known for certain, one might be
skeptical about whether any pricing model could deliver the correct cost of
equity for every stock. That is, a decision maker might be uncertain about
whether the model misprices the stock in question, so that the expected
excess return might actually be

m 5 a 1 b 'l, ~2!

where a is some unknown nonzero amount by which the model misprices the
stock. This “mispricing” uncertainty about a contributes further to the un-
certainty about the cost of equity. Finally, if the decision maker has any
doubts about which pricing model to use, then the uncertainty about m also
includes that “model” uncertainty. This study attempts to quantify these
various sources of uncertainty and gauge the relative importance of each in
estimating a firm’s cost of equity.

In the presence of mispricing uncertainty, a decision maker might wish to
combine a cost-of-equity estimate produced by a pricing model with an al-
ternative estimate, such as the stock’s historical average return. Suppose for
example that, apart from any empirical evidence, a manager believes that
there is a one-third probability that the difference between his stock’s ex-
pected return and the value implied by the CAPM is at least 5 percent per
annum in absolute value. In other words, the manager’s “prior” standard
deviation for his stock’s a is about 5 percent. Given this degree of skepticism
in the accuracy of the pricing model, how much attention should the man-
ager pay to the historical average return on the firm’s stock when estimat-
ing the firm’s equity cost of capital? Specifically, suppose that, based on the
last two decades, the firm’s stock has a sample estimate of its CAPM a equal
to 8 percent per annum with a t-statistic greater than two. To what extent
should this skeptical manager make use of that historical information? With
complete faith in the CAPM, such information would be ignored—only the
market risk premium and the stock’s beta would be used in estimating the
cost of equity. With an extreme degree of uncertainty about the model’s ac-
curacy, one might simply ignore the CAPM and estimate the firm’s cost of
equity as the stock’s historical average rate of return, which would be 8 per-
cent higher than the CAPM value. We explore solutions to this problem with
intermediate degrees of mispricing uncertainty, as in the example given here.

2 See Huberman, Kandel, and Stambaugh ~1987! for a deeper discussion of this point.
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We develop and apply a method for estimating the cost of equity using a
Bayesian approach. In this setting, the decision maker does not know the
true expected excess return but instead uses the conditional expectation
E~rt 6F!, where F denotes the information available at the time of the deci-
sion. We assume that excess returns have constant mean m, so the decision
maker’s estimate for the expected excess return is then simply the posterior
mean of m given F, and the decision maker’s uncertainty about the cost of
equity is ref lected in the posterior variance of m. As Cornell et al. ~1997!
conclude, “judgment enters the process at numerous points,” regardless of
the method used to estimate the cost of capital. A basic feature of the Bayes-
ian approach is that a decision maker’s judgment, represented by prior be-
liefs, enters the estimation in a manner guided by a scientific principle ~Bayes’s
theorem! as opposed to more ad hoc methods. As discussed above, one aspect
of the decision maker’s judgment that we can explore is uncertainty about
whether a pricing model can deliver the precise expected excess return for a
given stock. We find that, in many cases, mispricing uncertainty that seems
important in economic terms does not impact greatly the estimated cost of
equity. That is, the posterior mean of m is close to the posterior mean ob-
tained when mispricing is ruled out, even when the sample least-squares
estimate of a departs significantly from zero. Suppose one’s prior beliefs are
that the stock of interest is typical in terms of its betas and its variance of
et . Then, when the prior standard deviation of a is 5 percent per annum, as
in the above example, the estimated cost of equity is less than 1 percent ~per
annum! above the CAPM value, even though the sample estimate of a is
nearly 8 percent and its t-statistic exceeds two. In this sense, a pricing model
that might be viewed by the decision maker as being only mediocre in its
ability to price stocks accurately is still relied on fairly heavily in estimating
the cost of equity.

This study investigates factor-based models with a focus on the estimates
they produce rather than on their asset-pricing abilities versus each other or
versus non-factor-based approaches. Even though the latter issues continue
to invite debate in the academic literature, we suggest that these factor-
based models have received sufficient interest to merit investigating their
potential use by decision makers. Three pricing models are used to illustrate
our approach. The first is the CAPM, where the single factor is specified to
be the excess return on a market index portfolio. The second model, pro-
posed by Fama and French ~1993!, contains that market factor plus two
additional factors: the difference in returns between small and large firms
and the difference in returns between firms with high and low ratios of book
value to market value. The third model also has three factors, but, instead
of prespecifying them, we extract them from returns on a large cross section
of stocks using the asymptotic principal components method of Connor and
Korajczyk ~1986!.

Uncertainty about which of the three factor-based models to use can con-
tribute nontrivially to a decision maker’s overall uncertainty about the cost
of equity, but this source of uncertainty is typically less important than the

Costs of Equity Capital and Model Mispricing 69



parameter uncertainty within any given model. For example, when each
model is assigned an equal probability of being the “correct” one, we obtain
an overall posterior standard deviation for the cost of equity of 5 percent or
more per year, depending on the prior uncertainty about a, but that value is
typically no more than 0.75 percent above the posterior standard deviation
of m obtained within any single model.

Uncertainty about b contributes substantially to the overall uncertainty
about the cost of equity for an individual firm, but somewhat more impor-
tant is the uncertainty about l, the vector of factor premiums. Fama and
French ~1997! estimate expected returns for industry portfolios using both
the CAPM as well as the Fama–French ~1993! three-factor model. Based on
frequentist standard errors, they conclude that by far the largest source of
imprecision in industry costs of equity arises from estimation of l. Ferson
and Locke ~1998!, also in a frequentist setting, examine sources of error in
CAPM-based estimates of expected returns on portfolios of stocks grouped
by industry or market capitalization. They similarly conclude that errors in
b are likely to be less important than errors in estimating the market pre-
mium.3 Although uncertainty about b, not surprisingly, is more important
for individual firms than for portfolios, our conclusion regarding the impor-
tance of uncertainty about l is otherwise similar to the conclusions of these
studies. In all three of the models, the histories of the factors are available
beginning in July 1963, but the factors are correlated with other series whose
histories begin earlier. As a result, the longer-history series contains addi-
tional information about l, as discussed by Stambaugh ~1997!. We find that,
in the absence of uncertainty about mispricing, uncertainty about l remains
the most important source of uncertainty about a firm’s cost of equity, even
after incorporating information about l that is contained in series whose
histories begin in 1926.

In keeping with the spirit of a factor-based approach, much of our analysis
assumes that the information set used by the decision maker consists of
histories of factors and stock returns. That is, the decision maker does not
make use of firm-specific characteristics, except perhaps in constructing the
factors ~as in, for example, the Fama–French ~1993! model!. Previous studies
have recommended the use of firm-specific characteristics in estimating the
cost of equity ~e.g., Elton, Gruber, and Mei ~1994! or Schink and Bower ~1994!!,
and the usefulness of various firm-specific characteristics in explaining ex-
pected returns has been argued recently by Daniel and Titman ~1997!. An-
other feature of the Bayesian approach is that it allows the decision maker
to introduce additional prior information about the firm whose cost of equity
is to be estimated, and our methodology allows the decision maker to either
ignore or incorporate such prior information. In specifying the prior, the
firm can be regarded as a random draw either from the whole cross section

3 Ferson and Locke ~1997! reach this conclusion even after allowing the errors in betas to
encompass errors in constructing the market index.
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of stocks, when firm-specific characteristics are ignored, or from a group of
firms with similar characteristics, when the firm’s characteristics are incor-
porated. As a simple illustration of the latter case, we include a firm’s in-
dustry classification as additional prior information and analyze estimates
of expected excess returns on stocks of utilities, which constitute an industry
in which estimated costs of equity have clear practical relevance.

The remainder of the paper is organized as follows. The methodology is
developed in Section I, wherein we present the general form of the priors
used in our Bayesian approach, explain how we obtain the resulting poste-
rior distributions of m and its components, and describe the empirical-Bayes
procedure used to obtain parameters in the prior distributions. Sections II
and III contain our empirical results. Section II reports and analyzes pos-
terior moments of the expected excess return and its components for indi-
vidual stocks. Those results include a detailed analysis for one stock as well
as analyses for two cross sections: a broad universe of 1,994 stocks and a
smaller set of 135 utility stocks. Section III investigates the potential un-
certainty about the cost of equity that arises from uncertainty about which
pricing model to use. Section IV reviews the conclusions.

I. Methodology

A. Overview

The estimate of a stock’s expected excess return is given by the posterior
mean, E~m6F!, where m is a function of the unknown parameters a, b, and
l ~equation ~2!! and F is the historical sample information available to the
decision maker. The imprecision in the estimate of the expected excess re-
turn is characterized by the posterior variance, Var~m6F!. The posterior mean
and variance are obtained by combining the sample information about the
unknown parameters with the decision maker’s prior beliefs about those
parameters. A key feature of the prior beliefs is the mispricing uncertainty
about a, represented by the prior standard deviation, sa. We let sa take
different values on the interval ~0,`! in order to explore the role of mispric-
ing uncertainty in estimating the cost of equity.

Prior beliefs about the elements of b and their correlations with a are
constructed by viewing the firm as a random draw from a cross section of
firms. The prior mean of b, for example, is set equal to the average of the
ordinary-least-squares ~OLS! estimates of b for the firms in the cross sec-
tion. This cross section can be selected either as a broad universe or as a
subset of firms that share one or more characteristics with the firm whose
cost of equity is to be estimated. That firm’s posterior mean of b is then
“shrunk” away from its own OLS estimate and toward the cross-sectional
mean, in a manner similar to that discussed by Vasicek ~1973!. If, as in an
example presented later, the firm is a public utility and the cross section
consists of other utilities, then the given firm’s b is shrunk toward the av-
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erage b for utilities. In estimating costs of equity for various industries,
Fama and French ~1997! follow a similar approach and shrink each indus-
try’s b toward the market-wide average b.

The prior mean of a is set equal to zero. In the absence of any observations
of the firm’s historical stock performance, the decision maker is viewed as un-
able to sign the potential mispricing. This assumption about the prior mean of
a, although perhaps the most natural, is made for simplicity and is not re-
quired by the methodology. In particular, one could instead set the prior mean
of a equal to the average OLS estimate of a for a cross section of firms with
characteristics similar to the given firm in question, as done with b. The latter
approach would be one way to incorporate the type of characteristics-based pric-
ing effects investigated by Daniel and Titman ~1997!.

The decision maker is assumed to have “diffuse” prior beliefs about l, the
vector of factor premiums. In other words, without observing any past real-
izations of the factors, the decision maker would have essentially no idea
about their expected values. The histories of the factor realizations are often
longer than the firm’s return history used in the cost-of-capital estimation.
Moreover, additional information about the factor premiums is obtained from
variables whose histories are longer than those of the factors. In the one-
factor CAPM and the two three-factor models used here, the histories of the
factors begin in July 1963, but the returns on the factors are correlated with
longer series that provide additional information about the factor premiums.
For example, the Fama–French NYSE-AMEX-Nasdaq market index, which
we use as the market factor in the CAPM and in the Fama–French three-
factor model, has returns available starting in July 1963, but those returns
are highly correlated with the returns on the value-weighted NYSE portfo-
lio, which CRSP supplies beginning in 1926. As shown by Stambaugh ~1997!,
that longer-history series contains additional information about the mean of
the shorter-history market factor. For each of the pricing models used here,
the cost-of-equity estimates incorporate the additional information about fac-
tor means that is contained in three series whose histories begin in January
1926: the value-weighted NYSE portfolio, the equally weighted NYSE port-
folio, and the Ibbotson small-stock portfolio ~all obtained from CRSP!.

The remainder of this section provides the details of the methodology. The
reader who wishes to proceed directly to the empirical results may skip to
Section II.

B. Stochastic Setting

Let r denote the T 3 1 vector of returns on the stock of the firm whose cost
of equity is to be estimated. In many cases, the stock’s return history, or at
least the portion of that history used in the estimation, may be shorter than
the history of the factors. It is assumed that there are S observations of the
factors, with S $ T. Let F ~T ! denote the T 3 K matrix containing the T
observations of the factors corresponding to the same periods as the returns
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in r. The regression disturbance et in equation ~1! is assumed to be, in each
period t, an independent realization from a normal distribution with zero
mean and variance s2, so the most recent T observations of the returns and
the factors obey the regression relation

r 5 Xb 1 e, e ; N~0,s2IT !, ~3!

where b ' [ @a b ' # , X 5 @iT F ~T ! # , e contains the T regression disturbances,
iT is a T-vector of 1’s, IT is a T 3 T identity matrix, and the notation “;” is
read “is distributed as.”

In addition to the S observations of the K factors, there exist L observa-
tions of KL variables that are correlated with the factors. If L . S, then, as
shown by Stambaugh ~1997!, the longer histories of these additional vari-
ables contain information about l, the K 3 1 vector of factor means, beyond
that contained in the factor histories alone. Let yt denote the KL 3 1 vector
containing the observations of the additional variables in period t, and let
Y ~L! denote the L 3 KL matrix containing all L observations of yt . For each
of the S periods over which both ft and yt are observed, define the “aug-
mented” set of factors ft

a ' 5 @ ft
' yt
' # , and assume that

ft
a ; N~u, G!, ~4!

where the realizations are independent across t, u ' 5 @l' u2
' # , and G denotes

the covariance matrix of ft
a . For the L 2 S periods in which only yt is ob-

served, it is also assumed that

yt ; N~u2, G22!, ~5!

again with independent realizations across t, where G22 is the corresponding
submatrix of G. That is, the marginal distribution of yt is given by equa-
tion ~5! for all L periods. Finally, it is assumed that ft

a is independent of e for
all t.

Given the above assumptions, it follows that the likelihood function for
the parameters ~b, s, u, G! can be factored as

p~r, F ~S!,Y ~L! 6b,s,u,G! 5 p~r 6F ~T !,b,s! p~F ~S!,Y ~L! 6u,G!, ~6!

where the likelihood function for the regression parameters is

p~r 6F ~T !,b,s! }
1

sT exp H2 1

2s2 ~r 2 Xb!'~r 2 Xb!J , ~7!
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and the likelihood function for the moments of the factors and additional
variables is

p~F ~S!,Y ~L! 6u,G! } 6G22 6
2

L2S
2 exp H21

2 (
t51

L2S

~ yt 2 u2!'~G22!21~ yt 2 u2!J
3 6G 6

2
S
2 exp H21

2 (
t5L2S11

L

~ ft
a 2 u!'~G!21~ ft

a 2 u!J. ~8!

~The notation “}” is read “is proportional to.”!

C. Priors

C.1. General Specification

We propose a normal-inverted-gamma prior on the regression parameters
b and s:

b 6s ; N~ Nb,C~s!! ~9!

s2 ;
ns0

2

xn
2 , ~10!

where

C~s! 5 3 S s2

E~s2 !
Dsa

2 S s

E~s!
Dsa~ rab sb!'

S s

E~s!
Dsa~ rab sb! Vb

4 . ~11!

In the above, sb is a K 3 1 vector containing the square roots of the diagonal
elements of Vb, the covariance matrix of b, and rab is a K 3 K diagonal
matrix with the simple correlations between a and the elements of b on the
main diagonal. Since Nb does not depend on s, the marginal prior covariance
matrix of b equals

Vb [ cov~b,b ' ! 5 E~C~s!!

5 F sa
2 sa~ rab sb!'

sa~ rab sb! Vb

G, ~12!
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and it is assumed that Vb is positive definite. In order to have C~s! be
positive definite, we also require

sb
' rab
' Vb

21 rab sb ,
@E~s!# 2

E~s2 !
5

n 2 2

2 SG @~n 2 1!02#

G~n02!
D2

, ~13!

where the equality of the second and third expressions follows from the
properties of the inverted gamma distribution for s,4

E~s2 ! 5
ns0

2

n 2 2
~14!

and

E~s! 5
G @~n 2 1!02#

G~n02!
Sns0

2

2 D102

. ~15!

In specifying the parameters for the above priors, we use an empirical-
Bayes procedure that relies on data for a cross section of individual stocks.
The effects of “mispricing” uncertainty are investigated by entertaining a
wide range of values for sa. Details of that approach are provided in Sec-
tion C.2.

Observe in equation ~11! that the conditional prior variance of a is pro-
portional to s2, the variance of et . This feature of our prior recognizes that
a high value of 6a6 accompanied by a low value of s2 implies a high Sharpe
ratio for some combination of the asset, the factor-mimicking positions, and
cash ~earning the riskless rate!.5 In particular, ~a0s!2 is the difference be-
tween the maximum squared Sharpe ratio for such a combination and the
maximum squared Sharpe ratio for combinations of only the factor-mimicking
positions and cash.6 Following MacKinlay ~1995!, a prior positive association
between a and s is imposed to reduce the probability of high Sharpe ratios
as compared to priors that treat those parameters as independent. In con-
trast, we do assume independence between b and s in the absence of a
compelling a priori argument to the contrary.

The structure of the covariance matrix for b, C~s! in equation ~11!, pro-
duces a prior that is essentially a hybrid of two more standard alternative
priors for the regression model. In one alternative, the normal density for b
and the inverted-gamma density for s2 are independent, so that no part of
the covariance matrix for b involves s2 ~e.g., Chib and Greenberg ~1996!!. As
explained above, this prior would make a independent of s2 and hence as-

4 See Zellner ~1971!, p. 372.
5 A portfolio’s Sharpe ratio is its expected excess return divided by its standard deviation of

return.
6 See, for example, Gibbons, Ross, and Shanken ~1989!.
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sign greater probability to high Sharpe ratios. In the other alternative, the
well-known natural-conjugate prior, the marginal prior for s2 is still in-
verted gamma, but the entire covariance matrix of b is proportional to s2

~e.g., Zellner ~1971!, Chap. 3!. In the formula for the posterior mean of b for
that case, the relative weights on the sample estimate and the prior mean do
not depend on sample information about s. That is, Zb is given no more
weight when the sample residual variance is small than when it is large,
and that property is unappealing. Vasicek ~1973! argues that the natural-
conjugate prior is inappropriate when the prior parameters are estimated
from a cross section of stocks.

We assume that the regression parameters are independent of the mo-
ments of ft

a , the augmented set of factors:

p~b,s,u,G! 5 p~b,s!p~u,G!. ~16!

The prior density for u and G is specified as

p~u,G! } 6G 6
2

K1KL11
2 , ~17!

which is the standard diffuse prior used to represent “noninformative” be-
liefs about the parameters of a multivariate normal distribution ~e.g., Box
and Tiao ~1973!!.

C.2. Prior Parameters

In order to construct the prior distribution for the regression parameters
in equations ~9! and ~10!, we specify the elements in Nb and Vb and the scalar
quantities s0 and n. ~Note from equations ~11! through ~15! that Vb, s0

2 and n
determine the conditional covariance matrix C~s!.! The prior values are cho-
sen with the objective that the prior mean of b for any given stock is the
mean of b in a given cross section of stocks and that the prior unconditional
covariance matrix of b for that stock, Vb, is the covariance matrix of b in the
cross section. Similarly, the prior mean and variance of s2 for the stock,
determined by s0 and n, correspond to moments of s2 in the cross section.

We construct prior distributions using two specifications for the cross sec-
tion of stocks. The first cross section consists simply of all stocks on the
NYSE and AMEX ~subject to a data-availability requirement detailed be-
low!. In this first specification, which is used throughout much of our analy-
sis, the stock to be analyzed is essentially viewed as a random draw from the
universe of all stocks. Although this approach strikes us as a reasonable
starting point, at least for our exploratory study, it is only one of many
methods that might be used to specify the prior. In a statistical sense, the
normal-inverted-gamma prior in equations ~9! and ~10! is generally charac-
terized as “informative” as opposed to diffuse ~noninformative!, but this first
specification of the prior does not rely on specific knowledge about the firm.
In an economic sense, therefore, this prior is rather uninformative. In con-
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trast, our second cross section of stocks consists solely of utilities, so the
prior thereby constructed can be viewed as economically informative. In other
words, the prior incorporates knowledge of a characteristic—industry
classification—of the firm whose cost of equity is to be estimated.

The cross-sectional moments of b and s2 are not directly observable. We
take an empirical-Bayes approach and estimate those moments using values
of Zb and [s2 computed for a large cross section.7 Fama and French ~1997!
apply a similar methodology, following Blattberg and George ~1991!, in com-
puting shrinkage estimates of b for industry portfolios. The first prior, based
on the broad cross section, is constructed as follows. For each stock in the
CRSP monthly NYSE-AMEX file with at least 24 months of data in the
period from July 1963 through December 1995, we compute Zb and [s2 using
all of that stock’s available data during that period. The stock returns are in
excess of the return on a one-month Treasury bill ~from CRSP’s SBBI file!.
For the CAPM and the Fama–French ~1993! three-factor model ~hereafter
the FF model!, the factor data begin in July 1963 and consist of monthly
realizations of three factors: ~i! the excess return on a market-index portfolio
of NYSE, AMEX, and Nasdaq stocks, ~ii! the difference in returns between a
small-stock portfolio and a large-stock portfolio, and ~iii! the difference in
returns between a portfolio of high book-to-market ~B0M! stocks and a port-
folio of low B0M stocks.8 Only the first of these factors is used in the CAPM.
To construct the three factors for the Connor–Korajczyk ~1986! model ~here-
after the CK model!, we take all stocks with at least one year of data on the
NYSE-AMEX monthly CRSP file for the 7063–12095 period and then extract
one set of factors for that entire period using the method in Connor and
Korajczyk ~1987! that allows for missing observations.9

The statistics Zb and [s2, computed for each stock, are used to construct the
prior parameters b, Vb, s0

2 , and n. The prior mean of b, Nb, is set equal to the
cross-sectional average of the Zb’s, except that the first element, Ta, is set to
zero. The prior covariance matrix of b, Vb, is constructed as follows. First, we
compute the matrix

ZVb 5 J~ Zb! 2 [si
2~X 'X !i

21 , ~18!

where J~ Zb! is the sample cross-sectional covariance matrix of the Zb’s. The
second term in equation ~18! is the average across stocks of the usual esti-
mate for the sampling variance of Zb, where [si

2 and ~X 'X !i are based on the
observations available for stock i. ~The bar denotes an average across stocks.!

7 Vasicek ~1973! proposes using a cross section of stocks to obtain the parameters of the prior
distribution for the market beta. See Berger ~1985! for a general discussion of empirical-Bayes
methods.

8 We thank Ken French for providing these data.
9 The factors are the first three eigenvectors of the T 3 T matrix ~T 5 390! whose ~s, t!

element is ~10Ns, t !(i51
Ns, t ri,s ri, t , where ri, t is the excess return on stock i in month t and Ns, t

denotes the number of stocks that have returns in months s and t.
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As noted by Fama and French ~1997!, under standard assumptions, ZVb is an
estimate of the cross-sectional covariance of the b’s. For all three models, it
happens that ZVb is positive definite ~not guaranteed in general!. To construct
the matrix Vb, as represented in equation ~12!, Vb is set equal to the corre-
sponding submatrix of ZVb, and rab is taken from the correlation matrix as-
sociated with ZVb. Rather than set sa

2 equal to the ~1,1! element of ZVb,
however, we instead let it take a wide range of values, ranging from zero to
infinity.10 Each value of sa is then combined with the fixed values of Vb and
rab, using equation ~12!, to form the matrix Vb used in the prior.

The inverted gamma density for s implies11

n 5 4 1
2~E~s2 !!2

Var~s2 !
. ~19!

We substitute the cross-sectional mean of the [s 2 ’s for E ~s 2 ! in equa-
tion ~19!, and for Var~s2 ! we substitute

[vs2 5 j~ [s2 ! 2
Ti 2 K 2 1

Ti
2 2 [si

4 . ~20!

Equation ~20! is the analog to equation ~19!. The first term on the right-
hand side is the sample cross-sectional variance of the [s2’s, and the second
term is the cross-sectional average of the estimates of the sampling variance
of [s2. That is, [si

2 denotes the estimated residual variance for stock i, based
on Ti observations for that stock, and the estimated sampling variance of [si

2

is the quantity under the bar in equation ~20!. The value of n in the prior is
set to the next largest integer of the resulting value on the right-hand side
of equation ~19!. Given that value of n, the value of s0

2 used in the prior is
obtained from equation ~14!, where the cross-sectional average of the [s2’s is
substituted for E~s2 !.

Panel A of Table I reports the parameter values used in the prior con-
structed from the entire cross section of stocks. Note that in the CAPM the
prior correlation between a and b is positive. This occurs in spite of a neg-
ative cross-sectional correlation between the sample estimates [a and Zb, as
has been observed in previous studies ~e.g., Black, Jensen, and Scholes ~1972!!.
That is, the off-diagonal element of the first matrix on the right-hand side of
equation ~18! is negative. The positive correlation in the prior results from
the fact that the average sampling covariance between [a and Zb, appearing in
the second term on the right-hand side of equation ~18!, is also negative, and
the difference results in a positive estimate of the cross-sectional covariance

10 Technically, the priors and posteriors given in our formulas are defined only for finite
positive values of sa, so the results reported for zero and infinity are actually computed by
setting sa to very small and very large values.

11 This follows directly from the moments given by Zellner ~1971!, p. 372.
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Table I

Parameters Used in the Priors
In Panel A, for each stock with at least 24 months of data in the period from 701963
through 1201995, Zb is the ordinary-least-squares estimate of b defined by the regression

rt 5 @1 ft
' #b 1 et ,

where rt is the excess return on the stock and ft is a vector of factors. The sample variance
of the residuals from that regression is [s2, an estimate of s2, the variance of et . In Panel
B, Zb, and [s2 are obtained for every utility stock with at least 48 months of data in the
period. The prior mean of b, Nb, is computed as the cross-sectional average of the Zb’s, except
that its first element, the mean of a, is set to zero. The prior standard deviations and
correlations are obtained from ZVb, which is computed as the cross-sectional covariance
matrix of the Zb’s minus the cross-sectional average of the time-series sampling variances
of the Zb’s. The prior covariance matrix of b, Vb, is computed from ZVb by varying the prior
standard deviation of a ~sa! between zero and infinity while preserving the correlation
structure of ZVb. In Panel B, the off-diagonal elements of Vb are set equal to zero in order
to have that matrix be positive definite. The prior mean of s2 is computed as the cross-
sectional average of the [s2’s, and the prior variance of s2 is computed as the difference
between the cross-sectional variance of the [s2’s and the cross-sectional average of the
time-series sampling variances of the [s2’s. Given the prior mean and variance of s2,
properties of the inverted gamma density imply the values of n and s0

2 , which are the two
parameters used to define the prior density of s.

Prior Moments of b~5 @a b ' # ' ! Prior Parameters for s

Model Mean Std. Dev. Correlations n so
2

Panel A: All Stocks

CAPM 0 0–` 1 0.26 5 0.0097
1.122 0.424 1

3-factor FF 0 0–` 1 20.15 20.28 20.55 5 0.0086
1.006 0.384 1 0.26 0.20
0.967 0.860 1 0.45
0.382 0.654 1

3-factor CK 0 0–` 1 20.19 20.24 0.08 5 0.0084
1.051 0.563 1 0.00 20.42
0.017 0.750 1 20.12
0.056 0.424 1

Panel B: Utilities

CAPM 0 0–` 1 0 6 0.0030
0.641 0.228 1

3-factor FF 0 0–` 1 0 0 0 6 0.0028
0.735 0.176 1 0 0

20.001 0.326 1 0
0.420 0.213 1

3-factor CK 0 0–` 1 0 0 0 6 0.0029
0.493 0.293 1 0 0

20.091 0.019 1 0
0.420 0.213 1
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between a and b. For the other two models, the prior correlations between a
and the elements of b are generally negative. In particular, the prior corre-
lation between a and the HML sensitivity ~the last element of b in the FF
model! is 20.55. This value, obtained here with individual stocks, is consis-
tent with a similarly large negative correlation between a and HML sensi-
tivities for industry portfolios observed by Fama and French ~1997!.

As noted earlier, the prior based on the entire cross section can be viewed
as economically noninformative compared to a prior that makes use of a
cross section selected according to one or more of the firm’s characteristics.
For example, if a public utility’s cost of equity is to be estimated, the prior
parameters can be obtained from a cross section of utilities rather than the
cross section of all stocks. Our second prior uses the cross section of 186
utility firms ~SIC codes between 4900 and 4999! with at least 48 months of
data in the period from July 1963 through December 1995. The same ap-
proach described earlier for the entire cross section is applied here, except
that the off-diagonal elements of ZVb are set to zero. The latter simplification
and the 48-month data requirement are imposed in order to obtain a positive-
definite prior covariance matrix for b with this smaller cross-section. Panel
B of Table I reports the parameter values in this utility-specific prior.

D. Posteriors

The posterior density for the parameters is proportional to the product of
the prior density and the likelihood function. Given the factorizations of the
likelihood function in equation ~6! and the prior density in equation ~16!, the
posterior density can also be factored as the posterior for b and s multiplied
by the posterior for u and G. We analyze these two posteriors separately and
then explain how we combine the posterior moments for b and l to obtain
posterior moments for the expected excess return.

D.1. Regression Parameters

The joint prior density p~b,s! is equal to the product p~b 6s!p~s!, where
the normal prior density for b given s in equation ~9! can be written as12

p~b 6s! } 6C~s!62102 exp H21

2
~b 2 Nb!'C~s!21~b 2 Nb!J

}
1

s
exp H2 1

2s2 ~b 2 Nb!'S 1

s2 C~s!D21

~b 2 Nb!J, ~21!

12 The second line in equation ~21! follows from

6C~s!6 5 sa
2 *S s2

E~s2 !
D 2 S s

E~s!
D2

sb
' rab
' Vb

21 rab sb*{6Vb 6

} s2.
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and the marginal inverted-gamma prior density for s in equation ~10! can
be written as

p~s! }
1

sn11 exp H2 ns0
2

2s2 J. ~22!

Multiplying the prior densities in equations ~21! and ~22! and the likelihood
in equation ~7! gives the joint posterior for b and s, which can be written as

p~b,s6r, F ~T ! ! }
1

sn1T12 exp H2 1

2s2 Fns0
2 1 T [s2 1 ~b 2 Nb!'S 1

s2 C~s!D21

~b 2 Nb!

1 ~b 2 Zb!'X 'X~b 2 Zb!GJ, ~23!

where Zb 5 ~X 'X !21X 'r and T [s2 5 ~r 2 X Zb!'~r 2 X Zb!. We compute moments of
this joint posterior using the Metropolis–Hastings ~MH! algorithm, a Mar-
kov chain Monte Carlo procedure introduced by Metropolis et al. ~1953! and
generalized by Hastings ~1970!. ~For an introduction to the MH algorithm,
see Chib and Greenberg ~1995! or Gilks, Richardson, and Spiegelhalter ~1996!.!
Brief ly, a sequence of draws of b and s is constructed by making “candidate”
draws from a “proposal” density and then accepting a new candidate or re-
taining the previous value based on a rule that ensures the resulting se-
quence for ~b, s! forms a Markov chain whose invariant distribution is the
“target” posterior density of interest. The posterior moments of the param-
eters are computed as the sample moments of a large number of draws. We
use a “block-at-a-time” version of the MH algorithm, where b is drawn di-
rectly from the conditional density p~b 6s, r, F ~T ! !, but s is drawn from a
proposal density given by the conditional posterior density for s that arises
when s and b are made independent in the normal-inverted-gamma prior.13

The target density for s is the conditional density p~s6b, r, F ~T ! !, which is
proportional to the right-hand side of equation ~23! ~since b is then viewed
as a constant and the marginal density of b, by definition, does not involve
s!. We simulate an MH chain of 50,500 draws, discard the first 500 draws,
and estimate the posterior moments of b and s over the remaining 50,000

13 The prior for s is the same as in equation ~10!, and the prior for b is specified as normal
with mean Nb and covariance matrix Vb. The conditional posterior for s given b is inverted
gamma in that case, and the acceptance rate for candidates drawn from this proposal density
typically ranges between 75 percent and 79 percent across the three pricing models. The pro-
cedure described above, where the proposal density for some of the parameters ~b in this case!
is the same as the target “full conditional” density, is sometimes referred to as “Metropolis
within Gibbs,” although Chib and Greenberg ~1995! suggest that such terminology is inappro-
priate. As they point out, Gibbs sampling, introduced by Geman and Geman ~1984!, is a special
case of MH in which all parameters are drawn from their full conditional densities. Casella and
George ~1992! provide an introduction to the Gibbs sampler, and an early finance application
appears in Kandel, McCulloch, and Stambaugh ~1995!.

Costs of Equity Capital and Model Mispricing 81



draws. The number of draws is chosen such that, across repeated indepen-
dent runs of the MH algorithm, differences in the computed first and second
moments of b are small enough for us to report at least two decimal places
in our results.

From equation ~23! we see that the conditional posterior for b given s can
be written as

p~b 6s, r, F ~T ! ! } exp H21

2 F~b 2 Nb!'C~s!21~b 2 Nb! 1 ~b 2 Zb!'S 1

s2 X 'XD~b 2 Zb!GJ
} exp H21

2
~b 2 Dbs!'M~b 2 Dbs!J, ~24!

where

M 5 C~s!21 1
1

s2 X 'X, ~25!

and

Dbs 5 M21FC~s!21 Nb 1
1

s2 X 'X ZbG. ~26!

Hence, the conditional posterior distribution for b given s is normal with
mean Dbs and covariance matrix M21, so it is easily sampled directly, as
noted in the above description of the MH algorithm. Observe that Dbs is a
~matrix! weighted average of the prior mean Nb and the sample estimate Zb,
where the weights are the precisions of Nb and Zb conditional on s. This weight-
ing can be interpreted as shrinking the sample estimate Zb toward its prior
mean Nb, where the degree of shrinkage depends on the relative reliability of
the sample estimate. This shrinkage effect is discussed further in Section II.

We find that the first and second posterior moments of b, computed using
the MH algorithm, are approximated well by the moments of p~b 6s, r, F ~T ! !
evaluated at a reasonable estimate of s ~using equations ~25! and ~26!!. An
estimate of s for this purpose is computed in two steps. Using equation ~26!,
the posterior mean of b conditioned on s 5 [s is computed, and its value is
denoted as b*. The final estimate of s is computed as the posterior mean of
s conditioned on b 5 b*, using the conditional posterior density for s that
arises when s and b are made independent in the normal-inverted-gamma
prior ~i.e., the proposal density for s in the MH algorithm!. In the empirical
analyses in Sections II and III, we present a one-stock example based on the
MH algorithm, but we use the approximation to compute posterior moments
for a large number of stocks, since performing the MH algorithm for each
stock would be computationally prohibitive.
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D.2. Factor Means

Define the first and second sample moments of yt ,

Zu2 5
1

L
Y ~L! 'iL , ~27!

and

ZG22 5
1

L
~Y ~L! 2 iL Zu2

' !'~Y ~L! 2 iL Zu2
' !. ~28!

Let Y ~S! denote the S 3 KL matrix containing the S observations of yt cor-
responding to the same S periods as those in F ~S!, and define Z 5 @iS Y ~S! # .
The least-squares coefficient matrix in a multivariate regression of F ~S! on
Y ~S! is

ZH 5 F Zh1
'

ZH2
'G5 ~Z 'Z!21Z 'F ~S!, ~29!

where Zh1 is K 3 1 and ZH2 is K 3 KL, and the sample covariance matrix of the
residuals is

ZS 5
1

S
~F ~S! 2 Z ZH !'~F ~S! 2 Z ZH !. ~30!

The sample statistics in equations ~27! through ~30! prove useful in comput-
ing the posterior first and second moments of l, which are derived in Ap-
pendix A. The posterior mean of l is

Dl 5 Zh1 1 ZH2 Zu2, ~31!

and the posterior covariance matrix of l is

FVl 5 S S

S 2 K 2 2Dtr 1 ~Z 'Z!21 3
1 Zu2

'

Zu2 S 1

L 2 K 2 KL 2 2D ZG22 1 Zu2 Zu2
' 42{ ZS

1 S 1

L 2 K 2 KL 2 2D ZH2 ZG22 ZH2
' , ~32!
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where “tr” denotes the trace operator. When S 5 L, Dl in equation ~31! sim-
plifies to the vector of sample means of the factors over the S periods. That
is, the more common estimate of the factor premia arises as a special case
of our estimate when no longer-history asset returns are included in the
estimation.

D.3. Cost of Equity

Recall that the stock’s expected excess return is given by

m 5 a 1 l'b 5 @1 l' #b. ~33!

Once we have obtained the posterior first and second moments of l and b, it
is straightforward to compute the first and second moments of m, since the
posterior distributions of those parameters are independent. As noted at the
outset, the decision maker’s estimate of the expected excess return is the
posterior mean of m, which, given the independence of l and b, is simply

E~m6r, F ~S!,Y ~L! ! 5 Ia 1 Dl' Db, ~34!

where Ia and Db denote posterior means of a and b. The posterior variance
of m is given by

Var~m6r, F ~S!,Y ~L! ! 5 trS FVbF1 Dl'

Dl FVl 1 Dl Dl'GD 1 Db ' FVl Db, ~35!

where FVb and FVb denote the posterior covariance matrices of b and b.14

In the empirical results presented in the next section we compute the
posterior variance of m and its components, a and b 'l. For the latter quan-
tity we report the unconditional variance as well as variances that condition
on either b or l set equal to their posterior means. The conditional variances
provide additional insight into the sources of uncertainty about the cost of
equity. These variances of b 'l are computed as

Var~b 'l 6r, F ~S!,Y ~L! ! 5 tr~ FVb @ FVl 1 Dl' Dl#! 1 Db ' FVl Db, ~36!

Var~b 'l 6l 5 Dl, r, F ~S!,Y ~L! ! 5 Dl' FVb Dl, ~37!

14 From equation ~33! and the independence of l and b, the conditional variance of m given
l ~where all moments are posterior! is

Var~m6l! 5 @1 l' # FVbF1

l
G5 trS FVbF1 l'

l ll'
GD,

and the expectation of this quantity, taken with respect to l, is the first term on the right-hand
side of equation ~35!. The conditional mean of m given l is Ia 1 Db 'l, and the variance of this
quantity, taken with respect to l, is the second term on the right-hand side of equation ~35!.
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and

Var~b 'l 6b 5 Db, r, F ~S!,Y ~L! ! 5 Db ' FVl Db. ~38!

II. Cost-of-Equity Estimates: Posterior Moments

A. Results for an Individual Stock

We first compute the moments of the posterior distribution for the ex-
pected excess return and its various components for the stock of a specific
firm, Bay State Gas Company. One reason for this choice is that, across the
three models, the OLS estimates of b for this company generally differ sub-
stantially from the cross-sectional averages, so the shrinkage effects dis-
cussed earlier can be illustrated. If we were instead to select a typical stock,
Zb would be close to the cross-sectional average used to specify the prior

mean, so any shrinkage effects would be minimal. Moreover, selecting a util-
ity allows us to compare results based on the first all-stock prior to those
based on the second utility-specific prior.

As explained in the previous section, given the form of the likelihood and
the assumed prior independence between the regression parameters ~b and
s! and the factor means ~l!, the posterior moments of the regression param-
eters depend only on the data used in the regression model. The monthly
history of Bay State Gas begins in December 1974, so in this case the
regression-model data consist of monthly returns on the stock and the fac-
tors for the 253 months in the period from December 1974 through Decem-
ber 1995. For Bay State Gas, the Metropolis–Hastings algorithm is used to
compute the posterior means and standard deviations of the regression pa-
rameters, as described in the previous section. Panel A of Table II reports
the posterior means and standard deviations of the CAPM a and b. These
posterior moments are reported for seven values of sa, the prior standard
deviation of a that characterizes a decision maker’s mispricing uncertainty
about the given model.

A dogmatic belief in the ability of the model to deliver precisely the ex-
pected excess return is characterized by sa equal to zero. As sa moves from
zero to infinity, the decision maker’s confidence in the pricing model’s ability
declines, so greater weight is placed on the regression estimate [a: The pos-
terior mean of Bay State Gas’s a moves from 0 to 7.66 percent ~annualized!.
The latter value is close to Bay State’s [a estimate of 7.92 percent—the small
difference arises from correlation in the posterior between a and b.15 Ob-
serve, however, that the posterior mean of a moves away from zero rather
slowly. For example, the posterior mean of a is only 11 basis points ~bp!

15 Recall that a is the first element of b in equations ~25! and ~26!. With nonzero off-diagonal
elements in the first row of M21, the posterior covariance matrix of b ~conditional on s!, the
posterior mean of a generally depends, for a finite T, on all of the elements of Nb and Zb. The
slight nonmonotonicity in Ia observed in the first row of Table II is most likely due to the
inf luence of the b-related terms on a.
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Table II

Posterior Means and Standard Deviations for the Components of Bay
State Gas’s Expected Excess Return from the CAPM

The expected excess return on the stock, m, is given by m 5 a 1 bl, where l is the expected
excess market return, and a and b are parameters in the regression of the stock’s monthly
excess return on the excess market return:

rt 5 a 1 brM, t 1 et .

The moments for the parameters of the regression model, reported in Panel A, are based on
monthly excess returns for the period 1201974 to 1201995 ~253 months!. The ordinary least-
squares estimates are [a 5 7.92% ~annualized! and Zb 5 0.42. The moments for the quantities
involving l, reported in Panel B, are based on monthly excess returns for the periods indicated
and, for the longer period, use the additional information in the history of returns on the
value-weighted and equally weighted NYSE portfolios and the Ibbotson small-stock portfolio.
Also reported for each period is [m 5 [a 1 Zb Dl, which is the posterior mean of m obtained with
diffuse priors on all parameters, where Dl denotes the posterior mean of l. Except for the mo-
ments of b, all posterior means and standard deviations are reported as annualized percentage
values.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Regression Parameters

Means
a 0.00 20.10 0.11 0.73 2.77 6.26 7.66
b 0.47 0.47 0.47 0.47 0.46 0.45 0.45

Standard deviations
a 0.00 0.38 1.10 1.72 2.73 3.72 3.94
b 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Panel B: Components Involving the Expected Market Return

1/1926–12/1995; [m 5 11.30, Dl 5 8.05
Means

m 3.77 3.68 3.89 4.51 6.51 9.90 11.25
bl 3.77 3.78 3.79 3.78 3.74 3.65 3.60

Standard deviations
m 1.25 1.32 1.67 2.11 2.96 3.83 4.02
bl 1.25 1.26 1.26 1.25 1.24 1.22 1.21
bl 6l 5 Dl 0.58 0.58 0.58 0.58 0.58 0.59 0.59
bl 6b 5 Db 1.10 1.10 1.10 1.10 1.09 1.06 1.04

7/1963–12/1995; [m 5 10.24, Dl 5 5.52
Means

m 2.59 2.49 2.70 3.33 5.34 8.76 10.12
bl 2.59 2.59 2.60 2.59 2.56 2.50 2.47

Standard deviations
m 1.31 1.37 1.71 2.15 3.00 3.87 4.07
bl 1.31 1.31 1.32 1.31 1.30 1.27 1.26
bl 6l 5 Dl 0.40 0.40 0.40 0.40 0.40 0.40 0.40
bl 6b 5 Db 1.24 1.24 1.24 1.24 1.22 1.19 1.18
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above zero at sa 5 3% and only 73 bp above zero at sa 5 5%. This slow
movement away from the prior mean for a occurs in spite of the fact that the
t-statistic associated with the Bay State’s [a is equal to 2.07. ~This case sup-
plies the example discussed in the introduction.! In other words, even with
substantial skepticism about the ability of the CAPM to capture precisely
the expected excess return on any given stock, and even with a historical
average return that departs substantially from the CAPM prediction, the
posterior mean of the stock's excess return is still fairly close to the CAPM
implied value.

In most cases, as with Bay State Gas, the posterior mean of a is shrunk
away from the sample estimate [a and toward the prior mean Ta 5 0. That is,
the posterior mean for the expected excess return m is shrunk away from the
stock’s sample average excess return and toward the value implied by the
factor-based pricing model. The matrix expressions in equations ~25! and
~26! do not immediately reveal the weight given to [a in computing the pos-
terior mean of a. An approximation that reveals the rough order of magni-
tude of the shrinkage effect for a is obtained by setting the prior correlations
between a and b and the sample means of the factors equal to zero. In that
case, equations ~25! and ~26! imply that the posterior mean of a is given by

Ia 5 Vwa Ta 1 ~1 2 Vwa! [a, ~39!

where

Vwa 5
E~s2 !

E~s2 ! 1 Tsa
2 . ~40!

Recall that E~s2 ! is the prior mean of s2, which in this case is equal to
0.016 on a monthly basis, using equation ~14! and the CAPM values in Panel
A of Table I. If sa 5 5% on an annualized basis, then the corresponding
monthly value of sa used in the calculations is 0.0042 ~5 0.05012!. For T 5
253, as with Bay State Gas, equation ~40! implies Vwa 5 0.78. That is, even
with mispricing uncertainty of 5 percent per annum, and a value of T that
is fairly large compared to those often used in practice, the prior mean of a
is still given heavy weight in computing the posterior mean of a. Of course,
as sa becomes large, we see from equation ~40! that the sample estimate [a
is given increasingly greater weight, as illustrated by the results in Table II.
Alternatively, [a would also be given greater weight if the prior mean E~s2 !
were lower. Such might be the case, for example, if one were to estimate the
expected excess return on an asset known a priori to possess lower residual
variance, such as a diversified portfolio of stocks. For the typical individual
stock, however, as will be further demonstrated in the next subsection, [a is
given heavy weight only when the prior mispricing uncertainty is very high.
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The prior mean Ta is set to zero in this study, but, as noted earlier, one
could instead set Ta to a nonzero value, possibly the average sample [a for a
cross section of stocks that share similar characteristics with the given stock.
The degree of shrinkage toward that prior mean would, for a given sa, be
otherwise similar to that demonstrated here.

Equations ~25! and ~26! essentially imply that the shrinkage weights ap-
plied to Zb and Nb in determining the posterior mean of b depend on the prior
precision about b as compared to the sample precision of the regression
estimates, and the latter increases in the sample length T. For Bay State
Gas, with T 5 253, the posterior mean of b is much closer to the least-
squares estimate of 0.42 than the prior mean of 1.12, and the posterior mean
moves only slightly, from 0.47 to 0.45, as sa goes from zero to infinity. For
smaller values of T, the posterior mean of b is shrunk more toward the prior
mean. The slight dependence on sa arises from correlation in the posterior
between a and b, both through rab in the prior and through the off-diagonal
elements in the first row of X 'X.

The expected excess return has a as one of its components. Panel B of
Table II reports posterior moments for the other component, b 'l, and the
overall expected excess return, m. Recall that information about l is con-
tained not only in the available histories of returns on the factors but also in
the longer histories of other series that are correlated with the factors. The
first part of Panel B reports posterior moments based on the longer period
from January 1926 through December 1995, whereas the second part re-
ports moments based on the shorter period beginning in July 1963. The
posterior mean of l, Dl, is 8.05 percent based on the longer period but only
5.52 percent based on the shorter period. This difference ref lects the fact
that the average return on the NYSE portfolios is higher over the 1926–1995
period than during the shorter 1963–1995 period. Given the high positive
correlations between the NYSE indexes and the Fama–French NYSE-AMEX-
Nasdaq index, the posterior mean of the latter index is adjusted upward ~see
Stambaugh ~1997!!. This adjustment produces a cost-of-equity estimate for
Bay State Gas that is higher than the shorter-period estimate by about 1.2 per-
cent. For the overall period, the posterior mean of the expected excess re-
turn m is about 3.8 percent based on a strict CAPM ~sa 5 0! and, given the
behavior of the posterior mean of a discussed above, the posterior mean of m
remains between 3 percent and 4 percent for values of sa smaller than 5 per-
cent. That is, prior uncertainty about Bay State Gas’s CAPM mispricing ~a!
that seems substantial in economic terms still results in a posterior mean
fairly close to the CAPM value. As will be demonstrated below, this obser-
vation generalizes across stocks and across the three pricing models considered.

The results based on the shorter period, in the second part of Panel B of
Table II, ignore the longer-history asset returns in the estimation of the
factor premiums. As noted earlier, in such a case Dl is simply equal to Nl, the
vector of sample averages of the factors. Also, due to the relatively large T
for Bay State Gas, the posterior mean of b is very close to Zb 5 0.42. The
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posterior mean of a ranges from 0 to 7.66 percent, and the latter value is
close to [a, which equals 7.92 percent. As a result, in the extreme cases when
sa equals zero and infinity, our estimates of the expected excess return in
this shorter period are close to alternative textbook-recommended estimates
~e.g., Benninga and Sarig ~1997!!. For sa 5 0, our estimate of 2.59 percent is
close to the simpler CAPM-based estimate Zb Nl, which equals 2.32 percent.
For sa 5 `, our estimate of 10.12 percent is close to the sample mean of
11.61 percent for the excess returns on Bay State Gas’s stock, and the cor-
responding posterior standard deviation of 4.07 percent is close to the fre-
quentist estimate of 4.01 percent for the standard error of the sample mean.
~The difference between 10.12 and 11.61 arises primarily from the fact that
the average market premium for the 1963–1995 period, used in computing
the posterior mean of m, is slightly less than the average market premium
over the somewhat shorter period for the returns on Bay State Gas.! The
close correspondence between our estimates in the two extreme cases and
the two common alternative estimates is also observed for both of the multi-
factor models.

Posterior standard deviations of m, a, and bl, reported in Table II, sum-
marize the uncertainty about Bay State Gas’s expected excess return and its
components. The values reported for bl include both the unconditional stan-
dard deviation as well as standard deviations that condition on either b or l
set equal to their posterior means, Db and Dl. ~The calculations rely on equa-
tions ~35! through ~38! in the previous section.! Based on the 1926–1995
period, the posterior standard deviation of Bay State Gas’s ~annualized! ex-
pected excess return ranges from 1.25 percent, in the case of a dogmatic
belief in the CAPM ~sa 5 0!, to 4.02 percent, in the case of a diffuse prior
about deviations from the model ~sa 5 `!. The first value is essentially the
posterior standard deviation of bl, which is largely unaffected by sa. Fur-
ther discussion of posterior standard deviations is deferred to the later analy-
sis of cross-sectional averages.

Tables III and IV report posterior moments for the components of Bay
State Gas’s expected excess return under the Fama–French ~FF! model and
the Connor–Korajczyk ~CK! model. In general, the observations made above
for the CAPM apply to these three-factor models as well. In particular, Bay
State Gas’s [a is 5.04 percent in the FF model and 7.08 percent in the CK
model, but, even with sa as large as 5 percent, the posterior means for a are
only 0.85 percent and 1.90 percent in the two models. Also, the information
about l contained in the longer histories of the additional assets has a sub-
stantial effect on the estimated cost of equity. For both of the three-factor
models, the expected excess return for Bay State Gas based on the longer
1926–1995 period is higher than that based on the shorter 1963–1995 period
by about 1.5 percent for the FF model and 1.2 percent for the CK model.
When mispricing uncertainty associated with each model is modest, the es-
timates of expected excess return for Bay State Gas differ substantially across
the three models. The CAPM implies the lowest estimates, which often lie

Costs of Equity Capital and Model Mispricing 89



Table III

Posterior Means and Standard Deviations for the Components
of Bay State Gas’s Expected Excess Return from the

Three-Factor Fama–French Model
The expected excess return on the stock, m, is given by m 5 a 1 b 'l, where l is the vector
of expected values of the three Fama–French factors ~rM, t , SMBt , and HMLt !, and a and
b 5 @b1 b2 b3# ' are parameters in the regression of the stock’s monthly excess return on the
factors:

rt 5 a 1 b1 rM, t 1 b2 SMBt 1 b3 HMLt 1 et .

The moments for the parameters of the regression model, reported in Panel A, are based on monthly
data for the period 1201974 to 1201995 ~253 months!. The ordinary least-squares estimates are
[a 5 5.04% ~annualized! and Zb 5 @0.50 0.08 0.40# '. The moments for the quantities involving l,

reported in Panel B, are based on monthly data for the periods indicated and, for the longer
period, use the additional information in the history of returns on the value-weighted and equally
weighted NYSE portfolios and the Ibbotson small-stock portfolio. Also reported for each period is
[m 5 [a 1 Zb ' Dl, which is the posterior mean of m obtained with diffuse priors on all parameters, where
Dl denotes the posterior mean of l. Except for the moments of b, all posterior means and standard

deviations are reported as annualized percentage values.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Regression Parameters

Means
a 0.00 0.05 0.35 0.85 2.25 4.47 4.97
b1 0.54 0.53 0.53 0.53 0.52 0.52 0.52
b2 0.10 0.10 0.10 0.10 0.09 0.09 0.09
b3 0.43 0.42 0.42 0.41 0.40 0.39 0.39

Standard deviations
a 0.00 0.34 0.99 1.57 2.62 3.74 3.98
b1 0.08 0.08 0.08 0.08 0.08 0.08 0.08
b2 0.12 0.12 0.12 0.12 0.12 0.12 0.12
b3 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Panel B: Components Involving the Factor Premiums

1/1926–12/1995; [m 5 11.48, Dl 5 [8.05 3.63 5.32] '

Means
m 6.94 6.97 7.23 7.66 8.94 11.02 11.54
b 'l 6.94 6.92 6.87 6.82 6.69 6.55 6.56

Standard deviations
m 1.74 1.75 1.90 2.18 2.88 3.80 4.04
b 'l 1.74 1.74 1.74 1.74 1.74 1.72 1.72
b 'l 6l 5 Dl 1.09 1.09 1.10 1.11 1.12 1.13 1.12
b 'l 6b 5 Db 1.33 1.32 1.32 1.31 1.29 1.27 1.27

7/1963–12/1995; [m 5 10.06, Dl 5 [5.52 3.01 5.05] '

Means
m 5.41 5.44 5.71 6.15 7.44 9.55 10.07
b 'l 5.41 5.39 5.35 5.30 5.20 5.08 5.10

Standard deviations
m 1.69 1.69 1.86 2.16 2.88 3.83 4.07
b 'l 1.69 1.69 1.69 1.68 1.68 1.66 1.66
b 'l 6l 5 Dl 0.91 0.91 0.92 0.93 0.94 0.94 0.94
b 'l 6b 5 Db 1.38 1.38 1.37 1.37 1.35 1.32 1.32
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Table IV

Posterior Means and Standard Deviations for the Components
of Bay State Gas’s Expected Excess Return from the

Three-Factor Connor–Korajczyk Model
The expected excess return on the stock, m, is given by m 5 a 1 b 'l, where l is the vector
of expected values of the three Connor–Korajczyk factors ~F1, t , F2, t , and F3, t !, and a and
b 5 @b1 b2 b3# ' are parameters in the regression of the stock’s monthly excess return on the
factors:

rt 5 a 1 b1 F1, t 1 b2 F2, t 1 b3 F3, t 1 et .

The moments for the parameters of the regression model, reported in Panel A, are based on monthly
data for the period 1201974 to 1201995 ~253 months!. The ordinary least-squares estimates are
[a 5 7.08% ~annualized! and Zb 5 @0.35 20.04 0.18# '. The moments for the quantities involving l,

reported in Panel B, are based on monthly data for the periods indicated and, for the longer pe-
riod, use the additional information in the history of returns on the value-weighted and equally
weighted NYSE portfolios and the Ibbotson small-stock portfolio. Also reported for each period is
[m 5 [a 1 Zb ' Dl, which is the posterior mean of m obtained with diffuse priors on all parameters, where
Dl denotes the posterior mean of l. Except for the moments of b, all posterior means and standard

deviations are reported as annualized percentage values.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Regression Parameters

Means
a 0.00 0.19 0.92 1.90 4.12 6.61 6.93
b1 0.39 0.39 0.38 0.38 0.37 0.36 0.36
b2 20.06 20.06 20.06 20.05 20.05 20.05 20.04
b3 0.18 0.18 0.18 0.18 0.18 0.18 0.18

Standard deviations
a 0.00 0.40 1.16 1.80 2.83 3.77 3.96
b1 0.07 0.07 0.07 0.07 0.07 0.07 0.07
b2 0.06 0.06 0.06 0.06 0.06 0.06 0.06
b3 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Panel B: Components Involving the Factor Premiums

1/1926–12/1995; [m 5 12.04, Dl 5 [10.85 22.22 5.94] '

Means
m 5.42 5.60 6.29 7.22 9.34 11.73 12.04
b 'l 5.42 5.41 5.37 5.32 5.22 5.12 5.11

Standard deviations
m 1.51 1.56 1.86 2.27 3.07 3.88 4.05
b 'l 1.51 1.51 1.51 1.50 1.48 1.46 1.46
b 'l 6l 5 Dl 0.83 0.83 0.83 0.83 0.84 0.84 0.85
b 'l 6b 5 Db 1.23 1.22 1.21 1.20 1.18 1.15 1.15

7/1963–12/1995; [m 5 10.90, Dl 5 [7.65 23.17 5.66] '

Means
m 4.18 4.36 5.06 6.01 8.15 10.56 10.87
b 'l 4.18 4.17 4.14 4.11 4.03 3.95 3.94

Standard deviations
m 1.51 1.55 1.86 2.28 3.09 3.91 4.08
b 'l 1.51 1.50 1.50 1.49 1.47 1.45 1.45
b 'l 6l 5 Dl 0.66 0.66 0.66 0.66 0.66 0.67 0.67
b 'l 6b 5 Db 1.31 1.31 1.30 1.29 1.27 1.24 1.24
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below the estimates from the three-factor models by 2 percent or more. The
FF estimates exceed the CK estimates by more than 1 percent at the lowest
values of sa, but, at sa 5 5% the differences between those models are less
than 50 basis points. In Section III, we analyze the potential uncertainty
about the cost of equity induced by such differences across models, and we
compare that component of uncertainty to the component that arises from
uncertainty about the parameters within a given model.

B. Results for a Broad Cross-Section

For each stock on the NYSE and AMEX having at least 60 months of data
continuing through December 1995, we compute the same posterior mo-
ments reported for Bay State Gas in Tables II, III, and IV using the stock’s
available monthly history back through July 1963. Each value in Tables V,
VI, and VII is the arithmetic average across those 1,994 stocks of the cor-
responding value reported in Tables II, III, and IV. As explained earlier,
computing the posterior moments for each of these stocks using the Metropolis–
Hastings algorithm would be computationally prohibitive. Instead, in con-
structing Tables V, VI, and VII we use the approximations to the first and
second posterior moments of b discussed in the previous section. The
approximations appear to work well. For example, when the values in
Tables II, III, and IV are recomputed using the approximations, none of the
posterior means and standard deviations change by more than 2 basis points.

Unless stated otherwise, our discussion in this subsection is confined to
results obtained using the longer 1926–1995 period. The FF and CK models
yield posterior means of m for the typical ~average! stock in the range of
11 percent to 12 percent, roughly 3 percent higher than the corresponding
mean under the CAPM. For the FF model, this difference relative to the
CAPM is due largely to the second and third factors, since the average pos-
terior means of the market betas are similar for the two models ~1.01 versus
0.97!. The average posterior means of the betas on SMBt and HMLt are 0.68
and 0.32, which indicates that the average firm in the cross section is tilted
toward smaller capitalization and higher book-to-market. When combined
with the posterior means for SMBt and HMLt of 3.6 percent and 5.3 percent,
those betas account for the bulk of the difference between the CAPM and FF
expected excess returns for the average stock. The difference between the
CAPM and the CK model is more difficult to describe, given that the factors
are less easily identified.

The average posterior standard deviations in Tables V, VI, and VII reveal
various aspects of uncertainty about the cost of equity for a typical individ-
ual stock. An exact version of a pricing model, where a 5 0, implies an
expected excess return equal to b 'l, and that quantity’s average posterior
standard deviation is largely unaffected by the prior uncertainty about a.
The average posterior standard deviation of b 'l is about 2.8 percent for the
CAPM and 4.1 percent for the FF and CK models. These values ref lect the
uncertainty in both b and l. For the typical stock, we see that uncertainty
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Table V

Averages Across Stocks of Posterior Means and Standard Deviations
for Components of Expected Excess Returns from the CAPM

Posterior means and standard deviations for components of expected excess return are com-
puted for each of the 1,994 stocks that have data through December 1995 and have at least
60 months of historical returns, and the cross-sectional averages of those values across all
stocks are reported below. The expected excess return on a stock, m, is given by m 5 a 1 bl,
where l is the expected excess market return, and a and b are parameters in the regression of
the stock’s monthly excess return on the excess market return:

rt 5 a 1 brM, t 1 et .

The moments for the parameters of the regression model, reported in Panel A, are based on
each stock’s available history of monthly returns, back through July 1963. The moments for
the quantities involving l, reported in Panel B, are based on monthly excess returns for the
periods indicated and, for the longer period, use the additional information in the history of
returns on the value-weighted and equally weighted NYSE portfolios and the Ibbotson small-
stock portfolio. Also reported for each period is Dl, the posterior mean of l. Except for the
moments of b, all posterior means and standard deviations are reported as annualized per-
centage values.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Regression Parameters

Means
a 0.00 0.00 0.11 0.29 0.71 1.24 1.51
b 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Standard deviations
a 0.00 0.72 2.09 3.30 5.48 8.32 9.30
b 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Panel B: Components Involving the Expected Market Return

1/1926–12/1995; Dl 5 8.05
Means

m 8.11 8.12 8.22 8.40 8.83 9.35 9.60
bl 8.11 8.12 8.12 8.12 8.11 8.10 8.09

Standard deviations
m 2.78 2.93 3.60 4.45 6.23 8.76 9.61
bl 2.78 2.78 2.78 2.78 2.77 2.77 2.77
bl 6l 5 Dl 1.28 1.28 1.28 1.27 1.27 1.27 1.28
bl 6b 5 Db 2.36 2.36 2.36 2.36 2.36 2.35 2.35

7/1963–12/1995; Dl 5 5.52
Means

m 5.57 5.57 5.67 5.86 6.28 6.80 7.06
bl 5.57 5.57 5.57 5.57 5.57 5.56 5.55

Standard deviations
m 2.87 3.01 3.67 4.50 6.29 8.84 9.72
bl 2.87 2.87 2.87 2.87 2.87 2.86 2.87
bl 6l 5 Dl 0.88 0.88 0.88 0.87 0.87 0.87 0.88
bl 6b 5 Db 2.66 2.66 2.66 2.66 2.66 2.65 2.65
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Table VI

Averages Across Stocks of Posterior Means and Standard
Deviations for Components of Expected Excess Returns

from the Three-Factor Fama–French Model
Posterior means and standard deviations for components of expected excess return are com-
puted for each of the 1,994 stocks that have data through December 1995 and have at least
60 months of historical returns, and the cross-sectional averages of those values across all
stocks are reported below. The expected excess return on a stock, m, is given by m 5 a 1 b 'l,
where l is the vector of expected values of the three Fama–French factors ~rM, t , SMBt , and
HMLt!, and a and b 5 @b1 b2 b3# ' are parameters in the regression of the stock’s monthly excess
return on the factors:

rt 5 a 1 b1 rM, t 1 b2 SMBt 1 b3 HMLt 1 et .

The moments for the parameters of the regression model, reported in Panel A, are based on
each stock’s available history of monthly returns, back through July 1963. The moments for the
quantities involving l, reported in Panel B, are based on monthly data for the periods indicated
and, for the longer period, use the additional information in the history of returns on the
value-weighted and equally weighted NYSE portfolios and the Ibbotson small-stock portfolio.
Also reported for each period is Dl, the posterior mean of l. Except for the moments of b, all
posterior means and standard deviations are reported as annualized percentage values.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Regression Parameters

Means
a 0.00 0.03 0.09 0.16 0.29 0.42 0.35
b1 0.97 0.97 0.97 0.97 0.97 0.97 0.97
b2 0.68 0.68 0.68 0.68 0.68 0.68 0.68
b3 0.32 0.32 0.31 0.31 0.31 0.31 0.32

Standard deviations
a 0.00 0.66 1.93 3.09 5.27 8.20 9.05
b1 0.16 0.16 0.16 0.16 0.16 0.16 0.16
b2 0.26 0.26 0.26 0.26 0.26 0.26 0.26
b3 0.26 0.27 0.27 0.27 0.27 0.26 0.25

Panel B: Components Involving the Factor Premiums

1/1926–12/1995; Dl 5 [8.05 3.63 5.32] '

Means
m 11.97 11.99 12.05 12.11 12.23 12.36 12.31
b 'l 11.97 11.96 11.96 11.95 11.94 11.94 11.96

Standard deviations
m 4.08 4.02 4.19 4.65 6.04 8.59 9.62
b 'l 4.08 4.08 4.09 4.09 4.09 4.06 4.01
b 'l 6l 5 Dl 2.45 2.46 2.47 2.48 2.48 2.43 2.37
b 'l 6b 5 Db 3.05 3.05 3.05 3.05 3.05 3.05 3.05

7/1963–12/1995; Dl 5 [5.52 3.01 5.05] '

Means
m 9.00 9.03 9.09 9.15 9.27 9.40 9.35
b 'l 9.00 9.00 8.99 8.99 8.98 8.98 9.00

Standard deviations
m 3.94 3.89 4.10 4.59 6.05 8.64 9.65
b 'l 3.94 3.94 3.95 3.95 3.95 3.91 3.88
b 'l 6l 5 Dl 2.05 2.06 2.07 2.07 2.07 2.03 1.97
b 'l 6b 5 Db 3.17 3.17 3.17 3.17 3.17 3.17 3.16
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Table VII

Averages Across Stocks of Posterior Means and Standard
Deviations for Components of Expected Excess Returns

from the Three-Factor Connor–Korajczyk Model
Posterior means and standard deviations for components of expected excess return are com-
puted for each of the 1,994 stocks that have data through December 1995 and have at least
60 months of historical returns, and the cross-sectional averages of those values across all
stocks are reported below. The expected excess return on a stock, m, is given by m 5 a 1 b 'l,
where l is the vector of expected values of the three Connor–Korajczyk factors ~F1, t , F2, t , and
F3, t!, and a and b 5 @b1 b2 b3# ' are parameters in the regression of the stock’s monthly excess
return on the factors:

rt 5 a 1 b1 F1, t 1 b2 F2, t 1 b3 F3, t 1 et .

The moments for the parameters of the regression model, reported in Panel A, are based on
each stock’s available history of monthly returns, back through July 1963. The moments for the
quantities involving l, reported in Panel B, are based on monthly data for the periods indicated
and, for the longer period, use the additional information in the history of returns on the
value-weighted and equally weighted NYSE portfolios and the Ibbotson small-stock portfolio.
Also reported for each period is Dl, the posterior mean of l. Except for the moments of b, all
posterior means and standard deviations are reported as annualized percentage values.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Regression Parameters

Means
a 0.00 20.01 0.01 0.09 0.35 0.88 1.13
b1 0.97 0.97 0.97 0.97 0.97 0.97 0.97
b2 0.02 0.02 0.02 0.02 0.02 0.02 0.02
b3 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Standard deviations
a 0.00 0.73 2.13 3.35 5.51 8.17 8.95
b1 0.22 0.22 0.22 0.22 0.22 0.22 0.22
b2 0.12 0.12 0.12 0.12 0.12 0.12 0.12
b3 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Panel B: Components Involving the Factor Premiums

1/1926–12/1995; Dl 5 [10.85 22.22 5.94] '

Means
m 11.36 11.34 11.36 11.44 11.68 12.18 12.43
b 'l 11.36 11.35 11.35 11.34 11.33 11.31 11.31

Standard deviations
m 4.09 4.12 4.53 5.15 6.64 8.88 9.63
b 'l 4.09 4.09 4.09 4.09 4.09 4.09 4.08
b 'l 6l 5 Dl 2.23 2.23 2.23 2.24 2.24 2.24 2.24
b 'l 6b 5 Db 3.10 3.10 3.10 3.09 3.09 3.09 3.09

7/1963–12/1995; Dl 5 [7.65 23.17 5.66] '

Means
m 8.19 8.17 8.20 8.27 8.52 9.03 9.28
b 'l 8.19 8.19 8.18 8.18 8.17 8.15 8.15

Standard deviations
m 3.83 3.87 4.32 4.99 6.56 8.86 9.61
b 'l 3.83 3.83 3.83 3.83 3.83 3.82 3.82
b 'l 6l 5 Dl 1.65 1.65 1.66 1.66 1.66 1.67 1.66
b 'l 6b 5 Db 3.18 3.18 3.18 3.18 3.18 3.17 3.17
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about b alone contributes substantially to the overall uncertainty about the
cost of equity for an individual stock. Specifically, the average conditional
standard deviation of b 'l given l 5 Dl is about 1.3 percent for the CAPM,
2.5 percent for the FF model, and 2.2 percent for the CK model. On average,
uncertainty about b is less important than uncertainty about l, but not
dramatically so: The average conditional standard deviation of b 'l given
b 5 Db is about 2.4 percent for the CAPM and 3.1 percent for the FF and CK
models. Note also from these conditional standard deviations that the higher
unconditional posterior standard deviations of b 'l in the three-factor mod-
els, as compared to the CAPM, ref lect additional uncertainty about both b
and l.

In all three models, the posterior means of l are affected substantially by
augmenting the factor histories, which begin in July 1963, with the longer
histories of additional series that begin in 1926. These effects on posterior
means indicate an important reliance on the information in the longer his-
tories of the additional variables, but the posterior standard deviations of
b 'l for the longer period are generally of about the same magnitude, or even
slightly larger, than the posterior standard deviations for the shorter period.
This outcome might seem puzzling, but the comparison of posterior standard
deviations does not really provide a sensible measure of the additional in-
formation provided by the longer histories. The reason is that the longer
histories can also provide additional information about uncertainty. In par-
ticular, since the sample volatility of the long-history series is higher prior to
1963 than after, the posterior beliefs about the factors’ variances center on
higher values when based on the overall period. This increase in posterior
variance of the factors, ceteris paribus, raises the posterior variance of l, the
vector of factor means. In effect, more information can reveal greater vola-
tility, and thus greater uncertainty, than otherwise perceived. That effect
then works in opposition to the more obvious one ~also present!: Longer his-
tories provide more information about factor means and, ceteris paribus,
lower their posterior variances.

When sa is very large, the posterior standard deviation of a is fairly close
to the usual frequentist standard error for the estimated regression inter-
cept. In that case, not surprisingly, the posterior uncertainty about a dom-
inates the posterior uncertainty about the expected excess return. At lower
values of sa, the posterior standard deviation of a is typically about one-half
to three-quarters of sa. For example, when sa 5 5%, the posterior standard
deviation of a is slightly more than 3 percent in all three models. The dif-
ference between the posterior standard deviation of m and the posterior stan-
dard deviation of b 'l arises due to uncertainty about a. Generally, for values
of sa between 3 percent and 5 percent, uncertainty about a is of roughly
similar importance to uncertainty about b and l in explaining the overall
posterior uncertainty about a typical stock’s expected excess return.

Recall that, for each of the three models, the estimate of the expected
excess return for Bay State Gas is not very sensitive to the presence of
economically plausible mispricing uncertainty, represented by sa. As the re-
sults in Tables II, III, and IV demonstrate, for values of sa up to 5 percent,

96 The Journal of Finance



the posterior mean of Bay State Gas’s a remains within 2 percent of its prior
mean of zero, even though the least-squares estimate [a, based on more than
21 years of data, ranges from 5 percent to 8 percent for the three models.
For the other 1,993 firms in our cross section, the degree to which the cost
of equity is sensitive to sa cannot be discerned from the averages reported in
Tables V, VI, and VII. In order to explore this issue, we plot in Figures 1, 2,
and 3, for the three pricing models, each stock’s posterior mean of m ob-
tained with sa 5 0 versus the stock’s posterior mean of m obtained with a
nonzero value of sa. The latter value of sa is, in different plots, 3 percent,
5 percent, 10 percent, and infinity. A stock’s vertical deviation from a 45-degree
line is approximately Ia, the posterior mean of a for that stock, since the

Figure 1. Effects of mispricing uncertainty in the CAPM. The prior mispricing uncer-
tainty, sa, is the annualized prior standard deviation of a. Each graph plots, for 1,994 individ-
ual stocks, the estimate of the expected excess return ~E~r!! with sa 5 0 versus E~r! with a
nonzero value of sa.
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values plotted are Db ' Dl ~horizontal axis! versus Ia 1 Db ' Dl ~vertical axis!, and Db
is virtually unaffected by sa. In all three figures, the upper-left plot reveals
that, across the 1,994 stocks in the cross section, the estimate of the ex-
pected excess return obtained with sa 5 3% is generally quite close to that
obtained with sa 5 0. The scatter of points becomes more disperse as the
nonzero value of sa increases, but not very quickly. Even for sa 5 10%, the
estimates of expected excess return from all three models display a clear
association with those obtained using an exact pricing relation.

Note that the elements of b are assumed to be constant during the T
periods for which the stock’s historical returns are used in equations ~3! and
~7!. In the empirical analysis reported above, we take T to be the stock’s

Figure 2. Effects of mispricing uncertainty in the three-factor Fama–French (FF) model.
The prior mispricing uncertainty, sa, is the annualized prior standard deviation of a. Each
graph plots, for 1,994 individual stocks, the estimate of the expected excess return ~E~r!! with
sa 5 0 versus E~r! with a nonzero value of sa.
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entire history, at least back through July 1963. Thus, we essentially use
“long-run” betas and ignore potential f luctuations in individual-stock betas
over time. Several alternative approaches could be pursued. For example, T
might be restricted to at most 60 months, as is consistent with common
practice. We have redone the calculations for that case and find similar re-
sults, except that, not surprisingly, the estimate of the expected excess re-
turn is affected even less by [a. In other words, for any economically reasonable
prior uncertainty about mispricing, the estimate of the expected excess re-
turn is very close to the estimate produced by zero prior uncertainty. Also,
the uncertainty associated with b rises somewhat for most stocks. Although
we could have just as easily reported those results, we find the longer-period

Figure 3. Effects of mispricing uncertainty in the three-factor Connor–Korajczyk (CK)
model. The prior mispricing uncertainty, sa, is the annualized prior standard deviation of a.
Each graph plots, for 1,994 individual stocks, the estimate of the expected excess return ~E~r!!
with sa 5 0 versus E~r! with a nonzero value of sa.
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results, especially those involving a, to be more interesting. Another ap-
proach that might be a fruitful direction for research would be to reformu-
late the Bayesian model to allow changes in b. In a frequentist setting, for
example, Shanken ~1990! specifies b to be a linear function of observable
state variables. Fama and French ~1997! implement such a procedure by
letting an industry’s betas depend on its size and book-to-market ratio.16

C. An Industry-Specific Approach: Utilities

For the 135 utilities having at least 60 months of data continuing through
December 1995, we compute the posterior moments in the same manner as above,
except that the prior is constructed using the cross section of utilities instead
of the all-stock cross section ~as explained in Section I.C.2!. These two priors
result in different estimated expected excess returns for the 135 utilities. Fig-
ure 4 plots, for each model and for sa 5 3% and sa 5 5%, the estimates of ex-
pected excess returns obtained with one prior versus those obtained with the
other. Although the plots exhibit strong positive associations, and the ranges
of estimates are similar for both priors, it is also clear that the differences be-
tween the two priors can produce nontrivial differences in estimated costs of
equity.

Compared to the averages for the broad cross section, the average poste-
rior means of m for the utilities are smaller, ranging roughly from 5 percent
to 8 percent. ~In the interest of space, we present only a brief summary of
the results corresponding to those reported in Tables V, VI, and VII.! As
before, the CAPM estimates are on average the smallest, and the FF esti-
mates are the largest. The posterior standard deviations of m are also smaller
than their counterparts in the broad cross section, by a factor of roughly two.
This lower uncertainty about the expected excess return for utilities is due
both to lower average betas and to lower posterior standard deviations of the
betas. For example, the average posterior mean of the CAPM betas for util-
ities is only about 0.57, which is less than the average of 1.01 for the broad
cross section, and the average posterior standard deviation of the CAPM
betas is only 0.07, which is less than one-half the corresponding value of
0.16 for the broad cross section.

The uncertainty about l is more important than the uncertainty about b
and, not surprisingly, this difference is more pronounced for utilities than
for a typical stock from the broad cross section. Again with the CAPM as an
example, the average conditional standard deviation of b 'l given l 5 Dl is
about 0.57 percent, whereas the average conditional standard deviation of
b 'l given b 5 Db is about 1.35 percent. The lower beta-related posterior un-
certainty for utilities also arises in small part from the utility-specific prior.

16 Fama and French ~1997! find support for such a specification, although they do not find
its merits over the simpler procedure to be clear cut. Moreover, they also suggest ~p. 170! that,
because variables such as size and book-to-market may be somewhat under management’s con-
trol, “firms might be better off using full-period constant-slope @costs of equity# for capital
budgeting.” Schink and Bower ~1994!, for example, use full-period betas in estimating the costs
of equity for individual public utilities.
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Recall from Table I that the prior standard deviations for the betas are
lower for the utility-specific prior than for the all-stock prior. As compared
to the all-stock prior, those lower prior standard deviations produce lower
posterior standard deviations as well as greater shrinkage of the posterior
means of the betas toward their prior means. Both effects are modest, how-
ever. With the CAPM, for example, the beta-related uncertainty averaged
across the 135 utilities is 0.63 percent based on the all-stock prior versus

Figure 4. Effects of economically informative versus noninformative priors on esti-
mates of expected excess returns for utility stocks. Each graph plots, for 135 utility stocks,
the estimate of the expected excess return ~E~r!! with an economically informative prior versus
E~r! with an economically noninformative prior. Results are displayed for three pricing models:
the CAPM, the three-factor Fama–French ~FF! model, and the three-factor Connor–Korajczyk ~CK!
model. The prior mispricing uncertainty, sa, is the annualized prior standard deviation of a.
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0.57 percent based on the utility-specific prior. As reported earlier, the all-
stock prior mean for the CAPM beta is 1.12, the OLS estimate of Bay State
Gas’s CAPM beta is 0.42, and the posterior mean of its beta lies between
0.45 and 0.47 based on the all-stock prior ~depending on sa!. The posterior
means for Bay State’s betas based on the utility-specific prior are nearly
identical, 0.44 to 0.47, although these values represent a greater degree of
shrinkage toward the prior mean of 0.64. Note that simply using the latter
utility-average beta in estimating Bay State Gas’s cost of equity places too
little weight on that stock’s sample beta. Of course, this result also depends
on the relatively long 253-month sample period used here for Bay State Gas.
For shorter sample periods, the shrinkage toward the industry average beta
is stronger.

Figure 5 displays six plots corresponding to those displayed in Figures 1,
2, and 3, where the nonzero values of sa are set equal to 3 percent and
5 percent ~results for sa equal to 10 percent and infinity are not shown!.
That is, for all three models, each utility stock’s expected excess return es-
timated with sa 5 0 is plotted against its expected excess return estimated
with sa 5 3% or sa 5 5%. As before, the plots exhibit clear positive associ-
ations. In Figure 5, the deviations from a 45-degree line for a given sa are
of roughly the same magnitude as those in Figures 1, 2, and 3. That is, the
posterior means of a deviate from zero by similar amounts. This result com-
bines two offsetting effects: The absolute values of [a tend to be somewhat
lower for utilities, but those [a values receive relatively more weight in com-
puting the posterior means. The latter effect arises from the utility-specific
prior, wherein the prior mean for s2 is lower than that for the all-stock
prior—roughly 0.0045 versus 0.015 ~using the values for n and s0

2 in Table I
and equation ~14!!. As implied by the approximation in equations ~39! and
~40!, a lower value for E~s2 ! results in greater weight placed on [a relative
to Ta. The individual stock analyzed previously, Bay State Gas, belongs to the
sample of utilities. Recall that its [a values across the three models are quite
high—5 percent to 8 percent per annum. With the utility-specific prior, the
posterior mean of Bay State Gas’s a with sa 5 5% ranges from 2.4 percent to
3.8 percent, as compared to the range of 0.7 percent to 1.9 percent obtained
using the all-stock prior ~in Tables II, III, and IV!. Thus, when the decision
maker’s prior incorporates the belief that the stock of interest has a lower
residual variance than the typical stock, due to the firm’s industry classifi-
cation or other characteristics, then the historical average return is given
heavier weight in estimating that firm’s cost of equity.

III. Model Uncertainty

Recall from Tables II through IV that estimates of the expected excess
return on the stock of Bay State Gas differ by 2 percent or more across the
three factor-based pricing models. In their analysis of industries, Fama and
French ~1997! find that the CAPM produces estimated industry costs of eq-
uity that can differ from those produced by the FF model by 2 percent or
more. Such differences across models create additional uncertainty about
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the cost of equity for a decision maker who remains uncertain about which
model to use. As a first step in exploring the potential importance of differ-
ences across models in costs of equity for individual firms, we simply plot
the estimate of the expected excess return ~posterior mean of m! obtained
using one model versus that obtained using another model. Figure 6 plots
the estimated expected excess returns from the CAPM versus those from the
FF model for the previously analyzed cross-section of 1,994 stocks and the

Figure 5. Effects of mispricing uncertainty on estimates of expected excess returns
for utility stocks. The prior mispricing uncertainty, sa, is the annualized prior standard de-
viation of a. Each graph plots, for 135 utility stocks, the estimate of the expected excess return
~E~r!! with sa 5 0 versus E~r! with a nonzero value of sa. Results are displayed for three
pricing models: the CAPM, the three-factor Fama–French ~FF! model, and the three-factor
Connor–Korajczyk ~CK! model.
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all-stock prior. Figure 7 plots the CAPM estimates versus the CK estimates,
and Figure 8 plots the FF estimates versus the CK estimates. Each figure
contains four plots, produced with sa equal to 0, 5 percent, 10 percent, and
infinity. In general, the plots reveal positive correlation between expected
excess returns estimated using different models, although the degree of cor-
relation depends on sa as well as the pair of models being compared. The
plots in Figure 7, for the CAPM versus the CK model, exhibit the highest
correlation, but even those plots exhibit more dispersion than any of the top
two plots in Figures 1 through 3. That is, the disagreement across models in
estimates of expected excess returns appears to be greater than the disagree-
ment within a given model produced by changing the degree of prior mis-

Figure 6. Comparison of expected excess returns from the CAPM and the Fama–
French model. Each graph plots, for 1,994 individual stocks, the estimate of the expected
excess return ~E~r!! from the CAPM versus E~r! from the three-factor Fama–French ~FF! model.
The prior mispricing uncertainty, sa, is the annualized prior standard deviation of a.
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pricing uncertainty ~sa! from 0 to 5 percent. Also recall that, as sa increases,
the estimated expected excess returns from all three models generally move
closer to the stock’s historical average excess return. As a result, the closest
agreement across models is observed for the plots in which sa 5 `. The
agreement in those plots is not perfect, however, due largely to the fact that
the sample period used to estimate the factor premiums is longer than the
period used to estimate the betas. Thus, the estimated expected excess re-
turn still differs from the historical average, and that difference varies across
the pricing models.

The disagreements among models can be quantified further by associat-
ing a probability with each model and then computing the variance of a
given stock’s m associated with model uncertainty. ~Appendix B provides a

Figure 7. Comparison of expected excess returns from the CAPM and the Connor–
Korajczyk model. Each graph plots, for 1,994 individual stocks, the estimate of the expected
excess return ~E~r!! from the CAPM versus E~r! from the three-factor Connor–Korajczyk ~CK!
model. The prior mispricing uncertainty, sa, is the annualized prior standard deviation of a.
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more formal treatment.! For each model, the prior and posterior distribu-
tions of the parameters in the model are conditioned on that model’s being
the appropriate one. If there are Q models under consideration, q 5 1, . . . ,Q,
let Im@q# denote the posterior mean of m obtained under model q, and let pq
denote the decision maker’s posterior probability associated with model q.
Then, taking the unconditional posterior mean across models, the decision
maker ultimately estimates the expected excess return to be

m* 5 (
q51

Q

pq Im@q# . ~41!

Figure 8. Comparison of expected excess returns from the Fama-French and Connor-
Korajczyk models. Each graph plots, for 1,994 individual stocks, the estimate of the expected
excess return ~E~r!! from the three-factor Fama–French ~FF! model versus E~r! from the three-
factor Connor–Korajczyk ~CK! model. The prior mispricing uncertainty, sa, is the annualized
prior standard deviation of a.
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Combining estimates across models occurs in practice. For example, the New
York State Public Service Commission has endorsed the use of equal weights
across three different models to estimate the cost of equity for public utili-
ties under its supervision. The three models used by the Commission are the
CAPM ~more precisely, an average of four CAPM-based estimates! and two
non-factor-based models—the “Discounted Cash Flows” model and the “Com-
parable Earnings” model. The commission has also considered the inclusion
of multifactor models in estimating costs of equity for public utilities ~Di-
Valentino ~1994!!.

Let Ivm@q# denote the posterior variance of m obtained under model q. When
estimating the expected excess return, the decision maker is left with over-
all uncertainty given by the unconditional posterior variance across models:

vm* 5 (
q51

Q

pq Ivm@q# 1 (
q51

Q

pq~ Im@q# 2 m* !2. ~42!

The first term on the right-hand side of equation ~42!, the expected value
across models of the posterior variance of m, is essentially the average within-
model uncertainty about the expected excess return. This component of the
overall uncertainty is analyzed in the previous section. The second term on
the right-hand side of equation ~42!, the variance across models of the pos-
terior mean of m, can be termed “model” uncertainty, or the component of the
overall posterior variance of m attributable to uncertainty about which model
to use.

Calculation of posterior model probabilities ~pq ’s! is beyond the intended
scope of this study. As noted at the outset, we focus more on issues related
to using various factor-based models for cost-of-equity estimation rather than
on issues related to testing such models or evaluating their relative merits.
In order to illustrate the calculation of model uncertainty, we consider var-
ious sets of candidate models and, for each set, the pq ’s are made equal
across models. When only two models are entertained, model uncertainty is
bounded above by the value we report with equal pq ’s. With three models,
the greatest of those bounds for the three possible two-model combinations
is the upper bound on model uncertainty for the three-model combination.
Although assigning equal probabilities across the three models generally
results in a value somewhat less than that upper bound, that simple spec-
ification still provides a fairly generous assessment of model uncertainty
that is useful in revealing its potential importance relative to the within-
model parameter uncertainty discussed previously.

We analyze the effects of model uncertainty using a range of values for sa,
the prior within-model mispricing uncertainty, but each value of sa is held
constant across models in order to limit the analysis to a manageable num-
ber of cases. Many more cases are possible, of course, since a decision mak-
er’s prior uncertainty about a can differ across models. When sa is ~nearly!
zero, so that the decision maker essentially believes a priori that a given
model prices stocks without error, it seems unreasonable that the same de-
cision maker would still assign nonzero probabilities to other models. Al-
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though a decision maker might know that one of the models is exactly correct—
just not which one—such a scenario seems unlikely. In general, uncertainty
about which model to use would be accompanied by uncertainty about whether
any one model prices all stocks accurately. Since estimates of expected ex-
cess return tend to differ less across models as sa increases, as can be seen
in Figures 6–8, the values of model uncertainty obtained with equal model
probabilities but sa 5 0 in each model will, for most stocks, tend to overstate
the model uncertainty that would be encountered in practice.

Table VIII reports the model uncertainty about m as well as the amount of
overall uncertainty, which includes the within-model parameter uncertainty.
Calculations are reported for the various two-model subsets as well as for
the set of all three models. The results are based on the longer 1926–1995
period and are computed for the same alternative values of sa used in Sec-
tion II. All values are reported as annualized percentage standard devia-
tions. Also shown, for comparison, are ~square roots of! the expected values
across the three models of the posterior variances of m, a, and b 'l. Panel A
of Table VIII displays results for Bay State Gas, the individual stock exam-
ined previously. Recall from Tables II, III, and IV that when sa 5 0 the
estimate for the expected excess return on Bay State’s equity is lowest for
the CAPM ~3.77 percent! and highest for the FF model ~6.94 percent!. The
model uncertainty for that pairing of models is 1.58 percent ~annualized
standard deviation!, which is the highest value among those for the two-
model sets in Panel A of Table VIII. The model uncertainty associated with
the three-model set is 1.29 percent, which is less than the average within-
model uncertainty of 1.51 percent. As sa grows large, within-model uncer-
tainty increases because it includes uncertainty about a, and model uncertainty
typically declines ~although the latter effect is somewhat nonmonotonic for
Bay State!. Thus, in terms of contributions to the overall uncertainty about
Bay State’s cost of equity, uncertainty about the values of the parameters
within a given model is greater than uncertainty about which model to use.

Panel B of Table VIII reports the averages across the 1,994 stocks of each
value in Panel A. For the typical stock, both model uncertainty and overall
uncertainty are higher than for Bay State Gas, a utility. Otherwise, the
conclusions are similar. In particular, even with sa 5 0, the average model
uncertainty is less than the average within-model parameter uncertainty:
2.26 percent versus 3.71 percent. The average overall uncertainty about m in
that case is 4.40 percent, only 0.69 percent higher than the average within-
model uncertainty. As sa grows large, the average model uncertainty de-
creases and the average within-model uncertainty increases. In general,
although model uncertainty is substantial, it appears to be less than the
within-model parameter uncertainty in estimating costs of equity for indi-
vidual firms using the factor-based models entertained here.

We conduct a similar analysis for the utilities industry. Figure 9 displays
the plots corresponding to those in Figures 6, 7, and 8 for sa set to 3 percent
and 5 percent. That is, each utility’s expected excess returns estimated using
two different models are plotted against each other, where the utility-

108 The Journal of Finance



Table VIII

Model Uncertainty and Overall Uncertainty
about the Cost of Equity

The table reports the uncertainty about a stock’s expected excess return ~m! that arises from
entertaining multiple pricing models, the overall uncertainty about m that incorporates both
model uncertainty and within-model parameter uncertainty, and the average within-model pa-
rameter uncertainty. The three pricing models are the CAPM, the three-factor Fama–French
model ~FF!, and the three-factor Connor–Korajczyk model ~CK!. For any given subset of models
entertained, each model is assigned equal probability. Each stock’s a and b are defined by the
regression

rt 5 a 1 b ' ft 1 et ,

where rt is the stock’s excess return, ft is a vector of factors, and l 5 E~ ft!. All values are
reported as annualized percentage standard deviations. In the third part of Panel A, the pos-
terior variances are averaged across models before taking the square root to obtain the values
reported, and those latter values are then averaged across stocks to obtain the values reported
in the third part of Panel B.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Results for Bay State Gas

Model uncertainty about m when the set of models entertained is
CAPM and FF 1.58 1.65 1.67 1.57 1.21 0.55 0.14
CAPM and CK 0.82 0.96 1.19 1.35 1.41 0.91 0.39
FF and CK 0.76 0.69 0.47 0.22 0.20 0.36 0.25
CAPM, FF, and CK 1.29 1.35 1.40 1.39 1.24 0.75 0.32

Overall uncertainty about m when the set of models entertained is
CAPM and FF 2.19 2.26 2.44 2.66 3.15 3.84 4.02
CAPM and CK 1.61 1.73 2.13 2.57 3.32 3.94 4.04
FF and CK 1.80 1.79 1.93 2.23 2.96 3.83 4.02
CAPM, FF, and CK 1.99 2.05 2.29 2.59 3.21 3.89 4.03

Average across the three models of the within-model uncertainty of
m 1.51 1.55 1.81 2.18 2.96 3.81 4.02
a 0.00 0.37 1.08 1.69 2.71 3.72 3.93
b 'l 1.51 1.51 1.51 1.51 1.50 1.48 1.48

Panel B: Average across 1,994 Stocks of the Values in Panel A

Model uncertainty about m when the set of models entertained is
CAPM and FF 2.10 2.08 2.00 1.91 1.72 1.53 1.42
CAPM and CK 1.68 1.67 1.63 1.58 1.50 1.47 1.47
FF and CK 1.50 1.41 1.22 1.04 0.77 0.61 0.79
CAPM, FF, and CK 2.26 2.20 2.07 1.93 1.71 1.55 1.57

Overall uncertainty about m when the set of models entertained is
CAPM and FF 4.24 4.23 4.51 5.03 6.46 8.87 9.78
CAPM and CK 3.94 4.00 4.46 5.12 6.68 9.00 9.78
FF and CK 4.48 4.43 4.63 5.09 6.43 8.78 9.69
CAPM, FF, and CK 4.40 4.40 4.67 5.19 6.59 8.93 9.79

Average across the three models of the within-model uncertainty of
m 3.71 3.74 4.13 4.76 6.31 8.75 9.62
a 0.00 0.71 2.06 3.25 5.42 8.23 9.10
b 'l 3.71 3.71 3.72 3.72 3.72 3.70 3.68
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specific prior is used instead of the all-stock prior. The associations between
the estimates obtained from different models appear to be stronger than
those observed in Figures 6, 7, and 8 for the whole cross section of stocks. All
three models typically produce rather similar estimates, and the fit between
the estimates from the CAPM and the three-factor CK model is especially
close. Note that, contrary to the observation for the whole cross section, the
cross-model plots in Figure 9 are less disperse than the within-model plots
in Figure 5. In other words, the disagreements across models in utilities’

Figure 9. Comparison of expected excess returns on utility stocks from different pric-
ing models. Each graph plots, for 135 utility stocks, the estimate of the expected excess return
~E~r!! from one model versus E~r! from another model. Three pricing models are entertained: the
CAPM, the three-factor Fama–French ~FF! model, and the three-factor Connor–Korajczyk ~CK!
model. The prior mispricing uncertainty, sa, is the annualized prior standard deviation of a.
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Table IX

Model Uncertainty and Overall Uncertainty
about the Cost of Equity for Utilities

The table reports the uncertainty about a stock’s expected excess return ~m! that arises from
entertaining multiple pricing models, the overall uncertainty about m that incorporates both
model uncertainty and within-model parameter uncertainty, and the average within-model pa-
rameter uncertainty. The three pricing models are the CAPM, the three-factor Fama–French
model ~FF!, and the three-factor Connor-Korajczyk model ~CK!. For any given subset of models
entertained, each model is assigned equal probability. Each stock’s a and b are defined by the
regression

rt 5 a 1 b ' ft 1 et ,

where rt is the stock’s excess return, ft is a vector of factors, and l 5 E~ ft!. All values are
reported as annualized percentage standard deviations. In the third part of Panel A, the pos-
terior variances are averaged across models before taking the square root to obtain the values
reported, and those latter values are then averaged across stocks to obtain the values reported
in the third part of Panel B.

Prior Standard Deviation of a ~sa!

0 1% 3% 5% 10% 30% `

Panel A: Results for Bay State Gas

Model uncertainty about m when the set of models entertained is
CAPM and FF 1.68 1.62 1.29 0.93 0.46 0.18 0.14
CAPM and CK 0.88 0.86 0.75 0.63 0.46 0.36 0.34
FF and CK 0.79 0.76 0.54 0.31 0.00 0.18 0.21
CAPM, FF, and CK 1.37 1.33 1.06 0.78 0.43 0.29 0.28

Overall uncertainty about m when the set of models entertained is
CAPM and FF 2.23 2.30 2.70 3.10 3.60 3.88 3.93
CAPM and CK 1.62 1.76 2.44 2.99 3.59 3.90 3.95
FF and CK 1.77 1.89 2.49 3.01 3.59 3.90 3.95
CAPM, FF, and CK 2.01 2.10 2.60 3.06 3.60 3.90 3.94

Average across the three models of the within-model uncertainty of
m 1.47 1.63 2.37 2.96 3.57 3.89 3.93
a 0.00 0.74 1.95 2.69 3.41 3.77 3.82
b 'l 1.47 1.47 1.46 1.45 1.44 1.44 1.43

Panel B: Average across 135 Utilities of the Values in Panel A

Model uncertainty about m when the set of models entertained is
CAPM and FF 1.59 1.52 1.16 0.83 0.48 0.30 0.27
CAPM and CK 0.74 0.71 0.56 0.43 0.32 0.32 0.33
FF and CK 1.01 0.97 0.74 0.54 0.39 0.36 0.36
CAPM, FF, and CK 1.41 1.35 1.04 0.77 0.51 0.42 0.41

Overall uncertainty about m when the set of models entertained is
CAPM and FF 2.38 2.46 2.91 3.34 3.89 4.26 4.32
CAPM and CK 1.78 1.95 2.68 3.25 3.90 4.29 4.35
FF and CK 2.14 2.26 2.83 3.33 3.92 4.29 4.35
CAPM, FF, and CK 2.24 2.35 2.86 3.33 3.91 4.28 4.35

Average across the three models of the within-model uncertainty of
m 1.71 1.88 2.65 3.23 3.87 4.26 4.32
a 0.00 0.81 2.08 2.82 3.57 4.00 4.07
b 'l 1.71 1.71 1.71 1.71 1.71 1.71 1.71
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estimated expected excess returns appear to be smaller than the disagree-
ments within a given model produced by changing the degree of prior mis-
pricing uncertainty ~sa! from 0 to 5 percent.

Table IX is the equivalent of Table VIII, except that it is constructed for
the utilities industry and based on the utility-specific prior. The results for
Bay State Gas in Panel A are quite similar to those obtained with the all-
stock prior. In Panel B, which reports averages across the 135 utility stocks,
both model uncertainty and overall uncertainty about the expected excess
return are smaller for utilities than for the whole cross section. In particu-
lar, even with sa 5 0, the model uncertainty for the pairing of CAPM and CK
is only 0.74 percent, which is consistent with the close correspondence be-
tween the estimates of expected excess returns from those models displayed
in Figure 9. Despite some differences in magnitude, the relative proportions
of model uncertainty and overall uncertainty are similar to those observed
in Table VIII. Thus, in the utilities industry, uncertainty about which model
to use again appears to be less important than uncertainty about the pa-
rameters within a given model.

IV. Conclusions

Costs of equity capital implied by factor-based pricing models can be es-
timated in a Bayesian setting. After using the available data, a decision
maker possesses uncertainty about a firm’s cost of equity that is character-
ized by the posterior standard deviation of m, the expected excess return on
the firm’s stock. The posterior standard deviation of m is typically at least
3 percent per year in a one-factor model and 4 percent per year in a three-
factor model, even if the possibility that the model might misprice the stock
is ruled out a priori. For utilities, this standard deviation is smaller but
generally at least 2 percent per year. Uncertainty about a pricing model’s
potential mispricing of the stock ~a! increases the uncertainty about m, but
the posterior mean of m—the decision maker’s estimate of the expected ex-
cess return—is generally not affected greatly by uncertainty about a. When
a decision maker is uncertain about which factor-based model to use, the
estimate of the stock’s expected excess return is then a weighted average of
estimates from different models. The model uncertainty associated with that
estimate is nontrivial, typically adding another 0.7 percent to the overall
posterior standard deviation of m, but on average the model uncertainty is
less than the within-model parameter uncertainty.

The framework introduced here allows a decision maker to adjust a stock’s
estimated expected excess return away from the value implied by a pricing model
and toward the historical average excess return on the firm’s stock ~since the
posterior mean of a is adjusted away from zero and toward the OLS intercept
[a!. That is, instead of either taking the strict implication of a pricing model or

completely abandoning the model in favor of the simpler historical average re-
turn, the decision maker can combine those estimates. The weight on the his-
torical average essentially depends, for a given sample length, on the decision
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maker’s prior uncertainty about the model’s mispricing ~sa! and his prior ex-
pectation of the stock’s residual variance ~E~s2 !!. If the stock is a priori judged
likely to possess average residual variance, and if the prior mispricing uncer-
tainty is, say, less than 5 percent per annum, then the weight on the stock’s
historical average return is low. In such a case, even if the mispricing uncer-
tainty seems substantial in economic terms, the traditional use of the pricing
model—taking its exact implication as the cost-of-equity estimate—generally
yields a reasonably close approximation to the posterior mean. Of course, that
simpler estimate does differ somewhat from the posterior mean, and the lat-
ter can be computed using our methodology.

There are scenarios in which even those who favor simpler methods might
be advised to estimate the cost of equity using our Bayesian approach. Ad-
justing the cost-of-equity estimate toward the stock’s historical average re-
turn becomes more important when one believes a priori that the stock’s
residual variance is lower than that of the typical stock. The weight on the
historical average return is generally decreasing in E~s2 !. Therefore, when
the stock’s characteristics lead one to assign a lower prior mean for s2, the
cost-of-equity estimate should place less weight on the traditional pricing-
model estimate and more weight on the average return. Such a scenario is
illustrated in this study for the case of utility stocks. In such a scenario, if it
happens that the historical average return for the stock of interest is far
from the pricing model’s prediction, and if the sample generating that esti-
mate is fairly long, then the information contained in the stock’s historical
average excess return should probably be incorporated, even for modest val-
ues of sa. Our framework provides a method for doing so.

As noted at the outset, the Bayesian approach provides a coherent frame-
work for permitting a decision maker’s judgment, expressed as prior beliefs,
to enter the cost-of-equity estimation. A key feature of those prior beliefs
explored in this study is the degree of mispricing uncertainty ~sa!. We set
the prior mean of the pricing error ~ Ta! equal to zero, but that specification
could be relaxed, as discussed in Section I. In particular, the prior mean for
the pricing error could depend on one or more characteristics of the firm.
The posterior mean for a is then adjusted away from that nonzero prior
mean and toward [a, and the degree of that adjustment would depend on the
prior parameters sa and E~s2 ! in essentially the same manner as discussed
previously.

Given the imprecision associated with estimates of factor premiums, found
here and in previous studies, it seems essential that those quantities be
estimated using as much information as possible. Our methodology allows
that information to include series whose histories are longer than those of
the factors—over twice as long in this study. We find that the additional
information in those series produces posterior means for the factors, and
thus for m, that differ substantially from those based on the factor histories
alone. We also find that, even after incorporating the additional information
in series beginning in 1926, uncertainty about factor premiums still makes
the largest contribution to overall uncertainty about the expected excess
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return ~in the absence of uncertainty about a!, although uncertainty about
betas is nearly as important for the typical individual stock. The priors for
the factor premiums are specified in this study as diffuse ~noninformative!.
One might instead be able to construct reasonable informative prior beliefs
about one or more of the factor premiums, and the posterior uncertainty
about a stock’s expected excess return would then no doubt be less than we
report. Alternatively, introducing additional historical data, possibly within
a different stochastic setting, might also prove helpful. In general, the un-
certainty about factor premiums present in cost-of-equity estimation offers
payoffs to future research.

Appendix A. Posterior Moments of Factor Premiums

This appendix extends results in Stambaugh ~1997! and derives the pos-
terior mean and variance-covariance matrix of l in equations ~31! and ~32!
when the likelihood function is given by equation ~8! and the prior is given
by equation ~17!. Recall that l contains the first K elements of u. Let F
denote the data set consisting of F ~S! and Y ~L!, the sample information about
the moments of ft

a . Define the population counterparts to the quantities in
~29! and ~30!,

H2 5 G12 G22
21 , ~A1!

h1 5 l 2 H2 u2, ~A2!

and

S 5 G11 2 H2 G22 H2
' , ~A3!

where G11, G12, and G22 are the submatrices of G in equation ~4! that cor-
respond to the partitioning of ft

a ' 5 @ ft
' yt
' # , and let

H 5 Fh1
'

H2
'G. ~A4!

It is shown in Stambaugh ~1997! that

p~H,S,u2,G22 6F! 5 p~H,S6F!p~u2,G22 6F!, ~A5!

where

p~H,S6F! } 6S6
2

S1K1KL11
2 exp H21

2
tr~S ZS 1 ~H 2 ZH !'Z 'Z~H 2 ZH !!S21J , ~A6!
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and

p~u2, G22 6F! } 6G22 6
2

L2K1KL11
2 exp H21

2
L{tr~ ZG22 1 ~u2 2 Zu2!~u2 2 Zu2!' !G22

21J.

~A7!

From equation ~A7!, the conditional posterior of u2 given G22 is

p~u2 6G22,F! } 6G22 62102 exp H21

2
L~u2 2 Zu2!'G22

21~u2 2 Zu2!J, ~A8!

which is a multivariate normal density with

E~u2 6G22,F! 5 E~u2 6F! 5 Zu2 ~A9!

and

Cov~u2,u2
' 6G22,F! 5

1

L
G22. ~A10!

From equations ~A7! and ~A8!, the marginal posterior density of G22 is

p~G22 6F! } 6G22 6
2

L2K1KL

2 exp H21

2
L{tr~ ZG22 G22

21 !J, ~A11!

which is an inverted Wishart density with

E~G22 6F! 5
L

L 2 K 2 KL 2 2
ZG22, ~A12!

where equation ~A12! follows from properties of the inverted Wishart dis-
tribution. ~See, for example, Anderson ~1984!, pp. 268–270.! Therefore, since
the conditional mean in equation ~A9! does not involve G22, the uncondi-
tional posterior covariance matrix of u2 is the expectation of equation ~A10!,
which, using equation ~A12!, is

Cov~u2,u2
' 6F! 5

1

L 2 K 2 KL 2 2
ZG22. ~A13!

Next rewrite equation ~A2! as

l 5 Dc, ~A14!
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where

D 5 IK J @1 u2
' # , ~A15!

c 5 vec$H %, ~A16!

and “vec$H %” denotes the K 3 ~KL 1 1! column vector formed by stacking the
successive columns of H. Similarly, define

[c 5 vec$ ZH %. ~A17!

From equation ~A6! and the analysis of the multivariate regression model in
Zellner ~1971, p. 227!, the conditional posterior density of c given S can be
written as

p~c 6S,F! } 6S6
2

KL11
2 exp H21

2
~c 2 [c!'~S21 ^ Z 'Z!~c 2 [c!J, ~A18!

which is a multivariate normal density with

E~c 6S,F! 5 [c ~A19!

and

Cov~c,c ' 6S,F! 5 S J ~Z 'Z!21. ~A20!

Because c and u2 are independent ~cf. ~A5!!, it follows immediately from
equations ~A9! and ~A14! through ~A17! that

E~l 6u2,F! 5 Zh1 1 ZH2 u2, ~A21!

and the unconditional posterior mean of l, Dl, is given by equation ~31!.
From equations ~A6! and ~A18!, and again relying on the analysis in Zell-

ner ~1971!, p. 227, the marginal posterior density of S is given by

p~S6F! } 6S6
2

S1K
2 exp H21

2
S{tr~ ZSS21 !J, ~A22!

and, using the same property of the inverted Wishart distribution as in
equation ~A12!, the unconditional posterior mean of S is

E~S6F! 5
S

S 2 K 2 2
ZS. ~A23!

116 The Journal of Finance



Given equation ~A19!, the unconditional posterior covariance matrix of c is
the expectation of the conditional covariance matrix in equation ~A20!, which,
using equation ~A23!, is equal to

Cov~c,c ' 6F! 5
S

S 2 K 2 2
ZS J ~Z 'Z!21. ~A24!

Combining equations ~A14! and ~A24! gives

Cov~l,l' 6u2,F! 5
S

S 2 K 2 2
D~ ZS J ~Z 'Z!21 !D '

5
S

S 2 K 2 2S@1 u2
' # ~Z 'Z!21F 1

u2
GD ZS, ~A25!

and taking the unconditional expectation of equation ~A25!, using equa-
tions ~A9! and ~A12!, gives

E~Cov~l,l' 6u2,F!6F! 5 S S

S 2 K 2 2D
3 tr 1 ~Z 'Z!21 3

1 Zu2
'

Zu2 S 1

L 2 K 2 KL 2 2D ZG22 1 Zu2 Zu2
' 42{ ZS.

~A26!

Also, from equations ~A21! and ~A13!,

Cov~E~l 6u2,F!,E~l' 6u2,F!6F! 5 Cov~ ZH2 u2, u2
' ZH2

' 6F!

5 ZH2Cov~u2,u2
' 6F! ZH2

'

5
1

L 2 K 2 KL 2 2
ZH2 ZG22 ZH2

' . ~A27!

By the variance decomposition rule, the sum of the matrices in equa-
tions ~A26! and ~A27! gives FVl, the unconditional variance-covariance ma-
trix of l, and that result is displayed in equation ~32!.

Appendix B. Model Uncertainty: Details

We brief ly summarize here the framework underlying equations ~41! and
~42!. Interested readers may also consult Kass and Raftery ~1995! and Poir-
ier ~1995!, Chapter 10, for related discussions. Let m denote a random dis-
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crete quantity that takes values q 5 1, . . . ,Q and serves as an index for the
Q models under consideration. Let tpq [ p~m 5 q! denote the prior probabil-
ity for model q, and let dq denote the vector of parameters in model q. Let D
denote the observed data, which in our case consist of the stock’s return
history, the histories of the factors ~six in total, across the three models! and
the three additional longer-history series used to augment the factor histo-
ries in each model.

The posterior model probability pq [ p~m 5 q 6D! is, from Bayes’s theorem,
given by

pq 5
tpq p~D 6m 5 q!

(
j51

Q

tpj p~D 6m 5 j !

, ~B1!

and the marginal density of the data under model j ~ j 5 1, . . . ,Q! is given by

p~D 6m 5 j ! 5Ep~D 6dj , m 5 j !p~dj 6m 5 j ! ddj , ~B2!

where p~dj 6m 5 j ! and p~D 6dj , m 5 j ! are the prior parameter density and
the likelihood function for model j, respectively.

If the prior parameter density for one or more of the models is improper, then
obtaining pq can be problematic, since undefined constants appear in the nu-
merator and0or denominator of equation ~B1!. In our setting, even though the
prior density for u and G in equation ~17! is improper, model probabilities can
still be defined, because that improper prior density can be made identical across
the three models. In our setting, the parameter vector for model q can be par-
titioned as dq 5 @dq~1! d~2!# , where dq~1! contains the elements of b and s and d~2!

contains the elements of u and G. The elements of dq~1! differ in number and
identity across models, but d~2! can be made identical across models ~as dis-
cussed below!. In that case, from equation ~16!,

p~dq 6m 5 q! 5 p~dq~1! 6m 5 q!p~d~2! !, q 5 1, . . . ,Q. ~B3!

Therefore, even though p~d~2!! is defined only up to an undetermined con-
stant, that constant appears in both the numerator and denominator of equa-
tion ~B1!, and thus the ratio can be defined. As discussed by Kass and Raftery
~1995!, this treatment of ratios of improper priors for parameters that are
common across models is due to Jeffreys ~1961! and has been widely adopted.

The above statement that d~2! can be made identical across models re-
quires some clarification. As u and G are defined in Section I, they contain
different elements across models. Recall that they are the mean and covari-
ance matrix of the vector of augmented factors, ft

a ' 5 @ ft
' yt
' # , where ft is an

observation of the K factors for the given model and yt is an observation of
the three long-history series. Although yt is the same across all three mod-
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els, the factors differ across models. If, however, ft
a ' is instead defined as a

larger vector containing yt and the union of all six factors across the three
models, and u and G are defined as the mean and covariance matrix of that
larger vector, all of the posterior moments reported are essentially un-
changed. Specifically, Zh1 and ZH2 in equations ~31! and ~32! are redefined as
submatrices of larger arrays, but their values are unchanged. As a result,
equation ~31!, which gives the posterior mean of l, is unaffected. In equation
~32!, which gives the posterior covariance matrix of l, the value of K changes
to 6 ~from either 1 or 3!, but both S and L are large enough ~390 and 840!
that any resulting changes in the reported standard deviations are trivial.
Initially defining u and G in the above fashion would complicate the presen-
tation of the methodology, so, given that the choice of definitions is essen-
tially irrelevant to the empirical results, we adopt the simpler definition in
Section I.

In Section II, we report and analyze the first and second moments of
p~m6D, m 5 q!, the marginal posterior density of m for model q, where m is a
function of dq. With well-defined posterior model probabilities, the condition-
ing on model q is removed by computing the overall ~unconditional! density

p~m6D! 5 (
q51

Q

pq p~m6D, m 5 q!, ~B4!

and the first and second moments of this density are given by equations ~41!
and ~42!. ~See Leamer ~1978!, pp. 117–118.!

In the model uncertainty calculations presented in Tables VIII and IX we
simply set the posterior model probabilities to be equal across models. Com-
puting those probabilities using equation ~B1! is beyond the scope of this
study. Moreover, if the set of prior model probabilities ~ tpq ’s! is the same for
each stock, then the posterior probabilities would differ across stocks. Rather
than take that course, we instead specify equal posterior probabilities in
order to simplify the analysis and, as discussed previously, obtain what is
likely to be a generous assessment of model uncertainty. ~Of course, assum-
ing the same posterior model probabilities across stocks implies that the
prior probabilities would differ across stocks.! Explicit posterior model prob-
abilities would probably be more interesting in a multi-asset setting, and
such an extension is a possible direction for future research.
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