
A Research Center at the University of Chicago Graduate School of Business

Programmer’s Guide
CRSP US Stock Databases

&
CRSP US Indices Database

105 West Adams Street, Suite 1700
Chicago, IL 60603
Tel: 312.263.6400
Fax: 312.263.6430
Email: Support@crsp.ChicagoGSB.edu

Version CA292.200601

TABLE OF CONTENTS

1

CHAPTER 1: INTRODUCTION. 3
1.1 About CRSP. .3
1.2 Overview of CRSPAccess Databases. .4
Missing Values .4

FORTRAN Programming with CRSPAccess 5
1.3 Notational Conventions .5

CHAPTER 2: ACCESSING DATA IN C . 7
2.1 CRSPAccess C Data Structures .7

Data Organization for C Programming 7
Data Objects 7
Set Structures and Usage 10
C Language Data Objects for CRSP Stock Data 11
C Language Data Structure for CRSP Stock Data 13
C Language Data Objects for CRSP Indices Data 18
C Language Data Structure for CRSP Indices Data 20

2.2 C Sample Programs .24
C Header Files and Data Structures 25

2.3 CRSPAccess C Library .26
Stock Access Functions 26
Index Access Functions 40
General Access Functions 48
General Utility Functions 54
Data Utility Functions 83

CHAPTER 3: ACCESSING DATA IN FORTRAN-95 . 129
3.1 CRSPAccess FORTRAN-95 Data Structures .129

Data Organization for FORTRAN-95 Programming 129
Data Objects 130
Set Structures and Usage 132
FORTRAN-95 Language Data Objects for CRSP Stock Data 133
FORTRAN-95 Language Data Structure for CRSP Stock Data 134
FORTRAN-95 Language Data Objects for CRSP Indices Data 142
FORTRAN-95 Language Data Structure for CRSP Indices Data 143

3.2 FORTRAN-95 Stock Sample Programs and Subroutines .151
Sample Programs — *SAMP*.F90 151

3.3 CRSPAccess FORTRAN-95 Library .154
Index Access Functions 160
General Access Functions 162
General Utility Functions 163

CRSP DATA LICENSE. 175

2

PROGRAMMER’S GUIDE

CHAPTER 1: INTRODUCTION

3

Chapter 1: Introduction

CHAPTER 1: INTRODUCTION

1.1 About CRSP

The Center for Research in Security Prices (Prof. Eugene F. Fama, Chairman) has been an integral part of the aca-
demic and commercial world of financial and economic research. Since its inception in 1962, CRSP has provided an
unparalleled foundation as the leading source for the most comprehensive and accurate historical US databases avail-
able. CRSP is a research institute of the Graduate School of Business of the University of Chicago, which has a his-
tory of being a catalyst for innovation and progress, and has been a resource for other academic institutions and
corporations alike.

In 1959, Louis Engel, vice president of Merrill Lynch, Pierce, Fenner & Smith, called Professor James H. Lorie (PhD
1947; Professor of Business Administration) with an inquiry which resulted in a grant from Merrill Lynch and the
establishment of CRSP.

The inquiry developed into a project which involved compiling, cleaning and codifying the prices, dividends and
rates of return of all stocks listed and trading on the NYSE since 1926. It resulted in an academic research-grade data-
base that remains invaluable to empirical research due to its breadth, depth, and completeness, and includes CRSP’s
unique permanent identifiers, allowing for clean and accurate time-series research and event studies.

CRSP files continue to provide a strong foundation for economic forecasting, stock market research, and financial
analyses by academic institutions, investment banks, brokerage firms, corporations, banks and government agencies.
CRSP provides the following data files: common stocks on the NYSE, AMEX and NASDAQ; CRSP Indices; NAS-
DAQ, and S&P 500 composite indices; NASDAQ and AMEX Industry Indices; US Treasury bonds; Survivor-Bias-
Free Mutual Funds; market capitalization reports; proxy graphs for 10K SEC filings and custom datasets. Addition-
ally, CRSP continues to develop new research resources such as the new CRSP/Ziman Real Estate Data Series.

4

PROGRAMMERS GUIDE

1.2 Overview of CRSPAccess Databases

A CRSPAccess database is a customized financial database system supporting time-series, event, and header data for
various financial data structures. A single CRSPAccess Database is a set of defined configuration and module files in
a directory. Configuration files track the location of data in the module files.

The basic levels of a CRSPAccess database are:

1. Database (CRSPDB) is the directory containing the database files. A CRSPDB is identified by the database
path.

2. Set Type is a predefined type of financial data; stock or indices. Each set type has its own defined set of
data structures, specialized access functions, and keys. CRSPAccess databases support stock (STK) and
index (IND) set types. A CRSPDB can support multiple set types.

3. Set Identifier (SETID) is a defined subset of a set type. SETIDs of the same set type use the same access
functions, structures, and keys, but have different characteristics within those structures. For example, daily
stock sets use the same data structure as monthly stock sets, but time series are associated with different cal-
endars. Multiple SETIDs of the same set type can be present in one CRSPDB.

4. Modules are the groupings of data found in the data files in a CRSPDB. Multiple data items can be present
in a module. Data are retrieved at a module level, and access functions retrieve data items for keys based on
selected modules. A module corresponds to a single physical data file.

5. Objects are the fundamental data types defined for each set type. There are three fundamental object types:
time series (CRSP_TIMESERIES), event arrays (CRSP_ARRAY), and headers (CRSP_ROW). Objects con-
tain header information such as counts, ranges, or associated calendars, plus arrays of data for zero or more
observations. Some set types allow arrays of objects of one type. In this case, the number of available
objects is determined by the SETID, and each of the objects in the list has independent counts, ranges, or
associated calendars.

6. Arrays are attached to each object. The array contains the set of observations and is the basic level of pro-
gramming access. An observation can be a simple data type, such as an integer for an array of volumes, or a
complex structure such as for a name history. When there is an array of objects, there is a corresponding
array of arrays with the data.

Configuration Files contain information about supported sets and modules in the CRSPDB, a list of keys, addresses
of data for each key in different data modules, a set of shared calendars, a set of secondary indices, and a list of free
space within the module files. Module files contain the data for groups of objects for keys.

Missing Values

Missing values are relevant for time-series with scalar data type elements. Scalar data types are predefined data types
used in C and Fortran. Examples include integer, floating point, real, logical, double precision. Missing values are
not meaningful for arrays, C-LANGUAGE structures, and Fortran-95 TYPES; values used in these cases are merely
place-holders.

For all time-series, missing values are stored at index zero. Index values 1 through MAX contain meaningful values
of the time-series. These may be compared against the missing value at index 0 to determine whether they are miss-
ing.

A C application programming interface supports access to defined set structures, such as stock security or index data.
A FORTRAN-95 programming interface is also built into the system. The FORTRAN-95 access utilizes direct
access by module and by key.

CHAPTER 1: INTRODUCTION

5

Chapter 1: Introduction

FORTRAN Programming with CRSPAccess

CRSPAccess supports FORTRAN programming using FORTRAN-95 language standards. The Data Descriptions
Guide and the Programmer’s Guide describe the data organization, variables, access functions, and sample programs
provided for FORTRAN-95 access. Data organization for FORTRAN-95 is now analogous to that used in C, allowing
a common structure for all programming access.

With FORTRAN-95, the following enhancements have been added:

• Access to all CRSPAccess stock and indices variables

• A single consistent interface to all available CRSP index data using permanent identifiers

• Clean presentation of multiple component event structure. Use of TYPEs allow clearer organization of
events

• Ability to simultaneously access multiple data sets: Stock, Index, Daily and Monthly

• Concurrent access to all of the CRSPAccess portfolio definitions

• Increased precision. FORTRAN-95 supports double precision where supported in CRSPAccess fields.

• Full support for all group data, such as universe inclusion flags for CRSP’s historical S&P 500 Constituent
list

1.3 Notational Conventions

� All names that occur within CRSP’s FORTRAN-95 and C sample programs and include files are printed using a
constant-width, courier font. These names include variable names, parameter names, subroutine
names, subprogram names, function names, library names, and keywords. For example, CUSIP refers to the
CUSIP Agency identifier, while CUSIP refers to the variable that the programs use to store this identifier.
CRSP’s variable mnemonics, used as names and in the descriptions, are displayed capitalized using a CON-
STANT-WIDTH font. C and FORTRAN-95 are displayed in lower case, excepting constants, which are
displayed in UPPER CASE.

� All names that refer to the CRSP data utilities, sample programs or include file titles are printed using an italic
helvetica font.

� Names with a similar format are sometimes referenced collectively, using three x's where the names differ. For
example, the FORTRAN-95 variables BEGVOL, BEGRET, BEGPRC, etc. are sometimes referred to as BEGxxx.

� In the variable definitions section, the variables i and j are sometimes used in referencing a variable in a FOR-
TRAN-95 or C array. In this case, i refers to a possible range of valid data in this array for this company, where
the valid range is determined by the number of header variables. For example, in FORTRAN-95, the names date
is referred to as stk % names_arr % names(i) % namedt. Here i is an integer between 1 and stk % names_arr %
num, which represents the number of name structures that exist for any specified issue in the CRSP US Stock
Database.

� In C, all CRSP-defined data types have names in all capitals beginning with CRSP_.

� The text of this document is in Times New Roman. Italics and bold styles are used to emphasize headings,
names, definitions and related functions.

6

PROGRAMMERS GUIDE

CHAPTER 2: ACCESSING DATA IN C

7

Chapter 2: Accessing Data in C

CHAPTER 2: ACCESSING DATA IN C

2.1 CRSPAccess C Data Structures

C Programming allows complete support for CRSP databases, including random access on PERMNO, CUSIP and
other header variables, and full support of all data items. There are sample programs, header files, and an object
library available.

Data Organization for C Programming

The basic levels of a CRSPAccess database are the database, set type, set id, module, object, and array. They are
defined as follows:

� Database (CRSPDB) is the directory containing the database files. A CRSPDB is identified by the database path.

� Set Type is a predefined type of financial data. Each set type has its own defined set of data structures, special-
ized access functions, and keys. CRSPAccess stock databases support stock (STK) and index (IND) set types.
A CRSPDB can include more than one set type.

� Set Identifier (SETID) is a defined subset of a set type. SETIDs of the same set type use the same access func-
tions, structures, and keys, but have different characteristics within those structures. For example, daily stock
sets use the same data structure as monthly stock sets, but time series are associated with different calendars.
Multiple SETIDs of the same set type can be present in one CRSPDB.

� Modules are the groupings of data found in the data files in a CRSPDB. Multiple data items can be present in a
module. Data are retrieved at a module level, and access functions retrieve data items for keys based on selected
modules. Modules correspond to the physical data files.

� Objects are the fundamental data types defined for each set type. There are three fundamental object types: time
series (CRSP_TIMESERIES), event arrays (CRSP_ARRAY), and headers (CRSP_ROW). Objects contain
header information such as counts, ranges, or associated calendars (CRSP_CAL) plus arrays of data for zero or
more observations. Some set types allow arrays of objects of one type. In this case, the number of available
objects is determined by the SETID, and each of the objects in the list has independent counts, ranges, or associ-
ated calendars.

� Arrays are attached to each object. The array contains the set of observations and is the basic level of program-
ming access. An observation can be a simple data type such as an integer for an array of volumes, or a complex
structure such as for a name history. When there is an array of objects, there is a corresponding array of arrays
with the data.

Data Objects

There are four basic types of information stored in CRSP databases. Each is associated with a CRSP object structure.

Header Information. These are identifiers with no implied time component.

Event Arrays. Arrays can represent status changes, random events, or observations. The time of the event and rele-
vant information is stored for each observation. There is a count of the number of observations for each type of event
data.

Time Series Arrays. An observation is available for each period in an associated calendar. A beginning and ending
point of valid data are available for each type of time series data. Data are stored for each period in the range – miss-
ing values are stored as placeholders if information is not available for a period.

Calendar Arrays. Each time series is tied to an array of relevant time periods. This calendar is used in conjunction
with the time series arrays to attach times to the observations.

An observation can be a simple value or contain multiple components such as codes and amounts. Time series,
except Portfolios, are based on calendars which share the frequency of the database. In a monthly database, the time

8

PROGRAMMERS GUIDE

series are based on a month-end trading date calendar. In a daily database, the time series are based on a daily trading
date calendar excluding market holidays. Portfolio calendars are dependent on the rebalancing methodology of the
specific portfolio type. All calendars are attached automatically to each wanted time series object when the database
is opened.

There are four base CRSPAccess C structures called objects used in CRSPDBs. The following table contains each of
the objects in all caps, followed by the components, lower case and indented, that each object type contains. All data
items are defined in terms of the following objects:

OBJECT or Field Usage Data Type

CRSP_ARRAY Structure for storing event-type data

objtype object type code identifies the structure as a CRSP_ARRAY, always = 3 int

arrtype array type code defines the structure in the array. Base C types or CRSP-
defined structures each have associated codes defined in the constants
header file

int

subtype data subtype code defines a subcategory of array data. Subtypes further
differentiate arrays with common array type fields.

int

size_of_array_width number of bytes in each array element int

maxarr maximum number of array elements containing valid data int

num number of array elements containing valid data int

dummy data secondary subtype code int

arr object array is a pointer to the array containing the actual data. The array
can be a base C data type or a CRSP-defined structure. Its size and type
are determined by arrtype, size_of_array_width, and maxarr

void *

CRSP_ROW Structure for storing header data

objtype object type code identifies the structure as a CRSP_ROW, always = 5 int

arrtype array type code defines the structure in the array. Base C types or CRSP-
defined structures each have associated codes defined in the constants
header file

int

subtype data subtype code defines a subcategory of array data. Subtypes further
differentiate arrays with common array type fields.

int

size_of_array_width array structure size in bytes int

arr object array is a pointer to the array containing the actual data. The array
can be a base C data type or a CRSP-defined structure. Its size and type
are determined by arrtype and size_of_array_width. The
array size is always 1.

void *

CHAPTER 2: ACCESSING DATA IN C

9

Chapter 2: Accessing Data in C

CRSP_TIMESERIES Structure for storing time series data

objtype object type code identifies the structure as a CRSP_TIMESERIES,
always = 2

int

arrtype array type code defines the structure in the array. Base C types or CRSP-
defined structures each have associated codes defined in the constants
header file

int

subtype data subtype code defines a subcategory of array data. Subtypes
further differentiate arrays with common array type fields.

int

size_of_array_width array structure size in bytes int

maxarr maximum number of array elements int

beg first array index with valid data for the current record, or 0 if no valid
range

int

end last array index with valid data for the current record, or 0 if no valid
range

int

caltype calendar time period description code describes the type of time periods.
Calendar Type (caltype) is always 2, indicating time periods are
described in the Calendar Trading Date (caldt) array by the last trading
date in the period.

int

cal calendar associated with time series is a pointer to the calendar associated
with the time series array. The calendar includes the matching period-
ending dates for each array index.

CRSP_CAL *

arr object array is a pointer to the array containing the actual data. The array
can be a base C data type or a CRSP-defined structure. Its size and type
are determined by arrtype, size_of_array_width, and
maxarr.

void *

CRSP_CAL Structure for storing calendar period data

objtype object type code identifies the structure as a CRSP_CAL, always = 1 int

calid calendar identification number is an identifier assigned to each specific
calendar by CRSP

int

type generic group code of calendar, ie. daily or monthly. All current time
series use 2 for calendar trading date (caldt) only.

int

loadflag calendar type availability flag is a code indicating the types of calendar
arrays loaded. Currently = 2 for calendar trading date (caldt) only

int

maxarr maximum number of trading periods allocated for the calendar int

ndays number of days is the index of the last calendar period int

name the calendar name in text char[80]

callist calendar period grouping identifiers reserved for array of alternate
grouping identifiers for calendar periods

int *

caldt calendar trading date is an array of calendar period ending dates, stored in
YYYYMMDD. Calendars start at element 1 and end at element number
of days (ndays)

int *

calmap used to store array of first and last calendar period array elements in a
linked calendar to elements in this calendar

CRSP_CAL_MAP *

basecal used to point to a calendar linked in calmap CRSP_CAL *

OBJECT or Field Usage Data Type

10

PROGRAMMERS GUIDE

Set Structures and Usage

Stock and indices access functions initialize and load data to C top-level defined set structures. Top-level structures
are built from general object and array structure definitions and contain object and array pointers that have memory
allocated to them by access open functions.

Two set types and six set identifiers are currently supported for stock and indices data. The identifier must be speci-
fied when opening or accessing data from the set.

Each set structure has three types of pointer definitions.

� Module pointers point to CRSP_OBJECT_ELEMENT linked lists and are only needed internally to keep track of
the objects in a module. These have the suffix _obj and can be ignored by ordinary programming.

� Object pointers define a CRSP_ARRAY, CRSP_ROW, or CRSP_TIMESERIES object type. A suffix, _arr,
_ts, or _row is appended to the variable name. Range variables num, beg, and end are accessed from these
variables.

� Array pointers define the data item array. The array has the same rank as the object but without the suffix. It is a
pointer to the array element of the object and is used for general access of the data item.

If a module has multiple types of objects, a group structure is created with definitions for those objects and is
included in the main structure.

If a module has a variable number of objects of one type, an integer variable keeps track of the actual number. These
variables end with the suffix types and are based on the set type.

Each of the top-level structures contains three standard elements:

� PERMNO – the actual key loaded

� loadflag, a binary flag matching the set wanted parameters indicating which pointers have been allocated.
See the open function for the set for more information about wanted parameters.

� setcode, a constant identifying the type of set (1=STK, 3=IND)

For example, a Stock Structure has CRSP_TIMESERIES object called prc_ts containing an array called prc.

Data Set Type Set Identifiers Frequency
CRSP Stock Data STK 10 Daily

20 Monthly
CRSP Indices Data IND 400 Monthly Groups (in IX product only)

420 Monthly Series
440 Daily Groups (in IX product only)
460 Daily Series

CHAPTER 2: ACCESSING DATA IN C

11Chapter 2: Accessing Data in C

C Language Data Objects for CRSP Stock Data

Each stock structure is comprised of a fixed set of objects. Objects contain the header information required to use the CRSP data structures and the data arrays.
Data elements are described in the C Data Structure Table under the array name.

Time series beg and end are both equal to 0 if there are no data. Otherwise beg > 0, beg <= end, and end <= maxarr. The 0th element of a time series array
is reserved for the missing value of the underlying data type for that time series.

The stock structure contains an array of portfolio time series. Each member contains the portfolio statistic and assignment data for one portfolio type. Each mem-
ber can have a different range and calendar. The count of Portfolio Types is found in the port types variable.

Module Object Name Object Type Array Type Data Subtype Array
Structure
Sixe

Range Elements on a
Security Basis

Elements of a Set
Basis

Array Name

STK_HEAD Header
Module

header_row Stock Header Structure CRSP_ROW CRSP_STK_HEADER_NUM = 50 0 172 none none stk.header

STK_EVENTS
Event Arrays
Module

names_arr Security Name History CRSP_ARRAY CRSP_STK_NAME_NUM = 51 0 160 num maxarr stk.events.names

STK_EVENTS
Event Arrays
Module

dists_arr Distribution History Array CRSP_ARRAY CRSP_STK_DIST_NUM = 52 0 40 num maxarr stk.events.dists

STK_EVENTS
Event Arrays
Module

shares_arr Shares Structure Array CRSP_ARRAY CRSP_STK_SHARE_NUM = 53 CRSP_SHARES_IMP_NUM = 0 16 num maxarr stk.events.shares

STK_EVENTS
Event Arrays
Module

delist_arr Delisting Structure Array CRSP_ARRAY CRSP_STK_DELIST_NUM = 54 0 40 num maxarr stk.events.delist

STK_EVENTS
Event Arrays
Module

nasdin_arr Nasdaq Structure Array CRSP_ARRAY CRSP_STK_NASDIN_NUM = 55 0 24 num maxarr stk.events.nasdin

STK_PORTS
Portfolios Module

port_ts[] Portfolio Statistics and
Assignments

CRSP_TIMESERIES CRSP_STK_PORT_NUM = 56 Each Portfolio time series in the array has
subtype equal to the Permanent Index
Identification Number of the associated
group index

4 beg and end (for each
portfolio time series)

maxarr, cal,
stk.porttypes

stk.porttypes-1

STK_GROUPS
Groups Module

group_arr[]Array of Group Arrays CRSP_ARRAY CRSP_STK_GROUP_NUM=57 Each Group CRSP_ARRAY in the array has
subtype equal to the Permanent Index
Identification Number of an associated
group index

16 num (for each group array)maxarr,
stk.grouptypes

stk.group

STK_LOW Bid or
Low Data

bidlo_ts Bid or Low CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.bidlo

STK_HIGHS Ask
or High Data

askhi_ts Ask or High CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 8 beg and end maxarr, cal stk.askhi

STK_PRCS Prices
Module

prc_ts Closing Price or Bid/Ask
Average

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.prc

STK_RETURNS
Returns Module

ret_ts Holding Period Return CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end maxarr, cal stk.ret

STK_VOLUMES
Volumes Module

vol_ts Share Volume CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_VOLUME_NUM = 6 4 beg and end maxarr, cal stk.vol

STK_BIDS Bids
Module

bid_ts Nasdaq Closing Bid CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.bid

12

PROGRAMMERS GUIDE

STK_ASKS Asks
Module

ask_ts Nasdaq Closing Ask CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.ask

STK_RETX
Returns Without
Dividends Module

retx_ts Return Without Dividends CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end maxarr, cal stk.retx

STK_SPREADS
Bid/Ask Spreads
Module

spread_ts Month End Bid/Ask Spread CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.spread

STK_TRADES
Number of Trades
Module (Daily)

STK_ALTPRCDTS
Alternate Price
Date Module
(Monthly)

numtrd_ts

or

altprcdt_ts

Nasdaq Number of Trades

or

Alternate Price Date

CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_COUNT_NUM = 7, or
CRSP_DATE_NUM = 26

4 beg and end maxarr, cal stk.numtrd

or

stk.altprcdt

STK_OPENPRCS
Open Price Module
(Daily)

STK_ALTPRCS
Alternate Prices
Module (Monthly)

openprc_ts

or

altprc_ts

Open Price

or

Alternate Price

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.openprc

or

stk.altprc

Module Object Name Object Type Array Type Data Subtype Array
Structure
Sixe

Range Elements on a
Security Basis

Elements of a Set
Basis

Array Name

CHAPTER 2: ACCESSING DATA IN C

13Chapter 2: Accessing Data in C

C Language Data Structure for CRSP Stock Data

All CRSP-defined data type structures have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next level of inden-
tation

Index and Date Ranges for all elements in a structure are the same as for the structure itself. There are three structure levels indicated by the indentation in the
mnemonic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indi-
cates data grouped in modules. See the CRSPAccess Stock Users Guide for data item definitions.

All character strings, indicated by char[#], are NULL terminated. The number of characters – 1 is the maximum string length allowed. Actual maximums may
be lower. The top level stk structure is an example used by CRSP Stock sample programs. Other names can be used, and multiple CRSP_STK_STRUCTs can
be declared in a program. See the CRSP_STK open access function for initializing a stock structure.

Mnemonic Name Data Type Data Usage Index Range Date Usage Object Usage

stk Master Stock Structure CRSP_STK_
STRUCKT

stk

header Stock Header Structure

permno PERMNO int stk.header->permno stk.header_row

permco PERMCO int stk.header->permco stk.header_row

compno Nasdaq Company Number int stk.header->compno stk.header_row

issuno Nasdaq Issue Number int stk.header->issuno stk.header_row

hexcd Exchange Code - Header int stk.header->hexcd stk.header_row

hsiccd Standard Industrial Classification (SIC) Code -
Header

int stk.header->hsiccd stk.header_row

begdt Begin of Stock Data int stk.header->begdt stk.header_row

enddt End of Stock Data int stk.header->enddt stk.header_row

dlstcd Delisting Code - Header int stk.header->dlstcd stk.header_row

hcusip CUSIP - Header char[16] stk.header->hcusip stk.header_row

htick Ticker Symbol - Header char[16] stk.header->htick stk.header_row

hcomnam Company Name - Header char[36] stk.header->hcomnam stk.header_row

hnaics North American Industry Classification System
(NAICS) - Header

char[8] stk.header->hnaics stk.header_row

htsymbol Trading Ticker Symbol - Header char[12] stk.header->htsymbol stk.header_row

trdstat Trading Status - Header char[1] stk.header->htrdstat stk.header_row

hsecstat Security Status - Header char[1] stk.header->hsecstat stk.header_row

events Master Stock Structure CRSP_STKEV
ENT_STRUCT

stk.events

names Security Name History i between 0 and
stk.events.names_arr->num-1

name effective from
stk.events.names[i].namedt to
stk.events.names[i].nameenddt

stk.events.names_arr

namedt Name Effective Date int stk.events.names[i].namedt

nameenddt Last Date of Name int stk.events.names[i].nameenddt

ncusip CUSIP char[16] stk.events.names[i].ncusip

ticker Ticker Symbol char[8] stk.events.names[i].ticker

comnam Company Name char[36] stk.events.names[i].comnam

shrcls Share Class char[4] stk.events.names[i].shrcls

14

PROGRAMMERS GUIDE

shrcd Share Code int stk.events.names[i].shrcd

exchcd Exchange Code int stk.events.names[i].exchcd

siccd Standard Industrial Classification (SIC) Code int stk.events.names[i].siccd

naics North American Industry Classification System
(NAICS)

char[8] stk.events.names[i].naics

tsymbol Trading Ticker Symbol char[12] stk.events.names[i].tsymbol

trdstat Trading Status char[1] stk.events.names[i].trdstat

secstat Security Status char[1] stk.events.names[i].secstat

dists Distribution History Array i between 0 and stk.events.dists_arr-
>num-1

distribution effective on
stk.events.dists[i].exdt

stk.events.dists_arr

distcd Distribution Code int stk.events.dists[i].distcd

divamt Dividend Cash Amount float stk.events.dists[i].divamt

facpr Factor to Adjust Price float stk.events.dists[i].facpr

facshr Factor to Adjust Shares Outstanding float stk.events.dists[i].facshr

dclrdt Distribution Declaration Date int stk.events.dists[i].dclrdt

exdt Ex-Distribution Date int stk.events.dists[i].exdt

rcrddt Record Date int stk.events.dists[i].rcrddt

paydt Payment Date int stk.events.dists[i].paydt

acperm Acquiring PERMNO int stk.events.dists[i].acperm

accomp Acquiring PERMCO int stk.events.dists[i].accomp

shares Shares Structure Array i between 0 and
stk.events.shares_arr->num-1

shares observation effective from
stk.events.shares[i].shrsdt to
stk.events.shares[i].shrsenddt

stk.events.shares_arr

shrout Shares Outstanding int stk.events.shares[i].shrout

shrsdt Shares Outstanding Observation Date int stk.events.shares[i].shrsdt

shrsenddt Shares Outstanding Observation End Date int stk.events.shares[i].shrsenddt

shrflg Shares Outstanding Observation Flag int stk.events.shares[i].shrflg

delist Delisting Structure Array i between 0 and
stk.events.delist_arr->num-1

delist observation on
stk.events.delist[i].dlstdt

stk.events.delist_arr

dlstdt Delisting Date int stk.events.delist[i].dlstdt

dlstcd Delisting Code int stk.events.delist[i].dlstcd

nwperm New PERMNO int stk.events.delist[i].nwperm

nwcomp New PERMCO int stk.events.delist[i].nwcomp

nextdt Delisting Date of Next Available Information int stk.events.delist[i].nextdt

dlamt Amount After Delisting float stk.events.delist[i].dlamt

dlretx Delisting Return without Dividends float stk.events.delist[i].dlretx

dlprc Delisting Price float stk.events.delist[i].dlprc

dlpdt Delisting Payment Date int stk.events.delist[i].dlpdt

dlret Delisting Return float stk.events.delist[i].dlret

nasdin NASDAQ Structure Array i between 0 and
stk.events.nasdin_arr->num-1

NASDAQ status effective from
stk.events.nasdin[i].trtsdt to
stk.events.nasdin[i].trtsenddt

stk.events.nasdin_arr

trtsdt NASDAQ Traits Date int stk.events.nasdin[i].trtsdt

trtsenddt NASDAQ Traits End Date int stk.events.nasdin[i].trtsenddt

trtscd NASDAQ Traits Code int stk.events.nasdin[i].trtscd

nmsind NASDAQ National Market Indicator int stk.events.nasdin[i].nmsind

mmcnt Market Maker Count int stk.events.nasdin[i].mmcnt

Mnemonic Name Data Type Data Usage Index Range Date Usage Object Usage

CHAPTER 2: ACCESSING DATA IN C

15Chapter 2: Accessing Data in C

nsdinx NASD Index Code int stk.events.nasdin[i].nsdinx

port Portfolio Statistics and ASsignments j between 0 and stk.porttypes-1, i
between stk.port_ts[j]->beg and
stk.port_ts[j]->end

value for period ending stk.port_ts[j]-
>cal->caldt[i]

array of stk.port_ts

port Portfolio Assignment Number int stk.port[j][i].port

stat Portfolio Statistic Value double stk.port[j][i].stat

groups Group Array j between 0 and stk.group-1, i between
stk.group_arr[j]->beg and
stk.group_arr[j]->end

value for period ending stk.group_arr[j]-
>cal->caldt[i]

array of stk.group_arr

grpdt Begin of Group Data int stk.group->grpdt

grpenddt End of Group Data int stk.group->grpenddt

grpflag Group Flag of Associated Index int stk.group->grpflag

grpsubflag Group Secondary Flag int stk.group->grpsubflag

Time Series Data Arrays

bidlo Bid or Low Price float * stk.bidlo[i] i between stk.bidlo_ts->beg and
stk.bidlo_ts->end

value on date stk.bidlo_ts->cal-
>caldt[i]

stk.bidlo_ts

askhi Ask or High Price float * stk.askhi[i] i between stk.askhi_ts->beg and
stk.askhi_ts->end

value on date stk.askhi_ts->cal-
>caldt[i]

stk.askhi_ts

prc Price or Bid/Ask Average float * stk.prc[i] i between stk.prc_ts->beg and
stk.prc_ts->end

value on date stk.prc_ts->cal-
>caldt[i]

stk.prc_ts

ret Holding Period Total Return float * stk.ret[i] i between stk.ret_ts->beg and
stk.ret_ts->end

value on date stk.ret_ts->cal-
>caldt[i]

stk.ret_ts

vol Volume Traded int * stk.vol[i] i between stk.vol_ts->beg and
stk.vol_ts->end

value on date stk.vol_ts->cal-
>caldt[i]

stk.vol_ts

bid Bid float * stk.bid[i] i between stk.bid_ts->beg and
stk.bid_ts->end

value on date stk.bid_ts->cal-
>caldt[i]

stk.bid_ts

ask Ask float * stk.ask[i] i between stk.ask_ts->beg and
stk.ask_ts->end

value on date stk.ask_ts->cal-
>caldt[i]

stk.ask_ts

retx Return Without Dividends float * stk.retx[i] i between stk.retx_ts->beg and
stk.retx_ts->end

value on date stk.retx_ts->cal-
>caldt[i]

stk.retx_ts

spread Spread Between Bid and Ask float * stk.spread[i] i between stk.spread_ts->beg and
stk.spread_ts->end

value on date stk.spread_ts->cal-
>caldt[i]

stk.spread_ts

altprc

or

numtrd

Price Alternate Date (monthly only)

or

Nasdaq Number of Trades (daily only)

int *

int *

stk.altprcdt[i]

or

stk.numtrd[i]

i between stk.altprcdt_ts->beg and
stk.numtrd_ts->end

or

i between stk.numtrd_ts->beg and
stk.numtrd_ts->end

value on date stk.altprcdt_ts->cal-
>caldt[i]

or

value on date stk.numtrd_ts->cal-
>caldt[i]

stk.altprcdt_ts

or

stk.numtrd_ts

openprc

or

altprc

Open Price (daily only)

or

Price Alternate (monthly only)

float *

float *

stk.openprc[i]

or

stk.altprc[i]

i between stk.openprc_ts->beg and
stk.openprc_ts->end

or

i between stk.altprc_ts->beg and
stk.altprc_ts->end

value on date stk.openprc_ts->cal-
>caldt[i]

or

value on date stk.altprc_ts->cal-
>caldt[i]

stk.openprc_ts

or

stk.altprc_ts

Mnemonic Name Data Type Data Usage Index Range Date Usage Object Usage

16

PROGRAMMERS GUIDE

Examples of C Variable Usage for CRSP Stock Data

These assume a variable stk of type CRSP_STK_STRUCT.

CRSP Row/Header Data

Object Variable: stk.header_row
Data Structure: stk.header
Sample Print Statement:

printf ("%d %8d-%8d\n", stk.header->permno,
stk.header->begdt, stk.header->enddt);

CRSP Array/Distributions

Object Variable: stk.events.dists_arr
Data Array: stk.events.dists
Sample Print Statement: This sample loop prints all distribution codes and ex-distribution dates.

for (i = 0; i < stk.events.dists_arr->num; ++i)
printf ("%4d %8d\n", stk.events.dists[i].distcd, stk.events.dists[i].exdt);

CRSP Time Series/Prices

Object Variable: stk.prc_ts
Data Array: stk.prc
Sample Print Statement: This sample loop prints all prices and dates in the issue's range.

for(i = stk.prc_ts->beg; i <= stk.prc_ts->end; ++i)
printf("%11.5f %8d\n", stk.prc[i], stk.prc_ts->cal->caldt[i]);CRSP

CRSP Array of Time Series/Portfolios

Object Variable: stk.port_ts[j]
Data Array: stk.port[j]
(There are stk.porttypes portfolios available; j above is between 0 and stk.porttypes
-1)

Sample Print Statement: This prints the associated indno and the sample loop prints the date and
assignment for each year in the issue's range for porttype=0 NYSE/AMEX/NASDAQ
Capitalization deciles.

printf ("indno = %d\n", stk.port_ts[0].subtype);
for (i = stk.port_ts[0]->beg; i <= stk.port_ts[0]->end; ++i)
printf ("%8d %2d\n", stk.port_ts[0]->cal->caldt[i],
stk.port[0][i].port);

CHAPTER 2: ACCESSING DATA IN C

17

Chapter 2: Accessing Data in C

CRSP Array of Group Arrays

Object Variable: stk.group_arr[j]
Data Array: stk.group[j]
(There are stk.grouptypes groups available; j above is between 0 and stk.grouptypes
-1)

Sample Print Statement: This only prints if the security has ever been included in the S&P 500
universe (grouptype = 16).

j = 16 - 1;
for (i = 0; i < stk.group_arr[15]->num; ++i)
printf ("%8d %8d %2d %2d \n",
stk.group[j][i].grpdt,
stk.group[j][i].grpenddt,
stk.group[j][i].grpflag,
stk.group[j][i].grpsubflag);

18

PROGRAMMERS GUIDE

C Language Data Objects for CRSP Indices Data

CRSP assigns a Permanent Index Identification Number (indno) to access the indices data in C for individual series or portfolio groups. In the CRSP US Stock
Database, a subset of market series is available. Additional series and groups are available when you subscribe to the CRSP US Indices Database and Security
Portfolio Assignment Module. The index structure supports data for one series or group and includes header, rebalancing, and result information for one or more
portfolios comprising the index.

Each index structure contains a fixed set of possible objects. Objects contain the header information needed to use the CRSP data structures as well as the data
arrays. Data elements are described in the C Data Structure Table under the array name.

Time series beg and end are both equal to 0 if there are no data. Otherwise beg > 0, beg <= end, and end < maxarr. The 0th element of a time series array
is reserved for the missing value for that data type.

Multiple series in the index structure refers to portfolio subgroups. Each of these will have the same beg, end, and calendar. In a SERIES SETID, the multiple
series has a count of 1. In a GROUP SETID, the count of series is found in the corresponding xxxtypes variable.

Module Object Name Object Type Array Type Data Subtype Array
Structure
Size

Range Elements on a
Security Basis

Elements on a Set BAsis Array Name

IND_HEAD Index
Description

indhdr_row Indices Header Object CRSP_ROW CRSP_IND_HEADER_NUM = 2000 300 none none ind.indhdr

IND_REBAL
Rebalancing Data

rebal_arr[] Rebalancing Arrays CRSP_ARRAY CRSP_IND_REBAL_NUM = 201 0 64 num for each series maxarr,
ind.rebaltypes

ind.rebal[j], j from
0 to ind.rebaltypes -
1

IND_LISTS Issue
Lists

list_arr[] List Arrays CRSP_ARRAY CRSP_IND_LIST_NUM = 202 0 24 num for each series maxarr,
ind.listtypes

ind.list[j], j from
0 to ind.listtypes -1

IND_USDCNTS
Portfolio Used
Counts

usdcnt_ts[] Used Count Time Series CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_COUNT_NUM = 7 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.usdcnt[j], j
from 0 to ind.indtypes
-1

IND_TOTCNTS
Portfolio Total
Counts

totcnt_ts[] Total Count Time Series CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_COUNT_NUM = 7 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.totcnt[j], j
from 0 to ind.indtypes
-1

IND_USDVALS
Portfolio Used
Weights

usdval_ts[] Used Value Time Series CRSP_TIMESERIES CRSP_DOUBLE_NUM = 4 CRSP_WEIGHT_NUM = 4 8 beg and end for each series maxarr, cal,
ind.indtypes

ind.usdval[j], j
from 0 to ind.indtypes
-1

IND_TOTVALS
Portfolio Total
Weights

totval_ts[] Total Value Time Series CRSP_TIMESERIES CRSP_DOUBLE_NUM = 4 CRSP_WEIGHT_NUM = 4 8 beg and end for each series maxarr, cal,
ind.indtypes

ind.totval[j], j
from 0 to ind.indtypes
-1

IND_TRETURNS
Portfolio Total
Returns

tret_ts[] Total Return Time Series CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.tret[j], j from 0
to ind.indtypes -1

IND_ARETURNS
Portfolio Capital
Appreciation Returns

aret_ts[] Capital Appreciation
Time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.aret[j], j from 0
to ind.indtypes -1

IND_IRETURNS
Portfolio Income
Returns

iret_ts[] Income Return Time
Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.iret[j], j from 0
to ind.indtypes -1

IND_TLEVELS
Total Return Index
Levels

tind_ts[] Total Return Index Level
Time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_LEVEL_NUM = 3 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.tind[j], j from 0
to ind.indtypes -1

CHAPTER 2: ACCESSING DATA IN C

19Chapter 2: Accessing Data in C

IND_ALEVELS
Capital Appreciation
Index Levels

aind_ts[] Capital Appreciation
Index Level Time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_LEVEL_NUM = 3 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.aind[j], j from 0
to ind.indtypes -1

IND_ILEVELS
Income Return Index
Levels

iind_ts[] Income Return Index
Level Time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_LEVEL_NUM = 3 4 beg and end for each series maxarr, cal,
ind.indtypes

ind.iind[j], j from
0 to ind.indtypes -1

Module Object Name Object Type Array Type Data Subtype Array
Structure
Size

Range Elements on a
Security Basis

Elements on a Set BAsis Array Name

20

PROGRAMMERS GUIDE

C Language Data Structure for CRSP Indices Data

All CRSP-defined data types have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next indented level.

Index and date ranges for all elements in a structure are the same as for the structure itself. There are four structure levels indicated by the indentation in the Mne-
monic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates
data grouped in modules. See the Data Description Guide for data item definitions.

All character strings, indicated by char[#], are null terminated. The number of characters - 1 is the maximum string length allowed. Actual maximums may be
lower. The top level ind structure is an example used by CRSP Indices sample programs. Other names can be used, and multiple CRSP_IND_STRUCTs may be
declared in a program.

Mnemonic Name C Data Type C Data Usage C Index Range C Date Usage C Object Type

ind Master Indices Structure CRSP_IND_STRUCT ind

indhdr Indices Header Object ind.indhdr_row

indno INDNO int ind.indhdr->indno

indco INDCO int ind.indhdr->indco

primflag Index Primary Link int ind.indhdr->primflag

portnum Portfolio Number if Subset Series int ind.indhdr->portnum

indname Index Name char[80] ind.indhdr->indname

groupname Index Group Name char[80] ind.indhdr->typename

method Index Methodology Description Structure CRSP_IND_METHOD ind.indhdr->method

methcode Index Method Type Code int ind.indhdr-
>method.methcode

primtype Index Primary Methodology Type int ind.indhdr-
>method.primtype

subtype Index Secondary Methodology Group int ind.indhdr->method.subtype

wgttype Index Reweighting Type Flag int ind.indhdr->method.wgttype

wgtflag Index Reweighting Timing Flag int ind.indhdr->method.wgtflag

flags Index Exception Handling Flags CRSP_IND_FLAGS ind.indhdr->flags

flagcode Index Basic Exception Types Code int ind.indhdr->flags.flagcode

addflag Index New Issues Flag int ind.indhdr->flags.addflag

delflag Index Ineligible Issues Flag int ind.indhdr->flags.delflag

delretflag Return of Delisted Issues Flag int ind.indhdr-
>flags.delretflag

missflag Index Missing Data Flag int ind.indhdr->flags.missflag

partuniv Index Subset Screening Structure CRSP_UNIV_PARAM ind.indhdr->partuniv

partunivcode Universe Subset Types Code in a Partition
Restriction

int ind.indhdr-
>partuniv.univcode

begdt Partition Restriction Beginning Date int ind.indhdr->partuniv.begdt

enddt Partition Restriction End Date int ind.indhdr->partuniv.enddt

wantexch Valid Exchange Codes in the Universe in a
Partition Restriction

int ind.indhdr-
>partuniv.wantexch

wantnms Valid NASDAQ Market Groups in the
Universe in a Partition Restriction

int ind.indhdr-
>partuniv.wantnms

wantwi Valid When-Issued Securities in the
Universe in a Partition Restriction

int ind.indhdr-
>partuniv.wantwi

CHAPTER 2: ACCESSING DATA IN C

21Chapter 2: Accessing Data in C

wantinc Valid Incorporation of Securities in the
Universe in a Partition Restriction

int ind.indhdr-
>partuniv.wantinc

shrcd Share Code Screen Structure in a Partition
Restriction

CRSP_UNIV_SHRCD ind.indhdr->partuniv.shrcd

sccode Share Code Groupings for Subsets in a
Partition Restriction

int ind.indhdr-
>partuniv.shrcd.sccode

fstdig Valid First Digit of Share Code in a
Partition Restriction

int ind.indhdr-
>partuniv.shrcd.fstdig

secdig Valid Second Digit of Share Code in a
Partition Restriction

int ind.indhdr-
>partuniv.shrcd.secdig

induniv Partition Subset Screening Structure CRSP_UNIV_PARAM ind.indhdr->induniv

indunivcode Universe Subset Types Code in an Index
Restriction

int ind.indhdr-
>induniv.univcode

begdt Restriction Begin Date int ind.indhdr->induniv.begdt

enddt Restriction End Date int ind.indhdr->induniv.enddt

wantexch Valid Exchange Codes in the Universe in an
Index Restriction

int ind.indhdr-
>induniv.wantexch

wantnms Valid NASDAQ Market Groups in the
Universe in an Index Restriction

int ind.indhdr-
>induniv.wantnms

wantwi Valid When-Issued Securities in the
Universe in an Index Restriction

int ind.indhdr->induniv.wantwi

wantinc Valid Incorporation of Securities in the
Universe in an Index Restriction

int ind.indhdr-
>induniv.wantinc

shrcd Share Code Screen Structure in an Index
Restriction

CRSP_UNIV_SHRCD ind.indhdr->induniv.shrcd

sccode Share Code Groupings for Subsets in an
Index Restriction

int ind.indhdr-
>induniv.shrcd.sccode

fstdig Valid First Digit of Share Code in an Index
Restriction

int ind.indhdr-
>induniv.shrcd.fstdig

secdig Valid Second Digit of Share Code in an
Index Restriction

int ind.indhdr-
>induniv.shrcd.secdig

rules Portfolio Building Rules Structure CRSP_IND_RULES ind.indhdr->rules

rulecode Index Basic Rule Types Code int ind.indhdr->rules.rulecode

buyfnct Index Function Code for Buy Rules int ind.indhdr->rules.buyfnct

sellfnct Index Function Code for Sell Rules int ind.indhdr->rules.sellfnct

statfnct Index Function Code for Generating
Statistics

int ind.indhdr->rules.statfnct

groupflag Index Statistic Grouping Code int ind.indhdr-
>rules.groupflag

assign Related Assignment Information CRSP_IND_ASSIGN ind.indhdr->assign

assigncode Index Basic Assignment Types Code int ind.indhdr-
>assign.assigncode

asperm INDNO of Associated Index int ind.indhdr->assign.asperm

asport Portfolio Number in Associated Index int ind.indhdr->assign.asport

rebalcal Calendar Identification Number of
Rebalancing Calendar

int ind.indhdr-
>assign.rebalcal

assigncal Calendar Identification Number of
Assignment Calendar

int ind.indhdr-
>assign.assigncal

calccal Calendar Identification Number of
Calculations Calendar

int ind.indhdr->assign.calccal

Mnemonic Name C Data Type C Data Usage C Index Range C Date Usage C Object Type

22

PROGRAMMERS GUIDE

rebal Array of Rebalancing Arrays int ind.rebal[j][i].rbbegdt j between 0 and ind.rebaltypes -
1, i between 0 and
ind.rebal_arr[j]->num-1

data valid from
ind.rebal[j][i].rbbegdt to
ind.rebal[j][i].rbenddt

array of ind.rebal_arr

rbbegdt Index Rebalancing Begin Date int ind.rebal[j][i].rbbegdt

rbenddt Index Rebalancing End Date int ind.rebal[j][i].rbenddt

usdcnt Count Used as of Rebalancing int ind.rebal[j][i].usdcnt

maxcnt Maximum Count During Period int ind.rebal[j][i].maxcnt

totcnt Count Available as of Rebalancing int ind.rebal[j][i].totcnt

endcnt Count at End of Rebalancing Period int ind.rebal[j][i].endcnt

minid Statistic Minimum Identifier int ind.rebal[j][i].minid

maxid Statistic Maximum Identifier int ind.rebal[j][i].maxid

minstat Statistic Minimum in Period double ind.rebal[j][i].minstat

maxstat Statistic Maximum in Period double ind.rebal[j][i].maxstat

medstat Statistic Median in Period double ind.rebal[j][i].medstat

avgstat Statistic Average in Period double ind.rebal[j][i].avgstat

list j between 0 and ind.listtypes -
1, i between 0 and
ind.list_arr[j]->num-1

valid from ind.list[j][i].beg to
ind.list[j][i].enddt

array of ind.list_arr

list List Arrays int ind.list[j][i].permno

permno Permanent Number of Securities in Index
List

int ind.list[j][i].permno

begdt First Date Included in List int ind.list[j][i].begdt

enddt Last Date Included in a List int ind.list[j][i].enddt

subind Index Subcategory Code int ind.list[j][i].subind

weight Weight of an Issue double ind.list[j][i].weight

Time Series Data Arrays

aind Index Capital Appreciation Index Level float* ind.aind[j][i] j between 0 and indtypes-1, i
between ind.aind_ts[j]->beg and
ind.aind_ts[j]->end

value on date ind.aind_ts[j]->cal-
>caldt[i]

array of ind.aind_ts

aret Index Capital Appreciation Return float* ind.aret[j][i] j between 0 and indtypes-1, i
between ind.aret_ts[j]->beg and
ind.aret_ts[j]->end

value on date ind.aret_ts[j]->cal-
>caldt[i]

array of ind.aret_ts

iind Index Income Index Level float* ind.iind[j][i] j between 0 and indtypes-1, i
between ind.iind_ts[j]->beg and
ind.iind_ts[j]->end

value on date ind.iind_ts[j]->cal-
>caldt[i]

array of ind.iind_ts

iret Index Income Return float* ind.iret[j][i] j between 0 and indtypes-1, i
between ind.iret_ts[j]->beg and
ind.iret_ts[j]->end

value on date ind.iret_ts[j]->cal-
>caldt[i]

array of ind.iret_ts

tind Index Total Return Index Level float* ind.tind[j][i] j between 0 and indtypes-1, i
between ind.tind_ts[j]->beg and
ind.tind_ts[j]->end

value on date ind.tind_ts[j]->cal-
>caldt[i]

array of ind.tind_ts

tret Index Total Return float* ind.tret[j][i] j between 0 and indtypes-1, i
between ind.tret_ts[j]->beg and
ind.tret_ts[j]->end

value on date ind.tret_ts[j]->cal-
>caldt[i]

array of ind.tret_ts

usdcnt Index Used Count float* ind.usdcnt[j][i] j between 0 and indtypes-1, i
between ind.usdcnt_ts[j]->beg
and ind.usdcnt_ts[j]->end

value on date ind.usdcnt_ts[j]-
>cal->caldt[i]

array of ind.usdcnt_ts

totcnt Index Total Count float* ind.totcnt[j][i] j between 0 and indtypes-1, i
between ind.totcnt_ts[j]->beg
and ind.totcnt_ts[j]->end

value on date ind.totcnt_ts[j]-
>cal->caldt[i]

array of ind.totcnt_ts

Mnemonic Name C Data Type C Data Usage C Index Range C Date Usage C Object Type

CHAPTER 2: ACCESSING DATA IN C

23Chapter 2: Accessing Data in C

usdval Index Used Value float* ind.usdval[j][i] j between 0 and indtypes-1, i
between ind.usdval_ts[j]->beg
and ind.usdval_ts[j]->end

value on date ind.usdval_ts[j]-
>cal->caldt[i]

array of ind.usdval_ts

totval Index Total Value float* ind.totval[j][i] j between 0 and indtypes-1, i
between ind.totval_ts[j]->beg
and ind.totval_ts[j]->end

value on date ind.totval_ts[j]-
>cal->caldt[i]

array of ind.totval_ts

Mnemonic Name C Data Type C Data Usage C Index Range C Date Usage C Object Type

24

PROGRAMMERS GUIDE

2.2 C Sample Programs

There are two sample programs provided that can process the CRSP Stock Database using C. These programs can
load stock and indices data structures for processing. The sample program code contains additional comment infor-
mation. See system-dependent C programming instructions at the end of this section for instructions to run sample
programs on supported systems. See C usage tables in 3.1 and variables descriptions in the Data Description Guide
for possible data usage. Sample programs are included on the Tools and Installation CD.

stk_samp1.c Read Stock Data Sequentially

stk_samp1.c creates a namelist of current names by reading a stock database sequentially in
PERMNO order. It loads one index series before processing the stock data. Output is one line of
header information per security. stk_samp1.c accepts parameters for database directory, stock set
identifier, indices set identifier, INDNO, CRSP’s permanent index identification number, and
output file name.

stk_samp2.c Read Stock Data with a PERMNO List File

stk_samp2.c reads a stock database using an input file of PERMNOs. It loads one set of indices
before processing the input list. Output is one line of header information per security.
stk_samp2.c accepts parameters for database directory, stock set identifier, indices set identifier,
Permanent Index Identification Number, input file name, and output file name.

stk_samp3.c Process an Input File of PERMNOs with Date Ranges

stk_samp3.c uses CRSP C library functions to read a space-delimited text input file with
PERMNOs and beginning and ending date ranges in YYYYMMDD format. It outputs date,
PERMNO, end of previous week, exchange code, end of current week adjusted price, end of
current week index level for a selected index, end of previous week capitalization, and weekly total
returns.

CHAPTER 2: ACCESSING DATA IN C

25

Chapter 2: Accessing Data in C

C Header Files and Data Structures

Header files contain all needed structure definitions, constants, and function prototypes. Two C header files are suffi-
cient to define all CRSP structures, constants, and functions.

1. crsp.h defines all structures and constants used by the CRSP C access and utility functions, and the function
definitions. crsp.h includes several other header files. The primary definitions needed for stock databases
are in crsp_objects.h, crsp_const.h, crsp_stk_objects.h, and crsp_stk_const.h. The primary defini-
tions needed for the indices data are in crsp_objects.h, crsp_const.h, crsp_ind_objects.h, and
crsp_ind_const.h.

2. crsp_init.h declares internal variables needed to store initialization and error information. This should only
be included in the main program and not in any function modules.

The following list is a more complete summary of individual stock and indices header files that are included by
crsp.h. All header files are kept in the CRSP_INCLUDE directory.

Header File Description

crsp_stk.h top level stock header file includes all needed header files for CRSP Stock access
crsp_stk_objects.h defines top level CRSP_STK_STRUCT structure for Stock Data
crsp_objects.h defines all object structures and data array structures for all supported types
crsp_stk_const.h defines stock constants and wanted parameters
crsp_const.h defines generic CRSP constants
crsp_access_stk.h defines stock access function prototypes
crsp_util_stk.h defines stock utility function prototypes
crsp_ind.h top level indices header file includes all needed header files for CRSP Indices access
crsp_ind_objects.h defines top level CRSP_IND_STRUCT structure for Indices Data
crsp_ind_const.h define indices constants and wanted parameters
crsp_access_ind.h defines index access function prototypes
crsp_util_ind.h defines index utility function prototypes
crsp_sysio.h defines system-specific constants
crsp_maint.h defines internal data structures

26

PROGRAMMERS GUIDE

2.3 CRSPAccess C Library

The CRSPAccess C Library contains the Application Programming Interface (API) used to access and to process the
data. The library is broken into sections based on the type of operations. The following major groups are available.
Each can be further subdivided into subgroups. Functions within subgroups are alphabetical. Each function includes
a function prototype, description, list of arguments, return values, side effects, and preconditions for use.

Stock Access Functions

The following tables list the available functions to access CRSPAccess Stock Data. Standard usage is to use an open
function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if
there is a matching structure defined for each one.

C Library Category Description Page

Stock Access Functions Functions used to load stock data from the database into structures Page 26

Index Access Functions Functions used to load index data from the database into structures Page 40
General Access Functions General calendar and access functions Page 48
General Utility Functions Functions utility to process base CRSPAccess structures Page 54
Data Utility Functions Functions used to manipulate stock or indices data Page 83

Function Description Page

crsp_stk_clear Loads Missing Values to Arrays in a Stock Set Structure Page 27

crsp_stk_close Closes a Stock Set Page 27
crsp_stk_free Deallocates Memory and Reinitializes a Stock Set Structure Page 27
crsp_stk_init Initializes a CRSPAccess Database for Stock Access Page 28
crsp_stk_open Opens a Stock Set in a CRSPAccess Database Page 29
crsp_stk_read Loads Wanted Stock Data For a PERMNO Page 30
crsp_stk_read_cus Loads Wanted Stock Data Using Header CUSIP Identifier, Header as the Key Page 31
crsp_stk_read_permco Loads Wanted Stock Data Using PERMCO as the Key Page 32
crsp_stk_read_hcus Loads Wanted Stock Data Using Historical CUSIP as the Key Page 32
crsp_stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key Page 33
crsp_stk_read_ticker Loads Wanted Stock Data Using Ticker Symbol, Header as the Key Page 33
crsp_stk_read_subset Loads Wanted Stock Data for a PERMNO Applying All Subsetting Filters Page 34
crsp_stk_read_key Loads Wanted Stock Data Using Any Supported Key Page 34
crsp_stk_read_key_subset Loads Wanted Stock Data Using Supported Key Applying Subsetting Filters Page 35
crsp_stk_alloc Allocates and Initializes Stock Structures Page 36
crsp_stk_copy Copies Data from One Stock Structure to Another Page 36
crsp_stk_delete Deletes Stock Data for an Existing PERMNO Page 36
crsp_stk_insert Inserts New Stock Data for a PERMNO Page 37
crsp_stk_modload Allocates and Loads a Module Structure Page 37
crsp_stk_newset Inserts a Set of Stock Modules to a CRSP Root Directory Page 37
crsp_stk_null Function to Zero out the Stock Structure Before Used Page 38
crsp_stk_update Updates Stock Data for an Existing PERMNO Page 38
crsp_stk_del_fromset Removes Modules from Stock Set from a CRSP Root Directory Page 38
crsp_stk_add_toset Adds Modules to Stock Set to a CRSP Root Directory Page 39
crsp_stk_get_allissues_key Get all Issues for a key Page 39

CHAPTER 2: ACCESSING DATA IN C

27

Chapter 2: Accessing Data in C

crsp_stk_clear Loads Missing Value Arrays in a Stock Set Structure

Prototype: int crsp_stk_clear (CRSP_STK_STRUCT *stk, int clearflag)

Description: Function to clear the stk structure before used. Load defined missing values to all allocated objects in a stock set structure.
It is assumed that the pointers are either NULL or have been allocated by a set open function. The function allows clearing
on a range level, range and array level, or array level.

Arguments: CRSP_STK_STRUCT *stk – pointer to a stock structure pointer to be cleared.
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset num for CRSP_ARRAYs and beg and end for CRSP_TIMESERIES, and nothing
for CRSP_ROWs
CRSP_CLEAR_ALL – set ranges to missing and sets missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for all elements in the object arrays within the range between beg and end
in a CRSP_TIMESERIES or between 0 and num–1 in a CRSP_ARRAY, or the single element in a CRSP_ROW.
CRSP_CLEAR_SET – set ranges in the 0’th element of a CRSP_TIMESERIES array or the maxarr-1’th element of
a CRSP_ARRAY to missing values specific to the array type, or missing values in CRSP_ROW element.

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

Side Effects: The stock structure pointer has all allocated fields initialized according to the clearflag
Preconditions: The stock structure must either have object fields set to NULL or allocated with a set open function.
Call Sequence: Can be called after crsp_stk_open and before each crsp_stk_read call.

crsp_stk_close Closes a Stock Set

Prototype: int crsp_stk_close (int crspnum, int setid, CRSP_STK_STRUCT *stkptr)

Description: closes a stock set

Arguments: int crspnum – identifier of CRSP database, as returned by open
int setid – identifier of the stock set code to close
CRSP_STK_STRUCT *stkptr – pointer to stock structure to be deallocated; if NULL nothing is deallocated

Return Values: CRSP_SUCCESS: if successfully closed stock set
CRSP_FAIL: if error closing a file or illegal parameter

Side Effects: All stock module files are closed, memory allocated by them are freed. If these are the last modules open in the database,
the root is also closed. The stock structure associated with the set is deallocated if stkptr is not NULL.

Preconditions: The crspnum and setid must be taken from a previous crsp_stk_open call
Call Sequence: Called by external programs, must be preceded by call to crsp_stk_open calls crsp_closeroot,

crsp_closemod.

crsp_stk_free Deallocates Memory and Reinitializes a Stock Set Structure

Prototype: int crsp_stk_free (int crspnum, int setid, CRSP_STK_STRUCT *stkptr)
Description: deallocates memory and reinitializes a stock set structure

Arguments: int crspnum – identifier of crsp database, as returned by open
int setid – identifier of the stock set code to close
CRSP_STK_STRUCT *stkptr – pointer to stock structure

Return Values: CRSP_SUCCESS: if successfully deallocated and reset stock structure, or stk structure is NULL
CRSP_FAIL: if error deallocating memory, error in parameters

Side Effects: The stock structures are reset so all pointers are NULL and all settings are 0. All memory allocated to existing object
element lists is freed.

Preconditions: The crspnum must be known from a previous crsp_stk_open or crsp_openroot call. The setcode is an
installation-defined code for the set.

Call Sequence: Called by external programs or by crsp_stk_close must be preceded by call to crsp_stk_alloc calls
crsp_freemod.

28

PROGRAMMERS GUIDE

crsp_stk_init Initializes a CRSPAccess Database for Stock Access

Prototype: int crsp_stk_init(CRSP_STK_STRUCT *stkptr)
Description: initializes internal access for stock CRSPDBs and sets stock structure pointers to NULL. See crsp_stk_clear to clear

data from a stock structure.
Arguments: CRSP_STK_STRUCT *stkptr – pointer to a stock structure to initialize. This argument can be NULL to initialize a

stock database without resetting the structure.
Return Values: CRSP_SUCCESS: if stock internals successfully initialized

CRSP_FAIL: if error opening or reading initialization file
Side Effects: Internal structures will be initialized, including the array of known stock sets. They will be stored in static structures in

this module and used by other stk functions. All of the pointers in the stock structure stkptr will be set to NULL. If a
structure is already initialized with crsp_stk_open, crsp_stk_free should be used or memory will be lost.

Preconditions: None; crsp_stk_init is called by crsp_stk_open

CHAPTER 2: ACCESSING DATA IN C

29

Chapter 2: Accessing Data in C

crsp_stk_open Opens an Existing Stock Set in a CRSPAccess Database

Prototype: int crsp_stk_open (char *root, int setid, CRSP_STK_STRUCT *stkptr, int wanted,
char *mode, int bufferflag)

Description: opens an existing stock set in a CRSPAccess Database

Arguments: char *root – path of root directory. If the root is NULL the CRSP_DSTK or CRSP_MSTK environment variables are
used.
int setid – the set identifier
10 – Daily CRSP Stock Database
20 – Monthly CRSP Stock Database

CRSP_STK_STRUCT *stkptr – pointer within stock structure to be associated with this database. If wanted objects
in stkptr are NULL then space for objects where the structure is allocated by this function.
int wanted – mask indicating which modules will be used. The list below shows the wanted values for the stock
modules. The wanted values can be summed or summary wanted values can be used to open multiple modules. Only
modules that are selected in the wanted parameter have memory allocated in the stock structure and only those modules
can be accessed in further access functions to the database.
Individual modules:
STK_HEAD 1 header structure
STK_EVENTS 2 names, dists, shares, delists, nasdin
STK_LOWS 4 lows
STK_HIGHS 8 highs
STK_PRICES 16 close or bid/ask average
STK_RETURNS 32 total returns
STK_VOLUMES 64 volumes
STK_PORTS 128 portfolios
STK_BIDS 256 bids
STK_ASKS 512 asks
STK_RETXS 1024 returns without dividends
STK_SPREADS 2048 spreads
STK_TRADES/STK_ALTPRCDTS 4096 number of trades or alternative price dates
STK_ALTPRCS/STK_OPENPRCS 8192 alternate prices or open prices
STK_GROUPS 16384 groups
Group of modules:
STK_INFOS 3 header and event data
STK_DDATA 124 price, high, low, volume and returns time series
STK_SDATA 4864 bids, asks, and number of trades time series
STK_STD 5119 header, events, prices, high, low, volume, returns, and ports
STK_ALL 32767 all modules
char *mode – usage while open (r=read, rw=read/write)
int bufferflag – level of buffering: 0 : no buffering, 1 : use default, n : use factor of default

Return Values: crspnum: (integer) if opened successfully. This crspnum is used in further access functions to the database.
CRSP_FAIL: (integer) if error opening or loading files, if bad parameters, root already opened exclusively, stock set
already opened rw, wanted not a subset of set’s modules, set does not exist in root, set already opened and structure
allocated, error allocating memory for internal or stock structures.

Side Effects: This will load root and stock initialization files if needed, open the root including loading the configuration structure and
index structures to memory, opening the address file, and if necessary allocating memory to file buffers, loading the free
list, and logging information to the log file. Files will be opened for all wanted modules. Associated calendars will be
loaded if necessary. wanted stock structures will be allocated.

Preconditions: None. The root may already be open under a different set in r mode.

30

PROGRAMMERS GUIDE

crsp_stk_read Loads Wanted Stock Data for a Security by PERMNO

Prototype: int crsp_stk_read (int crspnum, int setid, int *key, int keyflag, CRSP_STK_STRUCT
*stkptr, int wanted)

Description: loads wanted stock data for a PERMNO

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *key – specific PERMNO of data to load, or pointer to integer that will be loaded with the key found if a positional
keyflag is used.
int keyflag – CRSP_EXACT constant to search for the PERMNO in *key, or positional constant:
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_FOUND_OTHER: if key found in root, but not for this setid
CRSP_NOT_FOUND: if key not found in root
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum error in read, impossible wanted

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual PERMNO found is loaded
to *key. Data is only loaded to wanted data structures within the range of valid data for the security. Use stock clear
functions to erase previously loaded data.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
stkptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_stk_open function.

CHAPTER 2: ACCESSING DATA IN C

31

Chapter 2: Accessing Data in C

crsp_stk_read_cus Loads Wanted Stock Data Using CUSIP Identifier, Header as the Key

Prototype: int crsp_stk_read_cus (int crspnum, int setid, char *cusip, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted)

Description: loads wanted stock data for a security using the CUSIP Identifier, Header (hcusip) as the key

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
char *cusip – CUSIP Identifier, Header to load, or pointer to string that will be loaded with the key found if a
positional keyflag is used.
int keyflag – qualify conditions of key searches:
CRSP_EXACT – only accept an exact match
CRSP_BACK – find last previous key if no exact match
CRSP_FORWARD – find the first following key if no exact match
or positional constant:
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible
wanted, invalid CUSIP index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual CUSIP Identifier, Header
found is loaded to *cusip. Data is only loaded to wanted data structures within the range of valid data for the security.
Use stock clear functions to erase previously loaded data

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
stkptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_stk_open function.

32

PROGRAMMERS GUIDE

crsp_stk_read_permco Loads Wanted Stock Data Using PERMCO as the Key

Prototype: int crsp_stk_read_permco (int crspnum, int setid, int *permco, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted)

Description: loads wanted stock data for a security using PERMCO as the key

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *permco – PERMCO to load, or pointer to an integer that will be loaded with the key found if a positional keyflag
is used.
int keyflag – positional qualifier or match qualifier – see crsp_stk_read_cus
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible
wanted, invalid PERMCO index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual PERMCO found is loaded
to *PERMCO. Data is only loaded to wanted data structures within the range of valid data for the security. Use stock clear
functions to erase previously loaded data

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
stkptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_stk_open function.

crsp_stk_read_hcus Loads Wanted Stock Data Using Historical CUSIP as the Key

Prototype: int crsp_stk_read_hcus (int crspnum, int setid, char *cusip, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted)

Description: loads wanted stock data for a security using historical CUSIP as the key

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
char *cusip – historical CUSIP to load, or pointer to string that will be loaded with the key found if a positional
keyflag is used.
int keyflag – positional qualifier or nomatch qualifier– see crsp_stk_read_cus
CRSP_STK_STRUCT * stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
CUSIP index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual historical CUSIP found is
loaded to *cusip. Data is only loaded to wanted data structures within the range of valid data for the security. Use stock
clear functions to erase previously loaded data

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
stkptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_stk_open function.

CHAPTER 2: ACCESSING DATA IN C

33

Chapter 2: Accessing Data in C

crsp_stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key

Prototype: int crsp_stk_read_siccd (int crspnum, int setid, int *siccd, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted)

Description: loads wanted stock data for a security using Standard Industrial Classification (SIC) Code (siccd) as the key

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *siccd – siccd to load, or pointer to integer that will be loaded with the key found if a positional keyflag is
used.
int keyflag – positional qualifier or no match qualifier– see crsp_stk_read_cus
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible
wanted, invalid siccd index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual SIC Code found is loaded
to *siccd. Data is only loaded to wanted data structures within the range of valid data for the security. Use stock clear
functions to erase previously loaded data.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
stkptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_stk_open function.

crsp_stk_read_ticker Loads the Wanted Stock Data Using Ticker, Header as the Key

Prototype: int crsp_stk_read_ticker (int crspnum, int setid, char *ticker, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted)

Description: loads wanted stock data for a security using Ticker, Header as the key

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
char *ticker – pointer to header ticker to load, or pointer to string that will be loaded with the key found if a
positional keyflag is used.
int keyflag – positional qualifier or no match qualifier– see crsp_stk_read_cus
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if ticker not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
ticker index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual header ticker found is
loaded to *ticker. Data is only loaded to wanted data structures within the range of valid data for the security. Use
stock clear functions to erase previously loaded data.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
stkptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_stk_open function.

34

PROGRAMMERS GUIDE

crsp_stk_read_subset Loads Wanted Stock Data for a PERMNO Applying Subsetting Filters

Prototype: int crsp_stk_read_subset (int crspnum, int setid, int *key, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted, CRSP_UNIV_PARAM_LOAD *subpar)

Description: loads wanted stock data for a PERMNO applying all subsetting filters

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *key – PERMNO to load
int keyflag – positional qualifier or no match qualifier
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load
CRSP_SUBSET_PARAM_LOAD *subpar – pointer to structure containing subsetting flags

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if PERMNO not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted,
invalid PERMNO index

Side Effects: Data from the wanted modules will be loaded to the proper location in the structure. The data loaded in the module buffers
may be changed. The position for further reads will be set to the location of the read. Multiple PERMNOs may be loaded
on a positional read if subsetting totally eliminates PERMNOs that otherwise would be loaded.

Preconditions: The stock set must be previously opened. The stknum and crspnum and stkptr are the same as opened and the
wanted must be a subset of the wanted open. The subset parameter structure must be loaded with valid flags. See the
crsp_stk_subset_parload function (page 113).

crsp_stk_read_key Loads Wanted Stock Data Using Any Supported Key

Prototype: int crsp_stk_read_key (int crspnum, int setid, void *key, int keytype, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted)

Description: Loads wanted stock data using any supported key. Supported keys are PERMNO, Header CUSIP, Historical CUSIP,
Historical SIC Code, Header Ticker and PERMCO.

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
void *key – key must point to a structure that matches the keytype
int if keytype = CRSP_SCD_NUM
CRSP_SCD_CUS if keytype = CRSP_SCD_CUSIP
CRSP_SCD_CUS if keytype = CRSP_SCD_HCUSIP
CRSP_SCD_INT if keytype = CRSP_SCD_SICCD
CRSP_SCD_CUS if keytype = CRSP_SCD_TICKER
CRSP_SCD_INT if keytype = CRSP_SCD_PERMCO
int keytype – The keyword identifying the key to search on. Values are:
CRSP_SCD_CUSIP – Header CUSIP
CRSP_SCD_HCUSIP – Historical CUSIP
CRSP_SCD_SICCD – Historical SIC Codes
CRSP_SCD_TICKER – Header Ticker
CRSP_SCD_PERMCO – PERMCO
CRSP_SCD_NUM – PERMNO
int keyflag – positional qualifier or no match qualifier. Positioned qualifiers are dependent on the keys selected.
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF – if next or previous key at end or beginning of file
CRSP_NOT_FOUND – if PERMNO not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible
wanted.

Side Effects: Data from the wanted modules will be loaded to the proper location in the stkptr structure. The data loaded in the
module buffers may be changed.

Preconditions: The stock set must be previously opened. The crspnum and stkptr are the same as opened and the wanted must be a
subset of the open wanted.

CHAPTER 2: ACCESSING DATA IN C

35

Chapter 2: Accessing Data in C

crsp_stk_read_key_subset Loads Wanted Stock Data Using Supported Key Applying Subset Filters

Prototype: int crsp_stk_read_key_subset (int crspnum, int setid, void *key, int keytype, int
keyflag, CRSP_STK_STRUCT *stkptr, int wanted, CRSP_UNIV_PARAM_LOAD *subpar)

Description: loads wanted stock data using supported key applying subsetting filters applied. Supported keys are PERMNO, Header
CUSIP, Historical CUSIP, Historical SIC Code, Header Ticker and PERMCO.

Arguments: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
void *key – key must point to a structure that matches keytype
int if keytype = CRSP_SCD_NUM
CRSP_SCD_CUS if keytype = CRSP_SCD_CUSIP
CRSP_SCD_CUS if keytype = CRSP_SCD_HCUSIP
CRSP_SCD_INT if keytype = CRSP_SCD_SICCD
CRSP_SCD_CUS if keytype = CRSP_SCD_TICKER
CRSP_SCD_INT if keytype = CRSP_SCD_PERMCO
int keytype – CRSP_SCD_CUSIP – Header CUSIP
CRSP_SCD_HCUSIP – Historical CUSIP
CRSP_SCD_SICCD – Historical SIC Code
CRSP_SCD_TICKER – Header Ticker
CRSP_SCD_PERMCO – PERMCO
CRSP_SCD_NUM – PERMNO
int keyflag – positional qualifier or no match qualifier
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load
CRSP_SUBSET_PARAM_LOAD *subpar – pointer to structure containing subsetting flags

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible
wanted.

Side Effects: Data from the wanted modules will be loaded to the proper location in the stkptr structure. The data loaded in the
module buffers may be changed. The position of further reads will be set to the location of the read. Multiple PERMNOs
may be loaded and discarded on a positional read if subsetting totally eliminates PERMNOs that otherwise would be
loaded.

Preconditions: The stock set must be previously opened. The crspnum and stkptr are the same as opened and the wanted must be a
subset of the open wanted. The subset parameter structure must be loaded with valid flags. See the
crsp_stk_subset_parload function (page 113).

36

PROGRAMMERS GUIDE

crsp_stk_alloc Builds Stock Set Object Lists, Allocates Memory, and Sets Pointers

Prototype: int crsp_stk_alloc (int crspnum, int setid, CRSP_STK_STRUCT *stk, int wanted)

Description: Build stock set object lists, allocate memory, and set pointers
Arguments: int crspnum - identifier of CRSP database, as returned by open

int setid - identifier of the stock set to allocate
CRSP_STK_STRUCT *stk - pointer to stock structure
int wanted - binary code of modules wanted; see CRSP_STK_OPEN.

Return Values: CRSP_SUCCESS - if successfully initialized and allocated stock structure
CRSP_FAIL - if error allocating memory, error in parameters

Side Effects: Three levels of pointers are allocated in the stock structure.

1. object_element list elements are created for each wanted module

2. object types are allocated for each object in wanted modules, and object level pointers are set

3. arrays are allocated for each object, and array level pointers are set

setid and wanted are stored in the structure.
Preconditions: The crspnum must be known from a previous crsp_stk_open or crsp_openroot call. The setid is an

installation-defined code for the set.
Call Sequence: Called by external programs or by crsp_stk_open. Must be preceded by call to crsp_stk_open or

crsp_openroot. Calls crsp_allocmod

crsp_stk_copy Copies Data from One Stock Structure to Another

Prototype: int crsp_stk_copy (CRSP_STK_STRUCT *stktrg, CRSP_STK_STRUCT *stksrc, int wanted)

Description: Copies data from one stock structure to another
Arguments: CRSP_STK_STRUCT *stktrg - pointer to stock structure target

CRSP_STK_STRUCT *stksrc - pointer to stock structure source
int wanted - wanted flag of modules to copy

Return Values: CRSP_SUCCESS - if successfully copied data from source to target
CRSP_FAIL - if incompatible structures

Side Effects: Data is copied from the source structure to the target structure. The loadflag field is used to identify all wanted
modules to copy.

Preconditions: Both structures must be allocated with crsp_stk_open. The wanted for the target must be a superset of the wanted
in the source. The versions of the structure must be compatible - the source modules must not have missing objects or
higher maxarrs than the counterparts in the target.

Call Sequence: Called by external programs must be preceded by call to crsp_stk_open for each structure.

crsp_stk_delete Deletes a PERMNO from a Stock Set

Prototype: int crsp_stk_delete (int crspnum, int setid, int key)

Description: Deletes a PERMNO from a stock set in a CRSPAccess database.
Arguments: int crspnum - identifier of root

int setid - identifier of the set
int key - PERMNO to erase from stock set

Return Values: CRSP_SUCCESS - if successfully deleted from stock set
CRSP_FAIL - if key not found, not found in set, not open for rewrite, or illegal parameter

Side Effects: If the PERMNO is found in the set it is erased. All space allocated in the module files for this permno will be added to the
free list for those modules. If the PERMNO does not belong to any other modules, it will be erased from the index file and
its address record placed on the address file free list. Otherwise, the index file module flags will be reset and the address
records for these stock modules will be set to NULL.

Preconditions: The root and stock set must be opened previously with crsp_stk_open. The open must use the rw mode.
Call Sequence:

CHAPTER 2: ACCESSING DATA IN C

37

Chapter 2: Accessing Data in C

crsp_stk_insert Adds a New PERMNO to a Stock Set

Prototype: int crsp_stk_insert (int crspnum, int setid, int key, CRSP_STK_STRUCT *stkptr, int
wanted)

Description: Adds a new PERMNO to a stock set in a CRSPAccess database.
Arguments: int crspnum - CRSP database identifier from open

int setid - the set identifier
CRSP_STK_STRUCT *stkptr - pointer to stock structure - data that will be added to the wanted modules
int wanted - a stock wanted parameter indicating which stock data modules include data that will be saved.

Return Values: CRSP_SUCCESS - if successfully added
CRSP_FAIL - if bad parameters, database not open for rw, PERMNO already exists in this set

Side Effects: Data for all modules will be added to the proper file. The free list is used to find a location in the module file and may be
updated if free space is used. If the key already exists but in different sets, the index file module flag is updated, and the
new module addresses and sizes are added to the address file. If the key is totally new, a new index file row and address
file record are created.

Preconditions: The stock set must be opened previously with rw mode.
Call Sequence:

crsp_stk_modload Allocates a Module Structure and Loads a Module and Objects Information into Module Structure

Prototype: int crsp_stk_modload (int crspnum, int modindex, int modid, CRSP_CONFIG_MOD
**modstruct)

Description: Allocates a module structure and loads a module and object information into it
Arguments: int modindex - the index of the module in the CRSP_MODTYPE structure array

CRSP_CONFIG_MOD *modstruct - pointer to the CRSP_CONFIG_MOD structure
Return Values: CRSP_SUCCESS - if the module is loaded successfully

CRSP_FAIL - if bad parameters or error allocating and loading module structures
Side Effects:
Preconditions:
Call Sequence:

crsp_stk_newset Adds a Set of Stock Modules to a CRSP Database

Prototype: int crsp_stk_newset (char *root, int setid, int wanted)

Description: Adds a set of stock modules to a CRSPAccess database. Creates a new database if one does not exist.

Arguments: char *root - path of crspdb root directory
int setid - known stock set number from initialization file
int wanted - mask determining which stock modules are supported in the set; see CRSP_STK_OPEN.

Return Values: CRSP_SUCCESS - if the stock set is added
CRSP_FAIL - if bad parameters or error manipulating root structures

Side Effects: crsp_stk_newset creates a new CRSPAccess database if one does not exists; it then adds a set of stock modules to the
existing crspdb. It will add the information about the set to the configuration file and recreate the address file with the new
modules added to each record. Empty data files for the modules will be created. If the calendars are new to the root they
will be added. The new modules will be assigned to the proper calendars.

Preconditions:
Call Sequence: crsp_newroot is called to create a CRSPAccess database if none exists. The root must be a CRSPAccess database,

unopened, not including this setid, or an empty directory.

38

PROGRAMMERS GUIDE

crsp_stk_null Function Zeros Out the Stock Structure Before it is Used

Prototype: int crsp_stk_null(CRSP_STK_STRUCT *stkptr)

Description: Function zeros out the stock structure before it is used. All pointers are set to NULL and integers set to 0. This does not
free memory. Use CRSP_STK_CLEAR to reset data in an allocated structure.

Arguments: CRSP_STK_STRUCT *stkptr - pointer to stock structure
Return Values: CRSP_SUCCESS - if stock internals successfully initialized

CRSP_FAIL - if error opening or reading initialization file
Side Effects: The stock structure will be set to zero according to the loadflag
Preconditions: None.
Call Sequence:

crsp_stk_update Updates Stock Data for a Key

Prototype: int crsp_stk_update (int crspnum, int setid, int key, CRSP_STK_STRUCT *stkptr, int
wanted)

Description: Updates stock data for a key
Arguments: int crspnum - CRSP database root identifier returned by crsp_stk_open

int setid - the set identifier used in crsp_stk_open
int key - specific PERMNO of data to write
CRSP_STK_STRUCT *stkptr - structure containing new data
int wanted - mask of flags indicating which module data to write

Return Values: CRSP_SUCCESS - if data written successfully
CRSP_FOUND_OTHER - if key found in root, but not for this set
CRSP_NOT_FOUND - if key not found in root
CRSP_FAIL - if error with bad parameters, invalid or unopened crspnum and stknum for rw, error in write, impossible
wanted.

Side Effects: Data from the wanted modules will be written to the proper locations in the module files. The address file may be
updated for new offsets and sizes. If the new data does not fit within the allocated space for that key in the module file the
data may be moved to a new location and the free list modified. The data loaded in the module buffers may be changed.

Preconditions: The stock set must be previously opened with rw. The crspnum and setid are the same as opened and the wanted
must be a subset of the wanted open. The stkptr must be compatible with the structure allocated by the open of this
crspnum and setid.

Call Sequence:

crsp_stk_del_fromset Deletes Modules from Stock Set from a CRSP Root

Prototype: int crsp_stk_del_fromset (char *root, int setid, int wanted)

Description: Deletes modules from stock set from a CRSP root
Arguments: char *root - path of CRSP database root

int setid - identifier of the set
int wanted - binary code of modules wanted to delete

Return Values: CRSP_SUCCESS - if the stock modules are removed successfully
CRSP_FAIL - if something wrong

Side Effects: crsp_stk_del_fromset removes the wanted modules associated with a given stock set from a CRSP database root.
All wanted modules will be erased from the address file, which will be rewritten with a new restricted record length. The
index file will also be rewritten, with keys changed to new module inclusion flags or erased altogether. The configuration
file will be rewritten without the modules included in the stk set. Wanted module files of this set will be deleted. If all
modules are deleted, delete and the set.

Preconditions: crsp_stk_del_fromset is run off an unopened CRSP database
Postconditions: Will leave an unopened CRSP database root
Call Sequence:

CHAPTER 2: ACCESSING DATA IN C

39

Chapter 2: Accessing Data in C

crsp_stk_add_toset Adds Modules to an Existing Stock Set

Prototype: int crsp_stk_add_toset (char *root, int setid, int wanted)

Description: Adds modules to an existing stock set in a CRSPAccess database.
Arguments: char *root - path of CRSP database root

int setid - identifier of the set
Return Values: CRSP_SUCCESS - if the modules are added

CRSP_FAIL - if bad parameters
Side Effects: Extra module files are created and attach to the database configuration file. A new address file is created in the database.
Preconditions: Database must exist with set included. It is unopened. Permission must exist to write to the database root.
Call Sequence:

crsp_stk_get_issues_key Gets All Issues Associated with Key

Prototype: int crsp_stk_get_allissues_key (int crspnum, int setid, CRSP_ARRAY *issue_arr,
void *key, int keytype, CRSP_UNIV_PARAM_LOAD *subpar, CRSP_STK_STRUCT *stk, int
begdt, int enddt, int dateflag)

Description: Gets all issues associated with key and store them in CRSP_TSP_ENTITY_LIST array. Can be called multiple times to
append to list.

Arguments: int crspnum - CRSP database root identifier returned by crsp_stk_open
int setid - the set identifier used in crsp_stk_open
CRSP_ARRAY *issue - integer array to load found PERMNOs. The array type must be initialized to
CRSP_TSP_ENTITY_LIST.
void *key - key must point to a structure that matches keytype

int if keytype = CRSP_SCD_NUM

CRSP_SCD_CUS if keytype == CRSP_SCD_CUSIP
CRSP_SCD_CUS if keytype == CRSP_SCD_HCUSIP
CRSP_SCD_INT if keytype == CRSP_SCD_SICCD
CRSP_SCD_CUS if keytype == CRSP_SCD_TICKER
CRSP_SCD_INT if keytype == CRSP_SCD_PERMCO
int keytype - CRSP_SCD_CUSIP
CRSP_SCD_HCUSIP
CRSP_SCD_SICCD
CRSP_SCD_TICKER
CRSP_SCD_PERMCO
CRSP_SCD_NUM (primary - PERMNO)
CRSP_UNIV_PARAM_LOAD *subpar - structure specifying subset restrictions. See CRSP_SUBSET_PARAMLOAD
for options.
CRSP_STK_STRUCT *stk - allocated stock structure used to store immediate data for determining matches.
int begdt - yyyymmdd format. If stock data is not within begdt and enddt, ignore the PERMNO
int enddt - yyyymmdd format. If stock data is not between begdt and enddt, ignore the PERMNO
int dateflag - whether the date is relative date CRSP_TSP_RELDATE (1) or not CRSP_TSP_NO_RELDATE
(0)

Return Values: CRSP_SUCCESS - if array loaded successfully
CRSP_FAIL - error in parameters, reads, or limits

Side Effects: Issue array is loaded with matching issues. Only the PERMNO field is loaded.
Preconditions: The stock set must be previously opened. crspnum and stkptr are the same as opened. Stock structure must have

wanted at least HEADER and EVENTS, and also PRICES if subset restrictions are used. Issue array must be allocated
with enough space to store possible keys. If num is nonzero, new matches will be added to the end of the list.

Call Sequence:

40

PROGRAMMERS GUIDE

Index Access Functions

The following tables list the available functions to access CRSPAccess index data. Standard usage is to use an open
function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if
there is a matching structure defined for each one.

Access Function Description Page

crsp_ind_clear Loads Missing Value Arrays in an Indices Set Structure Page 40

crsp_ind_close Closes an Indices Set Page 41
crsp_ind_free Deallocates Memory And Reinitializes an Indices Set Structure Page 41
crsp_ind_init Initializes a CRSPAccess database for Indices Access Page 41
crsp_ind_open Opens an Indices Set in a CRSPAccess Database Page 42
crsp_ind_read Loads Wanted Data For an Index Page 43
crsp_ind_alloc Allocates and Initializes Indices Structures Page 43
crsp_ind_copy Copies Data from One Stock Structure to Another Page 44
crsp_ind_delete Deletes Indices Data for an Existing INDNO Page 44
crsp_ind_insert Inserts New Indices Data for a PERMNO Page 44
crsp_ind_modload Allocates and Loads a Module Structure Page 45
crsp_ind_newset Inserts a Set of Indices Modules to a Root Page 45
crsp_ind_null Function to Zero Out the Index Structure Before it is Used Page 45
crsp_ind_read_subset Reads Indices Data for One INDNO Applying Subsets Page 46
crsp_ind_update Updates Indices Data for an Existing INDNO Page 46
crsp_ind_del_fromset Removes Modules from Indices Set from a Root Directory Page 47
crsp_ind_add_toset Adds Modules to Indices Set to a Root Directory Page 47
crsp_ind_free_ind Frees Memory for Allocated Indices Structure Page 47

crsp_ind_clear Loads Missing Value Arrays in an Index Set Structure

Prototype: int crsp_ind_clear (CRSP_IND_STRUCT *ind, int clearflag)

Description: load defined missing values to all allocated objects in an index set structure. It is assumed that the pointers are either NULL
or have been allocated by a set open function. The function allows clearing on a range level, range and array level, or array
level.
CRSP_IND_STRUCT *ind – pointer to an index structure pointer to be cleared.
int clearflag – constant identifying the level of initialization. Supported values are:
CRSP_CLEAR_INIT – only reset num for CRSP_ARRAYs and beg and end for CRSP_TIMESERIES, and set
structure to missing values for CRSP_ROWs.

Arguments: CRSP_CLEAR_ALL – set ranges to missing and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for all elements in the object arrays within the range between beg and end in
a CRSP_TIMESERIES or between 0 and num–1 in a CRSP_ARRAY, or the single element in a CRSP_ROW.
CRSP_CLEAR_SET – set ranges in the 0’th element of a CRSP_TIMESERIES array or the maxarr-1’th element of a
CRSP_ARRAY to missing values specific to the array type, or sets missing values to the single element in a CRSP_ROW.

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

Side Effects: The index structure pointer has all allocated fields initialized according to the clearflag
Preconditions: The index structure must either have object fields set to NULL or allocated with a set open function.
Call Sequence: call after crsp_ind_open and before each crsp_ind_read.

CHAPTER 2: ACCESSING DATA IN C

41

Chapter 2: Accessing Data in C

crsp_ind_close Closes an Index Set

Prototype: int crsp_ind_close (int crspnum, int setid, CRSP_IND_STRUCT *indptr)

Description: close an index set

Arguments: int crspnum – identifier of the CRSP database, as returned by crsp_ind_open
int setid – identifier of the index set code to close, as used in the open
CRSP_IND_STRUCT *indptr – pointer to index structure to deallocate; if NULL, no deallocation occurs

Return Values: CRSP_SUCCESS: if successfully closed index set
CRSP_FAIL: if error closing a file or illegal parameter

Side Effects: All index module files are closed, and memory allocated by them in the index structure is freed. If these are the last
modules open in the database, the root is also closed. If indptr is NULL, no structure memory deallocation occurs.

Preconditions: The crspnum and setid must be taken from a previous crsp_ind_open call.

crsp_ind_free Deallocates Memory and Reinitializes an Index Set Structure

Prototype: int crsp_ind_free (int crspnum, int setid, CRSP_IND_STRUCT *indptr)

Description: deallocates memory and reinitializes an index set structure

int crspnum – identifier of CRSPDB database, as returned by open
Arguments: int setid – identifier of the index set code to free

CRSP_IND_STRUCT *indptr – pointer to index structure
Return Values: CRSP_SUCCESS: if successfully deallocated and reset index structure, or index structure is NULL

CRSP_FAIL: if error deallocating memory, error in parameters
Side Effects: The index structures are reset so all pointers are NULL and all settings are 0. All memory allocated to existing objects is

freed. There is no effect if indptr is NULL.
Preconditions: The crspnum must be known from a previous crsp_ind_open call. The setid is a predefined identifier for the

index daily or monthly series or group set of index data previously opened with crsp_ind_open.

crsp_ind_init Initializes a CRSPAccess Database for Indices Access

Prototype: int crsp_ind_init (CRSP_IND_STRUCT *indptr)

Description: initializes an index structure by setting all pointers to NULL and all counts to zero. Initializes CRSP internal structures if no
previous initialization has been done.

Arguments: CRSP_IND_STRUCT *indptr – pointer to the index structure to be initialized. This argument can be NULL to
initialize a CRSP internal database without resetting an existing structure.

Return Values: CRSP_SUCCESS: if index internals successfully initialized
CRSP_FAIL: if error opening or reading initialization file

Side Effects: Internal structures will be initialized, including the array of known sets. They will be stored in internal structures in this
module and used by other CRSP functions. All the pointers in the index structure indptr will be set to null. If a structure
is already initialized with crsp_ind_open, crsp_ind_free should be used or memory will be lost.

Preconditions: None

42

PROGRAMMERS GUIDE

crsp_ind_open Opens an Existing Index Set in an Existing CRSPDB

Prototype: int crsp_ind_open (char *root, int setid, CRSP_IND_STRUCT *indptr, int wanted,
char *mode, int bufferflag)

Description: opens an existing index set in an existing crspdb. This opens database files, allocates needed memory to a structure, and
initializes internal structures to index data can be used. See crsp_ind_clear for clearing data

Arguments: char *root – path of root directory. If root is NULL the CRSP_DSTK or CRSP_MSTK environment variables are
used.
int setid – the set identifier
400 = monthly index groups
420 = monthly index series
440 = daily index groups
460 = daily index series
CRSP_IND_STRUCT *indptr – pointer to index structure to be associated with this database. If indptr is NULL
then space for a CRSP_IND_STRUCT is allocated by this function.
int wanted – mask indicating which modules will be used. The list below shows the wanted values for the index
modules. The wanted values can be summed or summary wanted values can be used to open multiple modules. Only
modules that are selected in the wanted parameter have memory allocated in the index structure and only those modules
can be accessed in further access functions to the database.
IND_HEAD 1 header structure and index description
IND_REBALS 2 rebalancing information for index groups
IND_LISTS 4 issue lists
IND_USDCNTS 8 portfolio used counts
IND_TOTCNTS 16 portfolio total eligible counts
IND_USDVALS 32 portfolio used weights
IND_TOTVALS 64 portfolio eligible weights
IND_TRETURNS 128 total returns
IND_ARETURNS 256 capital appreciation returns
IND_IRETURNS 512 income returns
IND_TLEVELS 1024 total return index levels
IND_ALEVELS 2048 capital appreciation index levels
IND_ILEVELS 4096 income return index levels
Symbols are available for common groups of modules. IND_ALL selects all the index data.
IND_INFO = IND_HEAD + IND_REBALS + IND_LISTS
IND_RETURNS = IND_TRETURNS + IND_ARETURNS + IND_IRETURNS
IND_LEVELS = IND_TLEVELS + IND_ALEVELS + IND_ILEVELS
IND_COUNTS = IND_USDCNTS + IND_TOTCNTS + IND_USDVALS+IND_TOTVALS
IND_RESULTS = IND_HEAD + IND_USDCNTS + IND_USDVALS+IND_TRETURNS
IND_ARESULTS = IND_HEAD + IND_USDCNTS + IND_USDVALS+IND_ARETURNS
IND_IRESULTS = IND_HEAD + IND_USDCNTS + IND_USDVALS+IND_IRETURNS
IND_STD = IND_HEAD + IND_COUNTS + IND_TRETURNS+IND_ARETURNS
IND_ALL = IND_INFO + IND_RETURNS + IND_LEVELS+IND_COUNTS
char *mode – usage while open. Possible string values are:
r = read,
rw = read/write
int bufferflag – level of buffering: 0 : no buffering, 1 : use default, n : use factor of default
int crspnum: if opened successfully. This crspnum is used in further access functions to the database

Return Values: int CRSP_FAIL: if error opening or loading files, if bad parameters, root already opened exclusively, index set already
opened rw, wanted not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error
allocating memory for internal or stock structures.

Side Effects: This will load root and index initialization files if needed, open the root including loading the configuration structure and
index structures to memory, opening the address file, and if necessary allocating memory to file buffers, loading the free
list, and logging information to the log file. Files will be opened for all wanted modules. Associated calendars will be
loaded if necessary. wanted index structures will be allocated.

Preconditions: None; the root may already be open. If a new index structure is passed additional fields may be allocated.

CHAPTER 2: ACCESSING DATA IN C

43

Chapter 2: Accessing Data in C

crsp_ind_read Loads Wanted Index Data For an INDNO

Prototype: int crsp_ind_read (int crspnum, int setid, int *key, int keyflag, CRSP_IND_STRUCT
*indptr, int wanted)

Description: loads wanted index data for an INDNO

Arguments: int crspnum – crspdb root identifier returned by crsp_ind_open
int setid – the set identifier used in crsp_ind_open
int *key – specific indno of data to load
int keyflag – CRSP_EXACT constant to search for the indno in *key, or positional constant:

 CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
CRSP_STK_STRUCT *indptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_ind_open for module codes.

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_FOUND_OTHER: if key found in root, but not for this set
CRSP_NOT_FOUND: if key not found in database
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and setid, error in read, impossible wanted

Side Effects: Data from the wanted modules will be loaded to the proper location in the index structure. The position used for the next
positional read is reset based on the key found. If keyflag is a positional qualifier, the actual INDNO found is loaded to
*key. Data is only loaded to wanted data structures within the range of valid data for the index. Use index clear functions
to erase previously loaded data.

Preconditions: The index set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call.
indptr must have been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter
passed to the crsp_ind_open function.

crsp_ind_alloc Builds Indices Set Object Lists, Allocates Memory, and Sets Pointers

Prototype: int crsp_ind_alloc (int crspnum, int setid, CRSP_IND_STRUCT *ind, int wanted)
Description: Builds Indices set object lists, allocates memory, and sets pointers
Arguments: int crspnum - identifier of crsp database, as returned by open

int setid - identifier of the Indices set to allocate
CRSP_IND_STRUCT *ind - pointer to Indices structure
int wanted - binary code of modules wanted

Return Values: CRSP_SUCCESS - if successfully initialized and allocated Indices structure
CRSP_FAIL - if error allocating memory, error in paramters

Side Effects: Three levels of pointers are allocated in the Indices structure.

1 - object_element list elements are created for each wanted module

2 - object types are allocated for each object in wanted modules, and object level pointers are set

3 - arrays are allocated for each object, and array level pointers are set.

The setcode and wanted are stored in the structure.
Preconditions: The crspnum must be known from a previous crsp_ind_open or crsp_openroot call. The setcode is an

installation-defined code for the set.

44

PROGRAMMERS GUIDE

crsp_ind_copy Copy Data from One Indices Structure to Another

Prototype: int crsp_ind_copy (CRSP_IND_STRUCT *indtrg, CRSP_IND_STRUCT *indsrc, int wanted)
Description: Copy data from one indices structure to another
Arguments: CRSP_IND_STRUCT *indtrg - pointer to indices structure target

CRSP_IND_STRUCT *indsrc - pointer to indices structure source
int wanted - wanted flag of modules to copy

Return Values: CRSP_SUCCESS - if successfully copied data from source to target
CRSP_FAIL - if incompatible structures

Side Effects: Data is copied from the source structure to the target structure. The loadflag field is used to identify all wanted modules
to copy.

Preconditions: Both structures must be allocated with crsp_ind_open. The wanted for the target must be a superset of the wanted in
the source. The versions of the structure must be compatible - the source modules must not have missing objects or higher
maxarrs that the counterparts in the target.

crsp_ind_delete Deletes a PERMNO from an Indices Set

Prototype: int crsp_ind_delete (int crspnum, int setid, int key)
Description: Deletes a PERMNO from an Indices set
Arguments: int crspnum - identifier of root

int setid - identifier of the set
int key - PERMNO to erase from Indices set

Return Values: CRSP_SUCCESS - if successfully closed Indices set
CRSP_FAIL - if key not found, not found in set, not open for rewrite, or illegal parameter

Side Effects: If the PERMNO is found in the set it is erased. All space allocated in the module file for this PERMNO will be added to the
free list for that module. If the PERMNO does not belong to any other modules, it will be erased from the index file and its
address record placed on the address file free list. Otherwise, the index file module flags will be reset and the address
records for these Indices modules will be set to NULL

Preconditions: The root and Indices set must be opened previously with crsp_ind_open. The open must use the rw mode.

crsp_ind_insert AddS a new PERMNO to an Indices Set

Prototype: int crsp_ind_insert (int crspnum, int setid, int key, CRSP_IND_STRUCT *indptr, int
wanted)

Description: Adds a new PERMNO to an Indices set
Arguments: int crspnum - crspdb identifier from open

int setid - the set identifier
int key - PERMNO to identify the new issue
CRSP_IND_STRUCT *indptr - pointer to Indices structure, data that will be added to the wanted modules
int wanted - a Indices wanted parameter indicating which Indices data modules include data that will be saved.

Return Values: CRSP_SUCCESS - if successfully added
CRSP_FAIL - if bad parameters, crspdb and indnum not open for RW, PERMNO already exists in this set.

Side Effects: Data for all modules will be added to the proper file. The free list is used to find a location in the module file and may be
updated if free space is used. If the key already exists but in different sets, the index file module flag is updated, and the
new module addresses and sizes are added to the address file. If the key is totally new, a new index file row and address file
record are created.

Preconditions: the Indices set must be opened previously with RW mode.

CHAPTER 2: ACCESSING DATA IN C

45

Chapter 2: Accessing Data in C

crsp_ind_modload Allocates a Module Structure, Loads a Module and Objects Information

Prototype: int crsp_ind_modload (int crspnum, int modindex, int modid, CRSP_CONFIG_MOD
*modstruct)

Description: Allocates a module structure and loads a module and objects information into it
Arguments: int crsp_num -

int modindex - the index of the module in the CRSP_MODTYPE structure array.
int modid -
CRSP_CONFIG_MOD *modstruct - pointer to the CRSP_CONFIG_MOD structure

Return Values: CRSP_SUCCESS - if the module is loaded successfully
CRSP_FAIL - if bad parameters or error allocating and loading module structures

Side Effects:
Preconditions:

crsp_ind_newset Adds a Set of Indices Modules to a crspdb

Prototype: int crsp_ind_newset (char *root, int setid, int wanted)
Description: Adds a set of Indices modules to a crspdb
Arguments: char *root - path of existing crspdb root directory

int setid - known Indices set number from initialization file
int wanted - mask determining which Indices modules are supported in the set

Return Values: CRSP_SUCCESS - if the Indices set is added
CRSP_FAIL - if bad parameters or error manipulating root structures

Side Effects: crsp_ind_newset adds a set of Indices modules to an existing crspdb. It will add the information about the set to the
configuration file and recreate the address file with the new modules added to each record. Empty data files for the modules
will be created. If the calendars are new to the root they will be added. The new modules will be assigned to the proper
calendars.

Preconditions: The root must exist and be unopened. It is created separately with the crsp_newroot function

crsp_ind_null Function to Zero Out the Index Structure Before it is Used

Prototype: int crsp_ind_null(CRSP_IND_STRUCT *indptr)
Description: Function to zero out the index structure before used
Arguments: CRSP_IND_STRUCT *indptr - pointer to stock structure
Return Values: CRSP_SUCCESS - if stock internals successfully initialized

CRSP_FAIL - if error opening or reading initialization file
Side Effects: The index structure will be set to zero according to the loadflag
Preconditions:

46

PROGRAMMERS GUIDE

crsp_ind_read_subset Loads Wanted Indices Data for an INDNO Applying All Subsetting Filters

Prototype: int crsp_ind_read_subset (int crspnum, int setid, int *key, int keyflag,
CRSP_IND_STRUCT *indptr, int wanted, CRSP_IND_SUBSET_PARAMS *subpar)

Description: loads wanted indices data for an INDNO applying all subsetting filters
Arguments: int crspnum - crspdb root identifier returned by crsp_ind_open

int setid - the set identifier used in crsp_ind_open
int *key - PERMNO to load
int keyflag - positional qualifier or no match qualifier
CRSP_IND_STRUCT *indptr - structure to load data
int wanted - mask of flags indicating which module data to load
CRSP_IND_SUBSET_PARAMS *subpar - pointer to structure containing subsetting flags

Return Values: CRSP_SUCCESS - if data loaded successfully
CRSP_EOF - if next or previous key at end or beginning of file
CRSP_NOT_FOUND - if PERMNO not found
CRSP_FAIL - if error with bad parameters, invalid or un opened crspnum and setid, error in read, impossible wanted,
invalid INDNO index

Side Effects: Data from the wanted modules will be loaded to the proper location in the structure. The data loaded in the module buffers
may be changed. The position for further reads will be set to the location of the read. Multiple INDNOs may be loaded on a
positional read if subsetting totally eliminates INDNOs that otherwise would be loaded.

Preconditions: The indices set must be previously opened. The setid and crspnum and indptr are the same as opened and the
wanted must be a subset of the wanted open. The subset parameter structure must be loaded with valid flags

crsp_ind_update Update Indices Data for a Key

Prototype: int crsp_ind_update (int crspnum, int setid, int key, CRSP_IND_STRUCT *indptr, int
wanted)

Description: Update Indices data for a key
Arguments: int crspnum - crspdb root identifier returned by crsp_ind_open

int setid - the set identifier used in crsp_ind_open
int key - specific PERMNO of data to write
CRSP_IND_STRUCT *indptr - structure containing new data
int wanted - mask of flags indicating which module data to write

Return Values: CRSP_SUCCESS - if data written successfully
CRSP_FOUND_OTHER - if key found in root, but not for this set
CRSP_NOT_FOUND - if key not found in root
CRSP_FAIL - if error with bad parameters, invalid or unopened crspnum and indnum for RW, error in write, impossible
wanted

Side Effects: Data from the wanted modules will be written to the proper locations in the module files. The address file may be updated
for new offsets and sizes. If the new data does not fit within the allocated space for that key in the module file the data may
be moved to a new location and the free list modified. The data loaded in the module buffers may be changed.

Preconditions: The Indices set must be previously opened. The indnum and crspnum and indptr are the same as opened and the
wanted must be a subset of the wanted open.

CHAPTER 2: ACCESSING DATA IN C

47

Chapter 2: Accessing Data in C

crsp_ind_del_fromset Removes Modules from Index Set from a CRSP Root

Prototype: int crsp_ind_del_fromset (char *root, int setid, int wanted)
Description: Removes modules from Index set from a root
Arguments: char *root - path of crspdb root

int setid - identifier of the set
int wanted - binary code of modules wanted to delete

Return Values: CRSP_SUCCESS - if the ind modules are removed successfully
CRSP_FAIL - if something wrong

Side Effects: crsp_ind_del_fromset removes the wanted modules associated with a given index set from a crspdb root. All
wanted modules will be erased from the address file, which will be rewritten with a new restricted record length. The index
file will also be rewritten, with keys changed to new module inclusion flags or erased altogether. The configuration file will
be rewritten without the modules included in the ind set. Wanted module files of this set will be deleted. If all modules are
deleted, delete and the set.

Preconditions: will leave an unopened root

crsp_ind_add_toset Add modules to an existing Indices set

Prototype: int crsp_ind_add_toset (char *root, int setid, int wanted)
Description: Add modules to an existing stock set
Arguments: char *root - path of crspdb root

int setid - identifier of the set
int wanted - binary code of modules wanted

Return Values: CRSP_SUCCESS - if the stock set is removed
CRSP_FAIL - if bad parameters

Side Effects:
Preconditions:

crsp_ind_free_ind Function to free an Index structure

Prototype:
Description: Function to free an Index structure
Arguments: CRSP_IND_STRUCT *INDptr - pointer to index structure to be freed

int free_flag - free only the array part or all
Return Values: CRSP_SUCCESS - if successfully initialized

CRSP_FAIL - if bad parameters
Side Effects:
Preconditions:

48

PROGRAMMERS GUIDE

General Access Functions

The CRSPAccess general access functions include error functions and portable file operation functions.

 Error Handling

Function Group Description Page

Error-handling The CRSPAccess function for handling errors produced by CRSP functions page 48

Portable File Operations These functions call standard I/O functions in the C run time library page 50

Prototype: int crsp_errprintf (va_list)

Description: Builds error messages using an installation-wide file of messages, and supports basic handling of the results.

Each error message, including a mnemonic name and text description, is stored in a file in the CRSP initialization
directory. A unique integer error message number is assigned to each message. The function is passed a message number,
an error number, flags for type of error and handling output, plus optionally arguments on where the results are sent and
variables to modify the error messages. The message description is built into an output error message. If the error is from
a system call, system error messages and error numbers can be appended to this message. The message is then written to
the location specified in the print flag.
There is a generic message available to users wishing to use the crsp_errprintf functionality and there are two
environment variables users can set to change the behavior of the error message function.
CRSP_TRACE – can be used to modify the output behavior of the function. The default behavior is to add only the
formatted string to the message output, and use the CRSP_NULL printflag option. If CRSP_TRACE is defined it must
have one or more of the following one-letter codes in a string. Each code present changes the output. The possible codes
are:
m = CRSP_MSGNUMBER – add the message number to message output
e = CRSP_ERRNUMBER – add the error number to message output
n = CRSP_MSGNAME – add the message header name to message output
f = CRSP_MSGFORMAT – do not add formatted string to message output
s = CRSP_SEVERITY – add severity name to output
t = CRSP_ERRTYPE – add error type to output
c = CRSP_CALLTRACE – print call error type messages
o = CRSP_NULLOUT – overrides CRSP_NULL printflag option in library functions. Print message directly to

standard output and clear errmsg
r = CRSP_NULLERR – overrides CRSP_NULL printflag option in library functions. Print message directly to

standard error and clear errmsg
w = CRSP_NOWARN – warning messages are ignored
i = CRSP_NOINFO – informational messages are ignored
a = CRSP_NOFATAL – fatal messages are ignored
CRSP_MSGFILE – can be used to use messages from one or more alternate message files. If this environment variable is
set to a comma-delimited set of files, the function will search these files in order for messages. The message files must
have a leading line with the lowest and highest message numbers allowed in the file, followed by lines with three text fields
delimited by pipes (|), containing in order a message number, a header name, and a format string compatible with the C
printf function. The message lines must be sorted by message number. Header names are limited to 20 characters, and
the format cannot produce a string of more than 500 characters. Message numbers must be 100,000 or higher to avoid
possible conflict with standard CRSPAccess messages
The standard CRSP message file is named crsp_error_msg.dat. It is found in the directory set by environment
variables $CRSP_LIB on Unix, %crsp_lib% on Windows, and CRSP_LIB: on OpenVMS. It can contain message
numbers in the range of 1 to 99,999. If an alternate message file contains a message number also in the CRSP message file,
the alternate definition is used, and therefore must have a compatible format.

CHAPTER 2: ACCESSING DATA IN C

49

Chapter 2: Accessing Data in C

Arguments: variable argument list, including:
int errnum – number assigned to the specific error
int msgnum – number assigned to the specific message, must be defined in the error message file
int errorflag – flag for the type and severity of the error. It must be a constant of the following form:
CRSP_severity_type

where severity is one of:
INFO – informational
WARN – warning
FATAL – fatal
and type is one of:
USER – error in user argument or usage
SYS – error returned by a system or external function
CALL – function call returned an error
PRINT – print global error messages
int printflag – flag for the method of handling the output. It must be one of the following constants:
CRSP_ERROUT_STDERR – write messages directly to standard error
CRSP_ERROUT_STDOUT – write messages directly to standard output
CRSP_ERROUT_FILE – write messages to a file pointer (previously opened with fopen) given in the next argument
CRSP_ERROUT_STRING – write messages to string given in the next argument. The string must have enough space
allocated to store the message.
CRSP_NULL – append messages to a global string err_msg. If messages extend past the length of the string, previously
stored messages are printed to the screen. This is used by all CRSP library functions.
FILE * errfileptr – optional argument present only if printflag is CRSP_ERROUT_FILE. If present, error
messages are written to this file. Errfileptr is the file handler returned by fopen.
char * msgstring – optional argument present only if printflag is CRSP_ERROUT_STRING. If present, error
messages are copied to the string
int msgstringlen – optional argument present only if printflag is CRSP_ERROUT_STRING. If present,
msgstringlen is the length allocated to msgstring.
… – list of variables to be embedded in the error message. There can be zero or more variables. There must be a one to
one correspondence between the number and types of variables in this list and the format string in the CRSP error message
file for the specified msgnum.

Return Values: CRSP_SUCCESS: if error handled successfully
CRSP_FAIL: if error in parameters or in opening or reading the error message file

Side Effects: The crsp_init initialization function is called to initialize access. The crsp_error_msg.dat file in the
initialization directory is opened the first time the function is called and closed when the program exits.

Preconditions: CRSP functions always place errors in a global string named err_msg. CRSP environment variables must be set
properly so the file crsp_error_msg.dat is found in the CRSP_LIB directory. See the description for optional
environment variables that affect the results.

50

PROGRAMMERS GUIDE

C Portable File Functions

These functions call standard I/O functions in the C run time library, but can be used on Windows, Unix, and Open-
VMS systems without changes and incorporate the CRSP error handling function.

Function Description Page
crsp_file_append generic file append for multiple platforms page 50
crsp_file_close generic file close for multiple platforms page 50
crsp_file_fopen generic file fopen for multiple platforms page 51
crsp_file_lseek generic file lseek for multiple platforms page 51
crsp_file_open generic file open for multiple platforms page 51
crsp_file_read generic file read for multiple platforms page 52
crsp_file_remove generic file delete for multiple platforms page 52
crsp_file_rename generic file rename for multiple platforms page 52
crsp_file_search generic check for existence of a file on multiple platforms page 52
crsp_file_stamp generic generation of a unique file name for multiple platforms page 53
crsp_file_write generic file write for multiple platforms page 53
crsp_free generic memory free for multiple platforms page 53

crsp_file_append Generic File Append for Multiple Platforms

Prototype: int crsp_file_append (char *origfile, char *newfile)

Description: append a file by adding the data from the second file at the end of the first file
Arguments: char *origfile – pointer to the original file

char *newfile – pointer to the new file to be appended to the first file
Return Values: CRSP_SUCCESS: if appended successfully

CRSP_FAIL: error in parameters or error in open or write operation
Side Effects: both files are opened with fopen, data from the second file is copied to the first, and then both files are closed.
Preconditions: both files must exist and contain character data with no records 500 characters or longer.

crsp_file_close Generic File Close for Multiple Platforms

Prototype: int crsp_file_close (int file_desc)

Description: calls the C close function

Arguments: int file_desc – file handler of file to close, as returned from open function
Return Values: CRSP_SUCCESS: if closed successfully

CRSP_FAIL: file not opened or error in close
Side Effects: file described by file_desc is closed
Preconditions: file must be previously opened, with file_desc returned from open

CHAPTER 2: ACCESSING DATA IN C

51

Chapter 2: Accessing Data in C

crsp_file_fopen Generic File fopen for Multiple Platforms

Prototype: (FILE *)crsp_file_fopen (va_alist)

Description: platform-independent version of fopen with support for extra OpenVMS options

Arguments: variable argument list:
char *path – mandatory argument containing path of file to open
char *mode – mandatory argument containing mode passed to fopen, “r” to open read-only, “rw” to read and write.
See fopen for all options.
0-6 char *rmsflags – up to 6 optional RMS flags passed to fopen on OpenVMS systems, and ignored on other
systems

Return Values: File pointer on success
NULL if error opening file

Side Effects: the file specified in the first parameter is opened. The default setting for OpenVMS systems is “mbc=127” unless
overridden by one of the rmsflags options.

Preconditions: see fopen for options, and OpenVMS documentation for all RMS options.

crsp_file_lseek Generic C lseek for Multiple Platforms

Prototype: int crsp_file_lseek (int file_desc, int offset, int direction)

Description: Generic file lseek for multiple platforms. This function positions a file to an arbitrary byte position and returns the new
position. Parameters are passed directly to the C lseek function. See documentation on this function for more details.

Arguments: int file_desc – the file descriptor of the current file returned by C open
int offset – the offset specified in bytes
int direction – an integer measuring whether the offset is to be measured:
forward from the beginning of the file (direction = SEEK_SET)
forward from the current position (direction = SEEK_CUR)
forward from the end of the file (direction = SEEK_END)

Return Values: the new file position if successful
CRSP_FAIL: error if file descriptor unidentified, or a seek was attempted before the beginning of the file.

Side Effects: the current position in the file is set for further operations
Preconditions: file must be previously opened with the open function

crsp_file_open Generic C Open for Multiple Platforms

Prototype: int crsp_file_open (char *file_spec, int flags, unsigned int mode, int platflags,
int pmode, int allocate, int mbc, int extend)

Description: Generic file open for multiple platforms. Parameters for OpenVMS, Unix, and Windows versions are passed, and only
the ones needed for the current platform are passed to the C open function. See C documentation on this function for more
details.

Arguments: char *file_spec – character string containing a valid file specification of a file to be opened.
int flags – flags for permitted usage of opened file
int mode – the file protection of a new file
int platflags – additional flags bitwise or’ed with flags if Windows, ignored if another system
int pmode – additional protection modes or’ed with mode if Windows, ignored if another system
int allocate – blocks to allocate for a new file on OpenVMS, ignored if another system
int mbc – block count per I/O on OpenVMS, ignored if another system
int extend – blocks to allocate if additional space is needed on OpenVMS, ignored if another system

Return Values: file descriptor if opened successfully, to be used in other file operations with this file
CRSP_FAIL: error if file could not be opened

Side Effects: the file is opened and the file pointer is returned for further access
Preconditions: the file existence and protections must agree with flags and modes passed to open

52

PROGRAMMERS GUIDE

crsp_file_read Generic C Read for Multiple Platforms

Prototype: int crsp_file_read (int file_desc, void *buffer, int nbytes)

Description: Generic file read for multiple platforms
Arguments: int file_desc – the file descriptor of the current file returned by C open

void *buffer – address of contiguous storage where data will be loaded
int nbytes – the maximum number of bytes to read

Return Values: the number of bytes read. The return value does not necessarily equal nbytes since the function does not read beyond the
end of the file or input terminal line
CRSP_FAIL: if error in parameters or read

Side Effects: the current position in the file is set to the end of the read
Preconditions: file must be previously opened with the open function

crsp_file_remove Generic File Delete for Multiple Platforms

Prototype: int crsp_file_remove (char *file_spec)

Description: calls the C remove function to delete a file
Arguments: char *file_spec – specification of file to remove
Return Values: CRSP_SUCCESS: if removed successfully

CRSP_FAIL: error in parameters or error in remove operation
Side Effects: file is removed
Preconditions: file must exist and user must have delete permissions

crsp_file_rename Generic File Rename for Multiple Platforms

Prototype: int crsp_file_rename (char *old_file_spec, char *new_file_spec)

Description: Calls the C rename function to change the name of a file
Arguments: char *old_file_spec – specification of the file to rename

char *new_file_spec – new specification of the file
Return Values: CRSP_SUCCESS: if renamed

CRSP_FAIL: error in parameters or error in file operation or permissions
Side Effects: the file is renamed
Preconditions: the old file must exist, the second must be a valid specification, and the rename operation must be valid on the system

between the two files.

crsp_file_search Generic Check for the Existence of a File

Prototype: int crsp_file_search (char *file_spec)

Description: Checks for the existence of a file
Arguments: char *file_spec – specification of file to check
Return Values: CRSP_SUCCESS: if the file exists

CRSP_FAIL: if the file does not exist or cannot be opened for read access
Side Effects: file is opened and closed
Preconditions: file must have read permissions

CHAPTER 2: ACCESSING DATA IN C

53

Chapter 2: Accessing Data in C

crsp_file_stamp Create a Unique File Name

Prototype: char *crsp_file_stamp ()

Description: Creates a string that can be built into a unique file name based on system time and user ID. The string contains the process
ID returned from the C getpid function, an underscore, and the system time in seconds returned from the C time
function.

Arguments: none
Return Values: pointer to a string with a file specification if successful

NULL: if failure getting system time or user ID
Side Effects: memory is allocated up to 80 characters to store the new file name
Preconditions: none

crsp_file_write Generic C Write for Multiple Platforms

Prototype: int crsp_file_write (int file_desc, void *buffer, int nbytes)

Description: Generic file write for multiple platforms
Arguments: int file_desc – the file descriptor of the current file returned by C open

void *buffer – address of contiguous storage where data will be retrieved
int nbytes – the maximum number of bytes to write

Return Values: the number of bytes written.
CRSP_FAIL: if error in parameters or write

Side Effects: the current position in the file is set to the end of the written data
Preconditions: file must be previously opened with the open function

crsp_free Generic Memory Free for Multiple Platforms

Prototype: int crsp_free (void *ptr)

Description: Calls the C free function
Arguments: void *ptr – pointer to the memory to be freed
Return Values: CRSP_SUCCESS: if successfully freed. Always true on Windows and Unix where C free function is void.

CRSP_FAIL: error freeing memory on OpenVMS systems
Side Effects: memory pointed to by ptr is deallocated
Preconditions: none

54

PROGRAMMERS GUIDE

General Utility Functions

The utility functions operate on the base CRSPAccess data structures and are not specific to a type of data. They
include operations on calendars CRSP object structures and general utilities.

Calendar Utility Functions

These functions are used to manipulate calendar data in CRSPAccess databases.

Function Group Description Page

Calendar Utility Functions Functions Used to Manipulate CRSP Calendars page 54

Calendar Access Functions Functions Used to Access CRSP Calendars Page 58
Compare Function Functions Used to Compare Data in Two Structures page 61
Database Information Functions Find CRSPAccess Database Information page 82
Object Clear Functions Functions Used to Clear CRSP Structures page 73
Object Utility Functions Functions Used to Manipulate CRSP Object Structures page 62
String Functions Functions Used to Manipulate Character Strings page 67
Object Translation Functions Functions Used to Map Data to Time Series page 80
Clear Functions Functions Used to Clear CRSP Structures page 73

Function Description Page

crsp_cal_datecmp CALDT Date Search page 54

crsp_cal_dt2lin Transforms YYYYMMDD Format into Linear Date page 55
crsp_cal_dt2parts Separates the YYYYMMDD Format into Year, Month and Day page 55
crsp_cal_lin2dt Transfers Linear Date into YYYYMMDD Format page 55
crsp_cal_middt Finds the Mid-Point Date of a Range page 55
crsp_cal_diffdays Finds the Number of Calendar Days Between two Dates page 55
crsp_cal_link Creates a Link to Map Periods of two Calendars page 56
crsp_cal_search Generic Calendar Date Search page 56
crsp_cal_incr Increments an Integer Date to the Next Date page 57
crsp_cal_decr Decrements an Integer Date to the Previous Date page 57

crsp_cal_datecmp CALDT Date Search

Prototype: int crsp_cal_datecmp (int *calelem, int *caldates, int beg, int end, int flag)

Description: Searches for an array of caldates to find the matching date for calelem and return the array index.
Arguments: int *calelem – pointer to the date in YYYYMMDD format

int *caldates – pointer to the array of calendar dates, usually the caldt pointer in a CRSP_CAL structure
int beg – Index of the first calendar date range in the first calendar dates array, usually 1
int end – Index of the last calendar date in the last calendar dates array, usually the ndays element of the CRSP_CAL
structure
int flag – flag for handling inexact matches (see crsp_cal_search)

Return Values: index of date found if a date found according to flag
CRSP_FAIL: if not acceptable match according to flag

Side Effects: none

CHAPTER 2: ACCESSING DATA IN C

55

Chapter 2: Accessing Data in C

crsp_cal_dt2lin Transforms YYYYMMDD Format into Linear Date

Prototype: int crsp_cal_dt2lin (int idate)

Description: Transforms the YYYYMMDD format of date into a linear date (number of days since 19000101)
Arguments: int idate – date to be transformed
Return Values: linear date

CRSP_FAIL: if error
Side Effects: none

crsp_cal_dt2parts Separates the YYYYMMDD Format into Year, Month, and Day

Prototype: void crsp_cal_dt2parts (int idate, int *year, int *month, int *day)

Description: Separates the YYYYMMDD formatted date into year, month, day.
Arguments: int idate – date to be separated

int *year – pointer to be loaded with YYYY year
int *month – pointer to be loaded with MM month
int *day – pointer to be loaded with DD day

Return Values: none

crsp_cal_lin2dt Transfers Linear Dates into YYYYMMDD Format

Prototype: int crsp_cal_lin2dt (int linear_date)

Description: Transfers the linear date (number of days since 19000101) into YYYYMMDD format date.
Arguments: int linear_date – the date in linear format
Return Values: translated YYYYMMDD date

CRSP_FAIL: if error
Side Effects: None

crsp_cal_middt Finds the Mid-Point Date of a Range

Prototype: int crsp_cal_middt (int idate1, int idate2)

Description: Finds a date in the middle of first date and second date
Arguments: int idate1 – first date, in YYYYMMDD format

int idate2 – second date, in YYYYMMDD format
Return Values: middt: middle date between idate1 and idate2

CRSP_FAIL: if error
Side Effects: none

crsp_cal_diffdays Finds the Number of Calendar Days Between Two Dates

Prototype: int crsp_cal_diffdays (int idate1, int idate2)

Description: Finds the number of days between two YYYYMMDD dates

Arguments: int idate1 – the first date
int idate2 – the end date

Return Values: number of days
CRSP_FAIL: if error

Side Effects: none

56

PROGRAMMERS GUIDE

crsp_cal_link Maps from One Calendar to Another

Prototype: int crsp_cal_link (CRSP_CAL *calbase, CRSP_CAL *calsub, int wanted, int flag)

Description: Finds mapping between a base and subset calendar. The map will have each period in the subset calendar in terms of period
index ranges of the base.

Arguments: CRSP_CAL *calbase – pointer to base calendar structure
CRSP_CAL *calsub – pointer to subset calendar structure
int wanted – the type of calendar period identification to link in the source calendar. Possible values are:
CAL_TYPE_ID – wanted callist
CAL_TYPE_DATE – wanted caldt
CAL_TYPE_DATERANGE – wanted date range
CAL_TYPE_TIME – wanted date + time
CAL_TYPE_TIMERANGE – wanted date range + time
int flags – flags for mapping when subset date/range is not applicable to the base. Possible values are:
CRSP_CAL_EXACT – (= 0) non-exact matches are not mapped
CRSP_CAL_BACK – (= -1) if not found use previous
CRSP_CAL_NEXT – (=-1) if not found use next

Return Values: CRSP_SUCCESS: calmap successfully loaded
CRSP_FAIL: error

Side Effects: This function allocates space for the calmap CRSP_CAL structure element. It loops through calsub and for each date,
finds the cal index at calbase for the same date and stores them in calsub->calmap. The calsub basecal
pointer is set to basecal.

crsp_cal_search Date Range Search

Prototype: int crsp_cal_search (CRSP_CAL *cal, int wanted, void *calelem, int flag, int
rangeflag)

Description: Finds the relevant calendar index number for a given calendar period. The element type may be any of the types supported
by CRSP_CAL. crsp_cal_search will use only the calendar type that matches the element type. The flag is used
depending on type to handle inexact matches.

Arguments: CRSP_CAL *cal – pointer to the calendar structure to search
int wanted – type of calendar element that will be located, one of:
CAL_TYPE_ID (1) = callist
CAL_TYPE_DATE (2) = caldt
CAL_TYPE_DATERANGE (4) = date range
CAL_TYPE_TIME (8) = date and time
CAL_TYPE_TIMERANGE (16) = date+time range
int calelem – calendar element to find. This is a pointer to a structure that must agree with the wanted parameter,
either an int for CAL_TYPE_ID or CAL_TYPE_DATE or, a CRSP_CAL_TIME, a CRSP_CAL_DATERANGE, or a
CRSP_CAL_TIMERANGE structure.
int flag – flag for handling inexact matches –
CRSP_CAL_EXACT (0) – only exact matches are acceptable
CRSP_CAL_BACK (-1) – if not found use previous
CRSP_CAL_NEXT (1) – if not found use next
int rangeflag – option if calendar type and elements are date or time ranges:
0 = not applicable
1 = use beginning of ranges
2 = use end of range
3 = use middle of beginning and end

Return Values: index of date if a date found according to flag
CRSP_NOMATCH if no acceptable match according to flag
CRSP_FAIL if invalid flag or data variable

Side Effects: none

CHAPTER 2: ACCESSING DATA IN C

57

Chapter 2: Accessing Data in C

crsp_cal_incr Increments an Integer Date to the Next Date

Prototype: int crsp_cal_incr (int_date)
Description: Increments an integer date to the next date
Arguments: int date - date increment must be in YYYYMMDD format, a 0, or 99999999.
Return Values: The next integer date in YYYYMMDD format. If date was 0 or 99999999, that value is returned.
Side Effects: none

crsp_cal_decr Decrements an Integer Date to the Previous Date

Prototype: int crsp_cal_decr (int_date)
Description: Decrements an integer date to the previous date
Arguments: int date - date decrement must be in YYYYMMDD format, a 0, or 99999999.
Return Values: The previous integer date in YYYYMMDD format. If date was 0 or 99999999, that value is returned.
Side Effects: none

58

PROGRAMMERS GUIDE

Calendar Access Functions

These functions can be used to load stock data with additional options.

Function Description Page
crsp_obj_copy_cal Copy data from one CRSP calendar structure to another Page 58
crsp_obj_free_cal Free memory allocated for a CRSP calendar structure Page 59
crsp_obj_init_cal Initialize and allocate a CRSP calendar structure Page 59
crsp_cal_load Load a calendar available in a CRSPAccess database Page 60

crsp_obj_copy_cal Copies a CRSP Calendar Structure

Prototype: int crsp_obj_copy_cal (CRSP_CAL *trgcal, CRSP_CAL *srccal, int caltype, int
appendflag, int begind, int endind)

Description: Copies a CRSP calendar structure. Can be used to copy all calendar fields or just selected period arrays over a selected
range.

Arguments: CRSP_CAL *trgcal – pointer to target calendar structure to load.
CRSP_CAL *srccal – pointer to source calendar structure.

int caltype – integer binary code indicating which calendar types to copy. The sum of codes can be used to all copy
multiple types. The codes are:

CRSP_CAL_ID (=1) – calendar list
CRSP_CAL_DATE (=2) – calendar dates
CRSP_CAL_DATERANGE (=4) – calendar range
CRSP_CAL_TIME(=8) – times
CRSP_CAL_TIMERANGE (=16) – time range

int appendflag – integer code determining whether to overlay new data or copy the entire structure. Valid code
values are:

CRSP_COPY_RESET. -The source calendar is copied entirely to the target. All header fields are copied directly and all
calendar types selected are copied directly
CRSP_COPY_OVERLAY – Only the period arrays selected are copied to the target calendar

int begind – index of first calendar period to copy
int endind – index of second calendar period to copy

Return Values: CRSP_SUCCESS: if the target calendar is loaded successfully.
CRSP_FAIL: if bad parameters on incompatible calendars.

Side Effects: Data are copied to the target calendar according to parameters. No memory is allocated. Calmap and callink data are
not copied.

Preconditions: Memory must be allocated for all selected caltype fields in the target calendar. The target maxarr must be greater than
or equal to the source maxarr. If CRSP_COPY_OVERLAY is used and the loadflag is not 0, the ndays must agree.

CHAPTER 2: ACCESSING DATA IN C

59

Chapter 2: Accessing Data in C

crsp_obj_free_cal Frees a CRSP Calendar Structure

Prototype: int crsp_obj_free_cal (CRSP_CAL **calptr, int free_flag)
Description: Frees memory allocated for a CRSP calendar structure. Can be used to free memory allocated to period arrays or the entire

structure.
Arguments: CRSP_CAL **calptr – pointer to pointer to calendar pointer to free.

int free_flag – integer code indicating which parts of the structure to free. Valid code values are:

CRSP_FREE_ARR_ONLY (=0) – free only period arrays in the calendar structure.
CRSP_FREE_OBJ_ALL (=1) – free all periods and the structure itself

Return Values: CRSP_SUCCESS: if the desired arrays are freed successfully.
CRSP_FAIL: if wrong structure type, error freeing memory, or invalid flags

Side Effects: All calendar period types allocated are freed, and arrtype and maxarr are set to 0. If the calmap pointer is not NULL
it is also freed. If free_flag is CRSP_OBJ_FREE_ALL, the structure itself is freed. All freed pointers are set to
NULL. If calptr is initially NULL the function does nothing and returns CRSP_SUCCESS.

Preconditions: calptr must be either NULL or point to a pointer to a calendar structure with accurate loadflag settings. The calmap
pointer must be NULL if never allocated. Never use this function on a calendar allocated directly with a CRSPAccess open
function.

crsp_obj_init_cal Initializes a CRSP Calendar Structure

Prototype: int crsp_obj_init_cal (CRSP_CAL **calptr, int maxarr, int caltype, int initflag)
Description: Initializes a CRSP calendar structure. Can be used to allocate the structure itself, allocate calendar period type arrays, and

initialize values within the structure.
Arguments: CRSP_CAL **calptr – pointer to pointer to calendar structure pointer to initialize.

int maxarr – number of periods to allocate in each calendar type array.
int caltype – integer binary code indicating which calendar types to allocate. The sum of codes can be used to
allocate multiple types. The codes are

CRSP_CAL_ID (=1) – calendar list
CRSP_CAL_DATE (=2) – calendar dates
CRSP_CAL_DATERANGE (=4) – calendar range
CRSP_CAL_TIME(=8) – times
CRSP_CAL_TIMERANGE (=16) – time range

int initflag – integer code determining the type of initialization. Valid code values are:

CRSP_CLEAR_INIT (=1) – initialize all fields in the structure
CRSP_CLEAR_RANGE (=2) – add additional calendar types to the loaded structures only

Return Values: CRSP_SUCCESS: if the structure is initialized and desired arrays are allocated successfully.
CRSP_FAIL: if bad parameters, error allocating memory, or inconsistent maxarr

Side Effects: If calptr is initially NULL, it is allocated for maxarr periods with all wanted caltypes. If calptr is already
allocated, the behavior is determined by initflag. If initflag is CRSP_CLEAR_INIT, all fields are initialized and
wanted caltypes are allocated. Any previous information is overwritten. If initflag is CRSP_CLEAR_RANGE,
only wanted caltypes not already loaded are allocated. Loadflag is set to reflect the allocated period types.

Preconditions: calptr must be either NULL or point to a pointer to a calendar structure with accurate loadflag settings.

60

PROGRAMMERS GUIDE

crsp_cal_load Loads an Existing Calendar

Prototype: CRSP_CAL * crsp_cal_load(int crspnum, int calid, int loadflag)
Description: Returns a pointer to a CRSPAccess calendar available in a database. The database must be previously opened with one of

the crsp_stk_open, or crsp_ind_open, or crsp_cst_open functions. All time series accessed in a set
automatically have their matching calendars loaded, so this function is only needed to access a calendar not already
available in the set.

Arguments: int crspnum – database handle returned by a CRSPAccess open function
int calid – identifier of the calendar. Currently available calendars are:

100 (CRSP_CALID_DAILY) = CRSP Daily Stock Calendar
101 (CRSP_CALID_MONTHLY) = CRSP Monthly Stock Calendar
300 (CRSP_CALID_ANNUAL) = CRSP Annual Stock Calendar
310 (CRSP_CALID_QUARTERLY) = CRSP Quarterly Stock Calendar
500 (CRSP_CALID_WEEKLY) = CRSP Weekly Stock Calendar

int loadflag – the types of calendar period data to load. Values can be added to load multiple types:

1 (CAL_TYPE_ID) = Calendar ID Lists
2 (CAL_TYPE_DATE) = Calendar Dates (yyyymmdd)
4 (CAL_TYPE_DATERNG) = Calendar Date Ranges
8 (CAL_TYPE_TIME) = Calendar Date and Time
16 (CAL_TYPE_TIMERNG) = Calendar Date and Time Ranges

Return Values: A pointer to a loaded calendar: if successful. The calendar found is shared by all time series of that frequency in the
database. If changing values in the calendar, use crsp_obj_init_cal and crsp_obj_copy_cal to make a local
copy.
NULL: if bad parameter, unopened database, or unknown calid

Side Effects: The calendar header data and requested calendar period arrays are allocated and loaded only if the calendar is not loaded
already. Loadflag in the calendar structure is changed if additional data is loaded.

Preconditions: The database must be opened with a CRSPAccess open function and the calid must be present in the database.

CHAPTER 2: ACCESSING DATA IN C

61

Chapter 2: Accessing Data in C

Compare Functions

These functions are used to compare data.

Function Description Page

crsp_cmp_int Compares Two Integers page 61
crsp_cmp_string Compares Two Strings page 61

crsp_cmp_int Compares Two Integers

Prototype: int crsp_cmp_int(const void *elem1, const void *elem2)

Description: Compares two integers. Can be used as input functions to C search and sort functions.

Arguments: const void* – elem1 – pointer to the first element
const void* – elem2 – pointer to the second element

Return Values: int: <0 if elem1 < elem2, 0 if elem1 = elem2,>1 if elem1 > elem2. Based on standard
integer comparisons

crsp_cmp_string Compares Two Strings

Prototype: int crsp_cmp_string(const void *elem1, const void *elem2)

Description: Compares two strings. Can be used as input functions to C search and sort functions.

Arguments: const void* – elem1 – pointer to the first terminated string
const void* – elem2 – pointer to the second terminated string

Return Values: int: <0 if elem1 < elem2, 0 if elem1 = elem2, >1 if elem1 > elem2. Based on standard
string comparisons

62

PROGRAMMERS GUIDE

CRSP Object Functions

These functions are used to manipulate base CRSPAccess object structures.

Function Description Page

crsp_obj_verify_ts Verifies a CRSP Time Series Object page 62

crsp_obj_verify_arr Verifies a CRSP Array Object page 63
crsp_obj_verify_row Verifies a CRSP Row Object page 63
crsp_obj_init_ts Initializes a CRSP Time Series Object page 63
crsp_obj_init_arr Initializes a CRSP Array Object page 64
crsp_obj_init_row Initializes a CRSP Row Object page 64
crsp_obj_comp_ts Compares two CRSP Time Series Objects page 64
crsp_obj_comp_arr Compares two CRSP Array Objects page 65
crsp_obj_comp_row Compares two CRSP Row Objects page 65
crsp_obj_free_ts Frees a CRSP Time Series Object page 65
crsp_obj_free_arr Frees a CRSP Array Object page 65
crsp_obj_free_row Frees a CRSP Row Object page 66
crsp_obj_free Frees a CRSP Object Element Link List page 66

crsp_obj_verify_ts Verifies a CRSP Time Series Object

Prototype: int crsp_obj_verify_ts(CRSP_TIMESERIES *ptr, int arrtype, int subtype, int maxarr,
int caltypes)

Description: Verifies a time series object, by comparing array type, size, calendar, and data characteristics against expected values
Arguments: CRSP_TIMESERIES *ptr – pointer to a CRSP time series object

int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array
int caltype – expected calendar type in the time series

Return Values: CRSP_SUCCESS: if verification is correct
1251: object type does not verify in CRSP_TIMESERIES structures
1252: array type does not verify in time series
1253: subtype does not verify in time series
1254: maxarr does not verify in time series
1255: caltype does not verify in time series
1256: beg and end do not verify in time series
1257: end cannot be greater then maxarr in time series
1258: cal pointer cannot be NULL in time series
1259: ndays cannot be > than maxarr in time series
1260: arr pointer cannot be NULL in time series

CHAPTER 2: ACCESSING DATA IN C

63

Chapter 2: Accessing Data in C

crsp_obj_verify_arr Verifies a CRSP Array Object

Prototype: int crsp_obj_verify_arr (CRSP_ARRAY *crsp_array_ptr, int arrtype, int subtype, int
maxarr)

Description: Verifies a CRSP array object, by comparing array type, size, and data characteristics against expected values
Arguments: CRSP_ARRAY *crsp_array_ptr – pointer to a CRSP array object

int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array

Return Values: CRSP_SUCCESS: if verification is correct
1271:object type does not verify in CRSP_ARRAY
1272: array type does not verify in CRSP_ARRAY
1273: subtype does not verify in CRSP_ARRAY
1274: maxarr does not verify in CRSP_ARRAY
1275: num cannot be greater than maxarr in CRSP_ARRAY
1276: arr pointer cannot be NULL in CRSP_ARRAY

crsp_obj_verify_row Verifies a CRSP Row Object

Prototype: int crsp_obj_verify_row (CRSP_ROW *crsp_row_ptr, int arrtype, int subtype)
Description: Verifies a CRSP row object, by comparing array type and data characteristics against expected values
Arguments: CRSP_ROW *crsp_row_ptr – pointer to a CRSP row object to verify

int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h

Return Values: CRSP_SUCCESS: if verification is correct
1282: object type does not verify in CRSP_ROW
1283: array type does not verify in CRSP_ROW
1284: subtype does not verify in CRSP_ROW
1285: arr pointer cannot be NULL in CRSP_ROW

crsp_obj_init_ts Initializes a CRSP Time Series Object

Prototype: int crsp_obj_init_ts (CRSP_TIMESERIES **crsp_timser_ptr, int arrtype, int subtype,
int maxarr, int caltype, int size_of_array, CRSP_CAL *calptr, void *init_ptr

Description: Initializes a time series object. If the crsp_timeser_ptr pointer passed is NULL, the function allocates space for the
object. If the array within the object is not allocated, the function allocates space for the array. Object header values are set
and the calendar is attached to the time series. Each element in the object’s array is initialized with the value in
init_ptr.

Arguments: CRSP_TIMESERIES **crsp_timser_ptr – pointer to a CRSP time series pointer
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array
int caltype – calendar type to allocate, =2 for caldts
int size_of_array – size of the structure for each array element
CRSP_CAL *calptr – pointer to a calendar that will be attached to the time series object
void *init_ptr – a pointer to a structure of size size_of_array with missing values to load to each element in the
array. Can be NULL.

Return Values: CRSP_SUCCESS: if successfully initialized and space allocated
CRSP_FAIL: if error allocating memory, error in parameters

64

PROGRAMMERS GUIDE

crsp_obj_init_arr Initializes a CRSP Array Object

Prototype: int crsp_obj_init_arr(CRSP_ARRAY **crsp_array_ptr, int arrtype, int subtype, int
maxarr, int size_of_array, void *init_ptr)

Description: Initializes an array object. If the crsp_array_ptr pointer passed is NULL, the function allocates space for the object. If
the array within the object is not allocated, the function allocates space for the array. Object header values are set and each
element in the object’s array is initialized with the value in init_ptr.

Arguments: CRSP_ARRAY **crsp_array_ptr – pointer to a CRSP array structure pointer
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array
int size_of_array – size of the structure for each array element
void *init_ptr – a pointer to a structure of size size_of_array with missing values to load to each element in the
array. Can be NULL.

Return Values: CRSP_SUCCESS: if successfully initialized and space allocated
CRSP_FAIL: if error allocating memory, error in parameters

crsp_obj_init_row Initializes a CRSP Row Object

Prototype: int crsp_obj_init_row(CRSP_ROW **crsp_row_ptr, int arrtype, int subtype, int
size_of_array, void *init_ptr)

Description: Initializes a row object. If the crsp_row_ptr pointer passed is NULL, the function allocates space for the object. If the
array within the object is not allocated, the function allocates space for the array. Object header values are set and the
object’s array element is initialized with the value in init_ptr.

Arguments: CRSP_ROW **crsp_row_ptr – pointer to a CRSP row pointer
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int size_of_array – size of the structure for the array element
void *init_ptr – a pointer to a structure of size size_of_array with missing values to load to the row. Can be
NULL.

Return Values: CRSP_SUCCESS: if successfully initialized and space allocated
CRSP_FAIL: if error allocating memory, error in parameters

crsp_obj_comp_ts Compares Two CRSP Time Series Objects

Prototype: int crsp_obj_comp_ts(CRSP_TIMESERIES *crsp_timser_ptr1, CRSP_TIMESERIES
*crsp_timser_ptr2)

Description: Compares two time series objects, by comparing array types, data characteristics, array sizes, and associated calendars
Arguments: CRSP_TIMESERIES *crsp_timser_ptr1

CRSP_TIMESERIES *crsp_timser_ptr2
Return Values: CRSP_SUCCESS: if comparison is correct

1261: the two CRSP_TIMESERIES have different object types
1262: the two CRSP_TIMESERIES have different array types
1263: the two CRSP_TIMESERIES have different subtypes
1264: the two CRSP_TIMESERIES have different array widths
1265: the two CRSP_TIMESERIES have different maximum arrays
1266: the two CRSP_TIMESERIES have different calendar types
1267: the two CRSP_TIMESERIES calendar pointers do not compare

CHAPTER 2: ACCESSING DATA IN C

65

Chapter 2: Accessing Data in C

crsp_obj_comp_arr Compares Two CRSP Array Objects

Prototype: int crsp_obj_comp_arr(CRSP_ARRAY *crsp_array_ptr1, CRSP_ARRAY *crsp_array_ptr2)

Description: Compares two CRSP_ARRAY objects, by comparing data array type, size, and data characteristics
Arguments: CRSP_ARRAY *crsp_array_ptr1

CRSP_ARRAY *crsp_array_ptr2
Return Values: CRSP_SUCCESS: if array objects match

1277: the two CRSP_ARRAYs have different object types
1278: the two CRSP_ARRAYs have different array types
1279: the two CRSP_ARRAYs have different subtypes
1280: the two CRSP_ARRAYs have different array widths
1281: the two CRSP_ARRAYs have different maximum array types

crsp_obj_comp_row Compares Two CRSP Row Objects

Prototype: int crsp_obj_comp_row(CRSP_ROW *crsp_row_ptr1, CRSP_ROW *crsp_row_ptr2)

Description: Compares two CRSP row objects, by comparing data array type and data characteristics
Arguments: CRSP_ROW *crsp_row_ptr1

CRSP_ROW *crsp_row_ptr2
Return Values: CRSP_SUCCESS: if row objects match

1286: The two CRSP_ROW objects have different object types
1287: The two CRSP_ROW objects have different array types
1288: The two CRSP_ROW objects have different subtypes
1289: The two CRSP_ROW objects have different array widths

crsp_obj_free_ts Frees a CRSP Time Series Object

Prototype: int crsp_obj_free_ts (CRSP_TIMESERIES **crsp timeser_ptr, int free_flag)

Description: Frees a CRSP time series object by deallocating memory for just the data array or the entire object
Arguments: CRSP_TIMESERIES **crsp_timser_ptr – points to a CRSP time series object pointer

int free_flag – frees only the arr part or all. Valid values to be freed are:
CRSP_FREE_ARR_ONLY
CRSP_FREE_OBJ_ALL

Return Values: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

Side Effects: Frees part or whole of the CRSP_TIMESERIES, depending on the free_flag set.

crsp_obj_free_arr Frees a CRSP Array Object

Prototype: int crsp_obj_free_arr(CRSP_ARRAY **crsp_array_ptr, int free_flag)

Description: Frees a CRSP array object by deallocating memory for just the data array or the entire object
Arguments: CRSP_ARRAY **crsp_array_ptr – points to a CRSP array object pointer

int free_flag – frees only the arr part or all. Valid values to be freed are:
CRSP_FREE_ARR_ONLY
CRSP_FREE_OBJ_ALL

Return Values: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

Side Effects: Frees part or whole of the CRSP_ARRAY, depending on the free_flag set.

66

PROGRAMMERS GUIDE

crsp_obj_free_row Frees a CRSP Row Object

Prototype: int crsp_obj_free_row(CRSP_ROW **crsp_row_ptr, int free_flag)

Description: Frees a CRSP row object by deallocating memory for just the data array or the entire object
Arguments: CRSP_ROW **crsp_row_ptr – points to a CRSP row object pointer

int free_flag – frees only the arr part or all. Valid values to be freed are:
CRSP_FREE_ARR_ONLY
CRSP_FREE_OBJ_ALL

Return Values: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

Side Effects: Frees part or whole of the CRSP_ROW, depending on the free_flag set.

crsp_obj_free Frees a CRSP Object Element Link List

Prototype: CRSP_OBJECT_ELEMENT *objlist
Description: Frees a CRSP object element link list.
Arguments: CRSP_OBJECT_ELEMENT *objlist - object element list pointer
Return Values: CRSP_SUCCESS: if free is successful

CRSP_FAIL: if free fails
Side Effects:

CHAPTER 2: ACCESSING DATA IN C

67

Chapter 2: Accessing Data in C

String Utilities

These functions can be used to manipulate strings.

Function Description Page

crsp_util_convtype Converts CRSP Constant Names to Integers page 67
crsp_util_lowercase Converts Strings to All Lowercase Letters page 67
crsp_util_strtrim Removes Trailing Blanks from Strings page 67
crsp_util_uppercase Converts Strings to All Uppercase Letters page 68
crsp_util_squeeze Removes White Space from Character Strings page 68
crsp_util_strtoken Locates the First Delimiter in a String page 68
crsp_util_cvt_date_mmddyy_i Converts Character Date String YYMMDD into a Y-2K Compliant Date page 68
crsp_util_cvt_t_i Converts a Text String to an Integer page 69
crsp_util_cvt_t_l Converts a Numeric Text String into a Long Integer page 69
crsp_util_cvt_t_f Converts a Text String to a Floating Point Number page 69
crsp_util_cvt_t_d Converts a Text String to a Double Floating Point Number page 69
crsp_util_cvt_cdate_i Convert a Character Date String into an Integer page 70
crsp_util_cvt_i_cdate Convert Integer Date to Character Date String page 70
crsp_util_cvt_i_ingdate Convert an Integer Date (YYYYMMDD) into an Date-Field-Compatible

Character String Date
page 70

crsp_util_convtype Converts CRSP Constant Names to Integers

Prototype: int crsp_util_convtype (char *typestring)

Description: converts a CRSP constant name string to an integer. All CRSP defined _NUM constants defined in crsp_const.h are
supported.

Arguments: char * typename – string to convert
Return Values: integer code found

CRSP_FAIL: if string not supported
Side Effects: none
Preconditions: none

 crsp_util_lowercase Converts Strings to All Lowercase Letters

Prototype: void crsp_util_lowercase (char *string)

Description: converts a string to all lowercase letters.

Arguments: char *string – string to convert
Return Values: none
Side Effects: string may be changed. If the string is a string of spaces, the routine leaves one leading space.
Preconditions: string must be a null-terminated character string

crsp_util_strtrim Removes Trailing Blanks From Strings

Prototype: void crsp_util_strtrim (char *string)

Description: converts a string by moving the string termination to after the last nonblank character.

Arguments: char *string – string to convert
Return Values: none
Side Effects: string may be changed
Preconditions: string must be a null-terminated character string

68

PROGRAMMERS GUIDE

crsp_util_uppercase Converts Strings to All Uppercase Letters

Prototype: void crsp_util_uppercase (char *string)

Description: converts a string to all uppercase letters.

Arguments: char *string – string to convert
Return Values: none
Side Effects: string may be changed
Preconditions: string must be a null-terminated character string

crsp_util_squeeze Removes White Space from Character Strings

Prototype: int crsp_stk_clear (CRSP_STK_STRUCT *stk, int clearflag)

Description: converts a string by removeing white space. All leading and trailing tabs or spaces are removed, and multiple tabs and
spaces are replaced with a single space.

Arguments: char *string – string to convert
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset num
CRSP_CLEAR_ALL – set num to 0 and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for all array elements between 0 and num-1
CRSP_CLEAR_SET – set ranges in the maxarr-1’th element of the CRSP_ARRAY to missing values specific to the
array type.

Return Values: none
Side Effects: string may be changed
Preconditions: string must be a null-terminated character string
Arguments: CRSP_STK_STRUCT *stk – pointer to a stock structure pointer to be cleared

crsp_util_strtoken Locates the First Delimiter in a String

Prototype: char * crsp_util_strtoken(char *ptr, char *delimiters)

Description: Locate the first delimiter in a string. Find the first terminator character, replace that character with a null and update the
pointer to the remaining string. Unlike the standard library function, strtok, this function can handle consecutive
delimiters.

Arguments: char *ptr - string to parse
char *delimiters - delimiter characters in a string

Return Values: pointer to the remainder of the string, or NULL if no delimiter character was found
Side Effects: string may be changed
Preconditions: strings must be NULL terminated character strings

crsp_util_cvt_date_mmddyy_i_Converts Character Date String YYMMDD into a Y-2K Compliant Date

Prototype: int crsp_util_cvt_date_mmddyy_i(char *text_ptr, int *date_value)

Description: Converts a character date string of the format YYMMDD into a year 2000 compliant integer based on a 1950 cutoff. Year
values < 50 are assumed to be +2000.

Arguments: char *text_ptr - string to convert
int *date_value - pointer to location into which will be put the integer value

Return Values: CRSP_SUCCESS Normal successful completion
CRSP_FAIL One or more fields could not be converted to integer values

Side Effects: date value is loaded
Preconditions:

CHAPTER 2: ACCESSING DATA IN C

69

Chapter 2: Accessing Data in C

crsp_util_cvt_t_i_ Converts a Text String to an Integer

Prototype: int crsp_util_cvt_t_i(char *text, int text_size, int *output)

Description: Convert a text string to an integer. Cannot convert a string larger than 11 characters. The string is assumed to NOT be null
terminated.

Arguments: char *text - Pointer to integer string
int text_size - Number of digits to convert
int *output - Pointer to location into which is written the results of the conversion

Return Values: CRSP_SUCCESS - Normal successful completion
Anything else - system error, no value
ERANGE - Number is too big to convert

Side Effects: none
Preconditions:

crsp_util_cvt_t_l Converts a Numeric Text String into a Long Integer

Prototype: int crsp_util_cvt_t_l(char *text, int text_size, long *output)

Description: Converts a numeric text string into a long integer

Arguments: char *text - Pointer to integer string
int text_size - Number of digits to convert
int *output - Pointer to long integer location into which is written the results of the conversion

Return Values: CRSP_SUCCESS - Normal successful completion
Anything else - system error, no value
ERANGE - Number is too big to convert

Side Effects: output is loaded
Preconditions: Text string must be terminated numeric value. Output must minimally point to size (long) bytes of accessible memory.

crsp_util_cvt_t_f_ Converts a Text String to a Floating Point Number

Prototype: int crsp_util_cvt_t_f(char *text, int text_size, int precision, float *output)

Description: Converts a text string to a floating point number. The string is assumed to not be NULL-terminated and to contain no
decimal points. This routine does not handle scientific notation.

Arguments: char *text - Pointer to character string to be converted
int text_size - Number of characters in the string
int precision - Number of characters to the right of the implied decimal point
float *output - Pointer to floating point variable where the results of the conversion are written

Return Values: CRSP_SUCCESS - Normal successful completion
Other - system error, no value

Side Effects: Output is loaded
Preconditions: See description. Output must point to at least size of (float) bytes of accessible memory.

crsp_util_cvt_t_d_ Converts a Text String to a Double Floating Point Number

Prototype: int crsp_util_cvt_t_d(char *text, int text_size, int precision, double *output)

Description: Converts a text string to a double precision floating point number. The string is assumed to not be to null terminated and
contain no decimal points. This routine does not handle scientific notation.

Arguments: char *text - Pointer to character string to be converted
int text_size - Number of characters in the string
int precision - Number of characters to the right of the implied decimal point
float *output - Pointer to floating point variable where the results of the conversion are written

Return Values: CRSP_SUCCESS - Normal successful completion
Other - system error, no value

Side Effects: Output is loaded.
Preconditions: Output must point to at least size (double) bytes of accessible memory.

70

PROGRAMMERS GUIDE

crsp_util_cvt_cdate_i Convert a Character Date String into an Integer

Prototype: int crsp_util_cvt_cdate_i(char *date_str, int *date_int)

Description: Convert a character date string into an integer. Date format: "Mon May 19 18:05:12 1996" Integer format:19960519

Arguments: char *date_str - Pointer to the null terminated string to be converted
int *date_int - Pointer to the integer into which is written the converted date value

Return Values: CRSP_SUCCESS - Normal successful completion
CRSP_FAIL - Conversion failed. Character string was possibly not the valid date format

Side Effects: String may be changed.
Preconditions: String must be null terminated character string. Date-integer must point to at least size of (integer) bytes of accessible

memory.

crsp_util_cvt_i_cdate Converts an Integer Date to a Character Date String

Prototype: int crsp_util_cvt_i_cdate(int int_date, char *char_buffer)

Description: Convert integer date to character date string Integer format: 19960519 Date format: "Mon May 19 18:05:12 1996"

Arguments: int int_date - Value to be converted to date string
char *char_buffer - Pointer to the character buffer into which is written the converted text string

Return Values: CRSP_SUCCESS - Normal successful completion
CRSP_FAIL - Conversion failed. Integer value was possibly not a valid date

Side Effects: Character buffer is loaded.
Preconditions: Character buffer must point to at least 25 bytes of accessible memory.

crsp_util_cvt_i_ingdate Convert an Integer Date (YYYYMMDD) into an Date-Field-Compatible Character String Date

Prototype: int crsp_util_cvt_i_ingdate(int date_int, char *date_str)

Description: Convert an integer date (YYYYMMDD) into a date field compatible character string date. Note: Integer value '99999999'
converted to 31-dec-2299 Integer value '0' converted to blank

Arguments: int date_int Integer date to be converted to character string
char *date_str - Pointer to character string where new date is output

Return Values: CRSP_SUCCESS - Normal successful completion
CRSP_FAIL - Conversion failed. Integer value was possibly not a valid date

Side Effects: Date string is loaded with resultant string.
Preconditions: Date string must point to at least 12 bytes of accessible memory.

CHAPTER 2: ACCESSING DATA IN C

71

Chapter 2: Accessing Data in C

C Structure Copy Functions

These functions are used to copy data from one like CRSPAccess structure to another.

Function Description Page

crsp_util_copy_ts Copy Time Series Data to Another Time Series page 71
crsp_util_copy_arr Copy CRSP Array Data to Another CRSP Array page 71
crsp_util_copy_cal2ts Copy a Calendar to a Time Series page 72

crsp_util_copy_ts Copy Time Series Data in a Given Range to Another Time Series

Prototype: int crsp_util_copy_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES **trg_ts, int
beg, int end, int appendflag)

Description: Copy time series data in a given range to another time series. Copies data from one time series to another within a given
range. It is optional whether to overlay the source data on top of existing target data or replace the target with only the
source data in the range.

Arguments: CRSP_TIMESERIES *src_ts - pointer to existing source time series
CRSP_TIMESERIES **trg_ts - pointer to pointer to target time series to be loaded. This pointer can be changed to
point to a new time series if it is NULL or a different time series type
int beg - beginning index to copy from source time series
int end - ending index to copy from source time series
int appendflag - option on whether to overlay or reset the target time series.

Possible values include:

CRSP_COPY_RESET - The target time series is reset. If NULL, it is initialized, and if not NULL but a different time series
from the source, it is freed and re-initialized. Beg and end will become the new beg and end for the target, and data for
that range will be copied from the source.

CRSP_COPY_OVERLAY - The source data in the range is overlaid on top of the existing target time series. The target
time series must be allocated and must compare to the source time series. The new data in the range is copied into the
target, the ranges are changed accordingly.

Return Values: CRSP_SUCCESS - if successfully
CRSP_FAIL - if bad parameter, mismatched time series on overlay, unable to initialize target if needed

Side Effects: The target time series is initialized if different from source and loaded with data in the range copied from the source time
series. The 0'th array element of the source time series (assumed containing the missing value for that time series) is copied
to the target time series.

Preconditions: The source time series must exist and have beg and end such that beg >= source time series beg, end <= source time
series end, and beg >= end. If appendflag is CRSP_COPY_OVERLAY, the target time series must be allocated and
compare with the source time series.

Arguments:

crsp_util_copy_arr Copy CRSP Array Data to Another CRSP Array

Prototype: int crsp_util_copy_arr(CRSP_ARRAY *src_arr, CRSP_ARRAY *trg_arr)

Description: Copy CRSP array data to another CRSP array
Arguments: CRSP_ARRAY *src_arr - pointer to an existing source CRSP array

CRSP_ARRAY *trg_arr - pointer to an existing target CRSP array
Return Values: CRSP_SUCCESS - if successful

CRSP_FAIL - if bad parameter, mismatched time series on overlay, unable to initialize target if needed
Side Effects: The source CRSP array is copied to target CRSP array. All data in array is copied and target num is set.
Preconditions: The source and target CRSP array must exist and must be compatible.
Arguments:

72

PROGRAMMERS GUIDE

crsp_util_copy_cal2ts Copy a Calendar to a Time Series

Prototype: int crsp_util_copy_cal2ts(CRSP_CONFIG_CAL *cal, CRSP_TIMESERIES **ts, int
cal_type)

Description: Copy a calendar to a time shares

Arguments: CRSP_CONFIG_CAL *cal - pointer to a calendar in the internal config structure.
CRSP_TIMESERIES **ts - pointer to a pointer to CRSP_TiMERSERIES to store the result in the internal
CRSP_ARRAY config[crspnum]->cal or equivalent. Time Series will be initialized if NULL.
int caltype - determines which calendar new is copied. It must be one of:

CAL_TYPE_ID - copy callist array
CAL_TYPE_DATE - copy caldt array
CAL_TYPE_DATERANGE - copy date range array
CAL_TYPE_TIME - copy time array
CAL_TYPE_TIMERANGE - copy time range array

Return Values: CRSP_SUCCESS - if successful
CRSP_FAIL - if failure

Side Effects: Time series will be allocated if necessary. See crsp_obj_init_ts for expected allocation.
Preconditions: Database must be opened with crsp_openroot or one of the crsp_*_open functions. If initialized, time series must

be NULL.
Arguments:

CHAPTER 2: ACCESSING DATA IN C

73

Chapter 2: Accessing Data in C

C Structure Generic Clear Functions

These functions are used to load missing data to CRSPAccess object structures. CRSPAccess access functions may
be used when the set type is not known ahead of time.

Function Description Page

crsp_util_clear_arr Sets a CRSP_ARRAY to missing values page 73
crsp_util_clear_elem Sets one structure to missing values page 73
crsp_util_clear_row Sets a CRSP_ROW to missing values page 74
crsp_util_clear_ts Sets a CRSP_TIMESERIES to missing values page 74
crsp_util_delete_ts Deletes ranges from a CRSP_TIMESERIES given a second

CRSP_TIMESERIES
page 76

crsp_util_insert_ts Inserts ranges from a CRSP_TIMESERIES given a second
CRSP_TIMESERIES

page 77

crsp_util_update_ts Updates ranges from a CRSP_TIMESERIES given a second
CRSP_TIMESERIES

page 77

crsp_util_is_missing Handle missing value problem in CRSP_TIMESERIES structure parameters page 78
crsp_util_reset_enddts Resets end date for an array structure page 78
crsp_util_merge_arr Merges two array structures to a third, single array page 78
crsp_util_merge_ts Merges two time series to a third, single time series page 79

crsp_util_clear_arr Load Missing Values to an Array

Prototype: int crsp_util_clear_arr (CRSP_ARRAY *arr, int clearflag)

Description: Loads missing values into a CRSP_ARRAY on a range level or array level.

Arguments: CRSP_ARRAY *arr – pointer to a CRSP_ARRAY
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset num to 0
CRSP_CLEAR_ALL – set num to 0 and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for elements between 0 and num-1
CRSP_CLEAR_SET – set ranges in the maxarr-1'th element of the CRSP_ARRAY to missing values specific to the
array type.

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

Side Effects: The array pointer has all allocated fields initialized according to the clearflag. If clearflag is CRSP_CLEAR_INIT
only num is set to 0. If clearflag is CRSP_CLEAR_RANGE all elements between 0 and num-1 are set to missing values. If
clearflag is CRSP_CLEAR_ALL num is set to 0 and missing values are set for all elements in the object arrays. If
clearflag is CRSP_CLEAR_SET, the maxarr-1'th element of the array is set to the missing value for the arrtype
and arrtype.

Preconditions: The array pointer must be NULL or initialized with a valid arrtype and subtype.

crsp_util_clear_elem Load Missing Values to One Array Element or Structure

Prototype: int crsp_util_clear_elem (void *elem, int arrtype, int subtype)

Description: Loads missing values into one structure identified by array type and subtype.
Arguments: void *elem – pointer to structure to be loaded with missing values

int arrtype – integer code identifying the structure or simple data type of the element
int subtype – integer code identifying the subcategory of data loaded in the element

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters or unknown arrtype or subtype

Side Effects: The proper missing values are loaded to the element
Preconditions: arrtype and subtype must be valid

74

PROGRAMMERS GUIDE

crsp_util_clear_row Load Missing Values to a Row

Prototype: int crsp_util_clear_row (CRSP_ROW *row, int clearflag)

Description: Loads missing values into a CRSP_ROW
Arguments: CRSP_ROW *row – pointer to a CRSP_ROW.

int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – just return success
CRSP_CLEAR_ALL – set missing values for the array element
CRSP_CLEAR_RANGE – set missing values for the array element
CRSP_CLEAR_SET – set missing values for the array element

Return Values: CRSP_SUCCESS: if successfully cleared or NULL row or row array
CRSP_FAIL: if unknown arrtype or subtype

Side Effects:
The array pointer has all allocated fields initialized according to the clearflag. If clearflag is
CRSP_CLEAR_INIT it doesn't do anything. If any other flag is passed it set missing value in the in the arr part

Preconditions: The row pointer must be NULL or initialized with a valid arrtype and subtype.

crsp_util_clear_ts Loads Missing Values to a Time Series

Prototype: int crsp_util_clear_ts (CRSP_TIMESERIES *ts, int clearflag)

Description: Loads missing values into a time series on a range level or array level.

Arguments: CRSP_TIMESERIES *ts – pointer to a time series to be loaded.
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset beg and end to 0
CRSP_CLEAR_ALL – set beg and end to 0 and set missing values for all elements in the time series.
CRSP_CLEAR_RANGE – set missing values for elements between beg and end of the time shares
CRSP_CLEAR_SET – set ranges in the 0'th element of the CRSP_TIMESERIES to missing values specific to the array
type.

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

Side Effects: The time series pointer has all allocated fields initialized according to the clearflag. If clearflag is CRSP_CLEAR_INIT
only beg and end are set to 0. If clearflag is CRSP_CLEAR_RANGE all elements between beg and end are set to
missing values. If clearflag is CRSP_CLEAR_ALL beg and end are set to 0 and missing values are set for all elements in
the time series. If clearflag is CRSP_CLEAR_SET, the 0'th element of the time series is set to the missing value for the
array type and subtype.

Preconditions: The time series pointer must be NULL or initialized with valid arrtype and subtype.

CHAPTER 2: ACCESSING DATA IN C

75

Chapter 2: Accessing Data in C

crsp_util_clear_arr_user Load Missing Values to an Array Based on User Function

Prototype: int crsp_util_clear_arr_user (CRSP_ARRAY *arr, void (*clear_fnct) void *elem, int
clearflag)

Description: Loads missing values into a CRSP_ARRAY on a range level or array level.

Arguments: CRSP_ARRAY *arr – pointer to a CRSP_ARRAY
void (*clear_fnct) void *elem - pointer to user’s function
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset num to 0
CRSP_CLEAR_ALL – set num to 0 and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for elements between 0 and num-1
CRSP_CLEAR_SET – set ranges in the maxarr-1'th element of the CRSP_ARRAY to missing values specific to the
array type.

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

Side Effects: The array pointer has all allocated fields initialized according to the clearflag. If clearflag is CRSP_CLEAR_INIT
only num is set to 0. If clearflag is CRSP_CLEAR_RANGE all elements between 0 and num-1 are set to missing values. If
clearflag is CRSP_CLEAR_ALL num is set to 0 and missing values are set for all elements in the object arrays. If
clearflag is CRSP_CLEAR_SET, the maxarr-1'th element of the array is set to the missing value for the arrtype
and subtype.

Preconditions: The array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one
void pointer argument. This function must be able to clear one element of the user’s array.

crsp_util_clear_row_user Load Missing Values to a Row

Prototype:
int crsp_util_clear_row_user (CRSP_ROW *row, oid (*clear_fnct) void *elem, int
clearflag)

Description: Loads missing values into a CRSP_ROW
Arguments: CRSP_ROW *row – pointer to a CRSP_ROW.

void (*clear_fnct) void *elem - pointer to user’s function
int clearflag – constant identifying the level of clearing. Supported values are:

CRSP_CLEAR_INIT – just return success
CRSP_CLEAR_ALL – set missing values for the array element
CRSP_CLEAR_RANGE – set missing values for the array element
CRSP_CLEAR_SET – set missing values for the array element

Return Values: CRSP_SUCCESS: if successfully cleared or NULL row or row array
CRSP_FAIL: if unknown arrtype or subtype

Side Effects:
The array pointer has all allocated fields initialized according to the clearflag. If clearflag is
CRSP_CLEAR_INIT it doesn't do anything. If any other flag is passed it set missing value in the in the arr part

Preconditions:
The array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one
void pointer argument. This function must be able to clear one element of the user’s array.

76

PROGRAMMERS GUIDE

crsp_util_clear_ts_user Loads Missing Values to a Time Series

Prototype: int crsp_util_clear_ts_user (CRSP_TIMESERIES *ts, void (*clear_fnct) void *elem,
int clearflag)

Description: Loads missing values into a time series on a range level or array level.

Arguments: CRSP_TIMESERIES *ts – pointer to a time series to be loaded.
void (*clear_fnct) void *elem
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset beg and end to 0
CRSP_CLEAR_ALL – set beg and end to 0 and set missing values for all elements in the time series.
CRSP_CLEAR_RANGE – set missing values for elements between beg and end of the time shares
CRSP_CLEAR_SET – set ranges in the 0'th element of the CRSP_TIMESERIES to missing values specific to the array
type.

Return Values: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

Side Effects: The time series pointer has all allocated fields initialized according to the clearflag. If clearflag is CRSP_CLEAR_INIT
only beg and end are set to 0. If clearflag is CRSP_CLEAR_RANGE all elements between beg and end are set to
missing values. If clearflag is CRSP_CLEAR_ALL beg and end are set to 0 and missing values are set for all elements in
the time series. If clearflag is CRSP_CLEAR_SET, the 0'th element of the time series is set to the missing value for the
array type and subtype.

Preconditions: The array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one
void pointer argument. This function must be able to clear one element of the user’s array.

crsp_util_delete_ts Deletes Ranges from a CRSP_TIMESERIES Based on a Second CRSP_TIMESERIES

Prototype: int crsp_util_delete_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *del_ts, int
exactflag, int rangeflag, int cepsflag, int epsflag, double epsilon)

Description: Deletes ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES. It is optional whether the structure
must match an existing row exactly or if only key fields identify the structure to delete

Arguments: CRSP_TIMESERIES *src_ts - pointer to existing CRSP_TIMESERIES to be modified
CRSP_TIMESERIES *del_ts - pointer to existing CRSP_TIMESERIES to be removed from the source
int exactflag - option on whether the element to be deleted must be an exact much or if a match on the keys fields
only is sufficient. Possible values are:

CRSP_MATCH_EXACT the function reports CRSP_NOT_FOUND if any overlapping rows in the source and delete time
series do not match

CRSP_MATCH_IGNORE the function only considers the ranges of the time series, not the values within the time series.
int rangeflag - option on which types of overlapping ranges are accepted. Possible values are:

CRSP_RANGE_NONE no restrictions are made on input ranges; all overlapping ranges are erased

CRSP_RANGE_BEG the begin ranges must match between source and delete time series

CRSP_RANGE_END the end ranges must match between source and delete time series

CRSP_RANGE_ONE at least one of the begin or end ranges must match between source and delete time series
int cepsflag - flag used to compare string fields within structure. See crsp_util_cmp_string for values.
int epsflag - flag used to compare float fields within structure. See crsp_util_cmp_float for values.
double epsilon - the maximum difference between two float fields in the structures before they are considered different,
used only if epsflag is -1.

Return Values: CRSP_SUCCESS - if successfully deleted
CRSP_NOT_FOUND - if del_ts values not found in the src_ts values according to exactflag
CRSP_FAIL - if bad parameter or fail function calls or mismatched ranges according to rangeflag

Side Effects: beg and end of source time series will be changed
Preconditions: The time series must be allocated, and elem must be correct type with valid data in at least key fields.

CHAPTER 2: ACCESSING DATA IN C

77

Chapter 2: Accessing Data in C

crsp_util_insert_ts Data Into a CRSP_TIMESERIES from a Second CRSP_TIMESERIES

Prototype: int crsp_util_insert_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *ins_ts, int
rangeflag)

Description: Inserts ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES. Options govern handling of
overlapping data

Arguments: CRSP_TIMESERIES *src_ts - pointer to existing CRSP_TIMESERIES to be modified
CRSP_TIMESERIES *ins_ts - pointer to existing CRSP_TIMESERIES to be inserted to the source
int rangeflag - option on which types of overlapping ranges are accepted. Possible values are:

CRSP_RANGE_OVER no restrictions are made on input ranges; all overlapping ranges are replaced with the insert ts
values CRSP_RANGE_KEEP no restrictions are on input ranges; keep existing values in all overlapping ranges

CRSP_RANGE_BEG the insert end must be one less than the source begin

CRSP_RANGE_END the insert begin must be one higher than the source end

CRSP_RANGE_ONE at least one of the previous two conditions must be true
Return Values: CRSP_SUCCESS - if successfully inserted

CRSP_NOT_FOUND - if del_ts values not found in the src_ts values according to exactflag
Side Effects: beg and end of source time series will be changed
Preconditions: The time series must be allocated, and elements must agree on type with valid data in at least key fields

crsp_util_update_ts Updates Data in a CRSP_TIMESERIES From Data in a Second CRSP_TIMESERIES

Prototype: int crsp_util_update_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *new_ts,
CRSP_TIMESERIES *old_ts, int exactflag, int cepsflag, int epsflag, double epsilon)

Description: Updates ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES. It is optional whether the structure
must match an existing row exactly or if only key fields identify the structure to delete.

Arguments: CRSP_TIMESERIES *src_ts - pointer to existing CRSP_TIMESERIES to be modified
CRSP_TIMESERIES *new_ts - pointer to existing CRSP_TIMESERIES to be updated into the source
CRSP_TIMESERIES *old_ts - pointer to existing CRSP_TIMESERIES to be compared to the existing source. Used
only for exact matches (exactflag=CRSP_MATCH_EXACT)
int exactflag - option on whether the element to be updated must be an exact match or if a match on the keys fields
only is sufficient. Possible values are:

CRSP_MATCH_EXACT the function reports CRSP_NOT_FOUND if any overlapping rows in the source and old time series
do not match

CRSP_MATCH_IGNORE the function only considers the ranges of the time series, not the values within the time series.
int* code - pointer to location used to store structure specific results of a comparison of all fields. If code is -1, then
only the key-based comparison is made. Otherwise, code is set to a positive number containing information of the fields
that are different
int cepsflag - flag used to compare string fields within structure. See crsp_util_cmp_string for values.
int epsflag - flag used to compare float fields within structure. See crsp_util_cmp_float for values.
double epsilon - the maximum difference between two float fields in the structures before they are considered
different, only used if epsflag is -1

Return Values: CRSP_SUCCESS - if successfully updated
CRSP_NOT_FOUND - if old_ts values not found in the src_ts values according to exactflag
CRSP_FAIL - if bad parameter or fail function calls or mismatched ranges according to rangeflag

Side Effects: beg and end of source time series will be changed and data will be loaded if successful.
Preconditions: The time series must be allocated, and array types and calendars must agree, with valid data in at least key fields.

78

PROGRAMMERS GUIDE

crsp_util_is_missing Determine Whether One Array Element Contains Missing Data

Prototype: int crsp_util_is_missing(void *elem, int arrtype, int subtype)

Description: Determines whether one passed array element contains missing data according to arrtype and subtype. This function
is useful if there are multiple missing values for a type of data. Normally the first element of a CRSP time series array, or
the last element of a CRSP_ARRAY contains the primary missing data for that type of data. This function supports all
primary and secondary missing values.

Arguments: void *elem - a pointer to element to be checked
int arrtype - a CRSP-defined array type constant identifying the structures
int subtype - a CRSP-defined subtype constant identifying possible subcategories of data loaded in the element

Return Values: 0 - CRSP_NOT_MISSING - value present
1 - CRSP_IS_MISSING - value missing
-1 - unknown or unsupported arrtype or subtype

Side Effects: none
Preconditions: elem must point to valid data for the structure indicated by arrtype.

crsp_util_reset_enddts Resets End Date for the CRSP_ARRAY Histories

Prototype: int crsp_util_reset_enddts(CRSP_ARRAY *array, int lastenddt, int begdt_offset, int
enddt_offset)

Description: Resets end date to the next begin date minus 1 for the CRSP_ARRAY structure
Arguments: CRSP_ARRAY *array - source array structure

lastenddt - date in CCYYMMDD format to be used for the end date of the last event. Resets end dates for
CRSP_ARRAY event histories. Sets end dates in array structure to one day before the following event’s effective date. The
end date of the last event must be provided as a parameter. Only valid for arrays containing contiguous increasing effective
dates.
int begdt_offset - offset of begin date field of the specified array stucture
int enddt_offset - offset of end date field of the specified array structure

Return Values: CRSP_SUCCESS - if successfully set
CRSP_FAIL - if error in parameters or loading process

Side Effects: enddt - offset for each event from - to num-1 is updated.
Preconditions: Array must be allocated and loaded. begdt_offset with each event structure must be an integer date feed in

YYYYMMDD format.

crsp_util_merge_arr Compare Two Source Arrays; if They are Equal, Copy Main Array Data into Target Array

Prototype: int crsp_util_merge_arr(CRSP_ARRAY *trg_arr, CRSP_ARRAY *main_arr, CRSP_ARRAY
*sub_arr, int *status, int cepsflag, int epsflag, double epsilon)

Description: Compare two source array, put two records in order into target array, if they are equal, copy main array data into target,
where the main array takes the precedence.

Arguments: CRSP_ARRAY *trg_arr - output, pointer to CRSP_ARRAY
CRSP_ARRAY *main_arr - input, pointer to CRSP_ARRAY
CRSP_ARRAY *sub_arr - input, pointer to CRSP_ARRAY
int *status - flag to indicates the status of the data

Return Values: CRSP_SUCCESS - successfully ran
CRSP_FAIL - failed to run

Side Effects: Any previously stored data in target array will be overwritten
Preconditions:

CHAPTER 2: ACCESSING DATA IN C

79

Chapter 2: Accessing Data in C

crsp_util_merge_ts Merges Two Source Time Series to One Target Time Series

Prototype: int crsp_util_merge_ts(CRSP_TIMESERIES *trg_ts, CRSP_TIMESERIES *src1_ts,
CRSP_TIMESERIES *src2_ts)

Description: Merges two source ts(src1_ts, src2_ts) to target ts(trg_ts), where trg_ts takes the precedence

Arguments: trg_ts - output, pointer to CRSP_TIMESERIES
src1_ts - input, pointer to CRSP_TIMESERIES
src2_ts - input, point to CRSP_TIMESERIES

Return Values: CRSP_SUCCESS - successfully ran
CRSP_FAIL - failed to run

Side Effects:
Preconditions:

80

PROGRAMMERS GUIDE

Data to Time Series Mapping Utility Functions

Function Description Page
crsp_util_map_arr2ts Maps a subset of fields from a CRSP_ARRAY to a CRSP_TIMESERIES Page 80
crsp_util_map_row2ts Maps a subset of fields from a CRSP_ROW to a CRSP_TIMESERIES Page 81
crsp_util_map_ts2ts Maps a subset of fields from one CRSP_TIMESERIES to another Page 81

crsp_util_map_arr2ts Maps Selected Fields in a CRSP_ARRAY into a CRSP_TIMESERIES

Prototype: int crsp_util_map_arr2ts (CRSP_ARRAY *src_arr, CRSP_TIMESERIES *trg_ts, int flags,
int rangflag, int offset, int length, int begdt_offset, int enddt_offset)

Description: Loads selected fields in a CRSP_ARRAY into a CRSP_TIMESERIES. The specific fields are identified with the offset
within the array structure and the length of the field. Date range fields in the array used to map to the time series calendar
are specified with their offsets. This function only works with status change event arrays where each event refers to the
status values until the next event.

Arguments: CRSP_ARRAY *src_arr – pointer to source array. The array must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg_ts – pointer to target time series with desired calendar loaded.
int flags – flags used to interpret date ranges

CRSP_ACTUAL – target is loaded with source at the end of target period, trg[i] = f(src[i])

CRSP_EFFECTIVE – target is loaded with source at the end of the previous target period, trg[i+1] = f(src[i])

CRSP_NLAST – last data from the source is moved to all periods on target

int rangflag – flags used to interpret time series ranges outside of explicit source ranges. Flags are:

CRSP_RANGE_AS_IS – as it is, target set to missing outside of explicit source range

CRSP_RANGE_FIRST – assume first source event is valid back to beginning of target range

CRSP_RANGE_LAST – assume last source event is good forever

CRSP_RANGE_FIRST_LAST – both first and last

int offset – the offset in bytes of the target field from the beginning of the structure in the source array.

int length – the number of bytes of the target field

int begdt_offset – the offset in bytes of the effective date field of the source structure from the beginning of the
structure in the source array.

int enddt_offset – the offset in bytes of the last effective date field of the source structure from the beginning of the
structure in the source array.

Return Values: CRSP_SUCCESS: if successful
CRSP_FAIL: if bad parameter, mismatched time series size or uninitialized source or target, or unmatched parameters.

Side Effects: The target time series is loaded with data from the source array according to flags.
Preconditions: The source array must be allocated and loaded with the data to copy. The target time series and calendar must be allocated.

The target size_of_array_width must match the length parameter and target object fields arrtype and subtype
must be set according to the data to be loaded. No offsets can extend past the size of the array structure.

CHAPTER 2: ACCESSING DATA IN C

81

Chapter 2: Accessing Data in C

crsp_util_map_row2ts Maps Selected Fields in One CRSP_ROW into a CRSP_TIMESERIES

Prototype: int crsp_util_map_row2ts (CRSP_ROW *row_ts, CRSP_TIMESERIES *trg_ts, int offset)
Description: Loads selected fields in a CRSP_ROW into a CRSP_TIMESERIES. The specific fields are identified by the offset

within the source structure and the size_of_array_width of the target. The row field value is copied to every period
in the target time series.

Arguments: CRSP_ROW *src_row – pointer to source row. It must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg_ts – pointer to target time series with desired calendar loaded and desired beg and end
set.
int offset – the offset in bytes of the target field from the beginning of the structure in the source row.

Return Values: CRSP_SUCCESS: if successful
CRSP_FAIL: if bad parameter, uninitialized source or target, or unmatched parameters.

Side Effects: The target time series is loaded with data from the source. Data is copied to each period between the target beg and end.
Preconditions: The source time series must be allocated and loaded with the data to copy. The target time series and calendar must be

allocated and the desired beg and end must be set. Target object fields arrtype and subtype must be set according to
the data to be loaded.

crsp_util_map_ts2ts Maps Selected Fields in One CRSP_TIMESERIES into Another

Prototype: int crsp_util_map_ts2ts (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
offset)

Description: Loads selected fields in a CRSP_TIMESERIES into another CRSP_TIMESERIES. The specific fields are identified by
the offset within the source structure and the size_of_array_width of the target. The two time series must have identical
calendars.

Arguments: CRSP_TIMESERIES *src_ts – pointer to source time series. It must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg_ts – pointer to target time series.
int offset – the offset in bytes of the target field from the beginning of the structure in the source array.

Return Values: CRSP_SUCCESS: if successful
CRSP_FAIL: if bad parameter, mismatched time series size or uninitialized source or target, or unmatched parameters.

Side Effects: The target time series is loaded with data from the source array according to flags. Data is copied on a period by period
basis and the target beg and end are copied from the source.

Preconditions: The source time series must be allocated and loaded with the data to copy. The target time series and calendar must be
allocated. Target object fields arrtype and subtype must be set according to the data to be loaded. The two time
series must have identical calendars.

82

PROGRAMMERS GUIDE

CRSPAccess C Database Information Function

This function is used to retrieve information about a database.

crsp_root_info_get Load CRSPAccess Database Information

Prototype: int crsp_root_info_get (int crspnum, CRSP_ROOT_INFO *info)

Description: Loads database information from a CRSPAccess database into a structure. CRSP_ROOT_INFO is defined in
crsp_objects.h. The following fields are available:
crt_date – 25-character string containing the time the database was created, in the format
“Dow Mon DD HH:MM:SS YYYY”
mod_date – 25-character string containing the time the database was last modified, in the format
“Dow Mon DD HH:MM:SS YYYY”
cut_date – 25-character string containing the last date of data in the database, currently loaded as YYYYMM
binary_type – L if IEEE Little-Endian, and B if IEEE Big-Endian
code version – 19-character string containing the CRSPAccess version used to create the database
product_code – 11-character CRSP Product Code
product_name – 47-character Product name of the database
version – integer version number of the database
settypes – an array of up to eight integer settypes available in the database
setids – an array of up to eight integer setids available in the database
setnames – an array of up to eight names of the sets in the database
numsets – the number of data sets in the database
calids – an array of up to eight integer calids of calendars available in the database
calavail – an array of up to eight integer caltypes of the calendars available in the database
calnames – an array of up to eight names of the calendars in the database
numcals – the number of calendars in the database

Arguments: int crspnum – database identifier returned by a CRSPAccess database open function
CRSP_ROOT_INFO *info – structure that will be loaded with database information

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if database is not open or error loading information structure

Side Effects: none
Preconditions: the database must be opened with one of the CRSPAccess open functions.

CHAPTER 2: ACCESSING DATA IN C

83

Chapter 2: Accessing Data in C

Data Utility Functions

The CRSP library contains several groups of data functions described in the following table. Subsections in this sec-
tion contain the descriptions of the individual functions within each of the function groups.

Adjust Functions

These functions adjust prices, dividends, volumes, and shares for splits or other price factors.

Functions Group Description Page

Adjust Functions Functions to Adjust Prices or Other Data Page 83

Excess Returns Functions Functions to Make Excess Returns Calculations Page 86
Name Mapping Functions Functions to Map Name History Fields to Time Series Page 87
NASDAQ Information Mapping Functions Functions to Map NASDAQ Information Elements to Time Series Page 90
Returns Functions Functions to Calculate Returns Page 92
Shares Functions Functions to Manipulate Shares Data Page 97
Stock Print Functions Functions to Print Specialized Stock Data Page 100
Translation Functions Functions to Translate Data to New Time Series Page 120

Function Description Page

crsp_adj_load Builds a Price Adjustment Structure Array Page 83
crsp_adj_map_ts Adjusts a Source CRSP_TIMESERIES According to an Adjustment Array Page 84
crsp_adj_map_arr Adjusts a Source CRSP_ARRAY According to an Adjustment Array Page 84
crsp_adj_stk Adjusts all relevant fields in a Source Stock Structure Page 85

crsp_adj_load Builds a Price Adjustment Structure Array

Prototype: int crsp_adj_load (CRSP_STK_STRUCT *stk, CRSP_ARRAY *adj_arr, int adjdt, int
factyp, int gapflg, int knowexch)

Description: loads a crsp_array of crsp_adj_struct structures with cumulative adjustment factors and effective dates.

Arguments: CRSP_STK_STRUCT *stk – stk structure with at least events and prices loaded.
CRSP_ARRAY *adj_arr – adj array that will be loaded. It must exist with enough space to store completed array of
adjustment events
int adjdt – base anchor date guaranteed to have 1.0 factor
int factyp – code of adjustment type: 0 = stock splits and dividends only 1 = all dists with facpr
int gapflg –
0 carry adjustments over a gap
1 adjustments stop when trading on unknown exchange
int knowexch – unused, always set to 0.

Return Values: CRSP_SUCCESS: if adjustment structure successfully loaded
CRSP_FAIL: if error in parameters or structures

Side Effects: The adj_arr will be loaded. The subtype in the adj_arr is set to the adjust base date.
Preconditions: It is assumed that events and prices have been loaded. The adj_arr must have arrtype

CRSP_ADJ_STRUCT_NUM

84

PROGRAMMERS GUIDE

crsp_adj_map_ts Adjusts a Source CRSP_TIMESERIES According to an Adjustment Array

Prototype: int crsp_adj_map_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, CRSP_ARRAY
*adj_arr, int begrng, int endrng, int endflg, int direct)

Description: adjusts a source time series according to an adjust array and put the results in a target time series. The adjust array must
exist.

Arguments: CRSP_TIMESERIES *src_ts – pointer to source time series, already loaded by crsp_adj_load
CRSP_TIMESERIES *trg_ts – pointer to preexisting target time series, empty
CRSP_ARRAY *adj_arr – pointer to adjustment array already loaded
int begrng – begin date index of the date range adjustment
int endrng – end date index of the date range adjustment
int endflg – determines whether adjustments can be made after the last day of prices. If set to 1 missing values are set
for the range after the end date; otherwise the last adjustment value is used
int direct – direction flag multiply or divide with adj factor
1= multiply with adjustment factor
-1= divide with adjustment factor

Return Values: CRSP_SUCCESS: (integer) if successfully adjusted
CRSP_FAIL: if error in parameters or adjustment

Side Effects: The target time series is loaded with the adjusted data items from the source time series, for the date range specified by
begrng and endrng.

Preconditions: The src_ts, trg_ts, and adj_arr must exist. src_ts and trg_ts must have the same arrtype and subtype
and the same calendar. The src_ts subtype cannot be any of these: CRSP_RETURN_NUM or
CRSP_PRICE_ADJ_NUM or CRSP_VOLUME_ADJ_NUM. The wanted date range must be a subset of the data date range
and the adj_arr date range.

crsp_adj_map_arr Adjusts a Source CRSP_ARRAY According to an Adjustment Array

Prototype: int crsp_adj_map_arr (CRSP_ARRAY *src_arr, CRSP_ARRAY *trg_arr, CRSP_ARRAY
*adj_arr, int begdt, int enddt, int endflg, int direct)

Description: adjusts a source CRSP_ARRAY according to an adjust array and put the results in a target CRSP_ARRAY. The adjust array
must exist.

Arguments: CRSP_ARRAY *src_arr – pointer to source time series, already loaded
CRSP_ARRAY *trg_arr – pointer to preexisting target time series, empty
CRSP_ARRAY *adj_arr – pointer to adjustment array already loaded by crsp_adj_load
int begdt – begin date index of the date range adjustment
int enddt – end date index of the date range adjustment
int endflg – determines whether adjustments can be made after the last day of prices. If set to 1 missing values are set
for the range after the end date; otherwise the last adjustment value is used.
int direct – direction flag multiply or divide with adj factor
 1= multiply by adjustment factor (prices)
-1= divided by adjustment factor (shares and values)

Return Values: CRSP_SUCCESS: if successfully adjusted
CRSP_FAIL: if error in parameters or adjustment

Side Effects: The target CRSP_ARRAY is loaded with the adjusted data items from the source CRSP_ARRAY, for the date range
specified by begdt and enddt.

Preconditions: The src_arr, trg_arr and adj_arr must exist. src_arr and trg_arr must have the same arrtype and
subtype. The src_arr subtype can not be any of these: CRSP_SHARES_ADJ_NUM or CRSP_DISTS_ADJ_NUM
or CRSP_DELIST_ADJ_NUM. The wanted date range must be a subset of the data date range and the adj_arr date
range.

CHAPTER 2: ACCESSING DATA IN C

85

Chapter 2: Accessing Data in C

crsp_adj_stk Adjusts All Relevant Fields in a Source Stock Structure

Prototype: int crsp_adj_stk(CRSP_STK_STRUCT *src_stk, CRSP_STK_STRUCT *trg_stk, int adjdt,
int factyp, int gapflg, int endflg, int knownexch)

Description: adjusts a source stk structure according to an adjust array and put the results in a target stk structure. The adjust array is
initialized and loaded inside this function.

Arguments: CRSP_STK_STRUCT *src_stk – pointer to source stk structure
CRSP_STK_STRUCT *trg_stk – pointer to target stk structure
int adjdt – base anchor adjustment date guaranteed to have 1.0 factor
int factyp – code of adjustment type:
0 = stock splits and dividends only
1 = all dists with facpr
int gapflg – take into account gaps in the date range or not (values: 1,0) and set the adjfac accordingly
if adjdt < begin of gap and gapflg is set then zero out all adjfac after the gap
if adjdt > end of gap and gapflg is set then zero out all adjfac before the gap
if adjdt between the gap and gapflg is set then zero out all adjfac
int endflg – determines whether adjustments can be made after the last day of prices. If set to 1 missing values are set
for the range after the end date; otherwise the last adjustment value is used.
int knownexch – unused. Always set to 0, no restriction

Return Values: CRSP_SUCCESS: if successfully adjusted
CRSP_FAIL: if error in parameters or adjustment

Side Effects: The target stk structure is loaded with the adjusted data items from the source stk structure. The subtypes of objects
loaded with adjusted data are changed to reflect the adjusted data. See crsp_const for *_NUM subtype constants.

Preconditions: The source src_stk must be already loaded with all the modules wanted to be adjusted. The target trg_stk must
already be initialized. Use crsp_stk_open to initialize a new structure. If an object subtype indicates adjusted data
is already loaded, no adjustment will be made. Use the crsp_stk_clear function to reset stock structures to
unadjusted subtypes.

86

PROGRAMMERS GUIDE

Excess Return Functions

CRSP excess returns compare two returns time series, and produce a series of returns with the amounts a source time
series is in excess of a base time series.

Function Description Page

crsp_xs_calc Builds Excess Returns Time Series Page 86

crsp_xs_port Builds Associated Portfolio Returns into a Single Time Series for Excess Returns Page 86

crsp_xs_calc CRSP Stock Excess Returns Calculation

Prototype: int crsp_xs_calc (CRSP_TIMESERIES *bas_ts, CRSP_TIMESERIES *ind_ts,
CRSP_TIMESERIES *trg_ts, int beg, int end, int missflag)

Description: general CRSP stock excess returns calculation given a base return series, a reference return series, and a date range, loads
excess returns for each date in the series.

Arguments: CRSP_TIMESERIES *bas_ts – time series of issue returns
CRSP_TIMESERIES *ind_ts – time series of index returns
CRSP_TIMESERIES *trg_ts – target output of excess returns
int beg, end – index range to calculate excess returns
int missflag – flag for handling missing returns
CRSP_KEEP – base missing returns are copied to target, index returns are compounded over gap
CRSP_SMOOTH – first return after gap is geometrically averaged so entire gap has the same amount
CRSP_IGNORE – missing returns are treated as 0's; missing returns in index always generate a missing excess return
It is assumed that targ, base, and ind have been allocated and have the same calendar.
0 < start <=end < maxarr must be true for each time series

Return Values: CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

Side Effects: The target time series object is loaded with excess returns data. The range is set to the min of current beg and passed start,
and max of current end and passed end. Any excess returns already loaded are kept only if they are outside of start/end. If
there is a gap between existing range and new range the returns are loaded with missing values.

Preconditions: The subtype of bas_st and ind_ts is CRSP_RETURN_NUM
The subtype of trg_ts is CRSP_RETURN_XS_NUM or CRSP_RETURN_CUM_NUM

crsp_xs_port Builds Portfolio Returns into One Series

Prototype: int crsp_xs_port (CRSP_TIMESERIES **ind_ts, int indtypes, CRSP_TIMESERIES port_ts,
int porttype, CRSP_TIMESERIES *trg_ts)

Description: builds a time series of index returns by mapping from an array of index returns time series based on a portfolio time series

Arguments: CRSP_TIMESERIES **ind_ts – pointer to indices returns time series
int indtypes – total number of indices types
CRSP_TIMESERIES **port_ts – time series array of portfolio assignments
int porttype – portfolio type index of interest
CRSP_TIMESERIES *trg_ts – target index based on portfolio
trg_ts and all indices must be allocated and have the same calendar

Return Values: CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

Side Effects: The trg_ts time series object is loaded with index data by mapping to an index based on a portfolio time series.
Preconditions: The target time series and all the indices time series must exist prior calling the function and must all verify (see

crsp_obj_verify_ts) and have the same calendar

CHAPTER 2: ACCESSING DATA IN C

87

Chapter 2: Accessing Data in C

Name Array Functions

These functions map elements in the names event array to time series.

Function Description Page

crsp_map_shrcd Map name history share codes to a time series Page 87
crsp_map_exchcd Map name history exchange codes to a time series Page 87
crsp_map_siccd Map name history siccd codes to a time series Page 88
crsp_map_ncusip Map name history name CUSIPs to a time series Page 88
crsp_map_ticker Map name history tickers to a time series Page 88
crsp_map_comnam Map name history company names to a time series Page 89
crsp_map_shrcls Map name history share classes to a time series Page 89
crsp_cur_name Finds index of name structure on a select date Page 89

crsp_map_shrcd Map Share Codes to a Time Series

Prototype: int crsp_map_shrcd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the share type code of the stock event’s names structure
over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts subtype must be CRSP_SUB_SHRCD_NUM

crsp_map_exchcd Map Exchange Codes to a Time Series

Prototype: int crsp_map_exchcd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the exchange code of the stock event’s names structure
over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts arrtype must be CRSP_INTEGER_NUM and subtype must be CRSP_SUB_EXCHCD_NUM

88

PROGRAMMERS GUIDE

crsp_map_siccd Map SIC Codes to a Time Series

Prototype: int crsp_map_siccd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the SIC code of the stock event’s names structure over
each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts subtype must be CRSP_SUB_SICCD_NUM

crsp_map_ncusip Map CUSIPs to a Time Series

Prototype: int crsp_map_ncusip (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the cusip of the stock event’s names structure over
each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s name histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts subtype must be CRSP_SUB_NCUSIP_NUM

crsp_map_ticker Map Tickers to a Time Series

Prototype: int crsp_map_ticker (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the ticker of the stock event’s names structure over each
restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s name histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts subtype must be CRSP_SUB_TICKER_NUM

CHAPTER 2: ACCESSING DATA IN C

89

Chapter 2: Accessing Data in C

crsp_map_comnam Map Company Names to a Time Series

Prototype: int crsp_map_comnam (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flag)

Description: loads a target time series from a source CRSP_ARRAY by copying the company name of the stock event’s names structure
over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts subtype must be CRSP_SUB_COMNAM_NUM

crsp_map_shrcls Map Share Classes to a Time Series

Prototype: int crsp_map_shrcls (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the shares class of the stock event’s names structure
over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s name histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The names_arr arrtype must be CRSP_STK_NAME_NUM
The trg_ts subtype must be CRSP_SUB_SHRCLS_NUM

crsp_cur_name Finds Index of Name Structure on a Selected Date

Prototype: int crsp_cur_name (CRSP_ARRAY *names_arr, int ndate, int code)

Description: finds the index of the name structure given a date. If the name is earlier than the first name date it returns a value passed as
a parameter.

Arguments: CRSP_ARRAY *names_arr – pointer to a CRSP_ARRAY with stock names data loaded.
int ndate – date in yyyymmdd format to find
int code – value to return if date earlier than first name

Return Values: name index – index of last name structure effective on or before date passed
code – if date is before first name structure or names array not initialized.

Side Effects: None
Preconditions: Source names array must exist and be allocated

90

PROGRAMMERS GUIDE

NASDAQ Information Mapping Functions

These functions map data in the NASDAQ Information event arrays to time series.

Function Description Page

crsp_map_trtscd Map NASDAQ status codes to a time series Page 90
crsp_map_nmsind Map NASDAQ National Market indicator to a time series Page 90
crsp_map_mmcnt Map NASDAQ Market Maker count to a time series Page 91
crsp_map_nsdinx Map NASDAQ index code to a time series Page 91

crsp_map_trtscd Map NASDAQ Status Codes to a Time Series

Prototype: int crsp_map_trtscd (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the NASDAQ status code of the stock event’s nasdin
structure over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stock event’s nasdin NASDAQ information history
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
The trg_ts subtype must be CRSP_SUB_TRTSCD_NUM

crsp_map_nmsind Map NASDAQ National Market Indicator to a Time Series

Prototype: int crsp_map_nmsind (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the National Market indicator of the stock event’s
nasdin stucture over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stk events nasdin NASDAQ information history
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
The trg_ts subtype must be CRSP_SUB_NMSIND_NUM

CHAPTER 2: ACCESSING DATA IN C

91

Chapter 2: Accessing Data in C

crsp_map_mmcnt Map NASDAQ Market Maker Count to a Time Series

Prototype: int crsp_map_mmcnt (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the market maker count of the stock event’s nasdin
structure over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stk events nasdin NASDAQ Information History
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
The trg_ts subtype must be CRSP_SUB_MMCNT_NUM

crsp_map_nsdinx Map NASDAQ Index Code to a Time Series

Prototype: int crsp_map_nsdinx (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

Description: loads a target time series from a source CRSP_ARRAY by copying the NASDAQ index code of the stock event’s nasdin
structure over each restricted period according to the target calendar file.

Arguments: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stk events nasdin NASDAQ information history
CRSP_TIMESERIES *trg_ts target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target
trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: Source CRSP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a
calendar must be associated with the target time series.
The nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
The trg_ts subtype must be CRSP_SUB_NSDINX_NUM

92

PROGRAMMERS GUIDE

Returns Functions

These functions make various CRSP returns calculations.

Function Description Page

crsp_ret_calc Stock Returns Calculations Page 92
crsp_ret_calc_del CRSP Delisting Returns Calculations Page 93
crsp_ret_calc_one Returns Calculation for One Return Page 93
crsp_ret_off_exch Marks Returns when it is Not Traded on the Exchange Page 94
crsp_ret_ordinary Determines if a Distribution Is Considered Ordinary Page 94
crsp_ret_payments Calculates Price Factor and Cash Dividend Amounts Page 94
crsp_stk_ret_append_ts Appends Return to the End of the Returns Time Series Page 95
crsp_stk_ret_append_dlret Appends Delisting Return to the Returns Time Series Page 95
crsp_stk_delret_params Parses a Delisting Parameter File Page 95

crsp_ret_calc Stock Returns Calculations

Prototype: int crsp_ret_calc (CRSP_STK_STRUCT *stk, CRSP_TIMESERIES *p1, CRSP_TIMESERIES *p2,
CRSP_TIMESERIES *r, CRSP_TIMESERIES *rn, int start, int end, int gapwindow, int
validexch)

Description: general CRSP stock returns calculations, with and without dividends, allowing one or two price series for before/after,
options on gap limits before considered missing, and valid exchanges.

Arguments: CRSP_STK_STRUCT *stk – stock structure with names, distributions, and price data loaded
CRSP_TIMESERIES *p1 – time series of primary prices
CRSP_TIMESERIES *p2 – time series of secondary prices (NULL if unused)
CRSP_TIMESERIES *r – time series to load total returns
CRSP_TIMESERIES *rn – time series to load returns without dividends
int start, end – index range to calculate returns
int gapwindow – gap in periods before considered missing, use 0 for default (10 periods)
int validexch – binary code for valid exchange codes 1=nyse, 2=amex, 4=nasd, 0 = no restriction

Return Values: CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

Side Effects: Return time series objects are loaded with returns data. The subtype of these time series will be set to
CRSP_RETURN_NUM. The beg and end ranges will be set according to start and end parameters and price range, so all
previous returns ranges and data loaded will be erased. If start and end are outside of price ranges missing returns will be
generated for the range outside of prices.

Preconditions: It is assumed that r and rn have been allocated and have the same calendar as the price time series. One can be NULL if
that type is not wanted. Prices, names and distribution histories must be loaded.

CHAPTER 2: ACCESSING DATA IN C

93

Chapter 2: Accessing Data in C

crsp_ret_calc_del CRSP Delisting Returns Calculations

Prototype: int crsp_ret_calc_del (CRSP_STK_STRUCT *stk, float *delret, float *delretx, float
*effnewprc, int *effnewdt, int gapwindow, int crspnum, int setnum)

Description: CRSP stock delisting returns calculations. The delisting return is the return between the last price and the value of the stock
after delisting, either based on the value given for the stock or the price on a new exchange.

Returns are calculated with these steps:

1.find if sufficient delisting information exists to calculate a return; if not, use the correct missing value.

2.find a payment date and payment amount. The amount will either be the dlprc, the sum of final distributions, or the
sum of both. The date will be the delist date + 1 period, or the nextdt if one is available.

3.calculate a normal CRSP return between endprc and payment date, using lastprc and payment, using all
distributions.

Arguments: CRSP_STK_STRUCT *stk – stock structure
float *delret – delisting return
float *delretx – delisting return without dividends
float *effnewprc – value after delisting
int *effnewdt – date of value after delisting
int gapwindow – gap in periods before considered missing
int crspnum, setnum – database and set identifiers to load prices, these can be set to -99 if prices are loaded

Return Values: CRSP_SUCCESS: if returns successfully loaded,
CRSP_FAIL: if error in parameters or structures

Side Effects: A delisting return with dividends is placed in dlret. A delisting return without dividends is placed in dlretx. An
effective last payment is placed in effnewprc. The effective date of the last payment is placed in effnewdt. This will
load the prices time series if prices are needed and they are not already loaded.

Exception Codes: Exception codes (in order of precedence): STK_RMISSR – issue still active, STK_RMISSD – no sources to establish value
after delist, STK_RMISSG – no acceptable previous price to calculate return, STK_RMISSP – trades on new exchange,
but no price available.

crsp_ret_calc_one Returns Calculation for One Period

Prototype: float crsp_ret_calc_one (CRSP_ARRAY *di, float p1, float p2, float *rn, int start,
int end)

Description: General CRSP stock returns calculation for one period given two prices, the dates of the two prices, and a distributions
array. Total return is returned; return without dividends can be loaded by reference.

Arguments: CRSP_ARRAY *di – stock distributions structure
float p1 – previous price
float p2 – current price
float *rn – place to load returns without dividends (NULL if unwanted)
int start, end – actual YYYYMMDD dates of p1 and p2
int gapwindow –

Return Values: Total return
CRSP_FAIL: if error in parameters or structures

Side Effects: Returns without Dividends is loaded to rn if not NULL

94

PROGRAMMERS GUIDE

crsp_ret_off_exch Marks Returns when Security is Not Traded on Valid Exchange

Prototype: int crsp_ret_off_exch (CRSP_ARRAY *nam, CRSP_TIMESERIES *r1, CRSP_TIMESERIES *r2,
int start, int end, int validexch)

Description: uses the names history to mark returns from a time period when not on the desired exchange. Returns are marked as off
exchange: during the effective range of a name structure that overlaps the returns range when the exchange code of that
name structure is:

0 = (unknown)
1 = known but not one of CRSP-supported exchanges (NYSE, AMEX, NASDAQ)
2 = On one of these valid exchanges but not one part of the validexch binary code

Arguments: CRSP_ARRAY *nam – names array
CRSP_TIMESERIES *r1, *r2 – returns and returns without dividends
int start, end – effective range of returns to check
int validexch – binary code of valid exchanges: 1 = NYSE, 2 = AMEX, 4 = NASDAQ, sum for combinations

Return Values: CRSP_SUCCESS:
CRSP_FAIL: if bad or missing parameters

Preconditions: The two returns time series must be loaded or set to NULL.

crsp_ret_ordinary Determines if a Distribution Is Considered Ordinary

Prototype: int crsp_ret_ordinary (int code, float facpr)

Description: uses the distribution code and price factor to determine whether a distribution is considered ordinary for the purposes of the
returns without dividends calculation

Arguments: int code – 4-digit CRSP distribution code
float facpr – CRSP distribution price factor

Return Values: 1 if ordinary
0 if non-ordinary
2 to use factor

Side Effects: None

crsp_ret_payments Calculates Price Factor and Cash Dividend Amounts

Prototype: int crsp_ret_payments (double *t_fp, double *t_odiv, double *t_ndiv, CRSP_ARRAY
*di, int dp, int date)

Description: calculates price factor and cash dividend amounts for a period using the distribution events array. It is passed a distribution
array, a current event, and an ending date of the period. It cumulates information for all distributions in the period and
returns the number of the distribution after the period.

Arguments: double *t_fp – price factor for period
*t_odiv – ordinary cash dividends for period
*t_ndiv – non-ordinary cash dividends for period
CRSP_ARRAY *di – distributions array
int dp – current distribution event in array
int date – ending calendar date of period
the first three parameters are passed as pointers so they can be loaded with the result values

Return Values: integer: current location in distributions array, this will be the first distribution after date
Side Effects: the parameters t_fp, t_odiv, and t_ndiv are set with period price factor, ordinary amount, and non-ordinary amount
Call Sequence: Assumes exdt, distcd order

CHAPTER 2: ACCESSING DATA IN C

95

Chapter 2: Accessing Data in C

crsp_stk_ret_append_ts Appends Return to the End of the Returns Time Series

Prototype: int crsp_stk_ret_append_ts (CRSP_TIMESERIES *ret_ts, float ret, int date)

Description: appends return to the end of the returns time series

Arguments: CRSP_TIMESERIES *ret_ts – pointer to return time series
float ret – return to be appended to the end of return time series
int date – date (YYYYMMDD) that the return is associated with

Return Values: CRSP_SUCCESS: if return successfully appended
CRSP_FAIL: if date does not follow existing returns range

Side Effects: The return is added to the returns time series on date. All periods between the previous end of returns and the date are
loaded with missing values.

Preconditions: ret_ts must be previously opened. Date must be at least as large as the last day when the return is not missing

crsp_stk_ret_append_dlret Appends Delisting Returns to the Returns Time Series

Prototype: int crsp_stk_ret_append_dlret (CRSP_STK_STRUCT *stk, CRSP_STK_DLSTCD_LIST *list)

Description: appends delisting returns to the returns time series

Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure
CRSP_STK_DLSTCD_LIST *list – user linked list of values to use as approximations for missing delisting returns of
specified delist code ranges or exchanges.

Return Values: CRSP_SUCCESS: if delist return successfully added
CRSP_FAIL: if needed data not available or error in parameters

Side Effects: The delisting return is appended to the end of the returns time series and the delisting return without dividends is appended
to returns without dividends time series. If the delisting returns are missing or contain partial month returns, the value can
be adjusted from a user list of values. If the security matches the exchange code and delist code from the list and the
delisting return is missing, the value from the list is used. If the security matches and the delisting return is a partial month
return, the value from the list is compounded with the partial month return.

Preconditions: The stock set must be previously loaded with events and returns arrays. The list can be loaded from a user file with the
crsp_stk_delret_params function.

crsp_stk_delret_params Parses a Delisting Parameter File

Prototype: int crsp_stk_dlret_params (CRSP_STK_DLSTCD_LIST **itemlist, char *filename)

Description: Parses a delisting parameter file with information on user replacement values for missing delisting returns based on
exchange or delist code. Each different exchange or delist code is represented in this file with a space delimited line with
six fields. The fields are beg delisting code, end delisting code, beg exchange code, end exchange code, delisting return,
and delisting return without dividends.

Arguments: CRSP_STK_DLSTCD_LIST **itemlist – pointer to linked list that will be loaded in with replacement delisting
returns information.
char *filename – pointer to string containing path of delist returns parameter file.

Return Values: CRSP_SUCCESS: if list is created successfully
CRSP_FAIL: if an error in parsing arguments opening or reading file, or space allocation

Side Effects: *filename is opened for read, loaded, and then closed.
Itemlist now points to a loaded linked list with delist parameters loaded.

Preconditions: Itemlist should be set to NULL before starting. Filename must exist with read access in the format described above.

96

PROGRAMMERS GUIDE

crsp_ret_map_payments Maps Adjustment Factors and Payments to a Time Series

Prototype: int crsp_ret_map_payments(CRSP_STK_STRUCT *stk, CRSP_TIMESERIES *fp_ts,
CRSP_TIMESERIES *odiv_ts, CRSP_TIMESERIES *ndiv_ts)

Description: calculates payments over range based on distribution events array

Arguments: CRSP_STK_STRUCT *stk – stock structure with events loaded
CRSP_TIMESERIES *fp_ts – target ts of factor of adjust prices
CRSP_TIMESERIES *odiv_ts – target ts of total ordinary dividend amount
CRSP_TIMESERIES *ndiv_ts – target ts of total dividend amount
It is assumed that at least one of the three target is not NULL and if more than one target exist then they have the same
calendar

Return Values: CRSP_SUCCESS: (integer) if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

CHAPTER 2: ACCESSING DATA IN C

97

Chapter 2: Accessing Data in C

Shares Outstanding Functions

Function Description Page

crsp_shr_imp Converts Raw Shares to Imputed Shares to a CRSP Array Page 97

crsp_shr_reimp Converts Raw Shares to Imputed Shares in Place Page 97

crsp_shr_num Returns Shares Outstanding on a Given Date Page 98
crsp_shr_map Maps The Imputed Shares Array to a Time Series Page 98
crsp_shr_raw Converts Imputed Shares to Raw Shares Page 99

crsp_shr_imp Converts Raw Shares to Imputed Shares

Prototype: int crsp_shr_imp (CRSP_STK_STRUCT *stk, CRSP_ARRAY *impshrs,int uniqflag, int
skipflag, int firstflag)
general imputed CRSP stock shares function: given a standard stock structure with header and events structures, a pre-
initialized CRSP_ARRAY is loaded with shares observations, including those imputed from distribution events.
CRSPAccess stock databases are delivered with imputed shares already loaded.

Description: There are two options: the first is a flag that supports collapsing duplicate events so there is only one share observation on a
given date; the second supports screening of certain types of distributions such as rights from affecting the shares
outstanding results. This only uses ex-date of distributions.

Arguments: CRSP_STK_STRUCT *stk – source data must have EVENTS loaded
CRSP_ARRAY *impshrs – array that will be loaded. It must exist with enough space to store completed array of share
events
int uniqflag – flag for dates with multiple observations 0 – collapse structure so only the last observation on a date is
left in the structure. Raw shares observations take precedence over derived ones 1 – allow multiple shares events on the
same day. The last will be used by crsp_shr_map
int skipflag – flag for skipping certain types of dists 1 – ignore facshr from rights 0 – use all facshrs
int firstflag – flag for creating a dummy first observation 0 – do not create a dummy first observation 1 – copy first
share structure up to begdt if available.

Return Values: CRSP_SUCCESS: if shares array successfully loaded,
CRSP_FAIL: if error in parameters or structures

Side Effects: The impshrs array is loaded with imputed shares structures and num is set to the number of shares observations found.
shrflg is set with the following conventions: > 0 distribution event # (index-1 into dists array of facshr) 0 raw
shares observation -1 implied 1st shrs observation (if dist with facshr precedes all raw shares observations, the first
shrflg is –1 and the second > 0. -2 implied leading shares observation, where second is copied forward and shrsdt set
to begdt. A value of 2 indicates an observation generated from a name change event. The shares outstanding for
effective observation on the date of the name change is copied to the new observation and the observation is marked with a
share flag of 2.

Preconditions: The impshrs array must have arrtype CRP_STK_SHARE_NUM and subtype STK_SHARES_IMP

98

PROGRAMMERS GUIDE

crsp_shr_reimp Converts Raw Shares to Imputed Shares in Place

Prototype: int crsp_shr_imp (CRSP_STK_STRUCT *stk, int skipflag)

Description: This function is similar to CRSP_SHR_IMP, but converts raw shares array to imputed shares in place instead of to a
CRSP_ARRAY as the CRSP_SHR_IMP does. Stock structure must loaded with header and events structures.

Arguments: CRSP_STK_STRUCT *stk – source data must have EVENTS loaded
int skipflag – flag for skipping certain types of distributions
0: ignore facshr from rights
1: use all factors to adjust shares
2:The shares outstanding for effective observation on the date of the name change is copied to the new observation

Return Values: CRSP_SUCCESS: if shares array successfully loaded,
CRSP_FAIL: if error in parameters or structures

Side Effects: The shares array is loaded with imputed shares structures and num is set to the number of shares observations found.
shrflg is set to one digit number with the following conventions:

0: raw shares observation
1: shares observation implied by distribution events
2: shares observation implied by names change events.

Preconditions: Shares must be loaded. The subflag of shares_arr must reflect whether raw (CRSP_SHARES_RAW_NUM=20) or
imputed (CRSP_SHARES_IMP_NUM=0) shares are currently loaded.

crsp_shr_num Returns Shares Outstanding on a Given Date

Prototype: int crsp_shr_num (CRSP_STK_STRUCT *stk, int date, int skipflag, CRSP_STK_SHARE
*share)

Description: returns the shares outstanding on a given date. There is an optional parameter that can return the actual observation date of
the shares outstanding result. Uses crsp_shr_imp to build a static array of imputed shares. If the PERMNO is the
same, the array is not rebuilt.

Arguments: CRSP_STK_STRUCT *stk – source data must have EVENTS and HEADER loaded
int date – yymmdd or yyyymmdd date to find shares out
int skipflag – flag for skipping certain types of dists 1 – ignore facshr from rights 0 – use all facshrs
CRSP_STK_SHARE *shares_obs – shares info of actual observation used if set to NULL will not be loaded

Return Values: CRSP_SUCCESS: number of shares outstanding effective on date, 0 if no shares structures or date out of data range
CRSP_FAIL: if error in parameters or structures

Side Effects: If the fourth parameter is passed, it is loaded with the information from the effective shares event.

crsp_shr_map Maps The Imputed Shares Array to a Time Series

Prototype: int crsp_shr_map (CRSP_STK_STRUCT *stk, CRSP_TIMESERIES *shr_ts, int begind, int
endind, int skipflag)

Description: maps the imputed shares to a time series. Uses crsp_shr_imp to load an imputed shares events array if necessary,
then maps the observations by finding the effective shares outstanding for each date in the calendar.

Arguments: CRSP_STK_STRUCT *stk – stock structure loaded with HEADER and EVENTS
CRSP_TIMESERIES *shr_ts – pre-initialized time series that will be loaded. Must have array allocated at least up to
endind and calendar set.
int begind, endind – range of indexes into calendar that will be loaded to shrs
int skipflag – flag for skipping certain types of dists 1 – ignore facshr from rights 0 – use facshr loaded with
shares

Return Values: CRSP_SUCCESS: (integer) if shares successfully loaded
CRSP_FAIL: if error in parameters or structures

Side Effects: shrs time series is loaded. arr is filled with shares outstanding values and beg and end are set. If there are no
shares, structures beg and end are set to 0; otherwise they inherit parameters begind and endind.

Preconditions: The shr_ts time series must have arrtype CRSP_INTEGER_NUM and subtype CRSP_SHARES_IMP_NUM

CHAPTER 2: ACCESSING DATA IN C

99

Chapter 2: Accessing Data in C

crsp_shr_raw Converts Imputed Shares Into Raw Shares Observations

Prototype: int crsp_shr_raw (CRSP_ARRAY *shr_arr)

Description: converts imputed shares outstanding events in raw shares. Imputed shares are observations directly derived from CRSP
distribution events. These are removed from the shares outstanding observation array.

Arguments: CRSP_ARRAY *shr_arr – CRSP_ARRAY of imputed shares already loaded
Return Values: CRSP_SUCCESS: if shares successfully modified

CRSP_FAIL: if error in parameters or structures
Side Effects: Imputed shares array is converted to raw shares, from subtype STK_SHARES_IMP to STK_SHARES_RAW

100

PROGRAMMERS GUIDE

stk_print Output Functions

These output functions are used to output specific stock data. Some functions expect values set in the STKFLAGS
structure, defined in the crsp_stk_flags.h header file. C printf format statements are defined in the
crsp_stk_format.h header file. The output functions are used by the stk_print utility and are currently not written
for general output functionality.

Function Description Page

crsp_stkwrt_dx Writes Daily Data Information with Shares Page 100
crsp_stkwrt_dr Writes Return Information Page 100
crsp_stkwrt_r Writes Return Arrays Page 101
crsp_stkwrt_dd Writes Daily Data In Formatted Output Page 101
crsp_stkwrt_ds Writes Daily Data Info with Index Levels Page 101
crsp_stkwrt_nms Writes NASDAQ National Market Data in Formatted Output Page 102
crsp_stkwrt_sh Writes a Share Structure into a File Page 102
crsp_stkwrt_hdr1 Writes a Stock Header Structure without a Date Range Page 102
crsp_stkwrt_hdr Writes a Stock Header Structure with Date Ranges Page 102
crsp_stkwrt_name Writes a Stock Name Structure Page 103
crsp_stkwrt_di Writes a Distribution Structure Page 103
crsp_stkwrt_de Writes Delisting Information Page 103
crsp_stkwrt_ni Writes NASDAQ Information Page 103
crsp_stkwrt_it Writes A CRSPDB Record Page 104
crsp_stkwrt_dtrstr Sets Up Date Limits for Different Kinds of Stock Data Page 104
crsp_stkwrt_portf Writes Formatted Output for Portfolios Page 104
crsp_stkwrt_pdate Finds the Earliest and the Latest Dates for Available Data Page 104
crsp_stkwrt_popts Writes a Single Time Series Array Page 105

crsp_stkwrt_dx Writes Daily Data Information With Shares

Prototype: int crsp_stkwrt_dx (FILE *file, CRSP_STK_STRUCT *dd, CRSP_TIMESERIES *sh_ts, int
format, int beg, int end)

Description: writes daily data information with shares into the file pointer passed as an argument, using given format

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to stock structure
CRSP_TIMESERIES *sh_ts – pointer to time series structure
int format – wanted format
int beg – wanted beginning date of data
int end – wanted ending date of data

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates or type of calendar

Side Effects: none

crsp_stkwrt_dr Writes Return Information

Prototype: int crsp_stkwrt_dr (FILE *file, CRSP_STK_STRUCT *dd, int format, int beg, int end)

Description: writes return information from daily data structure into the file. File pointer passed as an argument, using given format.

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to stock structure
int format – wanted format for output
int beg – wanted beginning date of data
int end – wanted ending date of data

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates or type of calendar

Side Effects: none

CHAPTER 2: ACCESSING DATA IN C

101

Chapter 2: Accessing Data in C

crsp_stkwrt_r Writes Return Arrays

Prototype: int crsp_stkwrt_r (FILE *file, CRSP_STK_STRUCT *dd, int format, int beg, int end)

Description: writes returns array into file pointer passed as an argument, using given format

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to stock data structure
int format – wanted format for output data
int beg – wanted beginning date for output data
int end – wanted ending date for output data

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates or type of calendar

Side Effects: none

crsp_stkwrt_dd Writes Daily Data In Formatted Output

Prototype: int crsp_stkwrt_dd (FILE *file, CRSP_STK_STRUCT *dd, int format, int beg,int end)

Description: writes daily data in formatted output

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to the whole stock structure
int format – wanted format for output
int beg – wanted beginning date of output data
int end – wanted ending date of output data

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates or type of calendar or array

Side Effects: none

crsp_stkwrt_ds Writes Daily Data with Index Levels

Prototype: int crsp_stkwrt_ds (FILE *file, CRSP_STK_STRUCT *dd, int format, int beg, int end,
float baseamt, int basedt)

Description: writes daily data info with index levels into the file pointer passed as an argument, using given format

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to stock structure
int format – wanted format
int beg – wanted beginning date of data
int end – wanted ending date of data
float baseamt – base value
int basedt – base date

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates or type of calendar

Side Effects: none

102

PROGRAMMERS GUIDE

crsp_stkwrt_nms Writes NASDAQ National Market Data in Formatted Output

Prototype: int crsp_stkwrt_nms (FILE *file, CRSP_STK_STRUCT *dd, int format, int beg,int end)

Description: writes nms data in formatted output

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to the whole stock structure
int format – wanted format for output
int beg – wanted beginning date of output data
int end – wanted ending date of output data

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates or type of calendar or array

Side Effects: none

crsp_stkwrt_sh Writes a Share Structure into a File

Prototype: int crsp_stkwrt_sh (FILE *file, CRSP_STK_SHARE *sh, int format)

Description: writes share structure into file pointer passed as an argument, using given format

Arguments: FILE *file – pointer to output file
CRSP_STK_SHARE *sh – pointer to share structure
int format – wanted format for output data

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

crsp_stkwrt_hdr1 Writes a Stock Header Structure without a Date Range

Prototype: int crsp_stkwrt_hdr1 (FILE *file, CRSP_CAL_DATERANGE *r, CRSP_STK_STRUCT *h, int
format)

Description: writes stock header structure without date range to given stream

Arguments: FILE *file – pointer to output file
CRSP_CAL_DATERANGE *r – pointer to calendar dates range structure
CRSP_STK_STRUCT *h – pointer to stock structure
int format – wanted format for output

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

crsp_stkwrt_hdr Writes a Stock Header Structure With Date Ranges

Prototype: int crsp_stkwrt_hdr (FILE *file, CRSP_CAL_DATERANGE *r, CRSP_STK_STRUCT *h, int
format)

Description: writes stock header structure with date ranges to given format

Arguments: FILE *file – pointer to output file
CRSP_CAL_DATERANGE *r – pointer to calendar dates range structure
CRSP_STK_STRUCT *h – pointer to stock structure
int format – wanted format for output

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

CHAPTER 2: ACCESSING DATA IN C

103

Chapter 2: Accessing Data in C

crsp_stkwrt_name Writes a Stock Name Structure

Prototype: int crsp_stkwrt_name (FILE *file, CRSP_STK_NAME *n, int format)

Description: writes stock name structure into file pointer passed as an argument, in given format

Arguments: FILE *file – pointer to output file
CRSP_STK_NAME *n – pointer to stock name structure
int format – wanted format for output

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

crsp_stkwrt_di Writes a Distribution Structure

Prototype: int crsp_stkwrt_di (FILE *file, CRSP_STK_DIST *di, int format)

Description: writes distribution structure into the file pointer passed as an argument, using the given format

Arguments: FILE *file – pointer to output file
CRSP_STK_DIST *di – pointer to distribution structure
int format – wanted format for output

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

crsp_stkwrt_de Writes Delisting Information

Prototype: int crsp_stkwrt_de (FILE *file, CRSP_STK_DELIST *de, int format)

Description: writes delisting information into the file pointer passed as an argument, using the given format

Arguments: FILE *file – pointer to output file
CRSP_STK_DELIST *de – pointer to stock delisting structure
int format – wanted format for output

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

crsp_stkwrt_ni Writes NASDAQ Information

Prototype: int crsp_stkwrt_ni (FILE *file, CRSP_STK_NASDIN *n, int format)

Description: writes NASDAQ info into file pointer passed as argument, using given format

Arguments: FILE *file – pointer to output file
CRSP_STK_NASDIN *n – pointer to NASDAQ structure to print
int format – wanted format for output

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

104

PROGRAMMERS GUIDE

crsp_stkwrt_it Writes A CRSPDB Record

Prototype: int crsp_stkwrt_it (CRSP_STK_STRUCT *r, struct STKFLAGS *flags)

Description: writes a dbstruct database record according to flags given. The record is modified for writing.

Arguments: CRSP_STK_STRUCT *r – pointer to the whole stock structure
struct STKFLAGS *flags – pointer to STKFLAGS structure

Return Values: CRSP_SUCCESS: if data has been printed according to flags
CRSP_FAIL: if an error occurred during writing data

Side Effects: none
Preconditions: There should be no fprintfs in this function. The output should be done in the called functions

crsp_stkwrt_dtrstr Sets Up Date Limits For Different Kinds of Stock Data

Prototype: void crsp_stkwrt_dtrstr (CRSP_STK_STRUCT *r, struct STKFLAGS *f)

Description: sets up date limits for different kinds of stock data according to dates/indices in STKFLAGS structure

Arguments: CRSP_STK_STRUCT *r – pointer to stock structure
struct STKFLAGS *f – pointer to STKFLAGS structure

Return Values: none
Side Effects: beginning and ending dates in some stock structures are set

crsp_stkwrt_portf Writes Formatted Output for Portfolios

Prototype: int crsp_stkwrt_portf (FILE *file, CRSP_STK_STRUCT *stk, OPT_PORTFSTRUCT
*portlist, struct STKFLAGS *flags)

Description: writes formatted output for portfolios

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *stk – pointer to stock structure
OPT_PORTFSTRUCT *portlist – pointer to linked list of desired portfolio structures
struct_STKFLAGS *flags – pointer to STKFLAGS structure

Return Values: CRSP_SUCCESS: if everything is ok
CRSP_FAIL: if an error in format occurs

Side Effects: none

crsp_stkwrt_pdate Finds the Earliest and the Latest Dates for Available Data

Prototype: int crsp_stkwrt_pdate (CRSP_STK_STRUCT *stkptr, struct STKFLAGS *flags, int
*start, int *finish)

Description: finds the earliest and the latest dates for available data, compares them to flags.begin_date and flags.end_date
and sets up the limits accordingly

Arguments: CRSP_STK_STRUCT *stkptr – pointer to stock structure
struct STKFLAGS *flags – pointer to STKFLAGS structure
int *start, *finish – values have to be set

Return Values: CRSP_SUCCESS: (integer) no errors
CRSP_FAIL: (integer) wrong parameters sent

Side Effects: none

CHAPTER 2: ACCESSING DATA IN C

105

Chapter 2: Accessing Data in C

crsp_stkwrt_popts Writes a Single Time Series Array

Prototype: int crsp_stkwrt_popts (FILE *file, CRSP_STK_STRUCT *dd, int format, int beg, int
end, struct STKFLAGS *flags)

Description: writes a single time series array into file pointer passed as an argument, using given format

Arguments: FILE *file – pointer to output file
CRSP_STK_STRUCT *dd – pointer to stock structure
int format – wanted format for output
int beg – wanted beginning date for output data
int end – wanted ending date for output data
struct_STKFLAGS *flags – pointer to STKFLAGS structure

Return Values: CRSP_SUCCESS: if data has been printed ok
CRSP_FAIL: if error in format or dates

Side Effects: none

106

PROGRAMMERS GUIDE

Subset Functions

These functions are used to perform subsetting of stock data based on exchange, share type, NASDAQ market listing,
or when-issued status.

Function Description Page

crsp_stk_subset_all calls the indicated restriction functions Page 106
crsp_stk_subset_exch restricts a stock structure by exchange Page 107
crsp_stk_subset_shrcd restricts a stock structure by share code Page 108
crsp_stk_subset_range restricts a stock structure by date range Page 109
crsp_stk_subset_nmsind restricts a stock structure by NASDAQ National Market status Page 110
crsp_stk_subset_wi restricts a stock structure by when-issued status Page 111
crsp_stk_subset_freq maps data with a new frequency into a new stock structure Page 112
crsp_stk_subset_parload loads a structure of subset parameters (a CRSP_UNIV_PARAM_LOAD structure)

used by other subset functions
Page 113

crsp_stk_gen_sum_nasdin summarizes NASDAQ market maker count Page 113

crsp_stk_subset_all Calls the Indicated Restriction Functions

Prototype: int crsp_stk_subset_all (CRSP_STK_STRUCT *stk, int crspnum, int setid,
CRSP_UNIV_PARAM_LOAD *subpar, char *stat)

Description: Calls other stock restriction functions based on a parameter structure loaded with desired subsetting options.
Arguments: CRSP_STK_STRUCT *stk – stock structure to restrict

int crspnum – database handle returned by crsp_stk_open.

int setid – set identifier used in call to open and read the stock structure.

CRSP_UNIV_PARAM_LOAD *subpar – pointer to structure containing restriction parameters. See
crsp_stk_subset_parload for details of this structure.

char *stat – pointer to location to store two-letter code indicating the return status of the restriction. The codes are:

DR if restricted or eliminated because of date restriction

EX if restricted or eliminated because of exchange restriction

SH if restricted or eliminated because of share code restriction

NM if restricted or eliminated because of NMS code restriction

W1 if restricted or eliminated because of when-issued type 1 restriction

W2 if restricted or eliminated because of when-issued type 2 restriction

W3 if restricted or eliminated because of when-issued type 3 restriction

OK if return 1 and no header variables changed

O# if return 1 and header variables have changed
Return Values: 1: if stock structure successfully restricted and valid data remains

0: if success but issue is totally erased by some restriction
CRSP_FAIL: if error in parameters or processing

Side Effects: The stk structure is modified if partially restricted by one of the subset functions. Price time series data may be loaded if
needed to identify ranges of data to delete. The stat character string will be set to a string based on the changes made to
the security data.

Preconditions: The subpar structure must be loaded with the parameters specifying the restrictions to make. The stk structure must be
opened with at least header, events, and price modules, and header and events modules must be loaded. The stat pointer
must point to at least three bytes of allocated memory.

CHAPTER 2: ACCESSING DATA IN C

107

Chapter 2: Accessing Data in C

crsp_stk_subset_exch Restricts Stock Data by Exchange Code

Prototype: int crsp_stk_subset_exch (CRSP_STK_STRUCT *stk, int crspnum, int setid,
int nameflag, int shareflag, int wantexch, int subflag)

Description: Restricts stock data based on exchange code.

This function uses the Exchange Code in the name structures to decide which exchange the issue is listed on, at what time.
The wanted exchanges are specified with a binary code: 1=NYSE, 2=AMEX, 4=NASDAQ. When-issued time periods with
3 prefixes are treated as the base exchange for purposes of this function. Suspends and halts are treated as the previous
exchange. Wanted exchange is the exchange(s) that data will be restricted to.

This restricts by delist date before using the names. It moves price data back to the last delist structure if prices exist after
delist. It moves delist date back to prices if prices end before delisting. It adjusts delistings – it creates a 500 delist if there
is any invalid name after the last valid name and before the old delist date.

Arguments: CRSP_STK_STRUCT *stk – stock structure to restrict

int crspnum – database handle returned by crsp_stk_open.

int setid – set identifier used in call to open and read the stock structure.

int nameflag – code that determines how name records are handled in the restricted structure.

0 = keep all name structures

1 = delete name structures out of range

int shareflag – code that determines how shares outstanding observations out of range are handled:

0 = keep no shares observations out of range

1 = keep shares out of range that are applicable to the range

2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure
precedes the range, and the range begins with the first name structure for the issue with a valid exchange

int wantexch – code of exchanges to keep. The values below can be added together to select multiple exchanges.

1 = NYSE

2 = AMEX

4 = NASDAQ

int subflag – subset flag

0 = subset data during range

1 = if ever not valid, delete entire issue

2 = if ever valid make no restrictions
Return Values: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains

CRSP_NOT_FOUND: if excluded because never on valid exchanges
CRSP_FAIL: if error in parameters or processing

Side Effects: The stk structure is modified according to flags if partially restricted. Price time series data may be loaded if needed to
identify ranges of data to delete.

Preconditions: The stk structure must be opened with at least header, events, and price modules, and header and events modules must be
loaded.

108

PROGRAMMERS GUIDE

crsp_stk_subset_shrcd Restricts Stock Data by Share Code

Prototype: int crsp_stk_subset_shrcd (CRSP_STK_STRUCT *stk, CRSP_UNIV_SHRCD *scs,
int nameflag, int shareflag, int subflag)

Description: Restricts stock data based on share code.

This function uses the shrcd in the name structures to decide the issue’s share code over time. The share code is a two-
digit number where each digit separately contains information classifying the type of share. The function allows
specification of one or more valid first digits and one or more valid second digits in deciding which share codes are valid.

This function adjusts delistings – it creates a 500 delist if there is any invalid name after the last valid name and before the
old delist date.

Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict

CRSP_UNIV_SHRCD *scs – pointer to share code restriction structure. There are two required fields in the structure
that must be set to define the restriction. The fields are:

fstdig – bit map of valid first digits of share code. If the n’th bit of fstdig is a 1, the share code n* is considered
valid. Bit positions used in the bit map are the right-most 10 bits, numbered left to right, beginning at 0.

secdig – bit map of valid second digits of share code. If the n’th bit of secdig is a 1, the share code *n is considered
valid. Bit positions used in the bit map are the right-most 10 bits, numbered left to right, beginning at 0.

int nameflag – code that determines how name records are handled in the restricted structure.

0 = keep all name structures
1 = delete name structures out of range

int shareflag – code that determines how shares outstanding observations out of range are handled:

0 = keep no shares observations out of range

1 = keep shares out of range that are applicable to the range

2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure
precedes the range, and the range begins with the first valid exchcd name structure for the issue

int subflag – subset flag

0 = subset data during range
1 = if ever not valid, delete entire issue
2 = if ever valid make no restrictions

Return Values: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never had valid share code
CRSP_FAIL: if error in parameters or processing

Side Effects: The stk structure is modified according to flags if partially restricted.
Preconditions: The stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

CHAPTER 2: ACCESSING DATA IN C

109

Chapter 2: Accessing Data in C

crsp_stk_subset_range Restricts Stock Data by Date Range

Prototype: int crsp_stk_subset_range (CRSP_STK_STRUCT *stk, int begdata, int enddata,
int nameflag, int shareflag)

Description: Restricts stock data based on date ranges.
Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict

int begdata – beginning date in YYYYMMDD format of restricted data.

int enddata – ending date in YYYYMMDD format of restricted data.

int nameflag – code that determines how name records are handled in the restricted structure:

0 = keep all name structures
1 = delete name structures out of range

int shareflag – code that determines how shares outstanding observations out of range are handled:

0 = keep no shares observations out of range
1 = keep shares out of range that are applicable to the range
2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure
precedes the range, and the range begins with the first valid exchcd name structure for the issue

Return Values: CRSP_SUCCESS: if included and stock structure successfully restricted
CRSP_NOT_FOUND: if excluded because never had data within range
CRSP_FAIL: if error in parameters or processing

Side Effects: The stk structure is modified according to flags if partially restricted.
Preconditions: The stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

110

PROGRAMMERS GUIDE

crsp_stk_subset_nmsind Restricts Stock Data by NASDAQ Market

Prototype: int crsp_stk_subset_nmsind (CRSP_STK_STRUCT *stk, int crspnum, int setid,
int nmsflag, int shareflag, int subflag)

Description: Restricts stock data based on NASDAQ market listing.

This function uses Exchange Code and NASDAQ National Market Indicator to decide whether the issue is listed on
NASDAQ, and if so, which NASDAQ market it is listed on. Only NASDAQ issues are affected by this function.

The NASDAQ National Market and SmallCap designations were introduced in 1992. The NASDAQ National Market,
originally called the National Market System, was introduced in 1984. Before June 15, 1992, issues not listed on the
National Market System were not required to report trades.

Arguments: CRSP_STK_STRUCT *stk – stock structure to restrict.

int crspnum – database handle returned by crsp_stk_open.

int setid – set identifier used in call to open and read the stock structure.

int nmsflag – code used to specify valid NASDAQ markets:

1 = erase data if nmsind is not 2 (keep National Market only)
2 = erase data if nmsind is 2 (keep SmallCap only)
3 = erase data if nmsind is not 2 and not 3 (keep National Market and SmallCap with closes only)
4 = erase data if nmsind is 2 or 3 (keep SmallCap without closes only)

int shareflag – code that determines how shares outstanding observations out of range are handled:

0 = keep no shares observations out of range

1 = keep shares out of range that are applicable to the range

2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure
precedes the range, and the range begins with the first valid exchcd name structure for the issue

int subflag – subset flag

0 = subset data during range
1 = if ever not valid, delete entire issue
2 = if ever valid make no restrictions

Return Values: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never on valid exchanges
CRSP_FAIL: if error in parameters or processing

Side Effects: The stk structure is modified according to flags if partially restricted. Price time series data may be loaded if needed to
identify ranges of data to delete.

Preconditions: The stk structure must be opened with at least header, events, and price modules, and header and events modules must be
loaded.

CHAPTER 2: ACCESSING DATA IN C

111

Chapter 2: Accessing Data in C

crsp_stk_subset_wi Restricts Stock Data by When-Issued Status

Prototype: int crsp_stk_subset_wi (CRSP_STK_STRUCT *stk, int wiflag, int shareflag)
Description: Restricts stock data based on when-issued status of an issue.

CRSP classifies when-issued trading into three categories:

Type 1 = when-issued trading for new issues before regular-way trading.

Type 2 = ex-distribution – simultaneous trading of post-distribution shares before the distribution is official.

Type 3 = when-issued trading during a reorganization or bankruptcy proceedings when the market expects the security to
return to regular status.

On type 3 cases, names are not erased, but modified. NASDAQ 5th character V's are dropped and the exchange code has
30 subtracted. They cannot be dropped because they are usually accompanied by a CUSIP change. Only type 3 cases are
present on CRSP subscriber files.

Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict

int wiflag – code that determines which restrictions are made. Possible codes are:

1 = ignore type 1 when-issued cases, erase range, erase name structures
2 = ignore type 1 when-issued cases, erase range, keep name structures
3 = ignore type 2 when-issued cases, delete entire issue
4 = ignore type 3 when-issued cases, erase range, keep name structures
5 = ignore type 3 when-issued cases, keep range, erase name structure
6 = ignore type 3 when-issued cases, erase range, erase name structure

int shareflag – code that determines how shares outstanding observations out of range are handled:

0 = keep no shares observations out of range,
1 = keep shares out of range that are applicable to the range

Return Values: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never had valid data within range
CRSP_FAIL: if error in parameters or processing

Side Effects: The stk structure is modified according to flags if partially restricted.
Preconditions: The stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

112

PROGRAMMERS GUIDE

crsp_stk_subset_freq Converts Stock Data to a Different Time Series Frequency

Prototype: int crsp_stk_subset_freq (CRSP_STK_STRUCT *dstk, CRSP_STK_STRUCT *mstk,
CRSP_UNIV_SUM *summ)

Description: Copies stock data for one security into a new structure with converted time series calendar frequencies. The rules used are
based on an input structure of summary specifications. Event data are copied as is.

Arguments: CRSP_STK_STRUCT *dstk – pointer to input stock structure

CRSP_STK_STRUCT *mstk – pointer to output stock structure

CRSP_UNIV_SUM *summ – pointer to structure with summary rules for conversion. The following fields in the
summary structure are used:

sum_prc – specifications for loading Closing Price or Bid/Ask Average

0 = last price or bid/ask average of source in period
1 = average price or bid/ask average of source over period
2 = median price or bid/ask average of source over period.
3 = no prices are loaded
4 = nonmissing price or bid/ask average on the day closest to the last date of the period, within the range of the target

period.

sum_sp – specifications for loading Bid or Low and Ask or High

0 = last bid or low and last ask or high

1 = lowest bid or low and highest ask or high

2 = lowest price or bid/ask average and highest price or bid/ask average

3 = no bid or low or ask or high data

sum_vol – specifications for loading Volume

0 = last volume in period

1 = sum of all volumes in period divided by the sum_volume factor constant.

2 = average of volumes in period

3 = median of volumes in period
4 = no volumes

sum_ret – specifications for loading returns

0 = no returns loaded

1 = compound Total Returns in period

2 = compound Total Returns and Returns without Dividends in period

sum_spread – specifications for loading spread or other secondary time series

0 = spread on last day of period, calculated from bid and ask prices if last date has no trading price

1 = load no spread, alternate price, bid, or ask time series

2 = set Spread, Bid, and Ask based on last day of period, Number of Trades to total number of trades in period, and
Price Alternate to last nonmissing price or bid-ask average in period

3 = set Price Alternate to last nonmissing price in period, and Number of Trades to the Price Alternate Date.

4 = set Bid and Ask to the last value in the period, and set the Number of Trades to the sum of trades in the period.
Return Values: number of periods in the resultant price time series for the converted security

CRSP_FAIL: if error in parameters or processing
Side Effects: The mstk structure is loaded with converted data.
Preconditions: The dstk and mstk structures must be opened with at least header, events, and prices modules, and at least header,

events, and prices modules must be loaded in the input stock structure. The summary structure must be loaded with valid
specifications. If adjusted results are desired, the input stock structure must be adjusted before calling this function.

CHAPTER 2: ACCESSING DATA IN C

113

Chapter 2: Accessing Data in C

CRSPAccess C Stock General Data Utility Functions
These functions are used to make general data summaries of stock data.

crsp_stk_subset_parload Loads Subsetting Parameters from a File

Prototype: int crsp_stk_subset_parload (CRSP_UNIV_PARAM_LOAD *subpar, char *parfile)
Description: Loads a subsetting parameter structure from an input file containing subsetting options. See below for the available options

and format of the input file.
Arguments: CRSP_UNIV_PARAM_LOAD *subpar – pointer to subset parameter structure to be loaded.

char *parfile – pointer to string containing the path of the parameter input file. The input file must contain text with
one or more rows of specifications. Each row must contain one parameter keyword and a corresponding value, separated
by spaces. The keywords and usage are:

(see Parameter Options Specifications for crsp_stk_subset utility program, page 117 in the Utilities Guide, for
description of Parameter options file)

Return Values: CRSP_SUCCESS: if parameters successfully loaded
CRSP_FAIL: if error in parameters or processing

Side Effects: The subpar structure is loaded with parameter data. The input file is opened, loaded, and closed.
Preconditions: The input file must exist in the proper format. The subpar pointer must point to an allocated

CRSP_UNIV_PARAM_LOAD structure.

Function Description Page

crsp_stk_gen_sum_nasdin Summarizes NASDAQ Information Events Page 113
crsp_stk_gen_hdr_fromnam Resets Header Identification Information Page 113

crsp_stk_gen_sum_nasdin Summarizes NASDAQ Information Events

Prototype: int crsp_stk_gen_sum_nasdin (CRSP_ARRAY *nasdin_arr, int pct)

Description: Summarizes NASDAQ Information histories by eliminating events when the only change is the number of market makers
and the change is smaller than a certain amount. The limit of change is passed as an integer percentage.

Arguments: CRSP_ARRAY *nasdin_arr – pointer to NASDAQ Information array to restrict.

int pct – minimum percentage change in Market Maker Count compared to previous before observation is kept.
Return Values: CRSP_SUCCESS: if array successfully summarized

CRSP_FAIL: if error in parameters
Side Effects: The nasdin_arr structure is modified according to the percentage parameter. The kept rows are shifted up and the num

counter is adjusted to reflect the remaining number of observations.
Preconditions: The nasdin_arr array must be allocated with arrtype = 55 and loaded data.

crsp_stk_gen_hdr_fromnam Resets Header Identification Information

Prototype: int crsp_stk_gen_hdr_fromnam (CRSP_STK_STRUCT *stk)

Description: Resets header identification information in a stock structure using the names array.
Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure to modify
Return Values: CRSP_SUCCESS: if stock structure successfully summarized

CRSP_FAIL: if error in parameters or structure not loaded
Side Effects: The stock structure header structure is modified by the names array
Preconditions: The stock structure must be allocated, opened with at least headers and events, and loaded with at least headers and events.

114

PROGRAMMERS GUIDE

CRSPAccess C Stock Delete Range Data Utility Functions

These functions are used to delete ranges of stock data.

Function Description Page

crsp_stk_delrng_all Delete ranges of data from stock structure Page 114
crsp_stk_delrng_names Delete ranges of data from names array Page 115
crsp_stk_delrng_dists Delete ranges of data from distribution array Page 115
crsp_stk_delrng_nasdin Delete ranges of data from NASDAQ Information array Page 116
crsp_stk_delrng_groups Delete ranges of data from groups array Page 116
crsp_stk_delrng_delists Delete ranges of data from delisting array Page 115
crsp_stk_delrng_shares Delete ranges of data from shares array Page 116
crsp_stk_delrng_resetdt Reset the header beginning and ending dates Page 117

crsp_stk_delrng_all Deletes Ranges of Stock Data

Prototype: int crsp_stk_delrng_all (CRSP_STK_STRUCT *stk, int beg_date, int end_date, int
data_beg, int namflg, int shrflg, int ndiflg)

Description: Deletes ranges of data from a stock structure by calling other delete range functions.

Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

int data_beg – first date of prices before restriction, in YYYYMMDD format

int namflg – code to determine how name history is modified by restrictions

0 = names events are not deleted

1 = names events are to be deleted, and data exists after the last name

2 = names events are to be deleted, and data does not exist after the last name

int shrflg – code to determine how shares observations are modified by restrictions

0 = delete any shares observations in the range

1 = keep any shares observations in the range that apply outside the range

int ndiflg – code to determine how the NASDAQ Information history is modified by restrictions

0 = no NASDAQ Information event deletions

1 = NASDAQ Information events can be deleted
Return Values: 0 – if there are no data after the deletion

1 – if there are events data after the deletion

2 – if there are time series data after the deletion

3 – if there are time series and events data after the deletion
CRSP_FAIL: if error in parameters

Side Effects: The stk structure is modified according to the other parameters.
Preconditions: The stk structure must be allocated and loaded with at least header, events, and price data.

CHAPTER 2: ACCESSING DATA IN C

115

Chapter 2: Accessing Data in C

crsp_stk_delrng_names Deletes Ranges of Stock Names Data

Prototype: int crsp_stk_delrng_names (CRSP_ARRAY *names_arr, int beg_date, int end_date, int
namflg)

Description: Deletes ranges of stock names data
Arguments: CRSP_ARRAY *names_arr – pointer to names array to restrict

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

int namflg – code to determine how name history is modified by restrictions

0 = names events are not deleted

1 = names events are to be deleted, and data exists after the last name

2 = names events are to be deleted, and data does not exist after the last name
Return Values: 0 – if there are no data after the deletion

1 – if there are names data after the deletion
CRSP_FAIL: if error in parameters

Side Effects: The names_arr array is modified according to the other parameters.
Preconditions: The names_arr array must be allocated and loaded with arrtype = 54.

crsp_stk_delrng_dists Deletes Ranges of Stock Distribution Data

Prototype: int crsp_stk_delrng_dists (CRSP_ARRAY *dists_arr, CRSP_ARRAY *delist_arr, int
beg_date, int end_date)

Description: Deletes ranges of stock distribution data. If the delisting date is in the range to delete, all final distributions are also
removed. Ex-Distribution date of distributions is used in restrictions.

Arguments: CRSP_ARRAY *dists_arr – pointer to loaded distributions array to restrict

CRSP_ARRAY *delist_arr – pointer to loaded delisting array

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
Return Values: 0 – if there are no distributions data after the deletion

1 – if there are distributions data after the deletion
CRSP_FAIL: if error in parameters

Side Effects: The dists_arr array is modified according to the other parameters.
Preconditions: The dists_arr array must be allocated and loaded with arrtype = 52. The delist_arr array must be allocated

and loaded with arrtype = 54.

crsp_stk_delrng_delists Deletes Ranges of Stock Delisting Data

Prototype: int crsp_stk_delrng_delists (CRSP_ARRAY *delist_arr, int beg_date, int end_date)

Description: Deletes ranges of stock delisting data. If no delisting events remain, one is added and coded as active.
Arguments: CRSP_ARRAY *delist_arr – pointer to loaded delisting array to modify.

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
Return Values: 1 – if there is delisting data after the deletion

CRSP_FAIL: if error in parameters
Side Effects: The delist_arr array is modified according to the other parameters.
Preconditions: The delist_arr array must be allocated and loaded with arrtype = 54

116

PROGRAMMERS GUIDE

crsp_stk_delrng_nasdin Deletes Ranges of Stock NASDAQ Information Data

Prototype: int crsp_stk_delrng_nasdin (CRSP_ARRAY *nasdin_arr, int beg_date, int end_date)

Description: Deletes ranges of NASDAQ Information data.
Arguments: CRSP_ARRAY *nasdin_arr – pointer to loaded NASDAQ Information array to restrict.

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
Return Values: 0 – if there is no NASDAQ Information data after the deletion

1 – if there is NASDAQ Information data after the deletion
CRSP_FAIL: if error in parameters

Side Effects: The nasdin_arr array is modified according to the other parameters.
Preconditions: The nasdin_arr array must be allocated and loaded with arrtype = 55.

crsp_stk_delrng_shares Deletes Ranges of Stock Shares Outstanding Data

Prototype: int crsp_stk_delrng_shares (CRSP_ARRAY *shares_arr, int beg_date, int end_date,
int data_beg int keepflg)

Description: Deletes ranges of shares outstanding observation data.
Arguments: CRSP_ARRAY *shares_arr – pointer to loaded shares array to restrict

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

int data_beg – first date of prices before restriction, in YYYYMMDD format

int keepflg:

0 will delete all shares within delete range based on observation date only – the first will be kept if it applies to outside the
range

1 will keep any observations that apply to data before and after the delete range
Return Values: 0 – if there are no shares data after the deletion

1 – if there are shares data after the deletion
CRSP_FAIL: if error in parameters

Side Effects: The shares_arr array is modified according to the other parameters. The shares array is modified by removing rows to
beginning and end and splitting or setting existing rows to shares outstanding = 0 when a range is removed not on an edge.
This may change the observation dates based on the subset dates. All adjacent shares outstanding 0 gaps are consolidated.

Preconditions: The shares_arr array must be allocated and loaded with arrtype = 53. The function expects input of shares loaded
with shsenddts (shares end dates) set.

crsp_stk_delrng_groups Deletes Ranges of Stock Group

Prototype: int crsp_stk_delrng_groups (CRSP_ARRAY **groups_arr, int grouptypes, int
beg_date, int end_date)

Description: Deletes ranges of stock group data for all types.
Arguments: CRSP_ARRAY **groups_arr – pointer to array of pointers to loaded group arrays to restrict

int grouptypes – the number of group arrays in the array of pointers

int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
Return Values: 0 – if there are no group data after the deletion

1 – if there are group data after the deletion
CRSP_FAIL: if error in parameters

Side Effects: All the group_arr arrays are modified according to the other parameters.
Preconditions: The group_arr arrays must be allocated and loaded with arrtype = 57.

CHAPTER 2: ACCESSING DATA IN C

117

Chapter 2: Accessing Data in C

CRSPAccess C Stock Valid Data Utility Functions

These functions are used to determine whether data are valid for different filtering criteria.

crsp_stk_delrng_resetdt Resets Header Date Ranges from Time Series

Prototype: int crsp_stk_delrng_resetdt (CRSP_STK_STRUCT *stk)

Description: Resets header begdt and enddt fields from available time series in the stock structure.
Arguments: CRSP_STK_STRUCT *stk – pointer to stock structure
Return Values: 0 – if there are no time series data and ranges are set to 0

1 – if there are time series data after the deletion
Side Effects: The stk structure begdt and enddt are modified.
Preconditions: The stk structure must be allocated with at least header data opened. The ranges will only be set based on the time series

loaded in the stock structure.

Function Description Page

crsp_stk_valid_exchcd Determines if exchange code is valid Page 117
crsp_stk_valid_exchcd_nm Determines if modified exchange code is valid Page 118
crsp_stk_valid_nmsind Determines if NASDAQ National Market Indicator is valid Page 118
crsp_stk_valid_shrcd Determines if Share Code is valid Page 119
crsp_stk_valid_shrcd_ld Sets up a CRSP_UNIV_SHRCD structure for checking valid share codes Page 119

crsp_stk_valid_exchcd Determines if Exchange Code is Valid

Prototype: int crsp_stk_valid_exchcd (int exhave, int exwant)

Description: Determines if a given exchange code is valid based on a set of wanted exchanges. When-issued trading is not differentiated
from regular-way trading.

Arguments: int exhave – Exchange Code to validate. Codes are standard CRSP stock Exchange Codes:

1=NYSE

2=AMEX

3=NASDAQ

31=NYSE when-issued

32=AMEX when-issued

33=NASDAQ when-issued

int exwant – acceptable Exchange Code or codes. If multiple exchanges are valid, exwant is the sum of the
individual codes below:

1=NYSE

2=AMEX

4=NASDAQ
Return Values: 0 – if exhave is valid according to exwant

-1 – if exhave is not valid according to exwant
Side Effects: none
Preconditions: none

118

PROGRAMMERS GUIDE

 crsp_stk_valid_exchcd_nm Determines if Modified Exchange Code is Valid

Prototype: int crsp_stk_valid_exchcd_nm (int exhave, int exwant)

Description: Determines if a given exchange code is valid based on a set of wanted exchanges. The exchange code is expanded from
CRSP Exchange Code, with NASDAQ Markets differentiated into different exchange codes. When-issued trading is not
differentiated from regular-way trading.

Arguments: int exhave – Exchange Code to validate. Codes are standard CRSP stock Exchange Codes:

1=NYSE

2=AMEX

3=NASDAQ National Market

4=NASDAQ SmallCap

31=NYSE when-issued

32=AMEX when-issued

33=NASDAQ National Market when-issued

34=NASDAQ SmallCap when-issued

int exwant – acceptable Exchange Code or codes. If multiple exchanges are valid, exwant is the sum of the
individual codes below:

1 = NYSE

2 = AMEX

4 = NASDAQ National Market

8 = NASDAQ SmallCap
Return Values: 0 – if exhave is valid according to exwant

-1 – if exhave is not valid according to exwant
Side Effects: none
Preconditions: Other functions or processing must be used to convert Exchange Code and NASDAQ National Market Indicator to one

code.

crsp_stk_valid_nmsind Determines if NASDAQ National Market Indicator is Valid

Prototype: int crsp_stk_valid_exchcd (int nmscode, int nmsind)

Description: Determines if a given NASDAQ National Market Indicator code is valid based on a set of valid codes.
Arguments: int nmscode – acceptable NASDAQ National Market Indicator Code. Codes are:

1=invalid if NASDAQ National Market Indicator Code is not 2 (only NASDAQ National Market is valid)

2=invalid if NASDAQ National Market Indicator Code is 2 (only SmallCap is valid)

3=invalid if NASDAQ National Market Indicator Code is not 2 and not 3 (keep NASDAQ National Market and SmallCap
with closes reported only)

4=invalid if NASDAQ National Market Indicator Code is 2 or 3 (keep SmallCap without closes reported only)

int nmsind – actual NASDAQ National Market Indicator to validate.
Return Values: 0 – if nmsind is valid according to nmscode

-1 – if nmsind is not valid according to nmscode
Side Effects: none
Preconditions: none

CHAPTER 2: ACCESSING DATA IN C

119

Chapter 2: Accessing Data in C

crsp_stk_valid_shrcd Determines if Share Code is Valid

Prototype: int crsp_stk_valid_shrcd (CRSP_UNIV_SHRCD *scs, int shrcd)

Description: Determines if a given share code is valid based on a map of acceptable first and second digits of the CRSP Share Code.
Arguments: CRSP_UNIV_SHRCD *scs – loaded structure containing information of valid Share Codes. Desired codes are loaded as

bit maps into two fields in the structure, fstdig for the first Share Code digit, and scddig for the second Share Code digit.
The bit map fields are loaded so that the right-most 10 bits n to n+9 are set. If the nth bit is set to 1 then the Share Code
digit n is valid. If the nth bit is set to 0 then the Share code digit n is invalid. See the function crsp_stk_valid_shrcd_ld to
load this structure.

int shrcd – actual Share Code to validate.
Return Values: 0 – if shrcd is valid according to the scs structure

-1 – if shrcd is not valid according to the scs structure
Side Effects: none
Preconditions: none

crsp_stk_valid_shrcd_ld Loads a Structure Used to Specify Valid Share Codes

Prototype: int crsp_stk_valid_shrcd (CRSP_UNIV_SHRCD *scs, int sc_code, char *leftdig, char
*rightdig)

Description: This function sets up a CRSP_UNIV_SHRCD structure used by crsp_stk_valid_shrcd. It is passed a pointer to the
structure, a code of possible subsets, and two strings of flags to specify subsets by digits. Certain codes are supported
automatically. These are described below.

Arguments: CRSP_UNIV_SHRCD *scs – pointer to structure to load with valid share code criteria

int sc_code – code describing a standard or user-defined set of restrictions. Available codes are:

CRSP_SUB_SCNY(=1)–CRSP NYSE and AMEX standard restrictions; first digit 1,2,3,4,7 allowed, all second digits
allowed except 6 and 7

CRSP_SUB_SCNQ(=2)–CRSP NASDAQ standard restrictions; same but also exclude second digit 2 and 5

CRSP_SUB_SCCAP(=3)–Cap-Based Portfolios restrictions; same as 1, but also exclude first digit 3 and second digit
2,4,5,8, and 9

CRSP_SUB_SCSIC(=4)–CRSP Total Return Indices; same but also include first digit of 9.

CRSP_SUB_SCFIL(=5)–Restrictions specified by user. See the following parameters.

char *leftdig – 10-digit character string made of 0’s and 1’s specifying which left digits of the Share Code are valid.
If the n’th position in the string (starting from 0) is a 1, then a Share Code with a left digit of n is valid. leftdig is
ignored unless sc_code is 5.

char *rightdig – 10-digit character string made of 0’s and 1’s specifying which right digits of the Share Code are
valid. If the n’th position in the string (starting from 0) is a 1, then a Share Code with a right digit of n is valid.
rightdig is ignored unless sc_code is 5.

for example, to allow only share codes of 10, 11, and 30, and 31, set leftdig to “010100000” and rightdig to
“1100000000”

Return Values: 0 – if shrcd is valid according to the scs structure
-1 – if shrcd is not valid according to the scs structure

Side Effects: none
Preconditions: none

120

PROGRAMMERS GUIDE

Translation Functions

These functions translate stock data in one or more time series to another. The different time series can be based on
different calendars.

Function Description Page

crsp_trans_comp_returns Compounds returns from one time series to another Page 120

crsp_trans_last Translates Time Series Based On Last Value in Range Page 121
crsp_trans_first Translates Time Series Based On First Value in Range Page 121
crsp_trans_max Translates Time Series Based On Maximum Value in Range Page 122
crsp_trans_min Translates Time Series Based On Minimum Value in Range Page 122
crsp_trans_average Translates Time Series Based On Average Value in Range Page 122
crsp_trans_median Translates Time Series Based On Median Value in Range Page 123
crsp_trans_total Translates Time Series Based On Total Value in Range Page 123
crsp_trans_last_closest Translates Time Series Based On Closest Nonmissing Value in Range Page 124
crsp_trans_last_previous Translates Time Series Based On Last Nonmissing Value in Range Page 124
crsp_trans_level Loads a Target Time Series With Index Level Prices Page 125
crsp_trans_cumret Loads a Target Time Series With Cumulative Returns Page 125
crsp_trans_port Maps Portfolio Assignments To a New Time Series Page 125
crsp_trans_stat Maps Portfolio Statistics To a New Time Series Page 126
crsp_trans_cap Loads a Target Time Series With Capitalization Data Page 126
crsp_trans_gen_prc General Translation Price Function Page 127

crsp_trans_comp_returns Compounds Returns From One Time Series to Another

Prototype: int crsp_trans_comp_returns(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the compounded returns over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded and space allocated
CRSP_FAIL: if error in parameters or loading process

Preconditions: src_ts and trg_ts arrtype is CRSP_FLOAT_NUM and subtype is CRSP_RETURN_NUM

CHAPTER 2: ACCESSING DATA IN C

121

Chapter 2: Accessing Data in C

crsp_trans_last Translates Time Series Based on Last Value in Range

Prototype: int crsp_trans_last(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the last price or volume over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the src_ts arrtype is CRSP_FLOAT_NUM the subtype must be CRSP_PRICE_NUM or
CRSP_PRICE_ADJ_NUM or CRSP_LEVEL_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM or
CRSP_VOLUME_ADJ_NUM or CRSP_COUNT_NUM
If the src_ts arrtype is CRSP_DOUBLE_NUM the subtype must be CRSP_WEIGHT_NUM or CRSP_CAP_NUM
The src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_first Translates Time Series Based on First Value in Range

Prototype: int crsp_trans_first (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying th.e last price or volume over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

122

PROGRAMMERS GUIDE

crsp_trans_max Translates Time Series Based on Maximum Value in Range

Prototype: int crsp_trans_max (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the maximum price or volume over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditons: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_min Translates Time Series Based on Minimum Value in Range

Prototype: int crsp_trans_min (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the minimum price or volume over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditons: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_average Translates Time Series Based on Average Value in Range

Prototype: int crsp_trans_average (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the average price or volume over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

CHAPTER 2: ACCESSING DATA IN C

123

Chapter 2: Accessing Data in C

crsp_trans_median Translates Time Series Based on Median Value in Range

Prototype: int crsp_trans_median (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the median price or volume over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

Side Effects: Possible performance hit if large time series

crsp_trans_total Translates Time Series Based on Total Value in Range

Prototype: int crsp_trans_total (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series, totalling data when converting to different calendars. If the source
periods are shorter than the target periods, values in all source periods within a target period are summed before loading. If
the source periods are longer than target periods, values of the source periods are averaged across all target periods, and the
same value is loaded to all target periods in that range.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: The src_ts arrtype must be CRSP_FLOAT_NUM or CRSP_INTEGER_NUM

If it is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM

If it is CRSP_INTEGER_NUM, the subtype must be one of CRSP_VOLUME_NUM, CRSP_VOLUME_ADJ_NUM, or
CRSP_COUNT_NUM

The target arrtype must be CRSP_INTEGER_NUM, CRSP_FLOAT_NUM, or CRSP_DOUBLE_NUM

124

PROGRAMMERS GUIDE

crsp_trans_last_closest Translates Time Series Based on Closest Nonmissing Value

Prototype: int crsp_trans_last_closest (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts,
CRSP_ARRAY *dists, int dlylim, int par_flag)

Description: loads a target time series from a source time series by copying the closest non-missing to last price (price over each
restricted period according to the calendar file). This adjusts the price if there are any distributions between it and month-
end so that the return will be calculated properly. Passed a limit of days to use before giving up. If ties, preceding data gets
precedence. Will not go outside of current or next period. Also sets the begin and end.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
CRSP_ARRAY *dists – CRSP_ARRAY of distributions
int dlylim – limit of date periods to use before giving up
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Side Effects: Target, price flag, and last date time series are loaded and their ranges are set
Preconditions: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM

If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_last_previous Translates Time Series Based on Last Nonmissing Value in Range

Prototype: int crsp_trans_last_previous (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts,
CRSP_TIMESERIES *prcflag_ts, CRSP_TIMESERIES *lastdt_ts, int par_flag)

Description: loads a target time series from a source time series by copying the previous non-missing to last price over each restricted
period according to the calendar file. Also loads the prcflag and lastdt time series according to the case and the date
of the non-missing value found. Will not go outside of current period.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
CRSP_TIMESERIES *prcflag_ts – price flag time series. Each period is set to -1 if no non-zero price if a period-
end price is found, and 1 if an earlier price in the period is found.
CRSP_TIMESERIES *lastdt_ts – last date time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
If the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
The src_ts and trg_ts must have the same arrtype and subtype

CHAPTER 2: ACCESSING DATA IN C

125

Chapter 2: Accessing Data in C

crsp_trans_level Loads a Target Time Series with Index Levels

Prototype: int crsp_trans_level (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
basedt, float baseamt)

Description: loads a target time series with index level prices from a source time series with returns based on a base date and base
amount for that date.

Arguments: CRSP_TIMESERIES *src_ts – source time series of returns
CRSP_TIMESERIES *trg_ts – target time series of prices
int basedt – base date, YYYYMMDD date where levels are anchored. Level on this date is set to baseamt and other
levels are set by successively compounding returns from the starting point.
float baseamt – base amount, if = 0 the baseamt = source on basedt. Target time series will contain baseamt on
basedt.

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Side Effects: target time series is loaded with levels. Subtype of target is set to CRSP_LEVEL_NUM
Preconditions: src can be same as trg. Normally target subtype must be CRSP_LEVEL_NUM but if src=trg must be

CRSP_RETURN_NUM. src_ts and trg_ts must have the same calendar

crsp_trans_cumret Loads a Target Time Series with Cumulative Returns

Prototype: int crsp_trans_cumret (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
basedt)

Description: loads a target time series with cumulative returns from a source time series with level prices based on a base date.

Arguments: CRSP_TIMESERIES *src_ts – source time series of reruns
CRSP_TIMESERIES *trg_ts – target time series of prices
int basedt – base date

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the src_ts arrtype is CRSP_RETURN_NUM the subtype must be CRSP_RETURN_CUM_NUM
If the src_ts arrtype is CRSP_LEVEL_NUM the subtype must be CRSP_RETURN_NUM

crsp_trans_port Maps Portfolio Assignments to a New Time Series

Prototype: int crsp_trans_port (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the last portfolio number over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: The src_ts arrtype is CRSP_STK_PORT_NUM
The trg_ts arrtype is CRSP_INTEGER_NUM and the subtype must be CRSP_PORT_PORT_NUM

126

PROGRAMMERS GUIDE

crsp_trans_stat Maps Portfolio Statistics to a New Time Series

Prototype: int crsp_trans_stat (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int
par_flag)

Description: loads a target time series from a source time series by copying the last portfolio statistic number over each restricted period
according to the calendar file.

Arguments: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: The src_ts arrtype is CRSP_STK_PORT_NUM
The trg_ts arrtype is CRSP_DOUBLE_NUM and the subtype must be CRSP_PORT_STAT_NUM

crsp_trans_cap Loads a Target Time Series with Capitalization Data

Prototype: int crsp_trans_cap (CRSP_TIMESERIES *prc_ts, CRSP_TIMESERIES *shr_ts,
CRSP_TIMESERIES *cap_ts, int flags)

Description: loads a target time series with capitalization data from two source time series – one with prices and the other with shares –
by multiplying the two values over each period according to the calendar file.

Arguments: CRSP_TIMESERIES *prc_ts – input prices time series
CRSP_TIMESERIES *shr_ts – input shares time series
CRSP_TIMESERIES *cap_ts – output capitalization time series
int flags – flags passed to the function:
CRSP_ACTUAL means cap from the source is moved to the same period on target cap[i] = prc[i] * shr[i]
CRSP_EFFECTIVE means cap from the source is moved to the next period on target cap[i+1] = prc[i] *
shr[i]

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

Preconditions: If the prc_ts subtype is CRSP_PRICE_ADJ_NUM the shr_ts subtype must be CRSP_SHARES_ADJ_NUM
If the prc_ts subtype is CRSP_PRICE_NUM the shr_ts subtype must be CRSP_SHARES_IMP_NUM
The cap_ts arrtype is CRSP_DOUBLE_NUM and the subtype is CRSP_CAP_NUM
The prc_ts shr_ts and cap_ts must have the same calendar

CHAPTER 2: ACCESSING DATA IN C

127

Chapter 2: Accessing Data in C

crsp_trans_gen_prc General Translation Price Function

Prototype: int crsp_trans_gen_prc (CRSP_TIMESERIES *srcprc_ts, CRSP_TIMESERIES *trgprc_ts,
CRSP_STK_STRUCT *stkptr, int case_flag, int adj_flag, int par_flag)

Description: loads a target time series from a source time series by linking between the two calendars and copying the price values to the
target time series. Uses other translation functions to adjust, use last or last nonmissing price in range. General translation
price function, used for prc, ask, bid, askhi, bidlo, adjprc, adjask, adjbid, adjaskhi,
adjbidlo

Arguments: CRSP_TIMESERIES *srcprc_ts – source price time series
CRSP_TIMESERIES *trgprc_ts – target price time series
CRSP_STK_STRUCT *stkptr – stock structure pointer
int case_flag – last value or previous nonmissing price in range (0, 1)
int adj_flag – adjust or not (1, 0)
int par_flag – determines how missing values affect beg and end of target:
0 – allow missing values at beginning and ending of target range
1 – not allow missing values at beginning of target range
2 – not allow missing values at ending of target range
3 – not allow missing values at beginning and ending of target range

Return Values: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

128

PROGRAMMERS GUIDE

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

129

Chapter 3: Accessing Data in FORTRAN-95

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

3.1 CRSPAccess FORTRAN-95 Data Structures

FORTRAN-95 Programming provides complete support for CRSP databases, including direct access on PERMNO,
CUSIP and other header variables, and full support of all data items. INCLUDE files containing TYPE definitions,
an object library to support linking, and sample programs illustrating access methods are available.

Data Organization for FORTRAN-95 Programming

The basic levels of a CRSPAccess database are the database, set type, set id, module, object, and array. They are
defined as follows:

� Database (CRSPDB) is the directory containing the database files. A CRSPDB is identified by its database path.

� Set Type is a predefined type of financial data. Each set type has its own defined set of data structures, special-
ized access functions, and keys. CRSPAccess databases support stock (STK) and index (IND) set types. A
CRSPDB can include more than one set type.

� Set Identifier (SETID) is a defined subset of a set type. SETIDs of the same set type use the same access func-
tions, structures, and keys, but have different characteristics within those structures. For example, daily stock
sets use the same data structure as monthly stock sets, but time series are associated with different calendars.
Multiple SETIDs of the same set type can be present in one CRSPDB.

� Modules are the groupings of data found in the data files in a CRSPDB. Multiple data items can be present in a
module. Data are retrieved from storage on disk at the module level, and access functions retrieve data items for
keys based on selected modules. Modules correspond to physical data files.

� Objects are the fundamental data types defined for each set type. There are three fundamental object types: time
series (CRSP_TIMESERIES), arrays (CRSP_ARRAY), and headers (CRSP_ROW). Objects contain header
information such as counts, ranges, or associated calendars (CRSP_CAL) plus arrays of data for zero or more
observations. Some set types support arrays of objects of a single type. In this case, the number of available
objects is determined by the SETID, and each of the objects in the list has independent counts, ranges, or associ-
ated calendars.

� Arrays are attached to each object. Each array contains a set of observations and is the basic level of program-
ming access. An observation can be a simple data type such as an integer from an array of volumes, or a com-
plex structure such as one record from name history. When there is an array of objects, there is a corresponding
array of arrays within the data.

130

PROGRAMMERS GUIDE

Data Objects

There are four basic types of information stored in CRSP databases. Each is associated with a CRSP object structure.

Header Information. These are identifiers with no implied time component. Header data contain the most current
CRSPAccess information stored in the databases.

Event Arrays. Arrays can represent status changes, sporadic events, or observations. The time of the event and rel-
evant information is stored for each observation. There is a count of the number of observations for each type of
event data.

Time Series Arrays. An observation is available for each period in an associated calendar. Beginning and ending
valid data are available for each type of time series data. Data are stored for each period in the range – missing values
are stored as placeholders if information is not available for a period.

Calendar Arrays. Each time series corresponds to an array of relevant dates. This calendar array is used in conjunc-
tion with the time series arrays to attach dates to observations.

An observation can be a simple value or contain multiple components such as codes and amounts. Time series,
except Portfolios, are based on calendars which share the frequency of the database. In a monthly database, the time
series are based on a month-end trading date calendar. In a daily database, the time series are based on a daily trading
date calendar that excludes market holidays. Portfolio calendars are dependent on the rebalancing methodology of
the specific portfolio type. All calendars are attached automatically to each requested time series object when the
database is opened.

There are four base CRSPAccess FORTRAN-95 structures called objects used in CRSPDBs. The following table
contains each of the objects in bolded upper-case, followed by the components, lower-case and indented, which each
object type contains. All data items are defined in terms of the following objects:

OBJECT or Field Usage Data Type

CRSP_ARRAY Structure for storing event-type data

objtype object type code identifies the structure as a CRSP_ARRAY, always = 3 INTEGER

arrtype array type code defines the structure in the array. Base FORTRAN-95
types or CRSP-defined structures each have associated codes defined in
the constants header file

INTEGER

subtype data subtype code defines a subcategory of array data. Subtypes further
differentiate arrays with common array type fields.

INTEGER

maxarr maximum number of array elements containing valid data INTEGER

num number of array elements containing valid data INTEGER

dummy data secondary subtype code INTEGER

CRSP_ROW Structure for storing header data

objtype object type code identifies the structure as a CRSP_ROW, always = 5 INTEGER

arrtype array type code defines the structure in the array. Base FORTRAN-95
types or CRSP-defined structures each have associated codes defined in
the constants header file

INTEGER

subtype data subtype code defines a subcategory of array data. Subtypes further
differentiate arrays with common array type fields.

INTEGER

CRSP_TIMESERIES Structure for storing time series data

objtype object type code identifies the structure as a CRSP_TIMESERIES,
always = 2

INTEGER

arrtype array type code defines the structure in the array. Base FORTRAN-95
types or CRSP-defined structures each have associated codes defined in
the constants header file

INTEGER

subtype data subtype code defines a subcategory of array data. Subtypes
further differentiate arrays with common array type fields.

INTEGER

maxarr maximum number of array elements INTEGER

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

131

Chapter 3: Accessing Data in FORTRAN-95

beg first array index having valid data for the current record. (0 if no valid
range.)

INTEGER

end last array index having valid data for the current record. (0 if no valid
range.)

INTEGER

caltype calendar time period description code describes the type of time periods.
Calendar Type (caltype) is always 2, indicating time periods are
described in the Calendar Trading Date (caldt) array by the last trading
date in the period.

INTEGER

cal calendar associated with time series is a pointer to the calendar associated
with the time series array. The calendar includes the matching period-
ending dates for each array index.

CRSP_CAL, POINTER

CRSP_CAL TYPE for storing calendar period data

objtype object type code identifies the structure as a CRSP_CAL, always = 1 INTEGER

calid calendar identification number is an identifier assigned to each specific
calendar by CRSP

INTEGER

maxarr maximum number of trading periods allocated for the calendar INTEGER

loadflag calendar type availability flag is a code indicating the types of calendar
arrays loaded. Currently = 2 for calendar trading date (caldt) only

INTEGER

ndays number of valid dates in calendar (index of last valid date in caldt) INTEGER

name the calendar name in text CHARACTER[80]

callist calendar period grouping identifiers reserved for array of alternate
grouping identifiers for calendar periods

*

caldt calendar trading date is an array of calendar period ending dates, stored in
CCYYMMDD format. Calendars start at element 1 and end at element
number of days (ndays)

*

calmap used to store array of first and last calendar period array elements in a
calendar linked to to elements in this calendar

CRSP_CAL_MAP *

basecal used to point to a calendar linked in calmap CRSP_CAL *

OBJECT or Field Usage Data Type

132

PROGRAMMERS GUIDE

Set Structures and Usage

Stock and indices access functions initialize and load data to FORTRAN-95 top-level defined set structures. Top-
level structures are built from general object and array structure definitions and contain object and array pointers that
have memory allocated to them by access open functions.

Two set types and six set identifiers are currently supported for stock and indices data. The identifier must be speci-
fied when opening or accessing data from the set.

Each set structure has three types of pointer definitions.

� Module pointers to CRSP_OBJECT_ELEMENT linked lists are needed internally to keep track of the objects in a
module. These have the suffix _obj and can be ignored by ordinary programming.

� Object pointers define a CRSP_ARRAY, CRSP_ROW, or CRSP_TIMESERIES object type. A suffix, _arr,
_ts, or _row is appended to the variable name. Valid range variables num, beg, and end are accessed from
these variables.

� Array pointers define a data item array. The array has the same rank as the object but without the suffix. It is a
pointer to the array element of the object and is used for general access to the data item.

If a module has multiple types of objects, a group structure is created with definitions for those objects and is
included in the main structure.

If a module has a variable number of objects of one type, an integer variable keeps track of the actual number. These
variables end with the suffix types and are based on the set type.

Each of the top-level structures contains three standard elements:

� PERMNO – the actual key loaded

� loadflag, a binary flag matching the set wanted parameters indicating which pointers have been allocated.
See the open function for the set for more information about wanted parameters.

� setcode, a constant identifying the type of set (1=STK, 3=IND)

For example, the TYPE crsp_stk item has a CRSP_TIMESERIES object named prc_ts containing an array
named prc.

Data Set Type Set Identifiers Frequency
CRSP Stock Data STK 10

STK_DAILY
Daily

20
STK_MONTHLY

Monthly

CRSP Indices Data IND 400
MONTHLY_INDEX_GROUPS

Monthly Groups (in CRSP index product only)

420
MONTHLY_INDEX_SERIES

Monthly Series

440
DAILY_INDEX_GROUPS

Daily Groups (in CRSP index product only)

460
DAILY_INDEX_SERIES

Daily Series

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

133Chapter 3: Accessing Data in FORTRAN-95

FORTRAN-95 Language Data Objects for CRSP Stock Data

Each TYPE (crsp_stk) item contains a fixed set of possible objects. These objects contain the header information required to use the CRSP data structures, as
well as the data arrays. Data elements are described in the FORTRAN-95 Data Structure Table under the array name.

Time series beg and end are both 0 if there are no data. Otherwise beg > 0, beg <= end, and end <= maxarr.

The TYPE (crsp_stk) contains an array of portfolio time series. Each component contains the portfolio statistic and assignment data for one portfolio type.
Each component can have an individual range and calendar. The number of Portfolio Types is found in the port types variable.

Name Object Valid Data Range
Stock Header Structure header_row stk % stkhdr

Security Name History names_arr stk % names_arr(i), i from 1 to stk % num_names
Distribution History Array dists_arr stk % dists_arr(i), i from 1 to stk % num_dists
Shares Structure Array shares_arr stk % shares_arr(i), i from 1 to stk % num_shares
Delisting Structure Array delist_arr stk % delist_arr(i), i from 1 to stk % num_delist
NASDAQ Structure Array nasdin_arr stk % nasdin_arr(i), i from 1 to stk % num_nasdin
Portfolio Statistics and Assignments port_ts() stk % port_ts(i) % port(j), i from 1 to stk % porttypes, j from stk % port_beg to stk % port_end
Array of Group Arrays group_arr() stk % group_arr(i) % group(j), i from 1 to grouptypes, j from 1 to stk % num_groups
Closing Price or Bid/Ask Average prc_ts stk % prc(i), from stk % prc_beg to stk % prc_end
Holding Period Total Return ret_ts stk % ret(i), from stk % ret_beg to stk % ret_end
Bid or Low bidlo_ts stk % bidlo(i), from stk % bidlo_beg to stk % bidlo_end
Ask or High askhi_ts stk % askhi(i), from stk % askhi_beg to stk % askhi_end
NASDAQ Closing Bid bid_ts stk % bid(i), from stk % bid_beg to stk % bid_end
NASDAQ Closing Ask ask_ts stk % ask(i), from stk % ask_beg to stk % ask_end
Return Without Dividends retx_ts stk % retx(i), from stk % retx_beg to stk % retx_end
Alternate Price altprc_ts stk % altprcdt(i), from stk % altprcdt_beg to stk % altprcdt_end
Open Price openprc_ts stk % openprc(i), from stk % openprc_beg to stk % openprc_end
Month End Bid/Ask Spread spread_ts stk % spread(i), from stk % spread_beg to stk % spread_end
Exchange Price exchprc_ts stk % exchprc(i), from stk % exchprc_beg to stk % exchprc_end
Volume Traded vol_ts stk % vol(i), from stk % vol_beg to stk % vol_end
NASDAQ Number of Trades or Alternate Price Date numtrd_ts stk % numtrd(i), from stk % numtrd_beg to stk % numtrd_end
Alternate Price Date altprcdt_ts stk % altprc(i), from stk % altprc_beg to stk % altprc_end

134

PROGRAMMERS GUIDE

FORTRAN-95 Language Data Structure for CRSP Stock Data

All CRSP-defined data type structures have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next level of inden-
tation

Index and Date Ranges for all elements in a structure are the same as for the structure itself. There are three structure levels indicated by the indentation in the
mnemonic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indi-
cates data grouped in modules. See the CRSPAccess Stock Users Guide for data item definitions.

All character strings, indicated by character(#), are NULL terminated. The number of characters – 1 is the maximum string length allowed. Actual maxi-
mums may be lower. The top level stk structure is an example used by CRSP Stock sample programs. Other names can be used, and multiple
CRSP_STK_STRUCTs can be declared in a program. See the CRSP_STK open access function for initializing a stock structure.

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full Version Index Range - Shortcut Index Range - Full Version Date Usage
stk_data Master Stock Structure stk_data stk

Header Data Stock Header Strucutre
hcusip CUSIP - Header CHARACTER[16] stk % stkhdr % hcusip

permno PERMNO INTEGER stk % stkhdr % permno

permco PERMCO INTEGER stk % stkhdr % permco

issuno NASDAQ Issue Number INTEGER stk % stkhdr % issuno

compno NASDAQ Company Number INTEGER stk % stkhdr % compno

hexcd Exchange Code - Header INTEGER stk % stkhdr % hexcd

hsiccd Standard Industrial
Classification (SIC) Code -
Header

INTEGER stk % stkhdr % hsiccd

hshrcd Share Code - Header INTEGER stk % stkhdr % hshrcd

hnamecd Name Code - Header INTEGER stk % stkhdr %
hnamecd

begdt Begin of Stock Data INTEGER stk % stkhdr % begdt

enddt End of Stock Data INTEGER stk % stkhdr % enddt

dlstcd Delisting Code - Header INTEGER stk % stkhdr % dlstcd

htick Ticker Symbol - Header CHARACTER[16] stk % stkhdr % htick

hnaics North American Industry
Classification System
(NAICS) - Header

CHARACTER[8] stk % stkhdr % hnaics

hcomnam Company Name - Header CHARACTER[36] stk % stkhdr %
hcomnam

htsymbol Trading Ticker Symbol -
Header

CHARACTER[12] stk % stkhdr %
htsymbol

hcntrycd Country Code - Header CHARACTER[4] stk % stkhdr %
hcntrycd

primexch Primary Exchange - Header CHARACTER[1] stk % stkhdr %
hprimexch

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

135Chapter 3: Accessing Data in FORTRAN-95

hsubexch Sub-Exchange - Header CHARACTER[1] stk % stkhdr %
hsubexch

trdstat Trading Status - Header CHARACTER[1] stk % stkhdr %
htrdstat

hsecstat Security Status - Header CHARACTER[1] stk % stkhdr %
hsecstat

hshrtype Share Type - Header CHARACTER[1] stk % stkhdr %
shrtype

hissuercd Issuer Code - Header CHARACTER[1] stk % stkhdr %
hissuercd

hinccd Incorporation Code - Header CHARACTER[1] stk % stkhdr % hinccd

hits Intermarket Trading System
Indicator - Header

CHARACTER[1] stk % stkhdr % hits

hdenom Trading Denomination -
Header

CHARACTER[1] stk % stkhdr % hdenom

heligcd Eligibility Code - Header CHARACTER[1] stk % stkhdr %
heligcd

hconvcd Convertible Code - Header CHARACTER[1] stk % stkhdr %
hconvcd

hnameflag Name Flag - Header CHARACTER[1] stk % stkhdr %
hnameflag

hrating Interest Rate or Strike Price -
Header

REAL * stk % stkhdr %
hrating

Name History
Data

Security Name History i between 1 and stk %
num_names

i between 1 and stk %
num_names

name effective from stk %
names(i) % namedt to
stk % names(i) %
nameenddt

namedt Name Effective Date INTEGER stk % names(i) %
namedt

stk % names_arr %
names(i) % namedt

nameenddt Last Date of Name INTEGER stk % names(i) %
nameenddt

stk % names_arr %
names(i) % nameenddt

ncusip CUSIP CHARACTER[16] stk % names(i) %
ncusip

stk % names_arr %
names(i) % ncusip

ticker Ticker Symbol CHARACTER[8] stk % names(i) %
ticker

stk % names_arr %
names(i) % ticker

comnam Company Name CHARACTER[36] stk % names(i) %
comnam

stk % names_arr %
names(i) % comnam

shrcls Share Class CHARACTER[4] stk % names(i) %
shrcls

stk % names_arr %
names(i) % shrcls

shrcd Share Code INTEGER stk % names(i) %
shrcd

stk % names_arr %
names(i) % shrcd

exchcd Exchange Code INTEGER stk % names(i) %
exchcd

stk % names_arr %
names(i) % exchcd

siccd Standard Industrial
Classification (SIC) Code

INTEGER stk % names(i) %
siccd

stk % names_arr %
names(i) % siccd

naics North American Industry
Classification System
(NAICS) Code

CHARACTER(8) stk % names(i) %
naics

stk % names_arr %
names(i) % naics

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full Version Index Range - Shortcut Index Range - Full Version Date Usage

136

PROGRAMMERS GUIDE

tsymbol Trading Ticker Symbol CHARACTER[12] stk % names(i) %
tsymbol

stk % names_arr %
names(i) % tsymbol

cntrycd Country Code CHARACTER[4] stk % names(i) %
cntrycd

stk % names_arr %
names(i) % cntrycd

primexch Primary Exchange CHARACTER[1] stk % names(i) %
primexch

stk % names_arr %
names(i) % primexch

subexch Sub-Exchange CHARACTER[1] stk % names(i) %
subexch

stk % names_arr %
names(i) % subexch

trdstat Trading Status CHARACTER[1] stk % names(i) %
trdstat

stk % names_arr %
names(i) % trdstat

secstat Security Status CHARACTER[1] stk % names(i) %
secstat

stk % names_arr %
names(i) % secstat

shrtype Share Type CHARACTER[1] stk % names(i) %
shrtype

stk % names_arr %
names(i) % shrtype

issuercd Issuer Code CHARACTER[1] stk % names(i) %
issuercd

stk % names_arr %
names(i) % issuercd

inccd Incorporation Code CHARACTER[1] stk % names(i) %
inccd

stk % names_arr %
names(i) % inccd

its Intermarket Trading System
Indicator

CHARACTER[1] stk % names(i) % its stk % names_arr %
names(i) % its

denom Trading Denomination CHARACTER[1] stk % names(i) %
denom

stk % names_arr %
names(i) % denom

eligcd Eligibility Code CHARACTER[1] stk % names(i) %
eligcd

stk % names_arr %
names(i) % eligcd

convcd Convertible Code CHARACTER[1] stk % names(i) %
convcd

stk % names_arr %
names(i) % convcd

nameflag Name Flag CHARACTER[1] stk % names(i) %
nameflag

stk % names_arr %
names(i) % nameflag

dists Distribution History Array i between 1 and stk %
num_dists

i between 1 and stk %
num_dists

distribution effective on stk
% dists(i) % exdt

distcd Distribution Code INTEGER stk % dists(i) %
distcd

stk % dists_arr %
dists(i) % distcd

divamt Dividend Cash Amount REAL stk % dists(i) %
divamt

stk % dists_arr %
dists(i) % divamt

facpr Factor to Adjust Price REAL stk % dists(i) %
facpr

stk % dists_arr %
dists(i) % facpr

facshr Factor to Adjust Shares
Outstanding

REAL stk % dists(i) %
facshr

stk % dists_arr %
dists(i) % facshr

dclrdt Distribution Declaration Date INTEGER stk % dists(i) %
dclrdt

stk % dists_arr %
dists(i) % dclrdt

exdt Ex-Distribution Date INTEGER stk % dists(i) % exdt stk % dists_arr %
dists(i) % exdt

rcrddt Record Date INTEGER stk % dists(i) %
rcrddt

stk % dists_arr %
dists(i) % rcrddt

paydt Payment Date INTEGER stk % dists(i) %
paydt

stk % dists_arr %
dists(i) % paydt

acperm Acquiring PERMNO INTEGER stk % dists*(i) %
acperm

stk % dists_arr %
dists*(i) % acperm

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full Version Index Range - Shortcut Index Range - Full Version Date Usage

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

137Chapter 3: Accessing Data in FORTRAN-95

accomp Acquiring PERMCO INTEGER stk % dists(i) %
accomp

stk % dists_arr %
dists(i) % accomp

shares Shares Structure Array i between 1 and stk %
num_shares

i between 1 and stk %
num_shares

shares observation effective
from stk % shares(i) %
shrsdt to stk %
shares[i] %
shrsenddt

shrout Shares Outstanding INTEGER stk % shares(i) %
shrout

stk % shares_arr %
shares(i) % shrout

shrsdt Shares Outstanding
Observation Date

INTEGER stk % shares(i) %
shrsdt

stk % shares_arr %
shares(i) % shrsdt

shrsenddt Shares Outstanding
Observation End Date

INTEGER stk % shares(i) %
shrsenddt

stk % shares_arr %
shares(i) %
shrsenddt

shrflg Shares Outstanding
Observation Flag

INTEGER stk % shares(i) %
shrflg

stk % shares_arr %
shares(i) % shrflg

delist Delisting Structure Array i between 1 and stk %
num_delist

i between 1 and stk %
num_delist

delist observation on stk %
delist(i) % dlstdt

dlstdt Delisting Date INTEGER stk % delist(i) %
dlstdt

stk % delist_arr %
delist(i) % dlstdt

dlstcd Delisting Code INTEGER stk % delist(i) %
dlstcd

stk % delist_arr %
delist(i) % dlstcd

nwperm New PERMNO INTEGER stk % delist(i) %
nwperm

stk % delist_arr %
delist(i) % nwperm

nwcomp New PERMCO INTEGER stk % delist(i) %
nwcomp

stk % delist_arr %
delist(i) % nwcomp

nextdt Delisting Date of Next
Available Information

INTEGER stk % delist(i) %
nextdt

stk % delist_arr %
delist(i) % nextdt

dlamt Amount After Delisting REAL stk % delist(i) %
dlamt

stk % delist_arr %
delist(i) % dlamt

dlretx Delisting Return without
Dividends

REAL stk % delist(i) %
dlretx

stk % delist_arr %
delist(i) % dlretx

dlprc Delisting Price REAL stk % delist(i) %
dlprc

stk % delist_arr %
delist(i) % dlprc

dlpdt Delisting Payment Date INTEGER stk % delist(i) %
dlpdt

stk % delist_arr %
delist(i) % dlpdt

dlret Delisting Return REAL stk % delist(i) %
dlret

stk % delist_arr %
delist(i) % dlret

nasdin NASDAQ Structure Array i between 1 and stk %
num_nasdin

i between 1 and stk %
num_nasdin

Nasdaq status effective from
stk % nasdin(i) %
trtsdt to stk %
nasdin[i] %
trtsenddt

trtscd NASDAQ Traits Code INTEGER stk % nasdin(i) %
trtscd

stk % nasdin_arr %
nasdin(i) % trtscd

trtsdt NASDAQ Traits Date INTEGER stk % nasdin(i) %
trtsdt

stk % nasdin_arr %
nasdin(i) % trtsdt

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full Version Index Range - Shortcut Index Range - Full Version Date Usage

138

PROGRAMMERS GUIDE

trtsenddt NASDAQ Traits End Date INTEGER stk % nasdin(i) %
trtsenddt

stk % nasdin_arr %
nasdin(i) %
trtsenddt

nmsind NASDAQ National Market
Indicator

INTEGER stk % nasdin(i) %
nmsind

stk % nasdin_arr %
nasdin(i) % nmsind

mmcnt Market Maker Count INTEGER stk % nasdin(i) %
mmcnt

stk % nasdin_arr %
nasdin(i) % mmcnt

nsdinx NASD Index Code INTEGER stk % nasdin(i) %
nsdinx

stk % nasdin_arr %
nasdin(i) % nsdinx

port Portfolio Statistics and
Assignments

j between 1 and stk %
porttypes, i between
stk % port_ts(j) %
beg and stk %
port_ts(j) % end

j between 1 and stk %
porttypes, i between
stk % port_ts(j) %
beg and stk %
port_ts(j) % end

value for period ending stk
% port_ts(j) % cal %
caldt(i)

port Portfolio Assignment Number INTEGER stk % port(j,i) %
port

stk % port_ts(j) %
port(i) % port

stat Portfolio Statistic Value DOUBLE
PRECISION

stk % port(j,i) %
stat

stk % port_ts(j) %
port(i) % stat

group Group Array j between 1 and stk %
grouptypes, i between
1 and stk %
group_arr(j) %
group_parms % num

value for period ending stk
% group_arr(j) %
group(i) % grpenddt

grpdt Begin of Group Data INTEGER stk % group_arr(j) %
group(i) % grpdt

grpenddt End of Group Data INTEGER stk % group_arr(j) %
group(i) % grpenddt

grpflag Group Flag of Associated
Index

INTEGER stk % group_arr(j) %
group(i) % grpflag

grpsubflag Group Secondary Flag INTEGER stk % group_arr(j) %
group(i) %
grpsubflag

Time Series Data Arrays
prc Price or Bid/Ask Average REAL * stk % prc(i) stk % prc_ts % prc(i) i between stk %

prc_beg and stk %
prc_end

i between stk % prc_beg
and stk % prc_end

value on date stk %
prc_ts % prc_parms %
cal % caldt(i)

ret Holding Period Total Return REAL * stk % ret(i) stk % ret_ts % ret(i) i between stk %
ret_beg and stk %
ret_end

i between stk % ret_beg
and stk % ret_end

value on date stk %
ret_ts % ret_parms %
cal % caldt(i)

bidlo Bid or Low Price REAL * stk % bidlo(i) stk % bidlo_ts %
bidlo(i)

i between stk %
bidlo_beg and stk %
bidlo_end

i between stk %
bidlo_beg and stk %
bidlo_end

value on date stk %
bidlo_ts %
bidlo_parms % cal %
caldt(i)

askhi Ask or High Price REAL * stk % askhi(i) stk % askhi_ts %
askhi(i)

i between stk %
askhi_beg and stk %
askhi_end

i between stk %
askhi_beg and stk %
askhi_end

value on date stk %
askhi_ts %
askhi_parms % cal %
caldt(i)

bid Bid REAL * stk % bid(i) stk % bid_ts % bid(i) i between stk %
bid_beg and stk %
bid_end

i between stk % bid_beg
and stk % bid_end

value on date stk %
bid_ts % bid_parms %
cal % caldt(i)

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full Version Index Range - Shortcut Index Range - Full Version Date Usage

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

139Chapter 3: Accessing Data in FORTRAN-95

ask Ask REAL * stk % ask(i) stk % ask_ts % ask(i) i between stk %
ask_beg and stk %
ask_end

i between stk % ask_beg
and stk % ask_end

value on date stk %
ask_ts % ask_parms %
cal % caldt(i)

retx Return Without Dividends REAL * stk % retx(i) stk % retx_ts %
retx(i)

i between stk %
retx_beg and stk %
retx_end

i between stk %
retx_beg and stk %
retx_end

value on date stk %
retx_ts % retx_parms
% cal % caldt(i)

openprc Open Price (daily only) REAL * stk % openprc(i) stk % openprc_ts %
openprc(i)

i between stk %
altprc_beg and stk %
altprc_end

i between stk %
openprc_beg and stk %
openprc_end

value on date stk %
openprc_ts %
openprc_parms % cal
% caldt(i)

altprc Price Alternate (monthly only) REAL * stk % altprc(i) stk % altprc_ts %
altprc(i)

i between stk %
altprc_beg and stk %
altprc_end

i between stk %
altprc_beg and stk %
altprc_end

value on date stk %
altprc_ts %
altprc_parms % cal %
caldt(i)

spread Spread Between Bid and Ask REAL * stk % spread(i) stk % spread_ts %
spread(i)

i between stk %
spread_beg and stk %
spread_end

i between stk %
spread_beg and stk %
spread_end

value on date stk %
spread_ts %
spread_parms % cal %
caldt(i)

vol Volume Traded INTEGER * stk % vol(i) stk % vol_ts % vol(i) i between stk %
vol_beg and stk %
vol_end

i between stk % vol_beg
and stk % vol_end

value on date stk %
vol_ts % vol_parms %
cal % caldt(i)

numtrd NASDAQ Number of Trades
(daily only)

INTEGER * stk % numtrd(i) stk % numtrd_ts %
numtrd(i)

i between stk %
numtrd_beg and stk %
numtrd_end

i between stk %
numtrd_beg and stk %
numtrd_end

value on date stk %
numtrd_ts %
numtrd_parms % cal %
caldt(i)

altprcdt Alternate Price Date (monthly
only)

INTEGER * stk % altprcdt(i) stk % altprcdt_ts %
altprcdt(i)

i between %
altprcdt_end

i between stk %
altprcdt_beg and stk %
altprcdt_end

value on date stk %
altprcdt_ts %
altprcdt_parms % cal
% caldt(i)

caldt Calendar Trade Date INTEGER * stk % caldt(i) stk % caldt(i) i between 1 and stk %
ndays

i between 1 and stk %
ndays

n/a

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full Version Index Range - Shortcut Index Range - Full Version Date Usage

140

PROGRAMMERS GUIDE

Examples of FORTRAN-95 Variable Usage for CRSP Stock Data

These assume a FORTRAN-95 variable stk of TYPE (crsp_stk)

CRSP Row / Header Data

Object Variable: (sub-TYPE) stk_header
Data Structure: stk % stkhdr
Sample WRITE Statement:

WRITE (*, 1) stk % stkhdr % permno, &
& stk % stkhdr % begdt, stk % stkhdr % enddt
1 FORMAT (1X, I5, 1X, I8, 1X, I8)

CRSP Array / Distributions

Object Variable: (sub-TYPE) stk_dist
Data Structure: stk % stk_dists_arr % dists
Sample WRITE Statement:

DO i = 1, stk % dists_arr % dists_parms % num
WRITE (*,1) stk % dists_arr % dists(i) % distcd, &
& stk % dists_arr % dists(i) % exdt
1 FORMAT (1X, I4, 1X, I8)
END DO

CRSP Time Series / Prices

Object Variable: (sub-TYPE) stk_prc_ts
Data Structure: stk % stkprc_ts
Sample WRITE statement:

DO i = stk % stkprc_ts % prc_ts % beg, &
& stk % stkprc_ts % prc_ts % end
WRITE (*, 1) stk % stkprc_ts % prc(i), &
& stk % stkprc_ts % prc_ts % cal % caldt(i)
1 FORMAT (1X, F11.5, 1X, I8)
END DO

CRSP Array of Time Series / Portfolios

Object Variable: (sub-TYPE) stk_port
Data Array: stk % stk_port_ts(j)
There are SIZE (stk % stkport_ts) portfolios available;
 j above ranges from 1 to SIZE (stk % stkport_ts)
Sample WRITE statement: This statement prints the date and the assignment for each year in the issue’s range for
stk % stkport_ts(1), the NYSE / AMEX / NASDAQ capitalization deciles.

DO i = stk % stkport_ts(1) % port_ts % beg,
stk % stkport_ts(1) % port_ts % end
WRITE (*,1) stk % stkport_ts(1) % port_ts % &
& cal % caldt(i), &
& stk % stkport_ts(1) % port(i) % port
1 FORMAT (1X, I8, 1X, I2)

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

141

Chapter 3: Accessing Data in FORTRAN-95

CRSP Array of Group Arrays

Object Variable: (sub-TYPE) stk_group_arr
Data Array: stk % stkgroup_arr(j) % group(i)
There are SIZE (stk % stkgroup_arr) groups available; j above is between 1 and SIZE (stk %
stkgroup_arr)).
Sample WRITE statement: This statement is executed only if the security has ever been included in the S&P 500 uni-
verse (group type 16).

j = 16
IF (stk % stkgroup_arr(16) % croup_arr % num > 0) THEN
DO i = 1, stk % stkgroup_arr(16) % group_arr % num
WRITE (*, 1) stk % stkgroup_arr(j) % &

 & group(i) % grpdt, stk % stkgroup_arr(j) % &
 & group(i) % grpeenddt, stk % stkgroup_arr(j) % &
 & group(i) % grpflag, stk % stkgroup_arr(j) % &
 & group(i) % grpsubflag
 1 FORMAT (1X, I8, 1X, I8, 1X, I2, 1X, I2)

END DO
END IF

142

PROGRAMMERS GUIDE

FORTRAN-95 Language Data Objects for CRSP Indices Data

CRSP assigns a Permanent Index Identification Number (INDNO) to access the indices data in FORTRAN-95 for individual series or portfolio groups. In the
CRSP US Stock Database, a subset of market series is available. Additional series and groups are available when you subscribe to the CRSP US Indices Database
and Security Portfolio Assignment Module. The index structure supports data for one series or group and includes header, rebalancing, and result information for
one or more portfolios comprising the index.

Each index structure contains a fixed set of possible objects. Objects contain the header information needed to use the CRSP data structures as well as the data
arrays. Data elements are described in the FORTRAN-95 Data Structure Table under the array name.

Time series beg and end are both equal to 0 if there are no data. Otherwise beg > 0, beg <= end, and end < maxarr. The 0th element of a time series array is
reserved for the missing value for that data type.

Multiple series in the index structure refers to portfolio subgroups. Each of these will have the same beg, end, and calendar. In a SERIES SETID, the multiple
series has a count of 1. In a GROUP SETID, the count of series is found in the corresponding xxxtypes variable.

Name Object Object Array Name
Indices Header Object indhdr_row ind % indhdr

Rebalancing Arrays rebal_arr() ind % rebal(j), j from 1 to ind % rebaltypes
List Arrays list_arr() ind % list(j), j from 1 to ind % listtypes
Total Value Time Series totval_ts() ind % totval(j), j from 1 to ind % indtypes
Total Count Time Series totcnt_ts() ind % totcnt(j), j from 1 to ind % indtypes
Used Value Time Series usdval_ts() ind % usdval(j), j from 1 to ind % indtypes
Used Count Time Series usdcnt_ts() ind % usdcnt(j), j from 1 to ind % indtypes
Total Return Time Series tret_ts() ind % tret(j), j from 1 to ind % indtypes
Capital Appreciation Time Series aret_ts() ind % aret(j), j from 1 to ind % indtypes
Income Return Time Series iret_ts() ind % iret(j), j from 1 to ind % indtypes
Total Return Index Level Time Series tind_ts() ind % tind(j), j from 1 to ind % indtypes
Capital Appreciation Index Level Time Series aind_ts() ind % aind(j), j from 1 to ind % indtypes
Income Return Index Level Time Series iind_ts() ind % iind(j), j from 1 to ind % indtypes

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

143Chapter 3: Accessing Data in FORTRAN-95

FORTRAN-95 Language Data Structure for CRSP Indices Data

All CRSP-defined data types have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next indented level.

Index and date ranges for all elements in a structure are the same as for the structure itself. There are four structure levels indicated by the indentation in the Mne-
monic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates
data grouped in modules. See the Data Description Guide for data item definitions.

All character strings, indicated by char[#], are null terminated. The number of characters - 1 is the maximum string length allowed. Actual maximums may be
lower. The top level ind structure is an example used by CRSP Indices sample programs. Other names can be used, and multiple CRSP_IND_STRUCTs may be
declared in a program.

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

ind_data Master Indices Structure CRSP_IND ind

indhdr Indices Header Object
indno INDNO INTEGER ind % indhdr %

indno

indco INDCO INTEGER ind % indhdr %
indco

primflag Index Primary Link INTEGER ind % indhdr %
primflag

portnum Portfolio Number if
Subset Series

INTEGER ind % indhdr %
portnum

indname Index Name CHARACTER[80] ind % indhdr %
indname

groupname Index Group Name CHARACTER[80] ind % indhdr %
groupname

method Index Methodology
Description Structure

CRSP_IND_METHOD ind % indhdr %
method

methcode Index Method Type Code INTEGER ind % indhdr %
method % methcode

primtype Index Primary
Methodology Type

INTEGER ind % indhdr %
method % primtype

subtype Index Secondary
Methodology Group

INTEGER ind % indhdr %
method % subtype

wgttype Index Reweighting Type
Flag

INTEGER ind % indhdr %
method % wgttype

wgtflag Index Reweighting
Timing Flag

INTEGER ind % indhdr %
method % wgtflag

144

PROGRAMMERS GUIDE

flags Index Exception Handling
Flags

CRSP_IND_FLAGS ind % indhdr %
flags

flagcode Index Basic Exception
Types Code

INTEGER ind % indhdr %
flags % flagcode

addflag Index New Issues Flag INTEGER ind % indhdr %
flags % addflag

delflag Index Ineligible Issues
Flag

INTEGER ind % indhdr %
flags % delflag

delretflag Return of Delisted Issues
Flag

INTEGER ind % indhdr %
flags %
delretflag

missflag Index Missing Data Flag INTEGER ind % indhdr %
flags % missflag

partuniv Index Subset Screening
Structure

CRSP_UNIV_PARAM ind % indhdr %
partuniv

partunivcode Universe Subset Types
Code in a Partition
Restriction

INTEGER ind % indhdr %
partuniv %
univcode

begdt Partition Restriction
Beginning Date

INTEGER ind % indhdr %
partuniv % begdt

enddt Partition Restriction End
Date

INTEGER ind % indhdr %
partuniv % enddt

wantexch Valid Exchange Codes in
the Universe in a Partition
Restriction

INTEGER ind % indhdr %
partuniv %
wantexch

wantnms Valid NASDAQ Market
Groups in the Universe in
a Partition Restriction

INTEGER ind % indhdr %
partuniv %
wantnms

wantwi Valid When-Issued
Securities in the Universe
in a Partition Restriction

INTEGER ind % indhdr %
partuniv % wantwi

wantinc Valid Incorporation of
Securities in the Universe
in a Partition Restriction

INTEGER ind % indhdr %
partuniv %
wantinc

shrcd Share Code Screen
Structure in a Partition
Restriction

CRSP_UNIV_SHRCD ind % indhdr %
partuniv % shrcd

sccode Share Code Groupings for
Subsets in a Partition
Restriction

INTEGER ind % indhdr %
partuniv % shrcd
% sccode

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

145Chapter 3: Accessing Data in FORTRAN-95

fstdig Valid First Digit of Share
Code in a Partition
Restriction

INTEGER ind % indhdr %
partuniv % shrcd
% fstdig

secdig Valid Second Digit of
Share Code in a Partition
Restriction

INTEGER ind % indhdr %
partuniv % shrcd
% secdig

induniv Partition Subset Screening
Structure

CRSP_UNIV_PARAM ind % indhdr %
induniv

indunivcode Universe Subset Types
Code in an Index
Restriction

INTEGER ind % indhdr %
induniv %
univcode

begdt Restriction Begin Date INTEGER ind % indhdr %
induniv % begdt

enddt Restriction End Date INTEGER ind % indhdr %
induniv % enddt

wantexch Valid Exchange Codes in
the Universe in an Index
Restriction

INTEGER ind % indhdr %
induniv %
wantexch

wantnms Valid NASDAQ Market
Groups in the Universe in
an Index Restriction

INTEGER ind % indhdr %
induniv % wantnms

wantwi Valid When-Issued
Securities in the Universe
in an Index Restriction

INTEGER ind % indhdr %
induniv % wantwi

wantinc Valid Incorporation of
Securities in the Universe
in an Index Restriction

INTEGER ind % indhdr %
induniv % wantinc

shrcd Share Code Screen
Structure in an Index
Restriction

CRSP_UNIV_SHRCD ind % indhdr %
induniv % shrcd

sccode Share Code Groupings for
Subsets in an Index
Restriction

INTEGER ind % indhdr %
induniv % shrcd %
sccode

fstdig Valid First Digit of Share
Code in an Index
Restriction

INTEGER ind % indhdr %
induniv % shrcd %
fstdig

secdig Valid Second Digit of
Share Code in an Index
Restriction

INTEGER ind % indhdr %
induniv % shrcd %
secdig

rules Portfolio Building Rules
Structure

CRSP_IND_RULES ind % indhdr %
rules

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

146

PROGRAMMERS GUIDE

rulecode Index Basic Rule Types
Code

INTEGER ind % indhdr %
rules % rulecode

buyfnct Index Function Code for
Buy Rules

INTEGER ind % indhdr %
rules % buyfnct

sellfnct Index Function Code for
Sell Rules

INTEGER ind % indhdr %
rules % sellfnct

statfnct Index Function Code for
Generating Statistics

INTEGER ind % indhdr %
rules % statfnct

groupflag Index Statistic Grouping
Code

INTEGER ind % indhdr %
rules % groupflag

assign Related Assignment
Information

CRSP_IND_ASSIGN ind % indhdr %
assign

assigncode Index Basic Assignment
Types Code

INTEGER ind % indhdr %
assign %
assigncode

asperm INDNO of Associated
Index

INTEGER ind % indhdr %
assign % asperm

asport Portfolio Number in
Associated Index

INTEGER ind % indhdr %
assign % asport

rebalcal Calendar Identification
Number of Rebalancing
Calendar

INTEGER ind % indhdr %
assign %
rebal_cal

assigncal Calendar Identification
Number of Assignment
Calendar

INTEGER ind % indhdr %
assign %
assigncal

calccal Calendar Identification
Number of Calculations
Calendar

INTEGER ind % indhdr %
assign % calccal

rebal Array of Rebalancing
Arrays

j between 1 and ind
% rebaltypes, i
between 1 and ind %
ind_rebal_arr(j
) % num

data valid from ind
% rebal(j,i) %
rbbegdt to ind %
rebal(j,i) %
rbenddt

rbbegdt Index Rebalancing Begin
Date

INTEGER ind % rebal %
rebal(j,i) %
rbbegdt

rbenddt Index Rebalancing End
Date

INTEGER ind % rebal %
rebal(j,i) %
rbenddt

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

147Chapter 3: Accessing Data in FORTRAN-95

usdcnt Count Used as of
Rebalancing

INTEGER ind % rebal%
rebal(j,i) %
usdcnt

maxcnt Maximum Count During
Period

INTEGER ind % rebal %
rebal(j,i) %
maxcnt

totcnt Count Available as of
Rebalancing

INTEGER ind % rebal %
rebal(j,i) %
totcnt

endcnt Count at End of
Rebalancing Period

INTEGER ind % rebal %
rebal(j,i) %
endcnt

minid Statistic Minimum
Identifier

INTEGER ind % rebal %
rebal(j,i) %
minid

maxid Statistic Maximum
Identifier

INTEGER ind % rebal %
rebal(j,i) %
maxid

minstat Statistic Minimum in
Period

DOUBLE PRECISION ind % rebal %
rebal(j,i) %
minstat

maxstat Statistic Maximum in
Period

DOUBLE PRECISION ind % rebal %
rebal(j,i) %
maxstat

medstat Statistic Median in Period DOUBLE PRECISION ind % rebal %
rebal(j,i) %
medstat

avgstat Statistic Average in
Period

DOUBLE PRECISION ind % rebal %
rebal(j,i) %
avgstat

list List Indices Arrays j between 1 and ind
% listtypes, i
between 1 and ind %
ind_list_arr(j)
% num

j between 1 and ind
% listtypes, i
between 1 and ind %
ind_list_arr(j)
% num

valid from ind %
list(j,i) % beg
to ind %
list(j,i) %
enddt

list List Arrays INTEGER ind % list(j,i)
% permno

ind %
ind_list_arr %
list(j,i) %
permno

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

148

PROGRAMMERS GUIDE

permno Permanent Number of
Securities in Index List

INTEGER ind % list(j,i)
% permno

ind %
ind_list_arr %
list(j,i) %
permno

begdt First Date Included in List INTEGER ind % list(j,i)
% begdt

ind %
ind_list_arr %
list(j,i) % begdt

enddt Last Date Included in a
List

INTEGER ind % list(j,i)
% enddt

ind %
ind_list_arr %
list(j,i) % enddt

subind Index Subcategory Code INTEGER ind % list(j,i)
% subind

ind %
ind_list_arr %
list(j,i) %
subind

weight Weight of an Issue DOUBLE PRECISION ind % list(j,i)
% weight

ind %
ind_list_arr %
list(j,i) %
weight

Time Series Data Arrays
aind Index Capital

Appreciation Index Level
REAL * ind % aind(j,i) ind % indaind_ts

% aind(j,i)
j between 1 and
indtypes, i
between ind %
aind_ts(j) %
beg and ind_data
% aind_ts(j) %
end

j between 1 and
indtypes, i
between ind %
aind_ts(j) %
beg and ind %
aind_ts(j) %
end

value on date ind %
aind_ts(j) %
cal % caldt(i)

aret Index Capital
Appreciation Return

REAL * ind % aret(j,i) ind % indaret_ts
% aret(j,i)

j between 1 and
indtypes, i
between ind %
aret_ts(j) %
beg and ind_data
% aret_ts(j) %
end

j between 1 and
indtypes, i
between ind %
aret_ts(j) %
beg and ind %
aret_ts(j) %
end

value on date ind %
aret_ts(j) %
cal % caldt(i)

iind Index Income Return
Index Level

REAL * ind % iind(j,i) ind % indiind_ts
% iind(j,i)

j between 1 and
indtypes, i
between ind %
iind_ts(j) %
beg and ind_data
% iind_ts(j) %
end

j between 1 and
indtypes, i
between ind %
iind_ts(j) %
beg and ind %
iind_ts(j) %
end

value on date ind %
iind_ts(j) %
cal % caldt(i)

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

149Chapter 3: Accessing Data in FORTRAN-95

iret Index Income Return REAL * ind % iret(j,i) ind % indiret_ts
% iret(j,i)

j between 1 and
indtypes, i
between ind %
iret_ts(j) %
beg and ind_data
% iret_ts(j) %
end

j between 1 and
indtypes, i
between ind %
iret_ts(j) %
beg and ind %
iret_ts(j) %
end

value on date ind %
iret_ts(j) %
cal % caldt(i)

tind Index Total Return Index
Level

REAL * ind % tind(j,i) ind % indtind_ts
% tind(j,i)

j between 1 and
indtypes, i
between ind %
tind_ts(j) %
beg and ind_data
% tind_ts(j) %
end

j between 1 and
indtypes, i
between ind %
tind_ts(j) %
beg and ind %
tind_ts(j) %
end

value on date ind %
tind_ts(j) %
cal % caldt(i)

tret Index Total Return REAL * ind % tret(j,i) ind % indtret_ts
% tret(j,i)

j between 1 and
indtypes, i
between ind %
tret_ts(j) %
beg and ind_data
% tret_ts(j) %
end

j between 1 and
indtypes, i
between ind %
tret_ts(j) %
beg and ind %
tret_ts(j) %
end

value on date ind %
tret_ts(j) %
cal % caldt(i)

usdcnt Index Used Count REAL * ind %
usdcnt(j,i)

ind %
indusdcnt_ts %
usdcnt(j,i)

j between 1 and
indtypes, i
between ind %
usdcnt_ts(j) %
beg and ind_data
% usdcnt_ts(j)
% end

j between 1 and
indtypes, i
between ind %
usdcnt_ts(j) %
beg and ind %
usdcnt_ts(j) %
end

value on date ind %
usdcnt_ts(j) %
cal % caldt(i)

totcnt Index Total Count REAL * ind %
totcnt(j,i)

ind %
indtotcnt_ts %
totcnt(j,i)

j between 1 and
indtypes, i
between ind %
totcnt_ts(j) %
beg and ind_data
% totcnt_ts(j)
% end

j between 1 and
indtypes, i
between ind %
totcnt_ts(j) %
beg and ind %
totcnt_ts(j) %
end

value on date ind %
totcnt_ts(j) %
cal % caldt(i)

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

150

PROGRAMMERS GUIDE

usdval Index Used Value REAL * ind %
usdval(j,i)

ind %
indusdval_ts %
usdval(j,i)

j between 1 and
indtypes, i
between ind %
usdval_ts(j) %
beg and ind_data
% usdval_ts(j)
% end

j between 1 and
indtypes, i
between ind %
usdval_ts(j) %
beg and ind %
usdval_ts(j) %
end

value on date ind %
usdval_ts(j) %
cal % caldt(i)

totval Index Total Value REAL * ind %
totval(j,i)

ind %
indtotval_ts %
totval(j,i)

j between 1 and
indtypes, i
between ind %
totval_ts(j) %
beg and ind_data
% totval_ts(j)
% end

j between 1 and
indtypes, i
between ind %
totval_ts(j) %
beg and ind %
totval_ts(j) %
end

value on date ind %
totval_ts(j) %
cal % caldt(i)

Mnemonic Name Data Type Data Usage - Shortcut Data Usage - Full
Version

Index Range -
Shortcut

Index Range -
Full Version

Date Usage

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

151

Chapter 3: Accessing Data in FORTRAN-95

3.2 FORTRAN-95 Stock Sample Programs and Subroutines

Sample Programs — *SAMP*.F90
The FORTRAN-95 sample programs provide examples of how to access the CRSPAccess stock file daily or monthly
data with universal stock access routines. The 14 stock & indices sample programs give basic examples of the CRSP
access routines, and illustrate tasks while using the access and utility routines. To use a sample program, copy it to
your directory from the CRSP sample directory. Edit the program to meet your needs and compile, link, and run. See
the CRSPAccess Release Notes for FORTRAN-95 Supported Systems. All sample programs that call on an input file
have one available in the sample directory.

The sample programs are written to use either daily or monthly data. To switch between daily and monthly data,
change the setid from STK_DAILY to STK_MONTHLY.

STKSAMP1.F90 Reads all Securities Sequentially - Outputs a Security List to a File

STKSAMP1.F90 makes a sequential pass through the daily file in PERMNO order, retrieves Header data, and
creates a company list containing CUSIP - Header, PERMNO, Company Name - Header, Exchange Code -
Header, SIC Code - Header, and beginning and ending dates the CRSP file contains time series data for the
security. The output is printed into a file called dcnames.dat.

STKSAMP2.F90 Reads an Input File of Historical CUSIPs - Outputs Current CUSIPs to a File and Writes Header Data to
Terminal Window

STKSAMP2.F90 reads an historical CUSIP list, with CUSIPs in columns 1-8, from a user-created file called
hcusips.dat. It outputs a partial company list to the terminal, including all historical CUSIPs found in the
monthly file and their corresponding current CUSIPs, names, and last price for each security. It also creates a
file, cusips.dat, with the current CUSIPs.

STKSAMP2.F95 is particularly suited for updating CUSIP lists after some of the CUSIPs have changed.
STKSAMP3.F90 Reads an Input File of PERMNOs - Outputs Security Identification & Basic Delist Information to a File

STKSAMP3.F90 reads desired PERMNOs from a user-created input file called permnos.dat for daily data
containing PERMNOs in columns 2-6. It looks for each of the PERMNOs in the indicated database and data are
retrieved for each PERMNO in the input file that exactly matches a security on the file. The output file,
outperm.dat contains PERMNO, name, and returns data for the last date, date of price after delisting, and
delisting return are printed for each stock found.

STKSAMP4.F90 Reads Securities within a Range of SIC Codes - Writes Header and Portfolio Data to Terminal Window

STKSAMP4.F90 makes a partial sequential pass through the monthly file by processing all stocks whose most
recent SIC Code falls between 2000 and 2100. This range of current SIC codes can easily be changed to select
different industry groups. It prints to the terminal a partial namelist including initial capitalization and
portfolio assignment for each stock found.

STKSAMP5.F90 Reads an Input File of Historical CUSIPs - Outputs Header Data, Returns and Compound Returns to a
File

STKSAMP5.F90 reads the daily database and extracts data using an input file of historical CUSIPs with
beginning and ending date ranges. The input file, retinp.dat, has CUSIPs in positions 2-9, begin dates
(YYYYMMDD) in positions 11-18 and end dates (YYYYMMDD) in positions 20-27. The output file,
returns.dat, will contain CUSIP - Header, PERMNO, Calendar dates, and the Compound Return followed
by returns for each security over the date range specified in the retinp.dat file. If a CUSIP included in
retinp.dat is not in the CRSP database, the begin date and CUSIP will print to the screen.

STKSAMP6.F90 Year-End Capitalization & Portfolio Assignments for Current Companies that have Traded 3 Consecutive
Years are Written to a File

STKSAMP6.F90 makes a sequential pass through the daily file in PERMNO order, and outputs CUSIP -
Header, PERMNO, year-end Capitalizations and decile Portfolio Assignments for all firms that traded in the past
three years to a file, mktcaps.dat.

152

PROGRAMMERS GUIDE

STKSAMP7.F90 Reads Stock and Indices data - Writes Daily Market Indices within a Date Range to a File

STKSAMP7.F90 reads daily stock and indices data by PERMNO from an input file, permno_date.dat
which contains PERMNO in columns 2-6 and a start date in columns 8-15. The default relative date range is 3
years before and after the start date specified in permno_date.dat. The program writes PERMNO,
Calendar Date, Company Name, Return without Dividends for the Stock and Returns without Dividends for
INDNO 100080, the NYSE/AMEX/NASDAQ Value-Weighted Market Index over a relative date range to an
output file, permno_returns.dat.

To use this program with indices not included in the Stock product, you must also subscribe to the Indices
product.

STKSAMP8.F90 Reads Stock File for Mergers within a Date Range - Outputs Header and Distribution Data to a File

STKSAMP8.F90 reads the monthly stock database for mergers (delist code 2**) that delisted between
19820101 and 19871231. For all securities found, PERMNO, the CUSIP - Header, Company Name - Header,
SIC Code - Header, Delisting Date, Delisting Return, and New PERMNO are written to an output file,
delist.dat.

STKSAMP9.F90 Reads Stock File for Spin-Offs within a Date Range - Outputs Header, Distribution Data, and Market
Capitalization to a File

STKSAMP9.F90 reads the daily stock database for spin-offs (distribution codes 3753 and 3763) between
19871231 and 19891231. For each spinoff found, the PERMNO, Company Name at the time of the spinoff,
Distribution Declaration Date, Distribution Amount, and the capitalization portfolio of the security during the
year the spin-off occurred are printed to an output file, spinoff.dat.

STKSAMP10.F90 Reads Stock File for NASDAQ Bid, Ask, & Number of Trades Data - Outputs PERMNO, Company Name
and NASDSAQ Time Series Data to a File

STKSAMP10.F90 sequentially reads the daily stock database for NASDAQ time series data; Bid, Ask and
NASDAQ Number of Trades. Outputs PERMNO, Company Name corresponding to the calendar date, and the
NASDAQ time series data to an output file, nmsdata.dat. Note that NASDAQ Number of Trades is a daily-
only data item. To use this sample program with monthly data, remove NASDAQ Number of Trades from the
output.

STKINDSAMP1.F90 Compare the returns of a company to a specified index.

The daily excess returns for a stock compared to an index are calculated over teh specified date range. For each
date, the Stock Return, the Index Return and the Negative or Positive Excess Return are written to an output file,
excess_return.dat, for the most recent 50 days.

STKINDSAMP2.F90 Compare the returns of a company to its peer group based on market capitalization decile ranking.

The returns of the portfolio to which a specified company belongs at each point in time are combined into one-
time series to create a peer group index. A time series of excess returns is calculated for the company against this
peer group index. The output file, portfolio_xs_ret.dat, is created and contains for each date: Company
Return, Index Return and Negative or Positive Excess Returns.

STKINDSAMP3.F90 Compare company returns based on trade-only data.

Returns are calculated using trade-only prices, with and without dividends. The output file,
trade_only_ret.dat, contains PERMNO, Calendar Date, Price, Trade-Only Price, Return without
Dividends and Return with Dividends.

INDSAMP1.F90 Reads Indices Data for multiple indices - Outputs Desired Data a File

INDNO Index Name
1000040 CRSP NYSE/AMEX Value-Weighted Market Index
1000041 CRSP NYSE/AMEX Equal-Weighted Market Index
1000052 S&P 500 Composite Index

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

153

Chapter 3: Accessing Data in FORTRAN-95

FORTRAN-95 Include Files and Data Structures

crsp.inc defines all structures and constants used by the CRSP FORTRAN-95 access and utility functions, and the
function definitions. crsp.inc includes several other header files. The primary definitions needed for stock databases
are in f95_params.inc, f95_cal.inc, f95_datatypes.inc, f95_stock.inc, and f95_ind.inc.

The following list summarizes the individual stock and indices include files that are included in crsp.inc. All ind-
clude files are kept in the CRSP_INCLUDE directory.

1000060 CRSP NASDAQ Value-Weighted Market Index
1000061 CRSP NASDAQ Equal-Weighted Market Index
10000503 NASDAQ Composite Index

1000080 CRSP NYSE/AMEX/NASDAQ Value-Weighted Market Index
1000081 CRSP NYSE/AMEX/NASDAQ Equal-Weighted Market Index
1000502 S&P 500 Composite Index

1000080 CRSP NYSE/AMEX/NASDAQ Value-Weighted Market Index
1000081 CRSP NYSE/AMEX/NASDAQ Equal-Weighted Market Index
1000092 CRSP NYSE/AMEX/NASDAQ Market Capitalization Deciles

1000357 CRSP NYSE/AMEX/NASDAQ Nationa Market Cap-Based Portfolios

1000700 CTI Treasury - CRSP 30 Year Bond Returns

1000709 Consumer Price Index

Header File Description
Crsp_params.inc Contains all parameters used in FORTRAN-95 source programs.
Crsp_data_types.inc Declares all generic FORTRAN-95 TYPEs that are used to process CRSP stock and index data – exclusive of TYPE

crsp_stk and TYPE crsp_ind, together with their immediate SUB-TYPES
Crsp_cal.inc Contains all FORTRAN-95 data which reflect the CRSP calendar for stock and index data
Crsp_stk.inc Contains all data and pointers used to support manipulation of CRSP stock data.
Crsp_ind.inc Contains all data and pointers used to support manipulation of CRSP index data.
Crsp_for_unit.inc Provides the data structure for managing Fortran unit numbers during run-time execution of FORTRAN-95 programs
All_ind.inc Includes all FORTRAN-95 data TYPEs required to support manipulation of CRSP index data: crsp_params.inc,

crsp_data_types.inc and crsp_ind.inc
All_stk.inc Includes all FORTRAN-95 data TYPEs required to support manipulation of CRSP stock data: crsp_params.inc,

crsp_data_types.inc and crsp_stk.inc.
All_stk_ind.inc Includes all FORTRAN-95 data TYPEs required to support (simultaneous) manipulation of CRSP stock and index data:

crsp_params.inc, crsp_data_types.inc, crsp_stk.inc and crsp_ind.inc.

154

PROGRAMMERS GUIDE

3.3 CRSPAccess FORTRAN-95 Library

The CRSPAccess FORTRAN-95 Library contains the Application Programming Interface (API) used to access and to
process CRSP stock and index data. The library is broken into sections based on the type of operations. The follow-
ing major groups are available. Each can be further subdivided into subgroups. Functions within subgroups are
alphabetical. Each function includes a function prototype, description, list of arguments, return values, side effects,
and preconditions for use.

Stock Access Functions

The following tables list the available functions to access CRSPAccess Stock Data. Standard usage is to employ an
open function, followed by successive reads and a close. Different databases and sets can be processed simulta-
neously if there is a matching structure defined for each one.

FORTRAN-95 Library Category Description Page
Stock Access Functions Functions used to load stock data from the database into structures Page 154
Index Access Functions Functions used to load index data from the database into structures Page 160
General Access Functions General calendar and access functions Page 162
General Utility Functions Functions utility to process base CRSPAccess structures Page 163

Function Description Prototype

stock_open Opens an Existing Stock Set in a CRSPAccess Database Page 155:
stock_open(TYPE(crsp_stk)stk,
TYPE(name_string), POINTER::
user_path, crspnum, setid,
wanted, status)

stk_read_permno Loads Wanted Stock Data Using CRSP PERMNO as the Key Page 156: stk_read_permno (crspnum,
stk, setid, permno,
permno_select, wanted, status)

stk_read_cusip Loads Wanted Stock Data Using Current CUSIP as the Key Page 157: stk_read_cusip (crspnum,
stkstk, setid, cusip,
cusip_select, wanted, status)

stk_read_permco Loads Wanted Stock Data Using CRSP PERMCO as the Key Page 157: stk_read_permco (crspnum,
stk, setid, permco,
permco_select, wanted, status)

stk_read_hcusip Loads Wanted Stock Data Using Historical CUSIP as the Key Page 158: stk_read_hcusip (crspnum,
stk, setid, hcusip,
hcusip_select, wanted, status)

stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key Page 158: stk_read_permco (crspnum,
stk, setid, permco,
permco_select, wanted, status)

stk_read_ticker Loads Wanted Stock Data Using Current Ticker Symbol as the Key Page 159: stk_read_siccd (crspnum,
stk, setid, siccd, siccd_select,
wanted, status)

stock_close Closes a Stock Set Page 159:stock_close (crspnum,
setid)

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

155

Chapter 3: Accessing Data in FORTRAN-95

stock_open Opens an Existing Stock Set in a CRSPAccess Database

Prototype: stock_open(TYPE(crsp_stk)stk, TYPE(name_string), POINTER:: user_path, crspnum,
setid, wanted, status)

Description: opens an existing stock set in a CRSPAccess Database
Arguments: stk TYPE(crsp_stk) - data object to be allocated and loaded.

user_path TYPE(name_string) - directory path to user’s CRSPAccess data; if NULL, default CRSPAccess data
are used
crspnum – returned value associated with stock set which is opened; used in future data retrievals
setid – the set identifier
10 – Daily CRSP Stock Database - STK_DAILY
20 – Monthly CRSP Stock Database - STK_MONTHLY
wanted – composite mask indicating which modules will be used. The list below shows the wanted values for the stock
modules. The wanted values may be summed, or summary wanted values may be used to open multiple modules. Only
modules that are specified by the wanted parameter have memory allocated in stk, and only those modules can be
accessed in further data retrieval functions from the database. Note that header data is the default wanted, and it is
included with all other options.
Individual modules:
STK_HEAD header structure
STK_EVENTS names, dists, shares, delists, nasdin
STK_LOWS lows
STK_HIGHS highs
STK_PRICES close or bid/ask average
STK_RETURNS total returns
STK_VOLUMES volumes
STK_PORTS portfolios
STK_BIDS bids
STK_ASKS asks
STK_RETXS returns without dividends
STK_SPREADS spreads

STK_TRADES number of trades
or
STK_ALTPRCDTS alternate price date

STK_OPENPRCS open prices
or
STK_ALTPRCS alternate prices

STK_GROUPS groups
Group of modules:
STK_INFOS header and event data
STK_DDATA price, high, low, volume and returns time series
STK_SDATA bids, asks, and number of trades time series
STK_STD header, events, prices, high, low, volume, returns, and ports
STK_ALL all modules
status – returned value indicating success/failure (CRSP_SUCCESS/CRSP_FAIL) of stock_open()

Return Values: crspnum – (integer) if opened successfully. This crspnum is used in further data retrieval functions from the database.
CRSP_SUCCESS - successful invocation of stock_open()
CRSP_FAIL – (integer) if error opening or loading files, if bad parameters, root already opened exclusively, stock set
already opened rw, wanted not a subset of set’s modules, set does not exist in root, set already opened and structure
allocated, error allocating memory for internal or stock structures.

Side Effects: This will load root and stock initialization files if needed, open the root including loading the configuration structure and
index structures to memory, opening the address file, and if necessary allocating memory to file buffers, loading the free
list, and logging information to the log file. Files will be opened for all wanted modules, associated calendars will be
loaded, and wanted stock structures will be allocated.

Preconditions: None. The root may already be open under a different set in r mode.

156

PROGRAMMERS GUIDE

stk_read_permno Loads Wanted Stock Data Using CRSP PERMNO as the Key

Prototype: stk_read_permno (crspnum, stk, setid, permno, permno_select, wanted, status)

Description: loads wanted stock data for a PERMNO
Arguments: crspnum – crspdb root identifier previously established by stock_open()

stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
permno – explicit PERMNO of data to load, or integer that will be loaded with the PERMNO key value found if
positional permno_select is used.
permno_select – constant to search for the PERMNO in *key, or positional constant:

 CRSP_EXACT - match the specified key value exactly
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_permno()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found in root
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted

Side Effects: Data from the wanted modules will be loaded to the proper location in stk. The position to be used for the next
positional read is reset based on the key value found. If permno_select is a positional qualifier, the actual PERMNO
found is loaded to permno. Data are loaded only to wanted data structures within the range of valid data for the
security.

Preconditions: The stock set must have been opened previously. crspnum must have been returned from a previous stock_open()
call. stk must have been passed to a previous stock_open() call. wanted must be a subset of the wanted
parameter passed to the stock_open() function.

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

157

Chapter 3: Accessing Data in FORTRAN-95

stk_read_cusip Loads Wanted Stock Data Using Current CUSIP as the Key

Prototype: stk_read_cusip (crspnum, stkstk, setid, cusip, cusip_select, wanted, status)
Description: loads wanted stock data for a security using the CUSIP Identifier - Header (hcusip) as the key
Arguments: crspnum – crspdb root identifier returned by stock_open()

stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
cusip – CUSIP - Header to load, or TYPE(cusip_string) data that will be loaded with the CUSIP found if a
positional cusip_select is used.
cusip_select – qualify matching conditions of key value searches:
CRSP_EXACT – accept only an exact match
CRSP_BACK – find greatest prior key value if no exact match
CRSP_FORWARD – find least following key value if no exact match
or positional constant:

 CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_cusip()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
CUSIP index

Side Effects: Data from the wanted modules will be loaded to the proper location(s) in the stock structure. The position used for the
next positional read is reset based on the key value found. If cusip_flag is a positional qualifier, the actual CUSIP
Identifier - Header found is loaded to cusip. Data are loaded only to wanted data structures within the range of valid
data for the security.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous stock_open() call. stk
must have been passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to
the stock_open() function.

stk_read_permco Loads Wanted Stock Data Using CRSP PERMCO as the Key

Prototype: stk_read_permco (crspnum, stk, setid, permco, permco_select, wanted, status)
Description: loads wanted stock data for a security using PERMCO as the key
Arguments: crspnum – crspdb root identifier established by stock_open()

stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
permco – PERMCO to load, or an integer that will be loaded with the key value found if a positional permco_select is
used.
permco_select – positional qualifier or match qualifier – see stk_read_cus
wanted – mask of flags indicating which data modules to load. See stock_open for module codes.
status - returned value indicating success/failure of stk_read_permco()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
PERMCO index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key value found. If permco_select is a positional qualifier, the actual PERMCO
found is loaded to permno. Data are loaded only to wanted data structures within the range of valid data for the security.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous stock_open() call. stk
must have been passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to
the stock_open() function.

158

PROGRAMMERS GUIDE

stk_read_hcusip Loads Wanted Stock Data Using Historical CUSIP as the Key

Prototype: stk_read_hcusip (crspnum, stk, setid, hcusip, hcusip_select, wanted, status)
Description: loads wanted stock data for a security using name history CUSIP as the key
Arguments: crspnum – crspdb root identifier established by stock_open()

stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
hcusip – historical CUSIP identifier to load, or TYPE(cusip_string) data
hcusip_select – positional qualifier or match qualifier– see stk_read_cusip()
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_hcusip()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
CUSIP index value

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key value found. If cusip_flag is a positional qualifier, the actual historical CUSIP
found is loaded to cusip. Data are loaded only to wanted data structures within the range of valid data for the security.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous stock_open() call. stk
must have been passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to
the stock_open() function.

stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key

Prototype: stk_read_siccd (crspnum, stk, setid, siccd, siccd_select, wanted, status)
Description: loads wanted stock data for a security using name history Standard Industrial Classification (SIC) Code (siccd) as the

key
Arguments: crspnum – crspdb root identifier returned by stock_open()

stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
siccd – siccd to load, or an integer that will be loaded with the key value found if a positional siccd_select is
used.
siccd_select – positional qualifier or match qualifier– see stk_read_siccd()
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_siccd()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
siccd index value

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key value found. If siccd_flag is a positional qualifier, the actual SIC Code found
is loaded to siccd. Data are loaded only to wanted data structures within the range of valid data for the security.

Preconditions: The stock set must be previously opened. crspnum must be returned from a previous stock_open() call. stk must
have been passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the
stock_open() function.

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

159

Chapter 3: Accessing Data in FORTRAN-95

stk_read_ticker Loads the Wanted Stock Data Using Current Ticker Symbol - Header as the Key

Prototype: stk_read_ticker (crspnum, stk, setid, ticker, ticker_select, wanted, status)
Description: loads wanted stock data for a security using Ticker - Header as the key
Arguments: crspnum – crspdb root identifier established by stock_open()

stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
ticker – pointer to Ticker Symbol - Header to load, or TYPE (ticker-string) data that will be loaded with the key
found if a positional ticker_select is used.
ticker_select – positional qualifier or match qualifier– see stk_read_ticker()
wanted – mask of flags indicating which module data to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_ticker()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if ticker not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
ticker index

Side Effects: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next
positional read is reset based on the key found. If ticker_flag is a positional qualifier, the actual header ticker found
is loaded to ticker. Data are loaded only to wanted data structures within the range of valid data for the security.

Preconditions: The stock set must be previously opened. The crspnum must be returned from a previous stock_open() call. stk
must have been passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to
the stock_open() function.

stock_close Closes a Stock Set

Prototype: stock_close (crspnum, setid)
Description: closes a stock set
Arguments: crspnum – identifier of crsp database, as returned by stock_open()

setid – stock set orignially associated with crspnum at invocation of stock_open()
Side Effects: All stock module files are closed, memory allocated by them is freed. If these are the last modules open in the database,

the root is also closed.
Preconditions: The crspnum and setid must be taken from a previous invocation of stock_open.
Call Sequence: Called by external programs, must be preceded by invocation of stock_open().

160

PROGRAMMERS GUIDE

Index Access Functions

The following tables list the available functions to access CRSPAccess indices data. Standard usage is to use an open
function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if
there is a matching structure defined for each one.

Access Function Description Prototype

index_open Opens an Existing Index Set in an Existing CRSPAccess Database Page 160: index_open (ind_data,
user_path, crspnum, setid,
wanted, status)

ind_read_indno Loads Wanted Data For a CRSP INDNO Page 161:
index_close Closes an Indices Set Page 161: index_close (crspnum,

setid)

index_open Opens an Index Set in an Existing CRSPAccess Database

Prototype: index_open (ind_data, user_path, crspnum, setid, wanted, status)
Description: opens an index set in an existing crspdb. This opens database files, allocates needed memory to a structure, and

initializes internal structures so index data can be used.
Arguments: ind_data – TYPE(crsp_ind) data object to be allocated and loaded

crspnum – returned value assocaited with index set which is opened; used in future data retrievals
setid – the set identifier
400 = monthly index groups - MONTHLY_INDEX_GROUPS
420 = monthly index series - MONTHLY_INDEX_SERIES
440 = daily index groups - DAILY_INDEX_GROUPS
460 = daily index series - DAILY_INDEX_SERIES
wanted – mask indicating which modules will be used. The list below shows the wanted values for the index modules.
The wanted values may be summed, or summary wanted values may be used to open multiple modules. Only modules
that are selected in the wanted parameter have memory allocated in the index structure and only those modules can be
accessed in further access functions to the database.
IND_HEAD header structure and index description
IND_REBALS 2rebalancing information for index groups
IND_LISTS issue lists
IND_USDCNTS portfolio used counts
IND_TOTCNTS portfolio total eligible counts
IND_USDVALS portfolio used weights
IND_TOTVALS portfolio eligible weights
IND_TRETURNS total returns
IND_ARETURNS capital appreciation returns
IND_IRETURNS income returns
IND_TLEVELS total return index levels
IND_ALEVELS capital appreciation index levels
IND_ILEVELS income return index levels
Symbols are available for common groups of modules. IND_ALL selects all the index data.
IND_INFO=IND_HEAD+ IND_REBALS+IND_LISTS
IND_RETURNS=IND_TRETURNS+ IND_ARETURNS+IND_IRETURNS
IND_LEVELS=IND_TLEVELS+ IND_ALEVELS+IND_ILEVELS
IND_COUNTS=IND_USDCNTS+ IND_TOTCNTS+IND_USDVALS+IND_TOTVALS
IND_RESULTS=IND_HEAD+ IND_USDCNTS+IND_USDVALS+IND_TRETURNS
IND_ARESULTS=IND_HEAD+ IND_USDCNTS+IND_USDVALS+IND_ARETURNS
IND_IRESULTS=IND_HEAD+ IND_USDCNTS+IND_USDVALS+IND_IRETURNS
IND_STD=IND_HEAD+ IND_COUNTS+IND_TRETURNS+IND_ARETURNS
IND_ALL=IND_INFO+ IND_RETURNS+IND_LEVELS+IND_COUNTS
status – returned value indicating success/failure of index_open()

Return Values: CRSP_SUCCESS: successful invoation of index_open()
CRSP_FAIL: if error opening or loading files, if bad parameters, root already opened exclusively, index set already opened
rw, wanted not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error
allocating memory for internal or index structures.

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

161

Chapter 3: Accessing Data in FORTRAN-95

Side Effects: This will load root and index initialization files if needed, open the root including loading the configuration structure and
index structures to memory, opening the address file, and if necessary allocating memory to file buffers, loading the free
list, and logging information to the log file. Files will be opened for all wanted modules. Associated calendars will be
loaded. wanted index structures will be allocated.

Preconditions: None; the root may already be open. If a new index structure is passed additional fields may be allocated.

ind_read_indno Loads Wanted Index Data For a CRSP INDNO

Prototype: ind_read_indno (crspnum, ind_data, setid, indno, indno_select, wanted, status)
Description: loads wanted index data for an INDNO
Arguments: crspnum – crspdb root identifier returned by index_open()

ind_data – TYPE(crsp_ind) data object to be allocated and loaded
setid – the set identifier used in index_open()
indno – explicit INDNO of data to load, or integer that will be loaded with the key value found if a positional
indno_flag is used.
indno_select – constant to search for the INDNO in key, or positional constant:
CRSP_EXACT - match specified key value exactly
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
wanted – mask of flags indicating which module data to load. See index_open() for module codes.
status – returned value indicating success/failure of ind_read_indno()

Return Values: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found in database
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and setid, error in read, impossible wanted

Side Effects: Data from the wanted modules will be loaded to the proper location in the index structure. The position used for the next
positional read is reset based on the key found. If indno_select is a positional qualifier, the actual INDNO found is
loaded to indno. Data are loaded only to wanted data structures within the range of valid data for the index.

Preconditions: The index set must be previously opened. The crspnum must be returned from a previous index_open() call.
ind_data must have been passed to a previous index_open() call. wanted must be a subset of the wanted
parameter passed to the index_open() function.

index_close Closes an Index Set

Prototype: index_close (crspnum, setid)

Description: close an index set

Arguments: crspnum – identifier of the CRSP database, as returned by index_open()
setid – identifier of the index set code to close, as used in the open

Side Effects: All index module files are closed, and memory allocated by them in the index structure is freed. If these are the last
modules open in the database, the root is also closed.

Preconditions: The crspnum and setid must be taken from a previous ind_open() call.

index_open Opens an Index Set in an Existing CRSPAccess Database

Prototype: index_open (ind_data, user_path, crspnum, setid, wanted, status)

162

PROGRAMMERS GUIDE

General Access Functions

The CRSPAccess general access functions include error functions and portable file operation functions.

crsp_allocate_unit Allocates Unused Unit for FORTRAN-95-95 I/O

crsp_deallocate_unit Deallocates Unit Allocated by crsp_allocate_unit()

crsp_free_all_units Deallocates All Units Currently Allocated by crsp_allcoate_unit()

Function Group Description Prototype
crsp_allocate_unit Allocates Unused Unit for FORTRAN-95-95 I/O Page 162: crsp_allocate_unit()
crsp_deallocate_unit Deallocates Unit Allocated by crsp_allocate_unit() Page 162:

crsp_deallocate_unit(unit)

crsp_free_all_units Deallocates All Units Currently Allocated by
crsp_allocate_unit()

Page 162: crsp_free_all_units

Prototype: crsp_allocate_unit()

Description: Allocates a unique integer value in the range 10-79 for use in FORTRAN-95-95 I/O
Arguments: none
Return Values: integer unit number not previously allcoated;

-1 - if no unallocated units available
Side Effects: none
Preconditions: none

Prototype: crsp_deallocate_unit(unit)

Description: deallocates integer unit number allocated by crsp_allocate_unit()
Arguments: unit: integer unit number allocated by crsp_allocate_unit()
Return Values: none
Side Effects: none
Preconditions: none

Prototype: crsp_free_all_units

Description: deallocates all units currently allocated by crsp_allocate_unit()

Arguments: none
Return Values: none
Side Effects: none
Preconditions: none

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

163

Chapter 3: Accessing Data in FORTRAN-95

General Utility Functions

The utility functions operate on the base CRSPAccess data structures and are not specific to a type of data. They
include operations on calendars CRSP object structures and general utilities.

Calendar Utility Functions

These functions are used to manipulate calendar data in CRSPAccess databases.

Function Description Prototype

cal_index Finds CRSP Calendar Index of Date page 163: cal_index (cal, date)
date_index Finds CRSP Calendar Index of Date page 163: date_index (cal, date,

option)

stk_usdate Subscript of Calendar Trading Date page 163: stk_usdate(stk, datein,
dateout, position)

cal_index Finds CRSP Calendar Index of Date

Prototype: cal_index (cal, date)

Description: Finds CRSP Calendar Index of Date
Arguments: cal - TYPE(crsp_cal) calendar object

date - YYYYMMDD format date whose index in cal % caldt is desired
Return Values: index of YYYYMMDD argument in cal % caldt, or zero if out of range
Side Effects: matches forward to next valid date in cal % caldt if YYYYMMDD argument not found

date_index Finds CRSP Calendar Index of Date

Prototype: date_index (cal, date, option)

Description: Finds CRSP Calendar Index of Date
Arguments: cal - TYPE(crsp_cal) calendar object

date - YYYYMMDD format date whose index in cal % caldt is desired
option - -1, 0, 1 : match backwared, exact, forward

Return Values: index of YYYYMMDD argument in cal % caldt, or zero if not found
Side Effects: none

stk_usdate Index of Calendar Trading Date

Prototype: stk_usdate(stk, datein, dateout, position)

Description: Index of Calendar Trading Date
Arguments: stk - TYPE(crsp_stk)must have been used in prior invocation of stk_open()

datein - YYYYMMDD format date
dateout - YYYYMMDD formate date, to be loaded
position - integer index value in active stk % caldt()

Return Values: dateout is loaded with the next trading date greater than or equal to datein position is the index of dateout in
stk % caldt()

Side Effects: none

164

PROGRAMMERS GUIDE

CRSPAccess Stock Utility Functions

These functions can be used to access stock data.

Function Description Prototype

stk_comp_ret Compound Returns Page 164: compret=stk_compret (retv,
begind, endind)

stk_curdis Finds Distributions Between Specified Dates Page 165: stk_curdis (stk,
dist_type, begdt, enddt)

stk_curnam Finds Name Data on Specified Date Page 165: curnam=stk_curnam (stk,
date)

stk_curndi Finds Effective NASDAQ Information Structure on Specified Date Page 165: stk_curndi (stk, date)
stk_curshr Finds Shares Outstanding on Specified Date and Calendar Index Page 165: shares=stk_curshr (stk,

date)

stk_exrdat Restricts Real Array Data Between Selected Dates and by Exchange Page 166: stk_exrdat (stk, excode,
begind, endind, array, missval)

stk_exrinf Restricts Event Data Between Selected Dates and by Exchange Page 166: stk_exrinf (stk, excode)
stk_exrint Restricts Integer Array Data Between Selected Dates and by

Exchange
Page 166: stk_exrint (stk, excode,
begind, endind, array, missval)

stk_loadba Loads Bid and Ask Data to Price Arrays Page 166: stk_loadba (stk)
stk_loadhl Loads Trade Only Data to Price Arrays Page 167: stk_loadhl (stk)
stk_namrng Finds Calendar Index Ranges Corresponding to a Name Structure Page 167: stk_namrng (stk, ind,

bind, eind)

stk_valexc Determines if Exchange Code is Valid Page 167: valid=stk_valexc (exhave,
exwant)

xs_ret_calc Calculates a Stock Excess Return Over an Index Page 168: xs_ret_calc (ret_ts,
indtret_ts, xs_ret, MISSFLAG,
STATUS)

comp_ind_calc Calculates a Composition Return Page 168: comp_ind_calc (ind, stk,
port_type,
composite_index_return, status)

stk_ret_calc Calculates a Return Based on Trade-Only Prices Page 169: stk_ret_calc (stk_setid,
stk_wanted, stk,
trade_only_prc_ts, alt_prc_ts,
trade_only_ret_ts,
trade_only_retx_ts,
trade_only_start, trade_only_end,
gap_window, valid_exch)

stk_comp_ret Compound Returns

Prototype: compret=stk_compret (retv, begind, endind)

Description: Compound returns
Arguments: retv - array of REAL returns to be compounded

begind - initial index of range to be compounded
endind - terminal index of range to be compounded

Return Values: REAL compound return over internal begind - endind
Side Effects: none
Preconditions: retv must have DIMENSION (0:*); [stk % ret is allocated as (0:maxarr)]

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

165

Chapter 3: Accessing Data in FORTRAN-95

stk_curdis Finds Distribtutions Between Specified Dates

Prototype: stk_curdis (stk, dist_type, begdt, enddt)

Description: Finds distributions between two dates
Arguments: stk - TYPE(crsp_stk) data object loaded

dist_type - integer distribution type required:

1 = declaration date

2 = ex-distribution date

3 = record date

4 = payment date
begdt - YYYYMMDD initial date
enddt - YYYYMMDD terminal date

Return Values: The sequential index values of the distributions in stk % dists which fall in the specifed range begdt - enddt.
-1 - if dist_type not in range 1-4 or if begdt > enddt
0 - if no distributions exist (or if distributions in range begdt - enddt have been exhausted.)

Side Effects: none
Preconditions: stk must have been loaded with distribution data via invocation of stock_read_xxx()

stk_curnam Finds Name Data on Specified Date

Prototype: curnam=stk_curnam (stk, date)

Description: Finds name data on specified date
Arguments: stk - TYPE(crsp_stk) data object loaded

date - YYYYMMDD date in stk % caldt
Return Values: index in stk % names if record valid on date or current record if date follows date of latest name change
Side Effects: none
Preconditions: stk must have been loaded with names data via the invocation of stk_read_xxx()

stk_curndi Finds Effective NASDAQ Information Structure on Specified Date

Prototype: stk_curndi (stk, date)

Description: Finds effective NASDAQ information structure on specified date
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

date - YYYYMMDD date in active stk % caldt
Return Values: index in stk % nasdin of record valid on date

0 - if no nasdin data is available or date is outside the range of valid nasdin data
Side Effects: none
Preconditions: stk must have been laoded with nasdin data via the invocation of stk_read_xxx()

stk_curshr Finds Shares Outstanding on Specified Date and Calendar Index

Prototype: shares=stk_curshr (stk, date)

Description: Finds shares outstanding on specified date and calendar index
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

date - YYYYMMDD date in active stk % caldt
Return Values: index in stk % shares of record valid on date

0 - if no shares data are available or if the date is outside the range of valid shares data
Side Effects: none
Preconditions: stk must have been loded with shares data via the invocation of stk_read_xxx()

166

PROGRAMMERS GUIDE

stk_exrdat Restricts Real Array Data Between Select Dates and by Exchange

Prototype: stk_exrdat (stk, excode, begind, endind, array, missval)

Description: Restricts REAL array data between select dates and by exchange
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

excode - CRSP exchange code 1-7
begind - initial index for data validation
endind - terminal index for data validation
array - array of REAL data to be scanned and validated
misval - value to be substituted in array() for days in begind-endind range when the security is not trading on the
specified exchange

Return Values: adjusted array()
Side Effects: original values in array() may be superseded by misval
Preconditions: stk must have been loded with names data via the invocation of stk_read_xxx()

stk_exrinf Restricts Event Data Between Selected Dates And by Exchange

Prototype: stk_exrinf (stk, excode)

Description: Restricts event data between selected dates and by exchange
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

excode - CRSP exchange code: 1-7
Return Values: event arrays are “compressed” to exclude periods when the security did not trade on the specified exchange
Side Effects: parts of events arrays may be overwritten and lost
Preconditions: stk must have been loaded with events data via the invocation of stk_read_xxx()

stk_exrint Restricts Integer Array Data Between Selected Dates by Exchange

Prototype: stk_exrint (stk, excode, begind, endind, array, missval)

Description: Restricts integer array data between selected dates by exchange
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

excode - CRSP exchange code: 1-7
begind - initial index of data to be screened / reset
endind - terminal index of data to be screened / reset
array - integer array to be screened / reset
misval - code to be used as replacement value in array when the security is not trading on the specified exchange

Return Values: adjusted array()
Side Effects: parts of array() data may be overwritten and lost
Preconditions: stk must have been loaded with names data via the invocation of stk_read_xxx()

stk_loadba Loads Bid and Ask Data to Price Arrays

Prototype: stk_loadba (stk)

Description: Loads bid and ask data to price arrays
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded
Return Values: First if stk % prc(i) is non-negative, stk % prc(i), stk % bidlo(i), and

stk % askhi(i) are set to 0. Then NMS bid and ask data are loaded into bidlo and askhi. Finally resulting bid-ask
averages are copied to the price field.

Side Effects: prc(), bidlo(), and askhi() data may be overwritten and lost
Preconditions: stk must have been loaded with price, bid, and ask data via the invocation of stk_read_xxx()

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

167

Chapter 3: Accessing Data in FORTRAN-95

stk_loadhl Loads Trade Only Data to Price Arrays

Prototype: stk_loadhl (stk)

Description: Loads trade only data to price arrays
Arguments: stk - TYPE(crsp_stk) data object loaded
Return Values: stk % prc, stk % bidlo, and stk askhi are reset when price (prc) represents an average of bid and ask. Data

remain unchanged only when high, low, and price represent valid trading data.
Side Effects: prc(), bidlo(), and askhi() may be overwritten and lost
Preconditions: stk must have been loaded with price, bid and ask data via the invocation of stk_read_xxx()

stk_namrng Finds Calendar Index Ranges Corresponding to a Name Structure

Prototype: stk_namrng (stk, ind, bind, eind)

Description: Finds calendar index ranges corresponding to a name structure
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

ind - index of stk % names()
bind - index in stk % caldt() corresponding to initial valid date of stk % names (ind)
eind - index of stk_caldt() corresponding to terminal valid date of stk % names (ind)

Return Values: bind, eind
0 - if ind is not a valid index in stk % names()

Side Effects: none
Preconditions: skt_data must have been loaded with names data via the invocation of stk_read_xxx()

stk_valexc Determines if Exchange Code is Valid

Prototype: valid=stk_valexc (exhave, exwant)

Description: Determines if a given exchange code is valid based on a set of wanted exchanges. When-issued trading is not
differentiated from regular-way trading.

Arguments: exhave – Exchange Code to validate. Codes are standard CRSP stock Exchange Codes:

1=NYSE

2=AMEX

3=NASDAQ

31=NYSE when-issued

32=AMEX when-issued

33=NASDAQ when-issued

exwant – acceptable Exchange Code or codes. If multiple exchanges are valid, exwant is the sum of the individual
codes below:

1=NYSE

2=AMEX

4=NASDAQ
Return Values: .TRUE. – if exhave is valid according to exwant

.FALSE. – if exhave is not valid according to exwant
Side Effects: none
Preconditions: none

168

PROGRAMMERS GUIDE

CRSPAccess Excess Return Functions

xs_ret_calc Calculates Stock Excess Return Over an Index

comp_ind_calc Calculates a Composite Index Return

Prototype: xs_ret_calc (ret_ts, indtret_ts, xs_ret, MISSFLAG, STATUS)

Description: loads into TYPE (stk_ret_ts) xs_ret the excess returns for each date in the supplied TIMESERIES: based on the
intrinisic “returns” data from the TYPE (stk_ret_ts) subtype of TYPE (crsp_stk), versus the CRSP INDEX
returns of the subtype TYPE (ind_tret_ts) of TYPE (crsp_ind)

Arguments: TYPE (stk_ret_ts) ret_ts [a component of TYPE (crsp_stk)]

TYPE (ind_tret_ts) indtret_ts [a component of TYPE (crsp_ind)]

TYPE (stk_ret_ts) xs_ret [a component of TYPE (crsp_stk)]

INTEGER MISSFLAG: one of

CRSP_KEEP: missing returns in ret_ts are copied to xs_ret, and indtret_ts returns are compounded across the gap,

CRSP_SMOOTH: first return following any gap is averaged geometrically so that the entire gap has a constant
value, or

CRSP_IGNORE: missing returns in ret_ts are treated as zero, missing returns in indtret_ts generate a missing xs_ret
data point

INTEGER STATUS: CRSP_SUCCESS or
 CRSP_FAIL

Return Values: none, though STATUS indicates success/failure of calculations
Side Effects: data, including missing values – where appropriate – are loaded into xs_ret
Preconditions: ret_ts, indtret_ts, and xs_ret should have the same CRSP calendar

Prototype: comp_ind_calc (ind, stk, port_type, composite_index_return, status)

Description: loads into TYPE (stk_ret_ts) comp_ind_ret the “composite index” for the security, based on the specified
portfolio type and using, for each date, the index for the security’s portfolio decile on that date, thereby creating a
TIMESERIES of index values which is not a “standard” CRSP data item

Arguments: TYPE (crsp_ind) ind

TYPE (crsp_stk)

INTEGER port_type: the portfolio index to be used for generation of the composite index return

TYPE (stk_ret_ts) composite_index_return: loaded with the values of the composite index

INTEGER STATUS: CRSP_SUCCESS or
 CRSP_FAIL

Return Values: none, though STATUS indicates success/failure of calculations
Side Effects: composite index returns values are loaded into composite_index_return
Preconditions: ind and stk must have the same CRSP calendar

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

169

Chapter 3: Accessing Data in FORTRAN-95

stk_ret_calc Calculates a Stock Return based on Trade Only Prices

Prototype: stk_ret_calc (stk_setid, stk_wanted, stk, trade_only_prc_ts, alt_prc_ts,
trade_only_ret_ts, trade_only_retx_ts, trade_only_start, trade_only_end,
gap_window, valid_exch)

Description: loads into TYPE (stk_ret_ts) trade_only_ret_ts and TYPE (stk_ret_ts) trade_only_retx_ts
the “returns data” [with and without dividends, respectively] based on the user’s supplied values in TYPE
(stk_prc_ts) trade_only_prc_ts over the range of indices bounded inclusively by the user’s values for
“trade_only_start” and “trade_only_end”; values are computed in accordance with CRSP conventions for
missing values over a maximum allowable interval indicated by “gap_window” and “on-” or “off-” exchange trading

Arguments: INTEGER stk_setid: the dataset identifier of TYPE (crsp_stk) used (below)

INTEGER stk_wanted: the CRSP identifier of the data loaded into TYPE (crsp_stk) stk (below)

TYPE (crsp_stk) stk

TYPE (stk_prc_ts) trade_only_prc_ts: TIMESERIES created from

TYPE (crsp_stk) by setting to zero all values for “stk % prc_ts” which are negative (i.e., those NOT arising
from a valid value for “closing price”)

TYPE (stk_prc_ts) alt_prc: TIMESERIES to be used to supply “valid” values to supersede zero values present
in “trade_only_prc_ts”

TYPE (stk_ret_ts) trade_only_ret_ts: TIMESERIES to be loaded with returns calculated from the trade-
only- price TIMESERIES

TYPE (stk_ret_ts) trade_only_retx_ts: TIMESERIES to be loaded with “returns without dividends”
calculated from the trade-only-price TIMESERIES

INTEGER trade_only_start: index value indentifying the first data point for which trade-only returns are to be
calculated

INTEGER trade_only_end: index value identifying the last data point for which trade-only returns are to be
calculated

INTEGER gap_window: permitted successive missing values in trade_only_prc without computed returns being
set to missing (zero is default)

INTEGER valid_exch: binary code specifying valid exchange(s):
1 = NYSE, 2 = AMEX, 4 = NASD, 0 = all

Return Values: none
Side Effects: computed returns are loaded into trade_only_ret_ts and trade_only_retx_ts
Preconditions: “stk” must contain data corresponding to “stk_setid” and “stk_wanted”; trade_only_prc_ts”

must contain zero values wherever stk % prc(k) is negative (i.e., represents “bid-asked” average)

170

PROGRAMMERS GUIDE

CRSPAccess Print Utility Functions

The following functions are FORTRAN-95 print utiltiy functions.

Function Description Prototype

stk_outdat Outputs Price, Volume, and Return Data Page 170: stk_outdat (stk, unit,
bind, eind, step)

stk_outdel Outputs Delisting Data Page 170: stk_outdel (stk, unit,
first, last)

stk_outdis Outputs Distribution Data Page 171: stk_outdis (stk, unit,
first, last)

stk_outhdr Outputs Header Data Page 171: stk_outhdr (stk, unit)
stk_outint Outputs Data for One Integer Array Page 171: stk_outint (stk, unit,

title, array, bind, eind, step)

stk_outnam Outputs Name Data Page 171: stk_outnam (stk, unit,
first, last)

stk_outndi Outputs NASDAQ Information Data Page 172: stk_outndi (stk, unit,
first, last)

stk_outnms Outputs NASDAQ Time Series Data Page 172: stk_outnms (stk, unit,
bind, eind, step)

stk_outone Outputs Data for One Real Array Page 172: stk_outone (stk, unit,
title, array, bind, eind, step)

stk_outshr Outputs Shares Data Page 172: stk_outshr (stk, unit,
first, last)

stk_outyr Outputs Year and Portfolio Data Page 173: stk_out_port (stk, unit,
bind, eind, port_num)

stk_outdat Outputs Price, Volume, and Return Data

Prototype: stk_outdat (stk, unit, bind, eind, step)

Description: Outputs price, volume, and return data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
bind - initial index of stk % prc() to be used
eind - terminal index of stk % prc() to be used
step - “stride” increment for traversal of stk % prc()

Return Values: records from stk % bidlo(), stk % askhi(), stk % prc(), stk % vol, and stk % ret() are written to
the file open on unit

Side Effects: none
Preconditions: stk must have been loaded with prc(), bidlo(), askhi(), vol(), and ret() via invocation of

stk_read_xxx()

stk_outdel Outputs Delisting Data

Prototype: stk_outdel (stk, unit, first, last)

Description: Outputs delisting data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
first - initial index of stk % delist() to be used
last - terminal index of stk % delist() to be used

Return Values: records from stk % delist() are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with delisting records via invocation of stk_read_xxx()

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

171

Chapter 3: Accessing Data in FORTRAN-95

stk_outdis Outputs Distribution Data

Prototype: stk_outdis (stk, unit, first, last)

Description: Outputs distribution data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
first - initial index of stk % dists() to be used
last - terminal index of stk % dists() to be used

Return Values: records from stk % dists() are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with distribution data via invocation of stk_read_xxx()

stk_outhdr Outputs Header Data

Prototype: stk_outhdr (stk, unit)

Description: Outputs Header data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
Return Values: HEADER data values are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with header data via invocation of stk_read_xxx()

stk_outint Outputs Data for One Integer Array

Prototype: stk_outint (stk, unit, title, array, bind, eind, step)

Description: Outputs data for one integer array
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - unit - FORTRAN-95 I/O unit open for writing
title - TYPE(name string) character string
array - INTEGER array whose values are to be displayed
bind - initial index of array() to be used
eind - terminal index of array() to be used
step - “stride” increment for traversal of stk % array()

Return Values: data from array() are written to the file open on unit
Side Effects: none
Preconditions: stk % caldt() must have valid data, generally read via invocation of stk_read_xxx()

stk_outnam Outputs Name Data

Prototype: stk_outnam (stk, unit, first, last)

Description: Outputs Name data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
first - initial index of stk % names() to be used
last - terminal index of stk % names() to be used

Return Values: records from stk % names() are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with names data via invocation of stk_read_xxx()

172

PROGRAMMERS GUIDE

stk_outndi Outputs NASDAQ Information Data

Prototype: stk_outndi (stk, unit, first, last)

Description: Outputs NASDAQ information data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
first - initial index of stk % nasdin() to be used
last - terminal index of stk % nasdin() to be used

Return Values: records from stk % nasdin() are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with nasdin data via invocation of stk_read_xxx()

stk_outnms Outputs NASDAQ Time Series Data

Prototype: stk_outnms (stk, unit, bind, eind, step)

Description: Outputs NASDAQ data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
bind - initial index of stk % bid(), stk % ask(), stk % numtrd() to be used
eind - terminal index of stk % bid(), stk % ask(), stk % numtrd()to be used
step - “stride” increment for traversal of stk % bid(), stk % ask(), stk % numtrd()

Return Values: records from stk % bid(), stk % ask(), stk % numtrd() are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with bid(), ask(), numtrd() data via invocation of stk_read_xxx()

stk_outone Outputs Data for One Real Array

Prototype: stk_outone (stk, unit, title, array, bind, eind, step)

Description: Outputs data for one real array
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - unit - FORTRAN-95 I/O unit open for writing
title - TYPE(name string) character string
array - array whose valies are to be displayed
bind - initial index of array() to be used
eind - terminal index of array() to be used
step - “stride” increment for traversal of array()

Return Values: data from array() are written to the file open on unit
Side Effects: none
Preconditions: stk % caldt() must have valid data, generally read via invocation of stk_read_xxx()

stk_outshr Outputs Shares Data

Prototype: stk_outshr (stk, unit, first, last)

Description: Outputs shares data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
first - initial index of stk % shares() to be used
last - terminal index of stk % shares() to be used

Return Values: records from stk % shares() are written to the file open on unit
Side Effects: none
Preconditions: stk must have been loaded with shares data via invocation of stk_read_xxx()

CHAPTER 3: ACCESSING DATA IN FORTRAN-95

173

Chapter 3: Accessing Data in FORTRAN-95

stk_outyr Outputs Year and Portfolio Data

Prototype: stk_out_port (stk, unit, bind, eind, port_num)

Description: Outputs year and portfolio data
Arguments: stk - TYPE(crsp_stk) data object to be allocated and loaded

unit - FORTRAN-95 I/O unit open for writing
bind - initial index of portfolio data to be used
eind - terminal index of portfolio data to be used
port_num - index of stk % port_ts() to be used

Return Values: portfolio statistics - port and stat are written to the file open on unit
Side Effects: none
Preconditions: stk must have been laoded with portfolio data via invocation of stk_read_xxx()

174

PROGRAMMERS GUIDE

CRSP DATA LICENSE

175

CRSP Data License

CRSP DATA LICENSE

This is a legal agreement between you (either an individual or an entity) hereby referred to as the “user” or “Sub-
scriber” and the University of Chicago, Graduate School of Business on behalf of the Center for Research in Security
Prices, hereby referred to as “CRSP”. By opening this product, you are agreeing to be bound by the terms of the fol-
lowing License Agreement. If you do not wish to accept these terms, return the unused, unopened data to CRSP
within 30 days of receipt with any written materials to the Subscription Department, CRSP, University of Chicago,
GSB, 105 W. Adams St., Suite 1700, Chicago, IL 60603. Opening this product without a signed agreement binds the
user to restrictions of use in CRSP's standard subscription/contract terms for the product.

The accompanying media contain data that are the property of CRSP and its information providers and are licensed
for use only by you as the original licensee. Title to such media, data, and documentation is expressly retained by
CRSP.

Data and documentation are provided with restricted rights. CRSP grants the user the right to access the CRSP data
and the CRSP product database guide(s) only for internal or academic research use. Usage of the data must be in
accordance with the terms detailed in the Subscription Agreement, Contract, or Agreement between CRSP and the
user, and the license to use the data is limited to the time period of the Agreement. The data are “in use” on a com-
puter when loaded into the temporary memory (i.e. RAM) or installed into the permanent memory (e.g. hard disk, CD
ROM or any other storage device) of that computer or network in one location. CRSP data may only be loaded onto
the computer system(s) or network of the Subscriber as agreed to in the Subscription Agreement or Contract, and spe-
cifically may not be installed onto systems not owned by Subscriber, such as student owned PCs or laptop computers.
Once the data have been updated or the product phased out, Subscribers must promptly return the previous release of
data on its original medium to CRSP, or destroy it. Once a Subscription or Contract expires, and is not renewed, the
Subscriber must purge all CRSP data files from all computer systems on which they were loaded.

CRSP Copyright

The documents and data are copyrighted materials of The University of Chicago, Graduate School of Business, Cen-
ter for Research in Security Prices (CRSP) and its information providers. Reproduction or storage of materials
retrieved from these are subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

CRSP, CRSP Total Return Index Series, CRSPAccess, CRSP Cap-Based Portfolio Series, PERMNO, PERMCO,
CRSP Link, and CRSPID have been registered for trademarks and other forms of proprietary rights. The Contents are
owned or controlled by CRSP or the party credited as the provider of the Contents.

CRSP, the Center for Research in Security Prices, is a department of the Graduate School of Business at the Univer-
sity of Chicago.

Proprietary Rights

PERMNO®, PERMCO®, CRSP Link®, NPERMNO®, NPERMCO®, CRSPAccess®, and CRSPID® are symbols rep-
resenting data proprietary to the Center for Research in Security Prices.

Disclaimer

CRSP will endeavor to obtain information appearing in its data files from sources it considers reliable, but disclaims
any and all liability for the truth, accuracy or completeness of the information conveyed. THE UNIVERSITY AND
CRSP MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE MER-
CHANTABILITY, FITNESS, CONDITION, USE, OR APPROPRIATENESS FOR SUBSCRIBER'S PURPOSES
OF THE DATA FILES AND DATA FURNISHED TO THE SUBSCRIBER UNDER THIS SUBSCRIPTION, OR
ANY OTHER MATTER AND ALL SUCH DATA FILES WILL BE SUPPLIED ON AN "AS IS" BASIS. CRSP
will endeavor to meet the projected dates for updates, but makes no guarantee thereof, and shall not have any liability
for delays, breakdowns, or interruption of the subscription. In no event shall the University of Chicago be liable for
any consequential damages (even if they have been advised of the possibility of such damages), for damages arising

176

PROGRAMMERS GUIDE

out of third party suppliers terminating agreements to supply information to CRSP, or for other causes beyond its rea-
sonable control.

In the event that the Subscriber discovers an error in the data files, Subscriber's sole remedy shall be to notify CRSP
and CRSP will use its best efforts to correct same and deliver corrections with the next update.

Permission to Use CRSP Data

CRSP permits the use of its data in scholarly papers written by faculty, students, or employees of the Subscriber.
CRSP data may also be used in client newsletters, marketing, and education materials, company reports, books, and
other published materials, as long as this usage has been described (and approved by CRSP) in Subscriber’s State-
ment of Use in the Subscription Agreement. If you intend to use our data or anything derived from our data (e.g.
graphs) in your publications, or in products (e.g. textbooks), we require that you receive written permission from
CRSP. For written permission, please contact us at 312.263.6400 or Subscriptions@crsp.ChicagoGSB.edu.

Citation

The following citation must be used when displaying the results of any analysis that uses CRSP data:

Source: CRSP, Center for Research in Security Prices. Graduate School of Business, The University of
Chicago [year]. Used with permission. All rights reserved. www.crsp.chicagogsb.edu

such that [year] represents the four-digit year of the data used in the citation.

Use of CRSP Databases

Prohibited

Employees of academic and commercial subscribers to CRSP databases have from time to time requested the use of
CRSP data for the individual's outside consulting projects, or in specific additional products, such as textbooks.
CRSP databases are to be used exclusively for the subscriber's own internal educational or business processes, as
stated in the Statement of Use in the subscription agreement. The University does not permit any third party to use its
databases. If you wish to use our data in your consulting projects or additional products, you or your client may either
subscribe to a CRSP database or request a custom research project.

Approved

The CRSP data files are proprietary and should be used only for research purposes by the faculty, students, or
employees of the subscribing institution. The Subscription Agreement, signed by each subscribing institution states:

Subscriber acknowledges that the data files to which it is subscribing contain factual material selected, arranged and
processed by CRSP and others through research applications and methods involving much time, study, and expense.

The Subscriber agrees that it will not transfer, sell, publish, or release in any way any of the data files or the data con-
tained therein to any individual or third party who is not an employee or student of the Subscriber, and that the data
provided to the Subscriber by CRSP is solely for the Subscriber’s use.

The Subscriber may not copy the data or documentation in any form onto any device or medium without the express
written consent of CRSP, except solely to create back-up copies of the CRSP data files for its internal use, subject to
the terms of this Agreement.

The Subscriber agrees and warrants that it will take all necessary and appropriate steps to protect CRSP’s proprietary
rights and copyright in the data supplied (including, but not limited to, any and all specific steps which may be
expressly required by CRSP), and that the Subscriber will protect the data in no less than the manner in which it
would protect its own confidential or proprietary information.

CRSP DATA LICENSE

177

CRSP Data License

The Subscriber will inform all users and potential users of CRSP data of CRSP’s proprietary rights in its files and
data by giving each user a copy of this paragraph and any other specific requirements CRSP may mandate under this
paragraph and by requiring each such user to comply with this paragraph and all such additional requirements.

The Subscriber agrees that its obligation under the Subscription Agreement shall survive the termination of the
Agreement for any reason.

Database Guides

Additional copies of the database guides are available on the CRSP Getting Started CD-ROM and on-line through the
Database Guide link found at http://www.crsp.chicagogsb.edu

Trademarks

American Stock Exchange® and Amex® are registered service/trademarks of The American Stock Exchange LLC.

CCH® is a registered trademark of CCH Incorporated.

Compaq AlphaTM and Tru64TM are trademarks of Compaq Information Technologies Group, L.P.

Compustat® and S&P 500® are registered trademarks of The McGraw-Hill Companies, Inc.

CRSP®, PERMNO®, PERMCO®, CRSPAccess®, NPERMNO®, NPERMCO®, CRSP Link®, and CRSPID® are
trademarks of the University of Chicago, Graduate School of Business.

CUSIP® is a registered trademark of the American Bankers Association.

Dow Jones Interactive® and The Wall Street Journal® are registered trademarks of Dow Jones & Company, Inc.

FISTM, Mergent FIS, Inc.TM, and MergentTM are trademarks of Mergent, Inc. Moody’s® is a registered trademark of
Moody’s Investors Service, Inc.

IBM® is a registered trademark of International Business Machines Corporation.

IDSITM is a trademark of FT Interactive Data Corporation.

Intel® Pentium® and Pentium®Pro are registered trademarks of Intel Corporation.

Linux® is a registered trademark of Linus Torvalds.

Microsoft®, Microsoft®Excel, Microsoft®Word, Microsoft®Access, Microsoft® PowerPoint, MS-DOS®, and Win-
dows® are registered trademarks of Microsoft Corporation.

The NASDAQ Stock Market®, NASDAQ National Market®, NASDAQ®, NASDAQ-100 Index®, and OTC Bulletin
Board® are registered service/trademarks of The NASDAQ Stock Market, Inc. NASDAQ Trader, and The NASDAQ
SmallCap Market are service/trademarks of The NASDAQ Stock Market, Inc. NASD is a registered service/trade-
mark of the National Association of Securities Dealers, Inc.

NYSE®, New York Stock Exchange®, The New York Stock Exchange®, and N.Y. Stock Exchange® are registered
trademarks or service marks of NYSE.

SAS® and SAS/ETS® are registered trademarks of the SAS Institute, Inc.

SunTM, JavaTM, and SolarisTM are trademarks of Sun Microsystems, Inc. SPARC® is a registered trademark of
SPARC International, Inc., licensed to Sun for use on products based upon a particular architecture.

SunGard® Market Data Services is a registered trademark of SunGard Development Corporation.

UNIX® is a registered trademark of The Open Group.

178

PROGRAMMERS GUIDE

WRDS is registered as a trademark and a service mark of the University of Pennsylvania.

All other product and company names mentioned herein may be trademarks and/or service marks of their respective
owners.

179

180

PROGRAMMERS GUIDE

INDEX

1

Index

C
C Data Utility Functions

bm_crsp_stkwrt_pdate 104
crsp_adj_load 83
crsp_adj_map_arr 84
crsp_adj_map_ts 84
crsp_adj_stk 85
crsp_cur_name 89
crsp_map_comnam 89
crsp_map_exchcd 87
crsp_map_mmcnt 91
crsp_map_ncusip 88
crsp_map_nmsind 90
crsp_map_nsdinx 91
crsp_map_shrcd 87
crsp_map_shrcls 89
crsp_map_siccd 88
crsp_map_ticker 88
crsp_map_trtscd 90
crsp_obj_verify_ts 86
crsp_ret_calc 92
crsp_ret_calc_del 93
crsp_ret_calc_one 93
crsp_ret_map_payments 96
crsp_ret_off_exch 94
crsp_ret_ordinary 94
crsp_ret_payments 94
crsp_shr_imp 97
crsp_shr_map 98
crsp_shr_num 98
crsp_shr_raw 99
crsp_shr_reimp 98
crsp_stk_delret_params 95
crsp_stk_ret_append_dlret 95
crsp_stk_ret_append_ts 95
crsp_stk_subset.c 106
crsp_stk_subset_all 106
crsp_stkwrt_dd 101
crsp_stkwrt_de 103
crsp_stkwrt_di 103
crsp_stkwrt_dr 100
crsp_stkwrt_ds 101
crsp_stkwrt_dtrstr 104
crsp_stkwrt_dx 100
crsp_stkwrt_hdr 102
crsp_stkwrt_hdr1 102
crsp_stkwrt_name 103
crsp_stkwrt_ni 103
crsp_stkwrt_nms 102
crsp_stkwrt_portf 104
crsp_stkwrt_r 101
crsp_stkwrt_sh 102
crsp_trans_cap 126
crsp_trans_comp_returns 120
crsp_trans_cumret 125
crsp_trans_first 121
crsp_trans_gen_prc 127
crsp_trans_last 121
crsp_trans_last_closest 124
crsp_trans_last_previous 124
crsp_trans_level 125
crsp_trans_max 122
crsp_trans_port 125
crsp_trans_stat 126
crsp_trans_total 123
crsp_xs_calc 86
crsp_xs_port 86

C General Access Functions
crsp_errprintf 48
crsp_file_append 50

2

INDEX

crsp_file_close 50
crsp_file_fopen 51
crsp_file_lseek 51
crsp_file_open 51
crsp_file_read 52
crsp_file_remove 52
crsp_file_rename 52
crsp_file_search 52
crsp_file_stamp 53
crsp_file_write 53
crsp_free 53

C General Utility Functions
crsp_cal_datecmp 54
crsp_cal_diffdays 55
crsp_cal_dt2lin 55
crsp_cal_dt2parts 55
crsp_cal_lin2dt 55
crsp_cal_link 56
crsp_cal_middt 55
crsp_cal_search 56
crsp_cmp_int 61
crsp_cmp_string 61
crsp_obj_comp_arr 65
crsp_obj_comp_row 65
crsp_obj_comp_ts 64
crsp_obj_free 66
crsp_obj_free_arr 65
crsp_obj_free_row 66
crsp_obj_free_ts 65
crsp_obj_init_arr 64
crsp_obj_init_row 64
crsp_obj_init_ts 63
crsp_obj_verify_arr 63
crsp_obj_verify_row 63
crsp_obj_verify_ts 62
crsp_root_info_get 82
crsp_util_clear_arr 73
crsp_util_clear_elem 73
crsp_util_clear_row 74, 75
crsp_util_clear_ts 74, 76
crsp_util_convtype 67
crsp_util_copy_arr 71
crsp_util_copy_cal2ts 72
crsp_util_copy_ts 71
crsp_util_cvt_cdate_i 70
crsp_util_cvt_date_mmddyy_i 68
crsp_util_cvt_i_cdate 70
crsp_util_cvt_i_ingdate 70
crsp_util_cvt_t_d 69
crsp_util_cvt_t_f 69
crsp_util_cvt_t_i 69
crsp_util_cvt_t_l 69
crsp_util_delete_ts 76
crsp_util_insert_ts 77
crsp_util_is_missing 78
crsp_util_lowercase 67
crsp_util_map_arr2ts 80
crsp_util_map_row2ts 81
crsp_util_map_ts2ts 81
crsp_util_merge_arr 78
crsp_util_merge_ts 79
crsp_util_reset_enddts 78
crsp_util_squeeze 68
crsp_util_strtoken 68
crsp_util_strtrim 67
crsp_util_uppercase 67, 68

C Index Access Functions
crsp_ind_add_toset 47
crsp_ind_clear 40
crsp_ind_close 41
crsp_ind_copy 44

INDEX

3

Index

crsp_ind_del_fromset 47
crsp_ind_delete 44
crsp_ind_free 41
crsp_ind_free_ind 47
crsp_ind_init 41
crsp_ind_insert 44
crsp_ind_modload 45
crsp_ind_newset 45
crsp_ind_null 45
crsp_ind_open 42
crsp_ind_read 43
crsp_ind_read_subset 46
crsp_ind_update 46

C Stock Access Functions
crsp_stk_add_toset 39
crsp_stk_alloc 36
crsp_stk_clear 27
crsp_stk_close 27
crsp_stk_copy 36
crsp_stk_del_fromset 38
crsp_stk_delete 36
crsp_stk_free 27
crsp_stk_init 28
crsp_stk_insert 37
crsp_stk_modload 37
crsp_stk_newset 37
crsp_stk_null 38
crsp_stk_open 29
crsp_stk_read 30
crsp_stk_read_cus 31
crsp_stk_read_hcus 32
crsp_stk_read_key 34
crsp_stk_read_key_subset 35
crsp_stk_read_permco 32
crsp_stk_read_siccd 33
crsp_stk_read_subset 34
crsp_stk_read_ticker 33
crsp_stk_update 38
crsp_ts_get_issues_key 39

Calendar Arrays 130
crsp.h 25
CRSP_ARRAY

arrtype 130
dummy 130
maxarr 130
num 130
objtype 130
subtype 130

CRSP_CAL
basecal 131
caldt 131
calid 131
callist 131
calmap 131
loadflag 131
maxarr 131
name 131
ndays 131
objtype 131

crsp_cal_decr 57
crsp_cal_incr 57
crsp_init.h 25
CRSP_ROW

arrtype 130
objtype 130
subtype 130

CRSP_TIMESERIES

4

INDEX

arrtype 130
beg 131
cal 131
caltype 131
end 131
maxarr 130
objtype 130
subtype 130

D
Data Objects 130

E
Event Arrays 130

F
F95 Calendar Utility Functions

cal_index 163
find_date 163
stk_usdate 163

F95 General Access Functions
crsp_allocate_unit 162
crsp_deallocate_unit 162
crsp_free_all_units 162

F95 General Utility Functions
stk_comp_ret 164
stk_curdis 165
stk_curnam 165
stk_curndi 165
stk_curshr 165
stk_exrdat 166
stk_exrinf 166
stk_exrint 166
stk_loadba 166
stk_loadhl 167
stk_namrng 167
stk_valexc 167, 168

F95 Index Access Functions
ind_close 161
ind_open 160
ind_read_indno 161
index_close 161
index_open 160

F95 Print Utility Functions
stk_outdat 170
stk_outdel 170
stk_outdis 171
stk_outhdr 171
stk_outint 171
stk_outnam 171
stk_outndi 172
stk_outnms 172
stk_outone 172
stk_outshr 172
stk_outyr 173

F95 Stock Access Functions
stk_read_cusip 157
stk_read_hcusip 158
stk_read_permco 157
stk_read_permno 156
stk_read_siccd 158
stk_read_ticker 159
stock_close 159

INDEX

5

Index

H
Header Information 130

I
INDSAMP1.F95 152

S
stk_samp1.c

description 24
stk_samp2.c

description 24
STKSAMP1.F95 151
STKSAMP10.F95 152
STKSAMP2.F95 151
STKSAMP3.F95 151
STKSAMP4.F95 151
STKSAMP5.F95 151
STKSAMP6.F95 151
STKSAMP7.F95 152
STKSAMP9.F95 152

T
Time Series Arrays 130

6

INDEX

