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Models of Stock Returns—A Comparison
STANLEY J. KON*

ABSTRACT

In this paper a discrete mixture of normal distributions is proposed to explain the
observed significant kurtosis (fat tails) and significant positive skewness in the distri-
bution of daily rates of returns for a sample of common stocks and indexes. Stationarity
tests on the parameter estimates of this discrete mixture of normal distributions model
revealed significant differences in the mean estimates that can explain the observed
skewness and significant differences in the variance estimates that can explain the
observed kurtosis. An alternative explanation for the observed fat tails is the symmetric
student model. The result of a comparison between the models is that the discrete
mixture of normal distributions model has substantially more descriptive validity than
the student model.

FOR MANY YEARS both financial economists and statisticians have been con-
cerned with the description of stock market returns. The form of the distribution
of stock returns is a crucial assumption for mean-variance portfolio theory,
theoretical models of capital asset prices, and the prices of contingent claims.
For example, understanding the behavior of the variance is essential to option
pricing models. Empirical tests of asset pricing models and the efficient markets
hypothesis draw statistical inferences that are also conditional on distributional
assumptions. The most convenient assumption for financial theory and empirical
methods is that the distribution of security rates of return be multivariate normal
with parameters that are stationary over time. Since the normal distribution is
stable under addition, any arbitrary portfolio of stocks will also be normally
distributed. With the additional assumption of risk aversion, mean-variance
theory follows. Furthermore, the assumptions of normality and parameter sta-
tionarity are required for most of the econometric techniques typically used in
empirical research.

Tests of the normality hypothesis on the daily returns of the Dow Jones
Industrial stocks by Fama [12] revealed more kurtosis (fatter tails) than that
predicted from a sample of independent and identically distributed normal
variates. Fama concluded from this evidence that the distribution of price changes
conforms better to the stable Paretian distribution with characteristic exponent
less than 2. The evidence provided by Blattberg and Gonedes [4], however,
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indicates that the distribution of monthly returns conforms well to the normality
hypothesis. Therefore, most of the empirical research in the finance literature
proceeded to use monthly data with reasonable confidence in their inferences.
More recently, researchers are using daily data in order to isolate information
events (e.g., Charest [7] and Aharony and Swary [1]) or for the advantage of a
large estimation sample for statistical reliability in asset pricing model tests (e.g.,
Roll and Ross [29]). This potential for more powerful empirical tests, however,
is still conditional on the yet unresolved distribution of security returns issue.

In order to test the validity of the stable Paretian hypothesis, subsequent
empirical studies concentrated on its stability property. Officer [25], Hsu et al.
[17], Blattberg and Gonedes [4], and Hagerman [16] all report evidence that is
not consistent with the stable Paretian hypothesis. The evidence indicates that
the characteristic exponents of the distribution of the intertemporal sum for the
returns on stocks and portfolios rise with the sum size. This result is a clear
violation of the stability property.

Alternative explanations for the observed fat tails in the empirical distribution
of security returns involve model specifications in which the true underlying
generating process is a mixture of normals. Several researchers have postulated
a continuous mixture of normal distributions where the variance is a random
variable. Praetz [27] and Blattberg and Gonedes [4] prove that if the variance of
the normal follows an inverted gamma distribution, then the resulting (posterior)
distribution is the student. A rigorous comparison of the student and stable
distributions was made by Blattberg and Gonedes [4] using daily rate of return
data on each of the 30 stocks in the Dow Jones Industrial Average. The results
clearly indicate that the student model has greater descriptive validity than the
symmetric-stable model.’

Considerably less attention has been given to a discrete mixture of normal
distributions even though the economic scenarios may be more reasonable. Recall
that the empirical evidence on the distribution of daily stock returns clearly
rejects the stationary normal distribution model. It is, however, the normality
hypothesis that is crucial to models of financial theory. Stationarity is merely a
convenient sampling assumption. In fact, theory predicts that changes in the
investment and financial decision variables of firm managers will result in
adjustments to the expected return and standard deviation parameters of the
distribution of a security’s return. Boness et al. [5] found that with weekly return
data before and after a capital structure change, the parameters of the price
change processes do indeed shift. They also present evidence that the overall
series contain substantially more departures from normality than the series of
either the pre or post capital structure change subperiods. Furthermore, Christie
[10] demonstrates that the standard deviation of a stock’s return is an increasing
function of financial and operating leverage and empirically verifies the financial
leverage effect.

! Other models of stock returns include the compound events model proposed by Press [28] and
the lognormal-normal model proposed by Clark [8]. However, the probability densities in neither of
these models have exact solutions, and hence, they will not be considered as candiate models for the
statistical methodology in this paper.
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There are also information signal scenarios concerning the disclosure of a
firm’s quarterly earnings that lead to parameter shifts. These seasonal announce-
ments result in rate of return observations with higher variance during the
disclosure period than during the nonannouncement periods. This is empirically
verified by Beaver [3] and others with realized stock returns and in the market’s
ex ante assessments of the variance around these announcements by Patell and
Wolfson [26]. Since this information signal of parameter shifts can be generalized
to all firm-specific events, Christie [9] has formulated a discrete mixture of two
normal distributions model where returns drawn from the distribution with the
higher variance represent information events while the other distribution gen-
erates noninformation random variables. This model was successfully applied to
information announcements in the Wall Street Journal. Ball and Torous [2] also
derive and provide evidence consistent with a mixture of two normal distributions
model for daily returns resulting from a Bernoulli jump process to describe
information arrivals.

The generating process of security returns is further complicated by exogenous
macro information and institutional trading restrictions. For example, using
monthly return data, both Officer [25] and Hsu et al. [17] provide evidence that
a substantial increase in the characteristic exponent of common stocks occurs
from the pre World War II period to the postwar period. More recently, French
[13] and Gibbons and Hess [14] have found a significant difference in the mean
return of Mondays compared to the other days of the week. These authors and
Fama [12] also find that the standard deviation of Monday returns is higher than
those of the other days of the week. This latter result is supported by the intuition
that more information relevant to price formation will be accumulated over the
weekend than just overnight for the rest of the week’s trading days. Furthermore,
Keim [18] documents nonstationary mean excess returns related to January and
the first trading week of that month. These macro components may result in a
mixture of normals for the market portfolio and a mixture of more than two
normals for the total return distribution on individual stocks. For example,
returns may be drawing from a noninformation distribution, a firm-specific
information distribution, and a market-wide information distribution—hence, a
mixture of three normal distributions. The actual number of normal distributions
is itself an empirical issue and may vary across firms.

The purpose of this paper is to provide evidence on the descriptive validity of
a discrete mixture of normal distributions process as a statistical model for stock
returns. This is accomplished by estimating the parameters of the respective
models for mixtures of N = 1, 2, 3, 4, and 5 normal distributions. Likelihood
ratio tests of model specification indicate that the sample of 30 Dow Jones stocks
can be described by a mixture of four normal distributions for 7 stocks, a mixture
of three models for 11 stocks, and a mixture of two normal distributions for the
remaining 12 stocks. This model is also compared with the currently most
empirically descriptive alternative explanation for the observed fat tails in stock
returns—the symmetric student distribution model (see Blattberg and Gonedes
[4]). The log-odds results indicate that the discrete mixture of normal distribu-
tions model has substantially more descriptive validity than the student model.

The remainder of this paper is organized as follows. In Section I, we present
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some empirical evidence on the returns of stock indexes that demonstrates the
potential for the discrete mixture of normal distributions hypothesis to explain
their observed fat tails. Section II contains a discussion of model specification
and parameter estimation for the generalized discrete mixture of normal distri-
butions. This section also describes the statistical methods for inferring the
number of normals generating the data. Section III presents the empirical
evidence and Section IV contains a summary of the results and a discussion of
the implications for empirical research in financial economics.

I. Preliminary Evidence on the Discrete Mixture of Normal
Distributions Hypotheses

In the previous section, it was argued that the true distribution of stock returns
may be normal, but that its parameters shift among a finite set of values. There
are time-ordered shifts associated with capital structure changes, acquisitions,
stock splits, or exogenous market events; and cyclical shifts between sets of
parameters, as in the day of the week effect or the seasonal announcements of
firm earnings and dividends. In order to assess the potential impact of both types
of shifts on the distributional issue, an 18Y2-year time-series of 4,639 daily return
observations on the Standard and Poor’s Composite (S&P), the CRSP value-
weighted (VW), and the CRSP equal-weighted (EW) indexes are partitioned (1)
by year to roughly account for time-ordered events, (2) by day of the week to
account for cyclical events, and (3) by year and by day of the week to account
for both effects.

All three indexes exhibited significant skewness and kurtosis (fat tails) statis-
tics at the 0.01 probability level for the entire sample period (see Table I). The
observed skewness may be explained by shifts in the mean parameter in the
time-series and the observed fat tails are consistent with shifts in the variance
parameter (see Christie [9], Appendix A). Partitioning the data into annual
subperiods reduced the frequency of rejecting the stationary normality null
hypothesis. The partition by day of the week still rejected the null hypothesis,
but with somewhat less significance than for the entire sample period.”

Since both of the previous partitions led to a reduction in the kurtosis
coefficient test statistics, it is worth trying a partition of the entire sample period
by year and by day of the week. For a sample of this size (about 50 observations)
a studentized range value greater than 5.77 should occur only once in every 100
repetitions.® The 18 years of S&P returns contain 90 subsets of data. In only 8
subsets could the stationary normal null hypothesis be rejected. For the VW

2The individual statistics are not reported for brevity, but are available from the author upon
request.

3 Since the position of the percentage points for the kurtosis coefficient in samples of less than
200 has not been established, the studentized range test is preferable for detecting fat tails. The
studentized range is never more effective than the kurtosis coefficient in detecting departures from
normality in the tails of a distribution for sample sizes greater than 200. See David et al. [11].
Therefore, throughout this paper, whenever the sample size is greater than 200, inferences will be
made with the kurtosis coefficient. Only in the by year and by day of the week case does the sample
size fall below 200, necessitating the use of the studentized range statistic.
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Table I
Tests for Departure from Normality
Standard Skewness Kurtosis Number of
I.D. Security (or index) Mean Deviation Statistic® Coefficient® Observations
1 Allied Chemical Corp 0.0406 1.7066 0.4181 6.6345 4639
2 Aluminum Co Amer- 0.0362 1.6394 —0.0459 6.3552 4639
ica
3 American Brands Inc  0.0509 1.2903 0.5232 7.2854 4639
4 American Can Co 0.0223 1.1590 0.1796 6.3436 4639
5 American Tel & Teleg 0.0254 0.9075 0.5139 7.8777 4637
6 Bethelem Steel Corp  0.0301 1.6565 0.0744 9.0226 4639
7 Du Pont 0.0235 1.2953 0.3278 5.6329 4637
8 Eastman Kodak Co  0.0459 1.5067 0.3255 6.2847 4639
9 Exxon Corp 0.0534 1.1339 0.1860 4.8022 4639
10 General Electric Co 0.0370 1.3767 0.1679 5.6936 4639
11 General Foods Corp  0.0242 1.3676 0.4098 6.3881 4639
12 General Motors Corp 0.0299 1.2844 0.2397 5.9173 4637
13 Goodyear 0.0294 1.5503 0.2479 5.0644 4639
14 INCO Ltd 0.0253 1.5662 0.1538 5.6975 4639
15 Inter Business Mach  0.0430 1.3261 0.3348 5.6165 4635
16 Inter Harvester Co 0.0350 1.5223 0.0678 5.7235 4639
17 Inter Paper Co 0.0407 1.6089 0.2983 5.5149 4639
18 Johns Manville Corp 0.0352 1.6897 0.3240 6.4031 4639
19 Merck & Co Inc 0.0626 1.4253 0.2868 5.6924 4639
20 Minnesota Mng & 0.0378 1.3900 0.3140 5.9065 4639
Mfg
21 Owens Illinois Inc 0.0334 1.5468 0.1764 6.5306 4639
22 Proctor & Gamble Co 0.0336 1.1536 0.3799 7.1343 4639
23 Sears Roebuck & Co  0.0188 1.3089 0.3302 6.6317 4639
24 Standard Oil Co Cal 0.0612 1.4062 0.3300 6.0832 4639
25 Texaco Inc 0.0463 1.4173 0.2809 5.9354 4639
26 Union Carbide Corp  0.0305 1.3917 0.3415 5.9528 4639
27 United Aircraft Prod 0.1042 2.8874 0.8791 6.8732 4629
28 United Sts Stl Corp  0.0298 1.5819 0.9080 11.5863 4639
29 Westinghouse Elc Co 0.0506 1.9172 -0.0721 13.9385 4639
30 Woolworth F W Co 0.0359 1.6792 0.7257 10.5653 4639
31 Standard & Poor’s 0.0221 0.7702 0.2617 5.8410 4639
500
32 Value Weighted Mkt  0.0387 0.7595 0.1434 6.0603 4639
33 Equal Weighted Mkt 0.0741 0.7871 —-0.1016 8.8296 4639

* Skewness statistic is the third central moment divided by the three-halves power of the second
central moment. The upper and lower one percentage points of its distribution are 0.084 and —0.084,
respectively.

b The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment. The upper and lower one percentage points of its distribution are 3.18 and 2.14, respectively.

index, there were only 9 rejections of the null hypothesis. In the 90 subsets of
the EW returns, there were 26 rejections of normality. The larger frequency of
rejection for the EW returns may indicate that smaller firms have fewer but more
surprising information releases.

The tests of normality on the partition of the data by day of the week and by
year provide a strong motivation for pursuing the discrete mixture of normal
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distributions hypothesis. Since there is no reason to believe that time-ordered
shifts only take place on January 1, this partition is certainly not the true data
generating model. But it does indicate that a model specification intended to
represent the true mixture process must be able to accommodate both cyclical
and structural (time-ordered) shifts in the two parameters of a normal distribu-
tion. The model specification and estimation procedures described in the next
section will satisfy these requirements.

II. A General Model for a Discrete Mixture of Normal Distributions

Given the empirical evidence of the previous section, the formulation of a discrete
mixture of normal distributions model must allow discontinuous shifts in the
true parameter values to successively new levels (structural shifts) as well as
shifts back and forth between a particular set of parameter values (cyclical
shifts). Alternatively stated, each return observation is a drawing from one of N
sets of parameter values. As long as we refer to subsets of the data whose
observations are not necessarily consecutive in time, then both the structural
and cyclical type parameter shifts can be accommodated.

The generalized discrete mixture of normal distributions model views each
return observation on a stock, r;, as having been generated by one of the following
N distinct equations:

re=oa; + up tel,

rr = ags + U tEIz

r,=aN+uN, tEIN (1)

where I;, it = 1, 2, ..., N are the homogeneous information sets with T;
observations in each set. ¥¥; T; = T, u;, is independently and identically normally
distributed with a mean of zero of variance of ¢2, 0 < 6?<®,i=1,2, ---, N.
Define \; = T;/T as the proportion of observations associated with information
set I;. Then, for a given N, the parameter vector, § = {a;, as, - -, an, 03, 03,

---, 0%, A1, Az, - - -, An—1}, can be estimated by maximizing the likelihood function
a/ry =5 (T Ap(re| vi)), (2)
where r = (ry, ro, -+, r7)’, vi = (i, ¢?), and p(r.| v:) is a normal probability

density function with mean «; and variance o?. The details of the estimation
procedure and generality of the model specification are contained in the Appen-
dix.

The generalized discrete mixture of normal distributions model and estimation
procedure has been presented for any number N of normals. Given N, the
maximum likelihood procedure estimates the 3N — 1 parameters defining that
particular specification. In order to determine N empirically, the model can be
estimated for each N = 1, 2, ..., and specifications can be compared via the
likelihood ratio test.
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Consider the likelihood function I(8 | r) in Equation (2) and define I(8,|r) as
that likelihood function for the case where N = i. For a pairwise test between
the different specifications, i and j, we can use the generalized likelihood-ratio

_UWe.r)
1(8;lr)’

For example, the likelihood ratio for a test of the stationary normal model against
the mixture of two normal distributions alternative is Ao = (8] r)/l(82]1).
Note that the parameter vector for the stationary normal model is a subset of
the parameter vector for the mixture of two normals model. That is, when A\; =
0, 1 or 1 = 72, l(82]r) collapses to the stationary normal model I(8,]|r). It
follows that 0 < A < 1. Significance tests for discriminating between these
hypotheses can be constructed by noting that the asymptotic distribution of —2
log A is chi-square with degrees of freedom equal to the difference in the number
of parameters between the two models.

Ay i <] (3)

III. Empirical Evidence

A. The Data

The sample consists of daily rate of return data (including all distributions)
from July 2, 1962, to December 31, 1980, on each of the 30 stocks in the Dow
Jones Industrial Average and the S&P, EW, and VW stock market indexes.* The
source of this data is the daily stock and index returns files distributed by the
Center for Research in Security Prices (CRSP) at the University of Chicago.

B. Departures from the Stationary Normal Hypothesis in the Sample

The statistics presented in Table I assume that the returns for each stock are
independent and identically distributed.® Twenty-six of the 30 stocks have sig-
nificantly positive skewness statistics (values greater than 0.084). For all stocks
in the sample, each kurtosis coefficient has values considerably greater than 3.18,
indicating fatter tails than the normal distribution.

* Limiting arguments imply that only instantaneous returns, In[(P; + D;)/P,-,], could be normally
distributed. Both the instantaneous return and daily rate of return, [(P; + D,)/P.-] — 1, have been
used in previous studies. Blattberg and Gonedes [4] use the latter return measure and argue that
daily data are consistent with the technical approximation of equivalence between the two. Since
their proposed student distribution specification is the most descriptive to date and the benchmark
for comparison, the same measure is employed here.

5 All return statistics are reported in percentages. In the interest of brevity, the serial correlation
statistics are not reported. The individual stock returns in the sample conform well to the independ-
ence assumption. However, with nonsynchronous trades the observed returns on indexes are serially
correlated. The indexes are still included in this study for comparisons with others, evidence on their
parameters’ stationarity, the stability property of stocks comprising each index, and documentation
of the negative skewness in the equally weighted index. Given the positive skewness of the other
indexes, this negative skewness must be due to either small firms, the addition of AMEX stocks, or
both. Stocks or indexes with complete return data have 4,639 observations. The 5 stocks with less
than 4,639 had return observations deleted because of missing prices. Both the return of the day of
the missing price and the day after were deleted.
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The results in Table I clearly reject the stationary normal distribution hypoth-
esis for each stock and index in the sample. The generalized discrete mixture of
normal distributions, however, may be able to explain these results.

C. Model Specification Tests for the Discrete Mixture of Normal Distributions

For each stock and index in the sample, we consider five potential model
specifications: N = 1, 2, 3, 4, and 5. Given N, the logarithmic likelihood of the
normal mixture was maximized by the modified quadratic hill-climbing algorithm
described in Goldfeld and Quandt [15]. A comparison of the stationary normal
distribution with a mixture of two normals (N = 2) can be made with the —2 log
A, statistic (see Equation (3)). This statistic has an asymptotically chi-square
distribution with 3 degrees of freedom. In order to reject the stationary normal
distribution null hypothesis in favor of the mixture of two normals at the 0.01
probability level, the statistic must exceed 11.3. All of the 30 stocks and 3 indexes
have —2 log A, values substantially greater than 11.3. The actual values range
from 290.6365 to 889.6253. Hence, the discrete mixture of two normal distribu-
tions is considerably more descriptive of the data generating process than the
stationary normal model (see Table 5 in Kon [21] for all of the individual
statistics in this subsection).

It may be the case, however, that the data were generated by a mixture of more
than two normal distributions. For the optimizations of 15 stocks and 3 indexes
that were successful in reaching an interior solution, the statistic —2 log Ass is
used to test the null hypothesis that N = 2 against the mixture of three (N = 3)
normal distributions alternative.® Fourteen of the 15 stocks and all 3 indexes
have substantially greater values than the 11.3 required to reject N = 2 in favor
of N = 3. Of the 10 stocks and 3 indexes that reached an optimum with the
mixture of four (N = 4) normal distributions model, all were significantly more
descriptive than the mixture of two (IN = 2) normals model. That is, —2 log Ay
(asymptotically chi-square with 6 degrees of freedom) is considerably greater
than 16.8 (0.01 probability level) in all cases. For 6 of the 10 N = 4 stocks that
had respective optimizations available for N = 3 and all 3 indexes, their —2 log
A3, statistics indicate that only 3 of the stocks are significant at the 0.05
probability level and none at the 0.01 level.

The mixture of five (N = 5) normal distributions model was attempted on the
entire sample. Only for the Standard and Poor’s 500 Composite Index was a
satisfactory interior optimum obtained. However, a value for —2 log A4s of 3.4670
indicates little additional descriptive ability.

6 The unsuccessful attempts continually strayed outside the feasible parameter space by selecting
negative values for a A, until a prespecified iteration limit was exceeded. This behavior is not
inconsistent with a true model specification of a smaller N than is currently being attempted. The
failure to converge is not, however, a criterion for classifying a stock’s return series as being generated
by the smaller N specification since there always exists an interior solution of higher N that has the
smaller N specification as a subset (e.g., some \’s are zero or there are two or more distributions with
the same mean and variance). The inference tests for model specification indicate that if the true
model is a mixture of normal distributions, N is likely to be less than five. The inference tests (see
Kon [21], Table 5) exhibit significantly declining values for the marginal increments in the log-
likelihood available for each stock from N = 2 to 3 to 4.
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The evidence indicates that with a 0.05 significance level criterion, the sample
may be described by a mixture of four normal distributions for 7 stocks, a mixture
of three normals for 11 stocks, and a mixture of two normal distributions for the
remaining 12 stocks. All 3 indexes are classified by this criterion as being
generated by a mixture of three normal distributions.

D. Parameter Estimates for the Discrete Mixture of Normals Models

The parameter estimates and stationarity tests for the mixture of two, three,
and four normal distributions models for each stock and index are reported in
Tables 6-10 in Kon [21]. For brevity, only summary statistics will be reported
here. For all stocks and indexes in the sample there is at least one mean parameter
estimate that is negative, and many are statistically significant. Since the day of
the week effect reported by French [13] and Gibbons and Hess [14] is a subset
of the general mixture of normals model, the negative mean return estimate, for
one distribution in 29 out of the 30 stocks and all indexes, is consistent with
their Monday effect. However, the estimate of the proportion of observations (\)
associated with that negative mean is considerably larger than the 0.20 predicted
by just the Monday effect. Monday returns also exhibited a higher variance than
the other days of the week, while the negative mean estimate was generally
associated with a lower variance estimate than the variance of the distributions
with positive mean estimates. Hence, the true mixture distribution is more
complex than a simple partition of the data by day of the week.

Table II summarizes the individual difference tests of the stationarity hypoth-
esis for each stock and index for the mixture of two, three, and four normal
distributions models, respectively. For the mixture of two normal distributions
model, 27 of the 30 stocks and 2 of the 3 indexes individually rejected the mean
stationarity null hypothesis at the 0.05 probability level. For the mixture of three
normal distributions model, 12 stocks and all indexes had at least one pair of
means (a’s) that were significantly different. For the mixture of four normals
model, 7 stocks and all indexes had at least one pair of a’s that were significantly

Table I1
Summary Statistics on Individual Parameter Differences?®

Rejections of the Null Hypotheses®

Mean Variance Parameter
Vector®
(At Least (At Least (At Least

No. of Optimum One Pair of One Pair of One Pair of

Model (N) Reached a,—a,=0) o} —0}=0) ViV, = 0)
2 30 (3) 27 (2) 30 (3) 30 (3)
3 15 (3) 12 (3) 15 (3) 15 (3)
4 10 (3) 7(3) 10 (3) 10 (3)

* The numbers in parentheses are for the sample of 3 indexes. The numbers without parentheses
are for the sample of 30 stocks.

® At the 0.05 probability level.

v, = (a, o).



156 The Journal of Finance

different. Hence, the persistent evidence of significant mean nonstationarity is
consistent with the observed skewness in Table 1.

The evidence of shifts in the variance parameter in Table II can be used to
explain the observed kurtosis in Table I. At least one pair of variance estimates
for all stocks and indexes for all models was significantly different. This greater
frequency of rejection of stationarity for the variance parameter than the mean
indicates its larger contribution to-the discrete mixture model specification. An
additional test of the stationary model specification is the third null hypothesis
in Table II. That is, the nonstationarity of either parameter is sufficient to reject
the stationary normal null hypothesis.

The individual parameter stationarity tests and the model specification tests
strongly support the discrete mixture of normal distributions as a statistical
model of stock returns. The final test of descriptive ability is a comparison with
the student distribution model.

E. The Student Distribution

The student model views each return observation as an independent drawing
from an identical student density function

(122 onE

L
r(1/2)r<§>

&(re]d) = [v+ H(r, — m)3~(w+v/2 (4)

where m is the location parameter, H is the scale parameter, and v is the degrees
of freedom parameter. The parameter vector, § = (m, H, v) is to be estimated
subject to the parameter space ¢ = {§: —0o < m < o, 0 < H < o, v > 0}. For a
sample of size T, the likelihood function for the student distribution is:

@) = HtT=1 g(re| d). (5)

The maximum likelihood estimator §7 of § can be obtained by the supremum of
the logarithmic likelihood,

Lr(8) = X1 log g(r:| §). (6)

However, the elements of the vector of first partials of Lr(§) with respect to §
are nonlinear in § so that gradient or search methods are required to solve for 4.’
The location, scale, and degrees of freedom parameter estimates are reported in
Table III for each stock and index. The degrees of freedom (v) estimates range
from 3.1177 to 5.5415 which are consistent with an explanation of the observed
kurtosis reported in Table I. The student distribution approaches the normal as
v gets large. Therefore, in order to explain the observed magnitude of the fat tails
relative to the normal, the degrees of freedom parameter for the student model

"Both the modified quadratic hill-climbing algorithm (gradient method) and the pattern direct
search method described in Goldfeld and Quandt [15) were used to provide the best possible results
for the student model.
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Table II1
Maximum Likelihood Parameter Estimates for the Student Distribution Model
Degrees of

I.D. Security (or index) Location Scale Freedom
1 Allied Chemical Corp —0.0050 0.6598 3.9548
2 Aluminum Co America 0.0067 0.6272 4.7871
3 American Brands Inc 0.0100 1.1766 3.8765
4 American Can Co 0.0055 1.4595 3.7784
5 American Tel & Teleg —-0.0141 2.4795 3.6633
6 Bethelem Steel Corp —0.0282 0.6768 4.2046
7 Du Pont —-0.0178 1.0809 4.1718
8 Eastman Kodak Co 0.0038 0.7666 4.5205
9 Exxon Corp 0.0376 1.2672 4.9064
10 General Electric Co 0.0215 0.9281 4.4235
11 General Foods Corp —0.0146 1.0290 3.8647
12 General Motors Corp 0.0085 1.0686 4.4142
13 Goodyear -0.0023 0.6427 5.5415
14 Inco Ltd —0.0035 0.7670 3.9757
15 Inter Business Mach 0.0100 0.9268 5.0237
16 Inter Harvester Co 0.0170 0.7514 4.4546
17 Inter Paper Co 0.0068 0.6181 5.2064
18 Johns Manville Corp 0.0007 0.7060 3.6542
19 Merck & Co Inc 0.0258 0.7926 5.1347
20 Minnesota Mng & Mfg 0.0059 0.8763 4.7238
21 Owens Illinois Inc 0.0108 0.7809 4.0869
22 Procter & Gamble Co 0.0050 1.4360 3.9691
23 Sears Roebuck & Co -0.0137 1.1325 3.8898
24 Standard Oil Co Cal 0.0255 1.0364 3.5464
25 Texaco Inc 0.0149 0.9416 3.9757
26 Union Carbide Corp -0.0073 0.9426 4.1650
27 United Aircraft Prod —0.0944 0.2755 3.1941
28 United Sts Stl Corp —0.0488 0.7477 4.2611
29 Westinghouse Elec Co —0.0150 0.5990 3.5367
30 Woolworth F W Co -0.0331 0.6992 3.8476
31 Standard & Poor’s 500 0.0259 3.0686 4.1754
32 Value Weighted Index 0.0502 3.3293 3.8672
33 Equal Weighted Index 0.1135 3.8711 3.1177

should be in the range 2 < v < 10 (see Blattberg and Gonedes [4]). The scale (H)

estimate is inversely related to the variance of the distribution, o2 = P %
D —

for v > 2. Therefore, the variances of the indexes are, as expected, considerably

less than the stocks. The student model is symmetric about its location parameter

and hence is unable to explain the significant skewness reported in Table I.

F. Comparison of the Student and Discrete Mixture of Normal Distributions
Models

For comparisons between the student model and any specific mixture of N
normals model a simple likelihood-ratio is

(el

Ms =610 M
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The denominator is the student likelihood from Equation (5) and the numerator
is the mixture of N normals likelihood from Equation (2). Since the two hy-
potheses in the likelihood ratio of Equation (7) are not nested in the parameter
space as in that of Equation (3), we cannot appeal to the same chi-square
distributional result and test the hypotheses. However, we can compare hy-
potheses by indicating which is more likely. Given the large samples to be used
in the following empirical tests, the likelihood ratio in Equation (7) represents
the asymptotic posterior odds of the mixture of N normals model to the student
(assuming equal prior probabilities).® If the log-likelihood ratio (log Ans) is
positive, the mixture of N normal distributions model is “more likely” than the
student model to have generated the stock return data. Alternatively, if the log
Ans is negative, the student model is more descriptive of the data generating
process. A simulation was employed to verify these inferences. Thirty time series
of 4,640 observations each were generated assuming a mixture of two normal
distributions. Another 30 time series were generated assuming a student distri-
bution. The parameter values selected for the simulation are listed in Table IV,
Part A. These values are consistent with those found on actual common stock
data. The results in Table IV, Part B are consistent with the interpretation of
the log-likelihood ratio above.

Table V contains the computed values of the log Aysfor N =1, 2, 3, 4, and 5
from the actual returns on the 30 stocks and 3 indexes. The log A;s provides a
comparison of the stationary normal distribution model and the student model.
The values of log A,srange from —139.777 to —448.294. Hence, the log-odds are
substantially in favor of the student model. This result was expected since the
student model can account for the kurtosis (fat tails) relative to the stationary
normal; but this observed kurtosis is also explained by the shifting variance
parameter in the mixture of two or more normal distributions models in Table
II. This latter model, however, also has the advantage of being able to explain
the observed skewness in Table I. Therefore, the interesting comparison is
contained in values of log Ansfor N = 2, 3, 4 and 5.

For all available comparisons with a mixture of three or more normal distri-
butions, the evidence strongly supports the discrete mixture model over the
student model. For the 19 stocks and 3 indexes with available values of log Ays,
N = 3, 4, or 5, all are positive. The smallest log-odds value of 6.993 represents
odds of 1,089 to 1 in favor of the mixture of normals model. The largest log-odds
values of 38.297 corresponds to odds of 4.29 X 10' to 1. Of the remaining 11
stocks with only values of log A,s available for comparison, the evidence is mixed.
Four of the 11 stocks strongly support the mixture of two normal distributions
model with positive log A,s values ranging from 3.557 to 27.471. The remaining
7 stocks support the student model with negative log A,s values ranging from
—0.661 to —24.261.

In summary, 23 out of the 30 stocks and all 3 indexes have return series that
can be better described by a discrete mixture of normal distributions than by the
student model. The remaining 7 stocks have series that favor the student model.
Note that for these 7 stocks there was no available interior solution to the

8 See Zellner (30, pp. 291-98].
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Table IV

A. True Parameters for the Distribution of
Simulated Data

Model Parameters
Mixture of Two a; =-0.1 62=10 X\ =065
Normal Distributions ar= 0.4 d2=40 A, =035
Student Distribution m= 00 H=10 v=4.0
B. Log-Likelihood Ratios for Simulated Data
Replication Number Student Data  Two Normals Data
1 -21.699 27.613
2 —-31.734 12.809
3 -21.090 23.207
4 —-13.508 31.664
5 -27.691 36.891
6 —49.172 24.410
7 —27.453 34.422
8 -33.637 28.145
9 -21.215 30.297
10 —11.289 31.605
11 -3.195 20.805
12 -35.617 36.602
13 -1.059 35.316
14 -32.457 19.684
15 =57.570 34.094
16 —35.023 23.699
17 —24.188 35.855
18 —18.102 26.820
19 —-34.176 32.133
20 —10.645 27.055
21 -57.395 21.457
22 —26.883 29.500
23 -12.406 48.832
24 -31.680 37.434
25 -13.332 18.988
26 —5.664 29.574
27 —6.832 35.387
28 -31.180 25.367
29 -10.875 31.953
30 —21.855 25.320

mixture of three or more normal distributions models. The prohibitive computer
costs for this large a sample allowed us only one attempt per mixture specification
for each stock. The strong evidence in favor of the mixture of normals models
on the other stocks, where solutions were obtained, indicates that we should be
cautious about concluding that these 7 stocks are better described by the student
model.

IV. Summary of the Results and Implications

This paper proposed and tested a general formulation and maximum likelihood
estimation procedure for a discrete mixture of normal distributions model of
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Table V

Log-Likelihood Ratios for Comparing the Student and Discrete Mixture of
Normal Distributions Models?*

I.D. IOg /\15 log Aas log Ags log /\4s log Nss
1 —280.981 —2.959 NAP N.A. N.A.
2 —198.195 —13.396 12.717 19.665 N.A.
3 —300.484 —6.342 11.370 13.759 N.A.
4 —266.721 —0.669 10.883 N.A. N.A.
5 -319.014 —6.062 27.825 N.A. N.A.
6 —277.838 —16.080 N.A. N.A. N.A.
7 —213.120 10.901 23.679 28.072 N.A.
8 —210.790 —6.935 14.799 20.250 N.A.
9 —145.093 10.085 13.776 N.A. N.A.

10 —211.594 —1.382 N.A. 9.933 N.A.
11 —254.476 -0.777 19.233 N.A. N.A.
12 —214.106 —2.698 N.A. 9.459 N.A.
13 —139.777 5.641 N.A. N.A. N.A.
14 —-239.213 3.657 N.A. N.A. N.A.
15 —169.473 —4.276 13.978 N.A. N.A.
16 —195.641 —6.447 13.677 N.A. N.A.
17 —-161.734 —0.661 N.A. N.A. N.A.
18 —283.539 -3.214 N.A. 23.690 N.A.
19 —163.584 —3.445 14.108 N.A. N.A.
20 —195.043 —-1.681 N.A. N.A. N.A.
21 —257.204 —10.376 6.993 N.A. N.A.
22 —272.488 —10.140 10.765 13.250 N.A.
23 —282.283 —4.338 N.A. N.A. N.A.
24 —282.078 12.647 N.A. N.A. N.A.
25 —251.143 1.166 N.A. 12.502 N.A.
26 —226.607 —2.331 17.827 N.A. N.A.
27 —385.098 27.471 N.A. N.A. N.A.
28 -311.072 —16.484 31.712 34.371 N.A.
29 —444.849 —24.261 N.A. N.A. N.A.
30 —306.896 —6.566 N.A. N.A. N.A.
31 —222.506 —4.701 20.457 21.485 23.219
32 -250.715 0.543 27.575 29.601 N.A.
33 —448.294 —3.482 35.848 38.297 N.A.

® The log-likelihood ratio, log Ans, is the logarithm of the ratio of the likelihood for the discrete
mixture of N normal distributions divided by the likelihood for the student distribution. Negative
values support the student distribution hypothesis while positive values support the mixture of N
normal distributions hypothesis.

> N.A. stands for not available.

stock returns. The likelihood ratio tests of model specification indicate that the
sample of 30 stocks can be described by a mixture of four normal distributions
for 7 stocks, a mixture of three normals for 11 stocks, and a mixture of two
normal distributions for the remaining 12 stocks. All 3 indexes in the sample can
be described by a mixture of three normal distributions. Stationarity tests on the
parameter estimates of the discrete mixture of normal distributions model re-
vealed significant differences in the mean estimates that can explain the observed
skewness in security returns. Significant differences in the variance estimates
can explain the observed kurtosis. Furthermore, the discrete mixture of normal
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distributions model has substantially more descriptive validity than the student
model.

These results have several implications for theoretical models and empirical
research in financial economics. For the single-period mean-variance consumer
equilibrium model and two-parameter capital asset pricing models, the evidence
is consistent with the normality assumption. It is for the multiperiod theoretical
models (i.e., option pricing) and empirical research that the nonstationarity
evidence implies severe violations of model specification and estimation proce-
dures.

The application of the discrete mixture of normal distributions model to
empirical research requires that each rate of return observation be classified
according to its respective normal distribution. Then the appropriate parameter
estimates and sampling distribution can be used to construct inference tests.
Given the parameter estimates of the discrete mixture from the maximum
likelihood procedure, the “most likely” classification rule is

Max Xip(r | §2). (8)

That is, select the distribution i for generating observation t that has the largest
posterior probability.? Note that in this procedure the parameter shift dates have
also been estimated without a priori knowledge of the event dates. This may be
particularly useful for efficient markets tests when the estimated data partition
can be associated with corresponding public announcements or information
signals in accounting numbers released prior to the event.’® Furthermore, if the
information also results in a change in equilibrium expected returns, the estimates
of the true mean and variance for each day surrounding the event is available to
construct appropriate inference tests of abnormal performance.

The classification procedure was used on the stock and index returns sample
in this paper to test whether the classified subsets of data conformed to the
normality assumption. None of the kurtosis tests for any of the subsets of each
stock and index exhibited the fat tail property. Hence, this paper’s view (and
Christie [9]) that the mixture of normals is being generated by parameter
nonstationarity is empirically verified.

The methodology described above can be particularly useful in identifying the
mean and variance changing process for stocks and indexes. Knowledge of
whether a security or index’s nonstationary process is dominated by either cyclical
or time-ordered shifts is crucial to the problem of predicting parameters. Fur-
thermore, if cyclical shifts, like the day of the week effect, dominate the sample
this will be consistent with the evidence that monthly stock returns are approx-
imately normally distributed.

Another area for further research is the identification of macro versus micro
(firm-specific) information. Suppose the total return variance of a stock is defined

® This procedure was proposed by Kon and Lau [23] for mixtures of linear models and has been
applied by Kon [20] and Christie [9].

1°GSee Brown and Warner [6] for evidence on the power of tests when the announcement date is
unknown.
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by the market model as c%(r) = B2¢2(Ry) + 02(¢). Then the source of total return
variance nonstationarity may be due to changes in the stock’s beta and/or residual
variance (micro effects) or changes in the market’s return variance (macro effect)
or both. Clearly, the significant nonstationarity of the market’s return variance
in this paper implies that it is an important component for high beta stocks.
Finally, empirical evidence on the variance changing process for the market
portfolio can be useful in the application of Merton’s [24] estimator for the
expected return on the market portfolio.

Appendix

Parameter Estimation for the Discrete Mixture of Normal Distributions

Given the T observations on the stock return variable, r;, there exists some true
permutation of the rows of r = (r, ry, ---, rr)’ which will allow them to be
partitioned according to Equation (1). Assume a multinomial prior whereby the
equation associated with set I; is selected for generating observations with
probability \;, i =1, 2, - .., N. Therefore, each observation is viewed as a drawing
from a mixture distribution (conditional probability density function [p.d.f.] of
r. given the parameter vector §),

ft(rtl 8) = fil A.P("zlyi) (A1)
Where ll = (aiy Giz)’i= 1, 2’ e )N: Q= (lly l2y e ley Al, AZ, Sty AN—l)
is the parameter vector to be estimated subject to the parameter space Q = {4:
—o<q<®0<¢?<owi=12 ---,NO0O<\N<1i=1]2 ..., N—-1}

p(r:| v:) is a normal probability density function with mean o, and variance o’
i=1,2 - - ,N; 38, \=10l<03<..-<od;and T;=22,i=1,2, ..., N1

Estimation of the parameter vector § can be done by choosing values that
maximize the likelihood function

l@|r) = H;r=1 [Ef\il Aip(re| }’i)]~ (A2)

The generality of this likelihood function can be seen by comparing it to the
likelihood function assuming that the parameters and partition of the T obser-
vations into T;,1 =1, 2, - - . , N were known a priori. This true likelihood function
would be

@lr) =15 p(re| v1) % P("tl‘z)zk) w11y p("tl}‘?\‘l) (A3)

where no proportionalities are necessary. However, since knowledge of this
partition is unavailable a priori, we cannot employ the true likelihood function
directly. However, we can show that maximizing the proposed likelihood will
achieve the same result. The right-hand side of the proposed likelihood function

' The requirement that there be at least two observations in each set is necessary to define a
positive variance. The strict ordering of variances insures that the mixture is uniquely determined.
The information event scenario previously discussed can be used to justify this condition. See Kon
and Jen [22] for a discussion and simulation of the importance of this retriction.
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(Equation (A2)) can be expanded to obtain

i@lir
T T T T! Ty T, T
= XT=0 §T2=0 X 'TZTN=0 To. . Ta! A2 A PNRer, (Y1, e, ) (Ad)
(Ty+Ty: - +Txn=T) EERN
where

h(Tl,TZ,»u,TN)(')_/l’ Y2, 0 'ZN)

= 117 p(re] y1) [T p(relv2) -« T12% p(r | yw).  (A5)

The summation in the likelihood Equation (A4) is over all feasible values of
T, Ts, --- and Ty and, given each set of values for T,, Ty, ---, Tn, over all
possible ways of partitioning the r vector into the vectors r(r), i1 = 1,2, ---, N
with T\, i =1, -- ., N observations in each vector, respectively. For example, let
ar,,....1, De the event that a particular T, of the T r/’s is from p(r| v1), Ts of
the T r/’s is from p(r,| v2), - - -, and Ty of the T r/’s is from p(r, | ). The prior
probability of the event a(r, r,... 1, is p™™ ™™ = \T\xJ2 ... A\ ¥ corresponding
to only one way of partitioning the r vector into r = (r(r,, 1), - - -, rir,))’. The
same prior probability, AT'1AJz ... \]¥, is associated with T!/(T,! T2 --- T')
possible partitions. However, the sample information (likelihood factor),
hery 1, T(¥1, Y2, - - -, YN), associated with each of these parititions is different.
Note that given the specific paritition Ty, T,, ---, Ty, the values of the
parameters yi, Yz, ---, Y~ that maximize hqr 1, .. 1o(y1, Y2, ---, Y~) will
be identical to the parameter values v{, v3, ---, Y& in Equation (A3) that
maximize the true likelihood function. Furthermore, since the N7 individual
terms of the summation in the proposed likelihood function (Equation (A4))
represent the complete posterior distribution, a large sample property is that the
likelihood factor, h(rr,...r(Y1, Y2, -+, 7¥~), Will dominate the posterior
p.d.f.’? Then as all values of Ty, Ty, ---, Tn are spanned, all N7 possible
combinations are evaluated. Hence, the parameter estimates of «v,, i = 1, 2,

-~.,Nand \, = %, 1=1,2, ..., N—1 that maximize the likelihood function

in Equations (A2) or (A4) are the same for those that maximize the true likelihood
(Equation (A3)). Therefore, any scenario that generates data from N normal
probability distributions in any order is included as a subset of this general
specification. X
For a given N and T, the maximum likelihood estimator 6 of § is defined
implicitly by the supremum of the logarithmic likelihood,
Ly(9) = ZzT=1 log f:(r.| 8). (A6)
Then the maximum likelihood estimator fr is the solution to the likelihood
equations
dL(8 1 a [
7(8) — 2;,;] fe(re10) =0

a6 ft("le) a6 -

(A7)

12 See Zellner [30, pp. 31-3] for a proof.
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such that the matrix of second partials evaluated at the solution point is negative
definite. Note that the elements of 3Lr(8)/d8 in Equation (A7) are nonlinear in
6 so that no explicit closed form solution for fr exists. However, Equation (A7)
represents an implicit solution(s) for 7. Therefore, in practice, we can employ
iterative gradient methods that find all solutions (local maxima) and choose the
maximum maximorum.'?

Hypothesis tests on the elements of the estimated parameter vector, §7, can
be constructed with the information in the sample covariance matrix. For
maximum likelihood estimates, the sample covariance matrix is the negative
inverse of the matrix of the second partial derivatives of the logarithmic likelihood
function with respect to the parameter vector evaluated at § = §r.

13 Kiefer [19] has verified that the likelihood equations do have a consistent root in Q.
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