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The expected market return is a number frequently required for the solution of many investment 
and corporate tinance problems, but by comparison with other tinancial variables, there has 
been little research on estimating this expected return. Current practice for estimating the 
expected market return adds the historical average realized excess market returns to the current 
observed interest rate. While this model explicitly reflects the dependence of the market return 
on the interest rate, it fails to account for the effect of changes in the level of market risk. Three 
models of equilibrium expected market returns which reflect this dependence are analyzed in this 
paper. Estimation procedures which incorporate the prior restriction that equilibrium expected 
excess returns on the market must be positive are derived and applied to return data for the 
period 19261978. The principal conclusions from this exploratory investigation are: (1) in 
estimating models of the expected market return, the non-negativity restriction of the expected 
excess return should be explicitly included as part of the specification; (2) estimators which use 
realized returns should be adjusted for heteroscedasticity. 

1. Introduction 

Modern finance theory has provided many insights into how security 
prices are formed and has provided a quantitative description for the risk 
structure of equilibrium expected returns. In the most basic form of the 
Capital Asset Pricing Model,’ this equilibrium structure is given by the 
Security Market Line relationship; namely, 

(1.1) 

*Aid from the Debt and Equity project of the National Bureau of Economic Research, and 
the National Science Foundation is gratefully acknowledged. Any opinions expressed are not 
those of either the National Bureau of Economic Research or the National Science Foundation. 
My thanks to F. Black and J. Cox for many helpful discussions and to R. Henriksson for 
scientific assistance. I sincerely appreciate the editorial suggestions of E. Fama, M. Jensen, and 
G. W. Schwert. 

‘See Sharpe (1964). Lintner (1965), and Mossin (1966). For an excellent survey article on the 
Capital Asset Pricing Model, see Jensen (1972). 
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where ai and a denote the expected rate of return on security i and the 
market portfolio, respectively; I is the riskless interest rate; and pi is the ratio 
of the covariance of the return on security i with the return on the market 
divided by the variance of the return on the market. This same basic model 
tells us that all efficient or optimal portfolios can be represented by a simple 
combination of the market portfolio with the riskless asset. Hence, if a’ and 
cre are the expected rate of return and standard deviation of return on an 
efftcient portfolio, then ae = w(a-r)+r and ~=WU where w is the fraction 

allocated to the market and e is the standard deviation of the return on the 
market. From these conditions, we have that the equilibrium tradeoff 
between risk and return for efficient portfolios is given by 

ae-r=[(x-r)/a]cf. (1.2) 

(1.2) is called the Capital Market Line and (a-r)/o, the slope of that line, is 
called the Price of Risk. 

From (1.1) and (1.2), one can determine the optimal portfolio allocation 
for an investor and the proper discount rate to employ for the evaluation of 
securities. Moreover, these equations provide the critical ‘cost of capital’ or 
‘hurdle rates’ necessary for corporate capital budgeting decisions. Of course, 
(1.1) and (1.2) apply only for the most basic version of the CAPM, and 
indeed, empirical tests of the Security Market Line have generally found that 
while there is a positive relationship between beta and average excess return, 
there are significant deviations from the predicted relationship.’ However, 
these deviations appear principally in very ‘high’ and very ‘low’ beta 
securities. Moreover, there is some question about the validity of these tests3 
The more sophisticated intertemporal and arbitrage-model versions of the 
CAPM4 show that the equilibrium expected returns on securities may 
depend upon other types of risk in addition to ‘systematic’ or ‘market’ risk, 
and hence, they provide a theoretical foundation for (1.1) and (1.2) not to 
obtain. However, in all of these models, the market risk of a security will 
affect its equilibrium expected return, and indeed, for most common stocks, 
market risk will be the dominant factor.’ Thus, at least for common stocks 
and broad-based equity portfolios, the basic model as described by (1.1) and 
(1.2) should provide a reasonable ‘first approximation’ theory for equilibrium 
expected returns. 

%ee Jensen (1972), Black, Jensen and &holes (1972), Fama and MacBeth (1974), and Friend 
and Blume (1970). 

‘See Roll (1977). 
%ee Breeden (1979), Cox, Ingersoll and Ross (forthcoming), Long (1974), Ross (1976), Merton 

(1973 and forthcoming h). 
sBy ‘dominant factor’, we do not mean that most of the variation in an individual stock’s 

realized returns can be ‘explained’ by the variation in the market’s return. Rather, we mean that 
among the systematic risk factors that influence an individual stock’s equilibrium expected 
return, the market risk of that stock will have the largest influence on its expected return. 
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Of course, all one needs to know to apply these formulas in solving 
portfolio and corporate financial problems are the parameter values. And as 
might be expected, considerable effort has been applied to estimating them. 
However, this effort has not been uniform with respect to the different 
parameters, and as will be shown, this non-uniformity is not without good 
reason. 

For the most part, the nominal riskless interest rate, r, is an observable, 
and so that parameter need not be estimated. Among the other parameters, 
beta is the one most widely estimated. In dozens of academic research 
papers, betas have been estimated for individual stocks; portfolios of stocks; 
bonds and other fixed income securities; other investments such as real 
estate; and even human capital.6 For practitioners, there are beta ‘books’ 
and beta services. While for the most part these betas are estimated from 
time series of past returns, various accounting data have also been used. 

In their pioneering work on the pricing of options and corporate liabilities, 

Black and Scholes (1973) deduced an option pricing formula whose only 
non-observable input is the variance rate on the underlying stock. As a 
result, there has been a surge in research effort to estimate the variance rates 
for returns on both individual stocks and the market. Although this research 
activity is still in its early stages of development, variance rate estimates are 
already available from a number of sources. 

In contrast, there has been little academic research on estimating the 
expected return on either individual stocks or the market. Ibbotson and 
Sinquefield (1976, 1979) have carefully cataloged the historical average 
returns on stocks and bonds from 1926 to 1978. However, they provide no 
model as to how expected returns change through time. There is no 
literature analogous to the term structure of interest rates for the expected 
return on stocks, although there is research going on in this direction as, for 

example, in Cox, Ingersoll, and Ross (forthcoming). 
One possible explanation for this paucity of research on expected returns 

is that for many applications within finance, only relative pricing 

relationships are used, and therefore, estimates of the expected returns are 
not required. Some important examples of such applications are option and 
corporate liabilities pricing and the testing for superior performance of 
actively-managed portfolios. However, for many if not most applications, an 
estimate of the expected return on the market is essential. For example, to 
implement even the most passive strategy of portfolio allocation, an investor 
must know the expected return on the market and its standard deviation in 
order to choose an optimal mix between the market portfolio and the 
riskless asset. Indeed, even if one has superior security analysis skills so that 
the optimal portfolio is no longer a simple mix of the market and the riskless 

‘See Fama and Schwert (1977a). 
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asset, Treynor and Black (1973) have shown that the optimal strategy will 
still involve mixing the market portfolio with an active portfolio, and the 
optimal mix between the two will depend upon the expected return and 
standard deviation of the market. For a corporate finance example, the 
application of the model in determining a ‘fair’ rate of return for investors in 
regulated industries requires not only the beta but also an estimate of the 
expected return on the market. As these examples illustrate, it is not for want 
of applications that expected return estimation has not been pursued. 

A more likely explanation is simply that estimating expected returns from 
time series of realized stock return data is very difficult. As it is shown in 
appendix A, the estimates of variances or covariances from the available time 
series will be much more accurate than the corresponding expected return 
estimates. Indeed, even if the expected return on the market were known to 
be a constant for all time, it would take a very long history of returns to 
obtain an accurate estimate. And, of course, if this expected return is believed 
to be changing through time, then estimating these changes is still more 
difficult. Further, by the Efficient Market Hypothesis, the unanticipated part 
of the market return (i.e., the difference between the realized and expected 
return) should not be forecastable by any predetermined variables. Hence, 
unless a significant portion of the variance of the market returns is caused by 
changes in the expected return on the market, it will be difficult to use the 
time series of realized market returns to distinguish among different models 
for expected return. 

In light of these difficulties, one might say that to attempt to estimate the 
expected return on the market is to embark on a fool’s errand. Perhaps, but 
on this errand, I present three models of expected return and derive methods 
for estimating them. I also report the results of applying these methods to 
market data from 1926 to 1978. 

The paper is exploratory by design, and the empirical estimates presented 
should be viewed with that in mind. Its principal purpose is to motivate 
further research in this area by pointing out the many estimation problems 
and suggesting directions for possibly solving them. The reasons for taking 
this approach are many: First, an important input for estimating the 
expected return on the market is the variance rate of the market. While there 
is much research underway in developing variance estimation models, their 
development has not yet reached the point where there is a ‘standard’ model 
with well-understood error properties. Because this is not a paper on 
variance estimation, the model used to estimate variance rates here is a very 
simple one. Almost certainly, these variance estimates contain substantial 
measurement errors, and these alone are enough to warrant labeling the 
derived model estimates for expected return as ‘preliminary’. A second reason 
is that the expected return model specifications are themselves very simple, 
and it is likely that they could be improved upon. Third, only time series 
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data of market returns were used in the estimations, and as is indicated in 

the analysis, other sources of data could be used to improve the estimates. 
As a reflection of the preliminary nature of this investigation, no significance 
tests were provided and no attempt is made to measure the relative 
forecasting performance of the three models. 

2. The models of expected return 

The appropriate model for the expected return on the market will depend 
upon the information available. For example, in the absence of any other 
information, one might simply use the historical sample average of realized 
returns on the market. Of course, we do have other information. For 
example, we can observe the riskless nominal interest rate. Noting that this 
rate has varied between essentially zero and its current double-digit level 
during the last fifty years, we can reject the simple sample average model for 
two reasons: First, it can be proved as a rather general proposition that a 

necessary condition for equilibrium is that the expected return on the market 
must be greater than the riskless rate [i.e., x >r].’ Hence, if the current 

interest rate exceeds the long historical average return on stocks (as it 
currently does), then the sample average is a biased-low estimate. Thus, one 
would expect the expected return on the market to depend upon the interest 
rate. Second, the historical average is in nominal terms, and no sensible 
model would suggest that the equilibrium nominal expected return on the 
market is independent of the rate of inflation which is also observable. Both 
these criticisms are handled by a second-level model which assumes that the 
expected excess return on the market, z-r, is constant. Using this model, the 
current expected return on the market is estimated by taking the historical 
average excess return on the market and adding to it e current observed 
interest rate. Indeed, a model of this type represents essentially the state-of- 
the-art with respect to estimating the expected return on the market.’ 

This model explicitly recognizes the dependence of the market expected 
return on the interest rate and in so doing, it implicitly takes into account 
the level of inflation.’ However, it does not take into account another 
important determinant of market expected return: Namely, the level of risk 
associated with the market. At the extreme where the market is riskless, then 
by arbitrage, r = r, and the risk premium on the market will be zero. If the 

‘A sufficient condition for this proposition to obtain is that all investors are strictly risk- 
averse expected utility maximizers. For a proof of the proposition, see Merton (forthcoming b, 
proposition IV.6). 

*See Ibbotson and Sinquefield (1977). In Ibbotson and Sinquefield (1979, p. 36). they express 
the view: ‘The equity risk premium has historically followed a random walk centered on an 
arithmetic mean of 8.7 percent, or 6.2 percent compounded annually.’ 

‘However, this model does not take into account the level of risk associated with 
unanticipated fluctuations in the inflation rate. See Fama and Schwert (1977b). 
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market is not riskless, then the market must have a positive risk premium. 
While it need not always be the case,” a generally-reasonable assumption is 
that to induce risk-averse investors to bear more risk, the expected return 
must be higher. Given that, in the aggregate, the market must be held, this 
assumption implies that, ceteris paribus, the equilibrium expected return on 
the market is an increasing function of the risk of the market. Of course, if 
changes in preferences or in the distribution of wealth are such that 
aggregate risk aversion declines between one period and another, then higher 
market risk in the one period need not imply a correspondingly higher risk 
premium. However, if aggregate risk aversion changes slowly through time 
by comparison with the changes in market risk, then, at least locally in time, 
one would expect higher levels of risk to induce a higher market risk 
premium. 

If, as shall be assumed, the variance of the market return is a sufficient 
statistic for its risk, then a reasonably general specification of the equilibrium 
expected excess return can be written as 

a-r= Yg(02), (2.1) 

where g is a function of e2 only, with g(O)=0 and dg/do2 >O. Although the 
exact interpretation of Y will vary with the particular specification of the 
function g, the generic term used to describe Y throughout the paper will be 
the ‘Reward-to-Risk Ratio’. In the analysis to follow, we shall assume that 
the function g is known and that a2 can be observed. It is also assumed that 
there is a set of state variables S in addition to the current c2 that can be 
observed. The specific identity of these state variables will depend upon the 
data set available. However, the Reward-to-Risk Ratio, Y, is not one of these 
observable state variables. Hence, conditional on this information set, the 
expected excess return on the market is given by 

E[a-rIS,a2]=E[Yg(cr2)IS,a2], (2.2) 

where E[ 1 S, 02] is the conditional expectation operator, conditional on 
knowing S and cr2. Since Y is not observable, for (2.2) to have meaningful 
content, the further condition is imposed that 

E[Yp]=E[Yp,a2]. (2.3) 

“‘It is shown in Rothschild and Stiglitz (1970) that the demand for a risky asset in an optimal 
portfolio which combines this asset with the riskless asset, need not be a decreasing function of 
the risk of that asset. Hence, it is possible that an increase in the riskiness of the market will not 
require a corresponding increase in its equilibrium expected return. For further discussion of this 
point, see Merton (forthcoming b). 
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That is, given the state variables S, the conditional expectation of Y does not 
depend upon the current 02. This condition, of course, does not imply that Y 
is distributed independent of cr2. Thus, from (2.3), we can rewrite (2.2) as 

ECU-rlS,a2]=E[Y1S]g(a2). (2.4) 

Since it has already been assumed that variance is a sufficient statistic for 
risk, with little loss in generality, it is further assumed that market returns 
can be described by a diffusion-type stochastic process in the context of a 
continuous-time dynamic model. I1 Specifically, the instantaneous rate of 

return on the market (including dividends), dM/M, can be represented by thC: 
It&type stochastic differential equation 

dM@) 
-=xddt+adZ(t), 
M(t) 

(2.5) 

where dZ(t) is a standard Wiener process and (2.5) is to be interpreted as a 
conditional equation at time t, conditional on the instantaneous expected 

return on the market at time t, cr(t)=or and on the instantaneous standard 
deviation of that return at time t, a(t)=a. 

Under certain conditions,‘2 it can be shown in the context of an 
intertemporal equilibrium model that the equilibrium instantaneous expected 
excess return on the market can be reasonably approximated by 

c@)--(t)= Y102(t), (2.6) 

where Y1 is the reciprocal of the weighted sum of the reciprocal of each 
investor’s relative risk aversion and the weights are related to the distribution 
of wealth among investors. To add further interpretation for the Reward-to- 
Risk Ratio in this model, Y,, in the frequently-assumed case of a 
representative investor with a constant relative risk aversion utility function, 
Y, would be an exact constant and equal to this representative investor’s 
relative risk aversion. The specification for expected excess return given by 
(2.6) which will be referred to as ‘Model # 1’ is indicative of models where it 

“For a development of the continuous-time model with diffusion-type stochastic processes, 
see Merton (1971, forthcoming a, b). As is discussed at length in these papers, the assumptions 
of continuous trading and diffusion-type stochastic processes justify the use of variance as a 
suflicient statistic for risk without the objectionable assumptions of either quadratic utility or 
normally-distributed stock returns. 

“In the intertemporal model presented in Merton (1973), (2.6) will be a close approximation 
to the equilibrium relationship if either [8C’/dX,I edC’/aw j= 1,. . ., m, k = 1,. . .,K, or the 
variance of the change in W is much larger than the variance of the change in X,, j = 1,. . ., m, 
where d=d(WX, t) is the optimal consumption function of investor k, W is the wealth of 
investor k, and (X ,,. . .,X,) are the m state variables (in addition to wealth and time) required 
to describe the evolution of the economic system. 
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is assumed that aggregate risk preferences remain relatively stable for 
appreciable periods of time. 

‘Model #2’ makes the alternative assumption that the slope of the Capital 
Market Line or the Market Price of Risk remains relatively stable for 
appreciable periods of time. Its specification is given by 

a(t)- r(t)= Yzrr(t), (2.7) 

where the Reward-to-Risk Ratio for this model, Y,, is the Market Price of 
the Risk. Like ‘Model #l’, it allows for changes in the expected excess 
return as the risk level for the market changes. 

‘Model #3’ is the state-of-the-art model which assumes that the expected 
excess return on the market remains relatively stable for appreciable periods 
of time even though the risk level of the market is changing. Its specification 
is given by 

a(t)--r(t)= Y,. (2.8) 

Of course, if the variance rate on the market were to be essentially 
constant through time, then all three models would reduce to the state-of- 
the-art model with a constant excess return. However, from the work of 
Rosenberg (1972) and Black (1976) as well as many others, the hypothesis 
that the variance rate on the market remains constant over any appreciable 
period of time can be rejected at almost any confidence level. Moreover, 
given that the variance rate is changing, the three models are mutually 
exclusive in the sense that if one of the models satisfies condition (2.3), then 
the other two models cannot. To see this, note that yj= q[a(t)]j-’ for i,j 
= 1,2,3. Therefore, if yi satisfies (2.3), then E[q 1 S] =E[x 1 S]E{[c(t)]‘-‘1 S}. 
E[q 1 S, o’(t)] =E[q ( S][a(t)]j-‘. Therefore, for i # j, 5 can only satisfy (2.3) 
if E{[c(t)]j-‘1 S> =[a(t)]j-’ for all possible values of a(t), and this is not 
possible unless the {rr(t)} are constant over time. 

While we have assumed that a2(t) is observable, in reality, it is not, and 
therefore, like or(t), it must be estimated. Hence, these models as special cases 
of (2.1) will be of empirical significance only if for the available data set, the 
variance rate can be estimated more accurately than the expected return. If 
the principal component of such a data set is the time series of realized 
market returns, then it is shown as a theoretical proposition in appendix A 
that, indeed, the variance rate can be more accurately estimated when the 
market return dynamics are given by (2.5). As an empirical proposition, the 
studies of both Rosenberg (1972) and Black (1976) show that a non-trivial 
portion of the change in the variance can be forecasted by using even 
relatively simple models. Further, along the lines of Latane and Rendleman 
(1976) and Schmalensee and Trippi (1978), it is possible to use observed 
option prices on stocks to deduce ‘ex-ante’ market estimates for variance 
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rates by ‘inverting’ the Black-Scholes option pricing formula.13 Hence, 
models of the type which satisfy (2.4) hold out the promise of better 
estimates for the expected return on the market than can be obtained by 
direct estimation from the realized market return series. 

While (2.5) describes the dynamics of realized market returns, we have yet 
to specify how a(t) and the Reward-to-Risk Ratios, 5, j= 1,2,3, change 
through time. Although a(t) changes through time, it is assumed to be a 
slowly-varying function of time relative to the time scale of market price 
changes, and therefore, over short intervals of time, the variation in realized 
market returns will be very much larger than the variation in the variance 
rate. That is, it is assumed that for satisfactorily small 6, there exists a finite 

time interval h such that the Prob{)a’(s)-a’(t)( >bls~(t,t+h)} will be 

essentially zero where o’(t) = [St r’ha2(s)ds]/ft. In essence, we assume that the 
variance can be treated as constant over finite time intervals of length h and 
that h>>dt. In a similar fashion, it is also assumed that the riskless interest 
rate can be treated as constant over this same finite time interval h. 

Under the hypothesis that Model #j is the correct specification, we 
assume that the Reward-to-Risk Ratio is a slowly-varying function of time 
relative to the time scale of changes in the variance rate. That is, there exists 
a finite time interval T, T S/I, such that 5 can be treated as essentially 
constant over intervals of that length. Again, because rj= KICo(t)]jwi, i, j 

= 1,2,3, if one of the models satisfies this assumption, then the other two 
cannot. 

It follows immediately from these hypothesized conditions and the model 
specifications that the expected rate of return on the market, x(t), can be 
treated as essentially constant over time intervals of length h. Therefore, over 
short intervals of time, the variation in the expected return on market will be 
similar in magnitude to the variations in a2(t) and r(t) and very much 
smaller than the variation in realized market returns, 

Let R,(t)rM(t +h)/M(t) denote the return per dollar on the market 
portfolio between time t and t +h. Under the hypothesized conditions for the 
dynamics of a(t) and 5, we have from (2.5) that conditional on knowing 
M(t), a(t), and r(t), R,(t) will be lognormally distributed. 

Let R(t)=exp[J:+h r(s)ds] denote the return per dollar on the riskless 
asset between t and t th and define X(t)=ln[R,(t)/R(t)]. Under the 
hypothesis that Model #j is the correct specification, we can express X(t) 
as14 

X(t)= { ~[a(t)]3-~-+a2(t)}h +a(t)Z(t; h), (2.9) 

130f course, a direct ‘ex-ante’ estimate for the variance rate on the market could be deduced 
from the price of an option on the market portfolio. However, at the current time, no such 
options are traded. 

“‘The reader is reminded that if In (E[R,(t)/R(t)]) =[a@)-i(t)]h, then 

E{lnCR,(t)/R(t)l)=CB(t)-I-02(t)/2]h. 
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where Z(t; h)=f:+*dZ is a normally distributed random variable with mean 
equal to zero and a standard deviation equal to Jh. Moreover, for all t and 
t’ such that It’- tlz h, Z(t; h) and Z(t’; h) will be independent. 

In preparation for the model estimation, we proceed as follows: Let r 
denote the total length of time over which we have data. The first step is to 
partition the data into n(T) (=r/T) non-overlapping time periods of length 
T. By hypothesis, yi will be constant within each of these n(T) time periods. 
The second step is to partition each of these n(T) time periods into N 
(E T/h) non-overlapping subperiods of length h. By hypothesis, the variance 
and interest rates will be constant within each of these N subperiods. 

Since by hypothesis none of the variables relevant to the estimation 
changes during any of the non-overlapping subperiods of length h, there is 
nothing to be gained by further subdivisions. Hence, with no loss in 
information, the interval between observations can be chosen to be equal to 
this h, and by appropriate choice of time units, this h can be set equal to 
one. Therefore, all time-dimensioned variables are expressed in units of the 
chosen observation interval. 

Because within each of the n(T) time periods, the subperiods are of 
identical length and non-overlapping, it should cause no confusion to 
redefine the symbol ‘t’ to mean ‘the tth subperiod of length h’ within a 
particular time period of length T. So redefined, t will take on integer values 
running from t = 1,. . ., N. There is no need to further distinguish ‘t’ as to the 

time period of length T in which it takes place because (a) the posited 
stochastic processes are time homogeneous; (b) the length of the subperiods 
are the same for all n(T) time periods, and (c) the n(T) time periods are non- 
overlapping. By the choice for time units, ‘t’ will also denote the tth 
observation within a particular time period. 

With t redefined and h = 1, (2.9) can be rewritten for a particular time 

period as 

X(t)= qo(t)]3-‘-+a2(t) +o(t)c(t), t=l,...,N, 

where E(t) is a standard normal random variable. Because the subperiods are 
non-overlapping, c(t) and I will be independent for all t and t’ such that 
t # t’. For the N observations within this time period, q is, by hypothesis, a 
constant. 

With this, the descriptions of the models are complete, and we now turn to 
the development of the estimation procedures. 

3. The estimation procedures 

Given a time series of estimates for a(t), the natural estimation procedure 
suggested by (2.10) is least-squares regression. (2.10) is put in standard form, 
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by making the change in variables X’(t) E X(t)/a(t) + a(t)/2 

(2.10) for Model #j as 

X’(r)= Yj[a(t)]2-‘+&(t). 

Given the N observations within the time period over which 

333 

and rewriting 

(3.1) 

I; is constant, 

we have that the least-squares estimator for Yj, Yj. ,j = 1.2.X can be written as 

Model # 1: 

(3.2a) 

Model #2: 

;[x(r),4),+0.5~o(t) IV, 
1 1 

(3.2b) 

Model # 3: 

?-J = i: [X(f)/fJ2@)] f0.5N ,‘$ Clb2(t)l. (3.2~) 
1 

From (3.1), all the conditions for least-squares appear to be satisfied, and 
therefore, q appears to be the best linear unbiased estimator of q. Since 
realized rates of return on the market can be negative, it is certainly possible 
that for a particular time period, 8 could be negative. In such a case, is that 
value for Yj truly an unbiased estimate of Yj? Given only the information 
contained in (3.1), the answer is ‘yes’. However, from prior knowledge, a(t) 
-r(t) must be positive, and therefore, each of the Yj must be positive. Hence, 
given this additional prior, information, a negative value for c must be 
a biased-low estimate of Y;., and the answer to the question is ‘no’. That is, Yj 
is not an unbiased estimate for Yj because (3.1) is not a complete description 
of Model #j’s specification. A complete description must include the 
condition that q>O. 

While there are a variety of ways to incorporate this restriction, it is done 
here by assuming a prior distribution for q and applying Bayes’ Theorem to 
deduce a posterior distribution based upon the observed data. The specific 
prior chosen is the uniform distribution so that the prior density for 5 is 
given by f( 5) = l/b where 0 5 5 5 b. 

Conditional upon knowing yj and o(t), we have from (3.1) that the X’(t), t 
=l , . . ., N, are independent and joint normally distributed. Using the uniform 
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prior assumption for 5, it is shown in appendix B that the posterior density 
function for q, F[YjlX’(t), a(t), t = 1,. . .,N], will satisfy j= 1,2,3, 

where @( .) is the cumulative standard normal density function, and 

Aj$ [a(t)12-‘x’(t) 5 [a(t)]4-2’, i 
1 / 1 

*; EC [U(t)]4-2’, 
1 

(3.3) 

(3.4,) 

(3.4b) 

PjzQj(b-ij) and qj’ -djQj. 

By inspection of (3.3) and (3.4) the way in which the data enter the 
posterior distribution can be summarized by two statistics: lj and QT. 
Moreover, by comparing (3.4a) with (3.2), we have that 

I,=$, j=l,2,3. (3.5) 

To reflect these observations, the posterior distribution for the Reward-to- 
Risk Ratio is written as F[q ( %, Szj ; b]. Further inspection of (3.3) will show 
that F is a truncated normal distribution on the interval [0, b] with 
characteristic parameters % and l/Q,‘. 

As fig. 3.1 illustrates, the posterior density function will be a monotonically 
decreasing function of q if %sO and a monotonically increasing function if 
8 2 b. If 0 < 3 -C b, then F monotonically increases for 0 5 5 5 8; reaches a 
maximum at I$= 5; and monotonically decreases for Yj < YjS b. It follows 
immediately that the maximum likelihood estimate of $ based upon the 
posterior distribution, Yi, will satisfy 

Yi=O for $50, 

=c for Osf;.sb, 

=b for $>=b. (3.6) 

However, for the purposes of this analysis, the maximum likelihood 
estimator is not the proper choice. The objective is to provide an estimate of 
q for the prediction of the expected excess return on the market, conditional 
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Reword-lo-Rek Ratio 

0 b 
Reward-to- Risk Ratio 

1 p<\ 
0 

Reword-to-Risk Ratio 
b 

Fig. 3.1. The influence of the least-squares regression estimate, ? on the posterior density 
function and maximum likelihood estimate, Y’, for the Reward-to-Risk Ratio. 

on knowing the current variance rate, a’(t). Conditional upon Model #j 
being the correct specification, we have from (2.3) and (2.10), that 

Ecu(t)-r(t)~a2(t),S]=E[X(t)+0.5a2(t)~a2(t),S] 

=[a(t)]3-J’E[#J2(t),S] 

=[a(t)]3-‘E[I;l S], (3.7) 

where, in this context, S denotes the set of data available to estimate the 
distribution for 5. From (3.7), it therefore follows that the correct estimator 
of 5 to use for the purpose of estimating the expected excess return on the 
market is the expected value of Yj computed from the posterior distribution. 

As is derived in appendix B, 7 =E[ q 1 $, Qf ; b], j = 1,2,3, is given by 

where yj= b/2 is the expected value of Yj based upon the prior distribution. 
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From (3.6) and (3.Q the relationship between 3, Yfi, and q for a finite 
number of observations can be summarized as follows: 

(3.9) 

(the prior mean value), 

If the model is correctly specified so that in the limit as the number of 
observations N becomes large, 8 converges to a point in the interval (O,b], 
then Y: = %, and from (3.Q 5 converges to q. Hence, both Y: and % are 
consistent estimators. 

Having established the model estimator properties, we now turn to the 
estimation of the models. 

4. Model estimates: 1926 to 1978 

In this section, market return and interest rate data from 1926 to 1978 are 
used to estimate the Reward-to-Risk Ratio for each of the three models 
presented in section 2. The model estimators are the ones derived in section 
3. The monthly returns (including dividends) on the New York Stock 
Exchange Index are used for the market return series. This index is a value- 
weighted portfolio of all stocks on the New York Stock Exchange. The U.S. 
Treasury Bill Index presented in Ibbotson and Sinquefield (1979) is used for 
the riskless interest rate series. The monthly interest rate from this index is 
not the yield, but the one-month holding period returns on the shortest 
maturity bill with at least a thirty-day maturity. 

The interval h over which it is assumed that the variance rate on the 
market can be treated as constant was chosen to be one month. The riskless 
interest rate is also assumed to be constant during this interval, and one 
month is, therefore, the observation interval. The choice of a one-month 
interval was certainly influenced by the availability of data. However, a one- 
month interval is not an unreasonable choice. At least in periods in which 
daily return data are available, this interval is long enough to permit 
reasonable estimates of the variance rate along the lines discussed in 
appendix A, and it is short enough so that the variation in the variance rate 
over the observation interval is substantially smaller than the variation in 
realized returns. 
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Other than satisfying the condition that T be significantly larger than h, I 
have no a priori reasons for choosing a specific value for the length of the 
time period over which the Reward-to-Risk Ratio, 5, is assumed to be 
constant. Perhaps other data besides market returns would be helpful. For 
example, if the data on large samples of individual investors’ holdings of 
various types of assets such as those used in the Blume and Friend study 
(1975) were available for different points in time, it might be possible to use 
these data to estimate the changes in aggregate relative risk aversion over 
time. However, given the exploratory nature of this investigation, the route 
taken here is simply to estimate the models assuming different values for T 
ranging from one year to fifty-two years and to examine the effect of these 
different choices on the model estimates. 

A third choice to be made is the value to assign to b in the uniform prior 
distribution for y. Unlike the lowerbound non-negativity restriction on q, 
there are no strong theoretical foundations for an upperbound on relative 
risk aversion, and therefore, for an upperbound on equilibrium expected 
returns. For b to be part of a valid prior, the market return data used to 
form the posterior cannot be used to form an empirical foundation for the 
upperbound restriction. Again, estimates of aggregate risk aversion from the 
investor data used in the previously-cited Blume and Friend study might 
provide some basis for setting b. However, in the absence of such other 
information, a reasonable choice is a diffuse prior on the non-negative real 
line with b= m. Taking the limit as b goes to infinity of the posterior 
distribution given in (3.3) leads to a well-defined posterior which can be 
written as 

F[YiI~,S2f;w]=njexp[-~~(~-~)2/21 

/{J2nC1-@(rlj)13, osq<xJ. (4.1) 

From (3.8), the corresponding limit applied to & can be written as 

5 = 8 + exp [ - $/2]/{& sZj[ 1 - O(vj)]}, (4.2) 

where vi= - pjQj. While a diffuse prior is the working assumption for the 
bulk of the empirical analysis, some estimates are provided for finite values 
of b to demonstrate the effect of an upper bound restriction on the model 
estimates. 

The most important choice for estimation is the selection of an 
appropriate method to generate the time series for the market variance. The 
derivations in sections 2 and 3 assumed that 02(t) is observable. Of course, it 
is not, and therefore, must be estimated. As discussed in the ‘Introduction’, 
this is not a paper on either variance estimation or variance forecasting. 
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Hence, a simple variance estimation model is used. The use of estimated 

values for the time series of variances introduces measurement error into the 

model estimators. Given the exploratory nature of the paper and the 
relatively unsophisticated variance estimation model, no attempt is made to 
adjust for these measurement errors. In using the estimation formulas from 
section 3, it is assumed that the estimated variances are the true values of the 
variances. This is the principal reason why the empirical results presented 
here must be treated as ‘preliminary’ and it is also the reason why no 
significance tests are attempted. 

As discussed in appendix A, a simple but reasonable estimate for the 
monthly variance is the sum of the squares of the daily logarithmic returns 
on the market for that month with appropriate adjustments for weekends 

and holidays and for the ‘no-trading’ effect which occurs with a portfolio of 
stocks. Unfortunately, daily return data for the NYSE Index is available only 
from 1962 to 1978. A long time series is essential for estimating expected 
returns on stocks and sixteen years of data is not a long time series. 
Therefore, to make use of the much longer monthly time series, a variance 
estimator using monthly data was created by averaging the sum of squares of 

the monthly logarithmic returns on the market for the six months just prior 
to the month being estimated and for the six months just after that month.15 
That is, the estimate for the variance in month t, 8’(t), is given by 

82(t)= i (ln[Rnr(t+k)])2+ t (hCRMM(t-k)1)2 12. (4.3 1 

k=l k=l 

With this variance estimator, all the available market return data except the 
first six~months of 1926 and the last six months of 1978 can be used to 
estimate the models. 

Although no explicit consideration is given to measurement errors in the 
variances, some indication of their effects on the model estimates is provided 
by estimating the models using both the daily return and the monthly return 
estimates of the variance for the period July 1962 to June 1978. 

In table 4.1, estimates of the Reward-to-Risk Ratio for Model # 1 are 
reported for the two different variance estimates and for different values of 
the upperbound restriction on Y, under the assumption that Y1 is constant 
over this sixteen-year period. As might be expected, for a ‘tight’ prior (i.e., b 
small) and ?I different from the prior expected value of Y1 (F1 = b/2), the data 
have little weight in the posterior estimate Y1. For this reason, with b small, 
the difference in y1 for the two different variance estimators is quite small. 

ISThis ‘lead-lag’ moving-average estimator of the variance rate is similar in spirit to the one 
used by Officer (1973). It differs from his estimator because the return for period r is not used in 
forming our estimate of the variance rate for period t. 
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As b is increased, the data have greater weight in the estimate of Yr and the 
effect on yI of the different variance estimators also increases. Fig. 4.1 plots 
YI as a function of b using the daily data estimates of the monthly variances. 
As shown there, the differences between YI for b as small as six and YI for 
the diffuse prior (b= m) are rather small. Since no information is available 
which might provide a meaningful upperbound on aggregate relative risk 
aversion, the effects of a finite b are analyzed no further and the diffuse prior 
assumption (b = m ) is made for the balance of the paper. That is, only the 
non-negativity prior restriction is imposed upon the Reward-to-Risk Ratios, 
I$ j=l,2,3. 

MODEL I : a(l)-r(t) = Y rr*(t) 

0, = Least-Squares Estimate 

7, = Prior Expected Value 

VI 
OO 

I I I I I I I I I I I I b 
I 2 3 4 5 6 

Prior Upper- Bound RestrIctIan on the Reward-to-Risk Ratto 

Fig. 4.1. The posterior expected value of the Reward-to-Risk Ratio in Model # 1 as a function 
of the prior upper-bound restriction using daily data estimates of monthly variance: July 1962 to 

June 1978. 

From table 4.1, the effect of the two different variance estimators on the 

estimates of Model # 1 is moderate with a percentage difference in the 
unrestricted regression estimate yr of about five percent and a percentage 
difference in the posterior estimate YI of about four percent. Both model 
parameter estimates were larger for the monthly-data variance estimates. 
However, as reported in table 4.2, the effect on the estimates of Models #2 
and # 3 is in the opposite direction and of considerably larger magnitude. As 
with Model # 1, the percentage differences in the posterior estimates are 
somewhat smaller than the percentage differences in the unrestricted 
regression estimates for both Models # 2 and # 3. However, for all estimates 
in these latter two models, the percentage differences are in excess of 30 
percent. The effect of the two variance estimators on the posterior density 
functions for each of the three models are illustrated in figs. 4.2, 4.3, and 4.4. 



Table 4.2 

The effect of daily data versus monthly data estimates of variance on different models 
estimates with non-negative restriction only; July 1962 to June 1978. 

Model #l: z(t)-t(t)= Y,d(t) 

Monthly data estimates of variance 0.3482 1.5914 2.1180 
Daily data estimates of variance 0.3733 1.5181 2.0341 
Percentage difference - 6.72 “/A 4.83 :I; 4.12 9; 

Mode1 #2: u(t)-r(t)=Y,o(t) 

Monthly data estimates of variance 192 0.1123 0.1214 
Daily data estimates of variance 192 0.1806 0.1818 
Percentage difference 0 ‘, - 31.82 “/A - 33.22 4; 

Model #3: a(r)-r(t)=Y, 

Monthly data estimates of variance 
Daily data estimates of variance 
Percentage difference 

Q: 9, Y3(b= x) 

172185 0.0052 o.Oc53 
221708 0.0082 0.0083 
- 22.34 “/:, - 36.59 “/A - 35.37 o0 

“Yi=Reward-to-Risk Ratio for Model #j, j=1,2,3. 
~+x:[B~(t)]~-j. 
3 = Unrestricted least-squares estimate of q. 
5 = Expected value of q using the posterior distribution based upon a uniform prior 

distribution on the interval [0, b]. 

DAILY ESTIMATE 
OF MONTHLY VARIANCE 

VI = Postermr Expected Value 

unbform Pr10r on [O, m) 

0 I 2 3 4 5 6 
Reword to Risk Ratio 

MONTHLY ESTIMATE 
OF MONTHLY VARIANCE 

Reword-to-Risk Ratlo 

Fig. 4.2. The effect of different variance estimators on the posterior density function for the 
Reward-to-Risk Ratio in Model # 1; July 1962 to June 1978. 

341 
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DAILY ESTIMATE 
OF MONTHLY VARIANCE 

y* = Posterior Expected Value 

Uniform Prior an [O,ID) 

Reword-to- Risk Ratio 

MONTHLY ESTIMATE 
OF MONTHLY VARIANCE 

Reword-to-Risk Ratio 

Fig. 4.3. The effect of different variance estimators on the posterior density function for the 
Reward-to-Risk Ratio in Model #2; July 1962 to June 1978. 

While these brief comparisons cannot be considered an analysis of the effects 
of measurement error in the variance estimates, they do serve as a warning 
against attaching great significance to the point estimates of the models. 

From table 4.2, it appears that for this period, the prior non-negativity 
restriction is important only for Model # 1 where for the same variance 
estimate, the percentage difference between YI and PI is approximately 25 
percent. The differences between the posterior estimate and the unrestricted 
regression estimate for Model # 2 and Model # 3 are negligible. This result 
is further illustrated by inspection of the shapes and domains of the posterior 
density functions as plotted in figs. 4.2, 4.3 and 4.4. 

To further investigate the importance of the prior non-negativity 
restriction, the difference between the posterior and unrestricted regression 
estimates are examined for fifty-two years of data from July 1926 to June 
1978. These estimates are presented in table 4.3 for both T=52 years and T 
=26 years. As inspection of this table immediately reveals, the percentage 
differences between % and 3 are negligible for all three models with T=52, 
and for Models # 2 and #3 with T=26. For Model # 1 with T=26, the 



R.C. Merton, Estimating the expected return on the market 343 

m DAILY ESTIMATE 
OF MONTHLY VARIANCE 

v3 = Posterior Expected Value 

of Y3 

lhform Puor on [0, (D) 

.h 50 - 

a 

0, = Least-Squares Estimate 
of Y3 

b 
L o- \ L 0.0 0.0050 OOlOO 0.0150 0.0200 0.0250 ’ Y3 0.0500 

Reword-to-Risk Ratio 

? 
y 200 

c^ 
0 
.$ 150 

MONTHLY ESTIMATE 
I= OF MONTHLY VARIANCE 

~l$Jy~ , ) ( ] y3 

0.0 0.0050 01)tOO 0.0150 0.0200 00250 0.03oo 
Reward-to-Risk Rotio 

Fig. 4.4. The effect of different estimators on the posterior density function for the 
Reward-to-Risk Ratio in Model # 3; July 1962 to June 1978. 

differences are small with an average about half of that found in the previous 
analysis from 1962-1978. As before, the posterior density functions for each 
of the models with T=52 are plotted in figs. 4.5, 4.6, and 4.7. By the 
assumption that the 5, j = 1,2,3, are constant over such a long time period, 
the number. of observations N is quite large (624 for T=52 and 312 for T 
= 26). Given the previously-demonstrated asymptotic convergence of ?+ 5 
for large N, these findings were not entirely unexpected. However, if shorter 
time intervals over which Ij is assumed to be constant are chosen, then the 
differences between %-and 5 are not negligible. 

In table 4.4, the different model estimates of the Reward-to-Risk Ratios are 
presented for T= 13 years (with N = 156). The average percentage difference 
between 5 and q for the four 13-year time periods ranged from a high of 28 
percent for Model # 1 to a low of 6 percent for Model # 3 with Model #2 
in ‘the middle at a 12 percent difference. However, the’percentage differences 
for each of the time periods are more important than the average since by 
hypothesis, the 5 can only be estimated using 13 years of data. 
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Table 4.3 

Estimates of the Reward-to-Risk Ratio, x for different models assuming Y is stationary over 52- 
year and 26-year time intervals; July 1926 to June 1978.” 

52-year interval 

7126-6178 

26-year interval 

7126-6152 7J52-6178 Average 

Mode1 #l: a(t)-r(t)=Y,u’(t) 

$ 

2 

Percentage difference 

2.16246 1.6617 0.5007 1.0812 

1.8932 1.8988 1.5112 1.5588 3.1608 3.2076 2.3360 2.3832 

-0.30% - 3.05 % -1.46% -2.26% 

Model #2: a(t)-r(t)=Y,a(t) 

?: 
Y -2 
r, 

Percentage difference 

624 312 312 312 
0.1867 0.2012 0.1723 0.1867 
0.1867 0.2012 0.1725 0.1869 

0.0 y0 0.0% -0.16% -0.08% 

Model #3: a(t)-r(t)= Y, 

0: 
3 
t 3 

Percentage difference 

423624 144884 278740 211812 
0.0082 0.0109 0.0068 0.0089 
0.0082 0.0109 0.0068 0.0089 

0.0% 0.0% 0.0% 0.0% 

‘3 c Unrestricted least-squares estimate of the Reward-to-Risk Ratio for Model #j, j = 1,2,3. 
5~ Expected value of 3 using the posterior distribution based upon a uniform prior 

distribution on the interval [0, co). 

I I I c 
4 5 6 77 

Reward-to-Risk Ratio 

Fig. 4.5. Posterior density function for the Reward-to-Risk Ratio in Model # 1 assuming a 
uniform prior distribution on [0, r); July 1926 to June 1978 (for T=52 years, the unrestricted 

least-squares estimate of Y,, %‘, . is equal to the posterior value of I’,, U, ). 
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>-N 
t;’ 10.0 - 

s 
‘Z g 7.5- 

I= 

f 5.0 - 

0’ 
5 2.5 - 
j 
z 
a. 0.0. I I 

0.0 0.10 0.20 0.30 040 0.50 0.60 vz 

Reword- to- Risk Rotto 

Fig. 4.6. Posterior density function for the Reward-to-Risk Ratio in Model #2 assuming a 
uniform prior distribution on [O, I)); July 1926 to June 1978 (for T=52 years, the unrestricted 

least-squares estimate of Y2, Yz is equal to the posterior expected value of Yz, Y,). 

g 300 
t- 

r 
t 
z 
g IOO- 

B 
5 

B 0 I I ’ 0.0 0.0050 0.0100 Ox)150 0.0200 0.0250 W3CG y3 

Reword-to-Risk Ratio 

Fig. 4.7. Posterior density function for the Reward-to-Risk Ratio in Model #3 assuming a 
uniform prior distribution on [0, XI); July 1926 to June 1978 (for T=52 years, the unrestricted 

least-squares estimate of YS, YS, is equal to the posterior expected value of Y3, Y,). 

In the 196551978 period, the percentagk differences between the posterior 
estimate and the unrestricted regression estimate are substantial for all three 
models. This was a period with a number of large negative realized excess 
returns on the market, and this is precisely the type of period in which the 
prior non-negativity restriction can be expected to be important. The periods 
1939-1952 and 1952-1965 did not have these large negative realized excess 
returns and correspondingly, the non-negativity restriction was (ex post) 
unimportant. The period 1926-1939 appears to be different from the other 
three in that the effect of the non-negativity restriction is quite large for 
Model # 1; small for Model # 2; and negligible for Model # 3. However, the 
results from this period are consistent with the oth.ers. This was a period of 
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Table 4.4 

Estimates of the Reward-to-Risk Ratio, x for different models assuming Y is stationary over 13- 
year time intervals; July 1926 to June 1978. 

71266139 7139-6152 7152-6165 7165-6178 Average 

Model #I: z(t)-r(t)=Y’,u*(t) 

:: 
< 

0.628 1.3344 1 0.3273 5.1114 0.1936 7.5772 0.3777 0.3072 0.5406 3.4236 
0.9747 5.1211 7.5807 1.5858 3.8156 

Percentage difference - 35.56 % -0.19% -0.05 7; -76.180/A -28.00>; 

Model #2: a(t)-r(t)= Y2u(t) 

n: 156 156 156 156 156 
YZ 0.1569 0.2454 0.2982 0.0464 0.1867 
2 0.1617 0.2457 0.2983 0.0840 0.1974 

Percentage difference - 2.97 7; -0.12% - 0.03 y0 -44.76% - 11.97 ;: 

Model #3: a(t)-r(t)=Y, 

9: 44439 100445 164110 114630 105906 

Y 
$ 

0.0146 0.0092 0.0096 0.0029 0.0091 

3 0.0146 0.0092 0.0096 0.0038 0.0093 

Percentage difference 0.0 “/; 0.0 U/0 0.0 % - 23.68 7; - 5.92 ;L 

‘?.= Unrestricted least-squares estimate of the Reward-to-Risk Ratio for Model #j, j = 1,2,3. 
I$ Expected value of 5 using the posterior distribution based upon a uniform prior 

distribution on the interval [O, co). 

both large positive and negative realized excess. returns with both large 
changes in variance and large variances especially in the early 1930’s when 
the market had a large negative average excess return. From the regression 
estimators, (2.2), & has in its numerator the unweighted average of the 
(logarithmic) realized excess returns. pZ has in its numerator the weighted 
average of these excess returns where the weights are such that each excess 
return is ‘deflated’ by that month’s estimate of the standard deviation. That 
is, unlike $‘I in which each observed excess return has the same weight, p2 
puts more weight on observed excess returns which occur in lowerlhan- 
average-standard-deviation months and less weight on those that occur on 
higher-than-average-standard-deviation months. Inspection of the regression 
estimator for Model #3 will show that the weighting of the realized excess 
returns 1s similar to that of $‘Z except the effect is more pronounced because 
each month’s return is divided by that month’s variance. Hence, in a period 
such as the early 1930’s when, ex post, large negative excess returns occur in 
months where the variance is also quite large, the differences between pj and 
$ will be largest in Model # 1 and smallest in Model # 3. Of course, just 
the opposite effect will occur in periods when, ex post, either large negative 
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excess returns &cur in months when the variance is small, or more likely, 
large positive excess returns occur in months when the variance is large and 
a number of negative excess returns occur in months when the variance is 
small. 

To provide further evidence in support of this #explanation and to further 
underscore the importance of the non-negativity constraint, especially as T 
becomes smaller, tables 4Sa, 4Sb, and 4.5~ provide the estimates for all three 

Table 4.5a 

Estimates of the Reward-to-Risk Ratio, Y,, for Model # 1: a(t)-r(t) 
= Y,a*(t), assuming Y, is stationary over four-year time intervals; 

July 1926 to June 1978. 

Percentage 
difference 

l/266/30 0.1785 2.4118 3.1184 - 20.5 % 
l/3&6/34 0.8365 -0.1097 0.8337 - 113.2 % 
7/346/38 0.2216 1.9389 2.6017 -25.5% 
l/38-6/42 0.2226 0.2156 1.1121 -81.8% 
l/42-6/46 0.0860 12.6511 12.6525 0.0 7; 
l/4&6/50 0.0181 1.9159 3.6625 - 47.1 y0 
l/50-6/54 0.0553 12.2185 12.2459 -0.2% 
l/546/58 0.0685 1.6509 7.8610 -2.7% 
l/58&6/62 0.0607 4.3146 5.3906 -2o.o”/; 
1162-6166 0.0507 9.0518 9.2186 -2.47; 
7/666/10 0.0863 - 2.2060 2.0534 - 201.4 7; 
7/l&6/14 0.0909 0.9986 3.0443 - 67.2 7; 
l/146/18 0.1204 1.6183 2.9964 -46.0% 

Average 0.1664 4.0566 5.1932 -49.3 y0 

‘@=~:“B’(f), the estimate of the sum of monthly variances for 
four-year time intervals. 

Y, = Unrestricted least-squares estimate of the Reward-to-Risk 
Ratio for Model # 1. 

Y, ~Expected value of Y, using the posterior distribution based 
upon a uniform prior distribution on the interval [0, x;). 

models for T=4 years (N=48). In the 193&1934 period, the regression 
estimates were negative for all three models with the largest percentage 
‘difference between q and q occurring for Model # 1 and the smallest for 
Model # 3. In the 193%1942,period, the regression estimates for Model #2 
and Model #3 were negative, and the ranking of the models by percentage 
differences between $ and $ was reversed from that of the 193&1934 
period. In the 19661970 period, the regression estimates for Model # 1 and 
Model #2 are negative with the same model rankings as in the .1930-1934 
period. 



Table 4.5b 

Estimates of the Reward-to-Risk Ratio, Y2, for Model #2: a(f)--(t) 
= Y,a(t), assuming Y, is stationary over four-year time intervals; 

July 1926 to June 1978. 

r; 

Percentage 
dilTerence 

7/2&6/30 
7/3&6/34 
71346138 
7/38-6142 
7142-6146 
7/466/50 
7/5&6/54 
7154-6158 
7158-6162 
7162-6166 
7/666/70 
7/7@-6/74 
71746178 

Average 

48 0.2658 0.2768 
48 - 0.0084 0.1122 
48 0.2549 0.2675 
48 -0.1288 0.0790 
48 0.5509 0.5510 
48 0.1206 0.1715 
48 0.4109 0.4119 
48 0.2954 0.3027 
48 0.2171 0.2370 
48 0.3293 0.3336 
48 -0.0355 0.1032 
48 0.0653 0.1424 
48 0.0901 0.1547 

48 0.1867 0.2418 

-4.0% 
- 107.5 7; 

-4.7% 
-263.0% 

0.0 “/: 
- 29.7 % 
-0.2% 
-2.4% 
- 8.4 y0 
-1.37; 

-134.4% 
-54.1% 
-41.8% 

-50.1% 

‘$=N =number of months in a four-year time interval. 
Y, G Unrestricted least-squares estimate of the Reward-to-Risk 

Ratio for Model #2. 
T;=Expected value of Y2 using the posterior distribution 

based upon a uniform prior distribution on the interval 

CO, =). 

Table 4.5~ 

Estimates of the Reward-to-Risk Ratio, Y,, for Model #3: a(t) 
-r(t)= Y3, assuming YS is stationary over four-year time 

intervals; July 1926 to June 1978. 

E, r; 

Percentage 
difference 

7/2&6/30 22344 0.0165 0.0167 
7/3&6/34 4091 -0.0015 0.0119 
7134-6138 16124 0.0183 0.0185 
7138-6142 19633 -0.0149 0.0026 
7142-6146 29693 0.0222 0.0222 
7/466/50 33517 0.0062 0.0075 
7/5&6/54 47626 0.0126 0.0126 
71546158 35062 0.0111 0.0113 
7/58-6162 43347 0.0084 0.0088 
7162-6166 73342 0.0088 0.0089 
7/666/70 30920 0.0014 0.0051 
7170-6174 35864 0.0031 0.0056 
7/746/78 32059 0.0029 0.0057 

Average 32586 0.0073 0.0106 

- 1.2% 
- 112.6% 

-1.1% 
-673.1% 

0.0% 
- 17.3 7; 

0.0 % 
-1.8% 
-4.5 % 
-1.1% 

- 72.5 % 
-44.6% 
-49.1% 

- 75.3 % 

“0: = 1:” [l/t?(t)], the sum of the reciprocal of the estimates of 
monthly variances for four-year time intervals. 

2~ Unrestricted least-squares estimate of the Reward-to-Risk 
Ratio for Model #3. 

Y,=Expected value of Ya using the posterior distribution 
based upon a uniform prior distribution on the interval 

CO, 3)). 
348 
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While the periods in which the regression estimates for the Reward-to-Risk 
Ratio are negative demonstrate the necessity for the non-negativity 
restriction most dramatically, it is not necessary that the estimates be 
negative to have large percentage differences between Fj and Yj. Two cases in 
point are the 1970-1974 and 1974-1978 periods. As expected, when T is 
further reduced from four years to one year, the effect of the non-negativity 
restriction is even more pronounced. The summary statistics for this case are 
presented in table 4.6. 

Table 4.6 

Summary statistics for estimates of the Reward-to-Risk Ratio, Y, for different models assuming Y 
is stationary over one-year time intervals; July 1926 to June 1978.’ 

Monthly estimates for 52 one-year intervals 

Standard 
Average deviation High Low 

Model #l: gt)-r(f)=Y,c’(t) 

Y; 4.7982 8.5001 6.0049 8.4217 26.2476 26.3422 
- 

9.5025 0.7471 

Model #2: a(t)-r(t)= Y+(t) 
% 0.1867 0.3791 0.8987 -0.6214 
r, 0.3719 0.2086 0.8996 0.1029 

Model #3: a(t)-r(t)=Y, 

t 
G 

0.006 1 0.0316 0.1322 -0.1119 

3 0.0181 0.0173 0.1323 0.0040 

“3 EUnrestricted least-squares estimate of the Reward-to-Risk Ratio for Model #j, j= 1,2,3. 
I;-~Expected value of I; using the posterior distribution based upon a uniform prior 

distribution on the interval [0, 03). 

As a final illustration of the necessity for including the non-negativity 
restriction, the estimates of 5 and q (j= 1,2,3) using the monthly-data 
variance estimator for the period 1962-1978 are compared with the 
corresponding estimates for the period 196551978. Since the variance 
estimates and return data are identical for the 13-year overlapping period 
1965-1978, the differences between the estimates presented in table 4.2 and 
those presented in table 4.4 reflect the effect of a change from a 16-year to a 
13-year observation period. The three-year period 1962-1965 eliminated by 
this change was one in which the realized excess returns on the market were 
mostly positive and the variances were relatively low. 

For Model # 1, the effect of this change on the posterior estimate YI is a 
25.1 percent decline. While this was substantial, the effect on the regression 
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estimate was much greater with a decline in %‘i of 76.3 percent. The effect on 
the other model estimates is similar. For Model #2, the posterior estimate 
YZ changes by 30.8 percent with a corresponding change in FZ of 58.7 
percent. For Model #3, the change in Y3 is 28.3 percent and the change in 
Pa is 44.2 percent. 

The substantial percentage change in both the 6 and 3 estimates from a 
relatively small change in the observation period illustrates the general 
difficulty in accurately estimating the parameters in an expected return model 
and underscores the importance of using as long a historical time series as is 
available. However, very long time series are not always available, and even 
when they are, it may not be reasonable to assume that the parameters to be 
estimated were stationary over that long a period. Therefore, given the 
relative stability of the Yj estimator by comparison with %, it appears that 
the non-negativity restriction should be incorporated in the specification of 
any such expected return model. 

Having analyzed the empirical estimates of the Reward-to-Risk Ratios, we 
now examine the properties of the expected excess returns on the market 
implied by each of these models. For this purpose, it is assumed that the 5 
(j= 1,2,3) were constant over the entire period 19261978, and therefore, T 
equals 52 years. Or course, this assumption is certainly open to question. 
However, given the much-discussed problems with the variance estimators 
and the exploratory spirit with which this paper is presented, further 
refinements as to the best estimate of T are not warranted here. Moreover, as 
discussed in section 2, the current state-of-the-art model implicitly makes this 
assumption by using as its estimate of the expected excess return on the 
market, the sample average of realized excess returns over the longest data 
period available. 

Using the estimated % and the time series of estimates for the market 
variances, monthly time series of the expected excess return on the market 
were generated for each of the three models over the 624 months from July 
1926 to June 1978. As shown in figs. 4.5, 4.6, and 4.7, with T equal to 52 
years, the posterior density functions for all three models are virtually 
symmetric and the differences between q and < are negligible.i6 

The summary statistics for these monthly time series are reported in table 
4.7 and they include the sample average, standard deviation and the highest 
and lowest values. Of course, the expected excess return estimate for Model 
#3 is simply a constant. In table 4.7, the same summary statistics are 
presented for the reulized excess returns on the market and for the realized 
returns on the riskless asset. 

Inspection of table 4.7 shows that the average of the expected excess 
returns varies considerably across the three models. The ‘Constant- 

16Hence, for T= 52 years, the monthly time series of expected excess returns using the 
unrestricted regression estimate would be identical to those presented here. 
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Preferences’ Model # 1 is the lowest with an average of 0.665 percent per 
month or, expressed as an annualized excess return, 8.28 percent per year. 
The ‘Constant-Price-of-Risk’ Model #2 is the highest with an annualized 
excess return average of 12.04 percent per year. The ‘Constant-Expected- 
Excess-Return’ Model #3 is almost exactly midway between the other two 
models with an annualized average of 10.36%. The sample average of the 
reulized excess returns on the market was 0.655 percent per month, or, 
annualized, 8.15 percent per year. This sample average is also the point 
estimate for the expected excess return on the market according to the state- 
of-the-art model. 

Even with these large differences in the average estimates, it is unlikely 
that any of these models could be rejected by the realized return data. The 
variance of the unanticipated part of the returns on the market is much 
larger than the variance of the change in expected return. That is, the 
realized returns are a very ‘noisy’ series for detecting differences among 
models of expected return. 

In examining the average excess returns in table 4.7, one might be tempted 
to conclude that Model # 1 ‘looks’ a little better because its average is so 

close to the sample average of realized excess returns. However, as inspection 
of (2.2a) makes clear, the regression estimator ?i is such that this must 
always be the case when the variance estimator is of the type used here. This 
observation brings up an important issue with respect to estimates based 
upon the state-of-the-art model. 

If the strict formulation of that model is that the expected excess return on 
the market is a constant or at least, stationary over time, then the least- 
squares estimate of that constant is given by %‘a in Model #3. However, 
from table 4.7, the annualized difference between p3 and the sample realized 
return average is 221 basis points. This difference is quite large when 
considered in the context of portfolio selection and corporate finance 
applications. The reason for the difference is that the sample average of 
realized returns is only a least-squares estimate if the variance of returns over 
the period is constant. If the variance is not constant, and it isn’t, then the 

estimator should be adjusted for heteroscedasticity in the ‘error’ terms. This. 
is exactly what the estimator vJ does. Of course, the sample average of 
realized returns is a consistent estimator and the measurement error problem 
in the variance estimates rule out formal statistical comparison. However, the 
large difference reported here should provide a warning against neglecting 
the effects of changing variance in such estimations and simply relying upon 
‘consistency’ even when the observation period is as long as 52 years. 

As mentioned, the sample average of the realized returns will provide an 
efficient estimate of the average expected return if Model # 1 is the correct 
specification. However, even if that is the belief, then for capital market and 
corporate finance applications, ?, times the estimate of the current variance 
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will provide a better estimate of the current expected excess return than the 
state-of-the-art model because it takes into account the current level of risk 
associated with the market. 

A similar argument applies to using the ratio of the sample average of the 
realized excess returns to the sample standard deviation for estimating the 
Price of Risk under the hypothesis that it is constant, or at least, stationary 
over time. From table 4.7, using the realized return statistics, the estimate of 
the Price of Risk is 0.114 per month whereas from table 4.3, the least-squares 
estimate & which takes into account the changing variance rates is 0.1867 
per month. Again, this difference is quite large. 

Table 4.8 

Successive four-year average monthly variance estimates for the 
return on the market; July 1926 to June 1978. 

Dates 
Average 
monthly variance” 

Percentage change 
from previous period 

7/2&6/30 0.003719 
7/3%6/34 0.017427 368.59 7; 
7/346/38 0.004742 - 72.79 “/;, 
7138-6142 0.004638 -2.197; 
7142-6146 0.001792 -61.36”/; 
71466150 0.001640 - 8.48 ‘:; 
7/5&6/54 0.001152 - 29.76 “/, 
7154-6158 0.001427 23.87 ‘;:, 
715%6162 0.001265 -11.35% 
7162-6166 0.001056 - 16.52 “/:, 
71666170 0.001798 70.27 “/:, 
7/7&6/74 0.001894 5.34 “/, 
71746178 0.002508 32.42 “/, 

Average 0.003467 

aThe four-year average monthly variance was computed for each 
non-overlapping four-year period by [cf!, S2(t)]/48 where (4.3) was 
used for the variance estimator B’(t). 

To further underscore the importance of taking into account the change in 
the variance rate when estimating the expected return on the market, we 
close this section with a brief examination of the time series of market 
variance estimates. The average monthly variance rates for the market 
returns are presented in table 4.8 for the thirteen successive four-year periods 
from July 1926 to June 1978. Over the entire 52-year period, the average 
annual standard deviation of the market return was 20.4 percent. However, 
as is clearly demonstrated in table 4.8, the variance rate can change by a 
substantial amount from one four-year period to another, and it is 
significantly different from this average in many of the four-year periods. 

J.F.E.-_B 
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It has frequently been reported that the market was considerably more 
volatile in the pre-World War II period than it has been in the post-war 
period. That observation is confirmed here with an average annual standard 
deviation of 27.9 percent for the period July 1926 to June 1946 versus 13.8 
percent for the period July 1946 to June 1978. However, a significant part of 
this difference is explained by the extraordinarily large variance rates in the 
1930-1934 period. Thus, if this period is excluded, then the average annual 
standard deviation for the other twelve four-year periods is 16.6 percent. 

Because the state-of-the-art model assumes a constant variance rate, the 
large differences in variance rates among the various subperiods causes this 
model’s estimates to be quite sensitive to the time period of history used. So, 

for example, if 1930-1934 is excluded, then the estimated Market Price of 
Risk based upon the other forty-eight years of data changes by 33 percent 
for the state-of-the-art model estimator. However, this same exclusion causes 
Model #2’s estimate, p2, to change by only 8 percent. 

5. Conclusion 

In this exploratory investigation, we have established two substantive 
results: First, whether or not one agrees with the specific way in which it was 
incorporated here, it has been shown that in estimating models of the 
expected return on the market, the non-negativity restriction on the expected 
excess return should be explicitly included as part of the specification. 
Second, because the variance of the market return changes significantly over 
time, estimators which use realized return time series should be adjusted for 

heteroscedasticity. As suggested by the empirical results presented here, 
estimators based upon the assumption of a constant variance rate, although 
consistent, can produce substantially different estimates than the proper 
weighted least-squares estimator even when the time series are as long as fifty 
years. As demonstrated by the analysis of Model #3, these conclusions 
apply even if the model specification is such that the expected excess return 
does not depend upon the level of market risk. 

There are at least three directions in which further research along these 
lines could prove fruitful. First, because the realized return data provide 
‘noisy’ estimates of expected return, it may be possible to improve the model 
estimates by using additional non-market data. Examples of such other data 
are the surveys of investor holdings as used in Blume and Friend (1975): the 
surveys of investor expectations as used in Malkiel and Cragg (1979); and 
corporate earnings and other accounting data as used in Myers and Pogue 
(1979). Because these types of data are not available with the regularity and 
completeness of market return data, it may be more appropriate to include 
them through a prior distribution rather than as simply additional variables 
in a standard time series regression analysis. If a prior distribution is to be 
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used to incorporate both these data and the non-negativity restriction, then 
the sensitivity of the model estimates to the particular distribution chosen 
warrants careful study. 

A second direction is to employ a more sophisticated approach to the non- 
stationarity of the time series. Such an approach could be used to estimate 
the length of time over which it is assumed that the Reward-to-Risk Ratio 
can be treated as essentially constant (i.e., T). In the analysis presented here, 
the estimates of q for different T only used the data for the specific 
subperiod. So, for example, the Yj for the period 1930-1934 was computed 
using only the observed returns for 1930-1934. Clearly, better estimates 
could be obtained by including the pre-1930 observations as well. Therefore, 
for a given T, the estimates will be improved by developing a procedure for 
revising the prior distribution using ptrsr estimates of 5.. 

The third and most important direction is to develop accurate variance 
estimation models which take account of the errors in variance estimates. As 
previously discussed, such models have applications far broader than simply 
estimating expected returns. Such models should benefit from inclusion of 
both option price data and accounting data in addition to the past time 
series of market returns. Perhaps other market data such as trading volume 
may improve the estimates as well. 

While there are obviously many problems to be overcome in both the 
estimation and testing of expected return models, it is hoped that this paper 
will stimulate further research effort and with it, some solutions to this 

important problem. 

Appendix A 

Estimtrting the curiunce rnte from time series of retrlized returns 

In the Introduction, it was claimed that the variance of returns can be 
estimated far more accurately from the available time series of realized 
returns than can the expected return. We now show that this claim is correct 
provided that market returns can be described by a diffusion-type stochastic 
process as in (2.5) and that the mean and variance of these returns are 
slowly-varying functions of time. 

As discussed in detail in section 2 of the text, under the hypothesis that the 
mean and variance are slowly-varying functions of time, the true process for 
market returns can be approximated by assuming that p and G* are 
constants over (non-overlapping) time intervals of length /r where p is the 
expected logurithmic rate of return on the market per unit time and a2 is the 
variance per unit time. Suppose that the realized return on the market can 
be observed over time intervals of length A where A <h. Then n = h/A is the 
number of observations of realized returns over a time interval of length h. 
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So, for example, if h equals 1 month and A equals 1 day, then n equals 30 
(neglecting weekends and holidays). Let X, denote the logarithmic return on 
the market over the kth observation interval of length A during a typical 
period of length h for k = 1,2,. . ., n. From (2.5), X, can be written as 

X,=pA +a&~~, k=1,2 ,..., n, (A.1) 

where the {Q}, k= 1,. .., n, are independent and identically distributed 
standard normal random variables. 

From (A.l), the estimator for the expected logarithmic return, fi 
=[c; XJh, will have the properties that 

and 

ECPI =A 

var [fi] = a2/h. 

(A-2) 

(A.3) 

Note that the accuracy of the estimator as measured by var[F] depends only 
upon the total length of the observation period h and not upon the number 
of observations n. That is, nothing is gained in terms of accuracy of the 
expected return estimate by choosing finer observation intervals for the 
returns and thereby, increasing the number of observations n for a fixed 
value of h. 

Consider the following estimator for the variance rate: g2 =[I; X,21/h. 
From (A.l), this estimator will have the properties that 

(A.4) 

and 

(A.5) 

Because the estimator for a2 was not taken around the sample mean fi. c?~ is 
biased as shown in (A.4). However, for large n, the difference between the 
sample second central and non-central moments is trivial. For example, 
typical values for ,u and tr2 in annual units would be 0.10 and 0.04, 
respectively. For daily observations, h/n will equal approximately l/360. 
Therefore, substituting into (A.4), we have that E(c?~) will equal 0.0400277 
when the expectation of an unbiased estimator is 0.04. Even for monthly 
observations with h/n equal to 12, E(82)=0.0408333 and the bias of this 
estimator is still trivial. 

The advantage of this estimator is that the variance can be estimated 
without knowing or even having an estimate of the mean ,u. It also, of 
course, saves one degree of freedom. Thus, for stock return data and 
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observation intervals of a month or less, the bias from a non-central 

estimator of the variance can be neglected. 
More important than the issue of bias is the accuracy of the estimator. As 

inspection of (A.5) quickly reveals, var(k2) does depend upon the number of 

observations n for a fixed h, and indeed, to order l/n, it depends only upon 
the number of observations. Thus, unlike the accuracy of the expected return 
estimator, by choosing liner observation intervals d, the accuracy of the 
variance estimator can be improved for a fixed value of h. 

To further emphasize the point, consider the extreme case where both the 
mean and variance are constant for all time. The accuracy of the expected 
value estimator will depend only on the total length of calendar time for 
which return data are available (e.g., 52 years). However, the accuracy of the 
variance estimator will depend critically on whether these data are available 
annually, quarterly, monthly, or daily. The standard deviation of the variance 
estimate using annual data will be approximately nineteen times larger than 
the standard deviation of the estimate using daily data over the same 
calendar period. Since neither the mean nor the variance are constant for 
anything like this length of calendar time, the practical advantage of the 
variance estimator’s accuracy depending upon n rather than h is that a 
reasonably accurate estimate of the variance rate can be obtained using daily 
data while the estimates for expected return taken directly from the sample 
will be subject to so much error as to be almost useless. Additional 
discussion on these points can be found in Merton (1976, pp. 336-339). 

In the theoretical limit of continuous observation, n goes to infinity for any 
finite h, and therefore, the variance rate could in principle be estimated 
without error for any finite interval. However, in practice, the choice of an 
ever-shorter observation interval introduces another type of error which will 
‘swamp’ the benefit of a shorter time interval long before the continuous 
limit is reached. This error is caused by not knowing the exact length of time 
between successive trades. For example, suppose that the closing price of a 
stock as reported in the newspaper was not the result of trade at 4:00 p.m., 
but rather the result of a (last) trade which occurred at 3:00 p.m. If A is one 
week and if the last trade the previous week did occur at 4:00 p.m., then the 
observed price change occurred over a 167 hour interval and not a 168 hour 
interval as assumed. While this actual shorter time interval will cause an 
underestimate of the variance rate, the magnitude of the error is only 0.6 
percent. However, suppose that A is the six-hour interval from the 10:a.m. 
opening to the same day 4:00 p.m. closing. Then, even if the first trade 
occurs at 10:00 a.m., the actual interval for the observed price change is live 
hours and not six, and the magnitude of the error in the variance rate would 
be 16.7 percent. Of course, if the first trade actually took place at 1l:OO a.m., 
then the error would be 33.3 percent. Thus, the ‘true’ time interval between 
trades is a random variable. 
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For actively-traded stocks and a A of the order of a week or more, this 
error will generally have a negligible effect on the variance estimates. 
However, for daily observations, it can have a non-negligible effect for 
individual stocks, and it will definitely be important for a large portfolio of 
stocks such as the NYSE index. It is more important for a large portfolio 
because it is likely that a significant number of the stocks in the portfolio 
will not have their last trade near the closing time. Since the closing value of 
the index is computed using the last traded prices and since stocks tend to be 
contemporaneously positively correlated with one another, the observed daily 
changes in the index will exhibit positive serial correlation. This positive 
correlation is not ‘real’ in the sense that one could make money trading in 
the individual stocks contained in the index because at 4:00 p.m., trades 
could not have been executed at these last (and earlier) prices. However, if 
no adjustment is made for this ‘non-trading’ effect, then the sum of squared 
daily logarithmic changes in the index will produce a significantly biased-low 
estimate of the variance rate. 

A method for correcting for this problem is as follows: Let Xii denote the 
observed change in the index as contrasted with X, in (A.l) which is the true 
change. Since it is not known for how many days this ‘non-trading’ effect 
lingers, it was simply assumed that after three days, there is no effect. A 
model specification which captures this non-trading effect is given by 

where Os6,51, j=O,1,2,3, and &=l-6,-S,-6,. From (A.6), we have 
that 

(A-7) 

Comparing (A.7) with (A.4) confirms that the unadjusted estimator is biased 
low for the posited restrictions on the hi. If the (Sj} were known, then 
(neglecting the p2 A term) there is a simple adjustment: Namely, divide the 
observed sum of squares by [E= ,, sf]. Of course, they are not known, and 
therefore, must be estimated. 

In section 4, daily data are used in one of the variance estimators for the 
period July 1962 to June 1978. To adjust the estimates for serial correlation, 
the dj were estimated using nonlinear procedures on the following equation: 

X,=A+BX,_, +B2Xk_2 +B3&_3. (44.8) 
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From (A.6) and (A.8), we have that 

B=[6, th,b, tb2d3]/[1 +df tb: t&i], 

B2 =[& t6,bJ/[l ts: td2, td:], 

B3=b3/[1 +bf t(s; tig]. 

(A.9) 

In the sample period, A =0.0002 with standard error 0.0001 and B=0.2106 
with standard error 0.0114. The corresponding values for bj from (A.9) are 6, 
=0.734, d, =0.221, 6, =0.045, d3 =O.OlO, xj”=,,6f =0.5854, and this was the 
number used to adjust for non-trading in the daily data variance estimator in 
the text. Adjustments were also made for non-trading days (i.e., weekends 
and holidays) by dividing the ‘daily’ returns by the square root of the 
number of days between trades. 

Appendix B 

The posterior distributiorl for q 

In section 3, we have from (3.1) that 

X’(r)= q[a(r)]2-’ te(t), j=l,2,3, t=l,...,N. (B.1) 

where the prior density for q is uniform with f( Yj) = l/b for Oj q 5 b and 
zero, otherwise. Because the {s(t)) are independently and identically 
distributed standard normal, the joint density for X’( 1 ), . . ., X’(N), 
conditional on knowing I;. is given by 

g[X’(l),..., X’(N)( YJ =exp 
i 

-+i [X’(t)-- ~C~(t)12-‘12 
1, 

I (27r)N’2 
1 

=e -fQjexp[-+L?~(1;--E,.)2]/(27c)N/2, 

(B.2) 

where 

and Qf and i.j are as defined in (3.4a) and (3.4b). 
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By Bayes Theorem, the posterior density for 5 given X’(l), . . .,X’(N) can 
be written as, j = 1,2,3, 

F[IjX’(l),..., X’(N )I = Cd ‘1 Yjllb} I {i gC * 1 Yjl dYj/b} i 0 

(B.3) 

By the change in the variable of integration u zQj[yj-lj], we have that 

=2n{@(Pj)-@(?j)}lQjzi, (B.4) 

where fj=Qj(b -Aj) and qj- -;ljQj. By combining (B.3) and (B.4), we have 
expression (3.3) for F[YjI .] given in the text. 

To determine q =E[ q 1 c, Szf ; b], we simply multiply F[ q 1 .] by 5 and 
integrate from q = 0 to 5 = b, and note that yj = ,Ij. 
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