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I. INTRODUCTION

There has been a great deal of discussion about the statistical distribution
of rates of return on common stocks. At an early stage the prevalent
belief was that distributions of rates of return on common stocks were
adequately characterized by the normal distribution. This belief seemed
to be consistent with the pioneering work of Bachelier.! It was also ob-
served, however, that empirical distributions of such returns had more
kurtosis (i.e., “fatter tails”) than that predicted by the normal distribu-
tion. The evidence provided by Mandelbrot and Fama suggested that one
could explicitly account for the observed “fat tails” by using the sym-
metric-stable distribution.?

This article considers another family of symmetric distributions that
can also account for the observed “fat tails” of returns distribution. This
alternative is the Student (or ¢) distribution. It will be indicated that this
alternative model has implications for empirical and theoretical work
that are quite different from those of the symmetric-stable model. The
descriptive validity of the Student model, relative to that of the sym-
metric-stable model, will be assessed using actual daily rates of return.

This article is organized as follows: Section II describes the prop-
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erties of the stable and Student distributions and then briefly discusses
the importance of (1) explicitly recognizing that distributions of returns
are “fat tailed” and (2) some important differences that result when the
Student rather than the stable model is used to account for the “fat
tails.” Section III summarizes the derivations of both the Student and
stable models using more basic stochastic processes. Details of the deriva-
tions appear in Appendix A. Also included in Section III is a discussion
of empirical results for other models similar to the ones considered in
this paper. Section IV discusses methods for empirically comparing the
Student and stable models. Section V describes the specific estimation
tools used for our comparative results. Finally, Section VI presents and
discusses the empirical results.

I1. PROPERTIES OF THE STUDENT
’ AND SYMMETRIC-STABLE
DISTRIBUTIONS
We begin this section by defining and stating some properties of the Stu-
dent and symmetric-stable distributions. Then, we consider several im-
plications of describing daily rates of return on common stocks with the
Student and stable models.

A. Definitions and Properties of the
Student and Stable Models
The Student distribution.®>—The Student density function with loca-
tion parameter m, scale parameter H > 0, and degrees of freedom pa-
rameter, v > 0, is:

p/2)y

(7%
B\ —, —v
22
where B(-, -) is the “beta function,” that is, B(a, b) =TI'(a)T'(b)/
I'(a+ b), where I'(-) is the “gamma function.” The Student distri-
bution has the following properties: (1) E(X) =m, for » > 1 and
Var(¥) =H-'v/(v — 2), for v > 2; (2) in general, all moments of
order r < v are finite; and (3) when v = 1, the Student density function
is the Cauchy density function. As » — o, the Student distribution con-

verges to the normal distribution.

When a Student random variable with » > 2, ¥, is standardized by
dividing ¥ — E(¥) by \/Var(X), then the density function of the result-
ing standardized variable has the following properties: (1) it has fatter
tails than the density function of a conventional standardized normal
random variable (i.e., one with mean equal to zero and variance equal
to unity), and (2) it is higher than the standard normal density in the

f(x|m, H,v) = v + H(x — m)?2]~20+ 0 \/H,

3. See H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory
(Campridge, Mass.: Harvard University Press, 1961), chap. 7.
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neighborhood of their common mean, zero. Note, however, that the
above standardization scheme is not the one used in most tables and
discussions of the density function of a “standardized” Student random
variable. There, the scaling is by \/H~! rather than \/Var(¥). The
density function of [¥ — E(X)]/n/H~! exhibits the first property stated
above, but it is not higher than the standard normal density in the
neighborhood of their common mean, zero; in fact, the density function
is lower in this neighborhood.

The differences induced by the different scaling procedures in the
maximum ordinate of the scaled random variables’ density functions are
indicated in table 1 for selected values of v. The effect on the ordinate

Table 1
Maximum Ordinates of Student Density Functions
v f [y =0|m =0, Var(}) =V+2 , u:l fly = 0jm =0, Var(§) =1, »]
3 o e 3676 .6367
A 3750 5305
S 3796 .4900
6 i 3827 4687
/2 3850 4555
8 .3867 4465
9 . .3880 .4399
10 ..o .3891 .4350
11 .. .3900 4311
12 3907 4279
13 .. 3914 4254
14 ... 3919 4233
15 .3924 4215
16 oo 3928 4199
| 3931 4184
18 (.o 3934 4172
19 3937 4162
20 e 3940 4153
TS5 3976 4030
LS .3989 .3989

NOTE.—» = » denotes normal distribution.

when the argument of the density function equals four is indicated in
table 2.

The symmetric-stable distribution.*—This distribution is defined by
its characteristic function because, in general, its density function is not
known. The log characteristic function of a symmetric-stable distribution
with location parameter 6, scale parameter ¢ > 0, and characteristic ex-
ponent o € (0, 2), is: Ingz(¢) = i 6t — |ct|*, where ¢ is some real num-

berand i =~/—1.

4. See B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for
Sums of Independent Random Variables, trans. K. L. Chung (Reading, Mass.:
Addison-Wesley, 1954), chap. 7; and S. J. Press, Applied Multivariate Analysis
(New York: Holt, Rinehart & Winston, 1972), chap. 6.
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Table 2
Ordinates of Student Density Functions When the
Argument Equals Four

v f |:4|m =0, Var(§) = - 12 ,y] fl4lm = 0, Var(§) =1, »]
3 . .0092 .0023
4 .0067 .0022
S e .0051 .0019
6 .0041 .0017
T o .0033 .0015
8 . .0028 .0013
9 . .0023 .0011
10 ... v .0020 .0011
I .0018 .0009
12 o, .0016 .0009
13 . .0014 .0008
14 ... . .0013 .0007
15 o .0012 .0006
16 ... .. ... .. .0011 .0006
17 o 0010 .0006
18 .. .0009 . .0005
19 ... .0009 .0005
20 . .0008 .0005
TS .0003 .0002
D e .0001 .0001

NOTE.—» = « denotes normal distribution.

The symmetric-stable distribution has the following properties.
(1) This distribution is the Cauchy distribution if « = 1. If & = 2, it is
the normal distribution. (2) It is true that E(X¥) = m, if & > 1. (3) In
general, all moments of order r < « are finite except when o = 2, in
which case moments of all orders are finite. (4) If a sum of independent
identically distributed random variables has a limiting distribution, then
it must be a stable distribution. Thus, the nonnormal stable distributions
generalize the classical Central Limit Theorem (CLT) to cases where
the second moments of the summed random variables are infinite. (5) A
sum of independent stable random variables will be stable with charac-
teristic exponent a* if each summand is a stable random variable with
characteristic exponent a:*.

When a symmetric-stable random variable is standardized by di-
viding ¥ — 8 by c, then the density function of the resulting standardized
variable has the following properties. (1) If @ < 2, its tails are fatter
than the density function of a normal random variable that is standardized
in the same way [i.e., by scaling with ¢ =+/1/2 Var(¥) rather than
\V/Var(X), which is the conventional procedure]; and (2) if @ < 2, it is
higher than the density function of a similarly scaled normal random
variable in the neighborhood of their location parameters’ common value,
zero. These properties are similar to those of the density function of a
Student random variable that is scaled by its standard deviation.

The characteristic function given above only applies to symmetric-
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stable distribution. The modifications needed to define asymmetric stable
distributions are indicated in Appendix A, where an asymmetric stable
distribution is used to derive the symmetric-stable model for rates of
return.

Almost all of this paper focuses on the symmetric-stable model.
Unless otherwise indicated, the label “stable model” will be used for the
symmetric-stable model.

B. Some Implications of the Student and
Stable Models for Empirical and
Theoretical Work

For our purposes, the most important parameters of the Student and
symmetric-stable models are v and «, respectively. Thus, throughout this
section, we assume that all distributions are standardized so that § = 0
and ¢ = 1 (for the stable model) and m = 0 and H —= 1 (for the Stu-
dent model).

The empirical evidence to which we referred in Section I suggests
that empirical distributions of daily returns are approximately symmetric
with “fatter tails” than the normal distribution. The discussion in the
preceding subsection indicates that both the Student and stable models
can account for such “tail behavior.” Thus, there is a similarity between
the Student and stable models when comparisons are made with the
normal model. And this similarity suggests the potential descriptive valid-
ity of each model for daily rates of return.

While there are similarities between the Student and stable models,
these two models have some very different implications for empirical and
theoretical work. Several extremely important differences are due to dif-
ferences in the properties associated with sums of random variables
generated by each of the models.

Let X, i =1, 2, ..., denote the rate of return, under continuous
compounding, on security i for day ¢, t =1, 2, . . . (throughout, tilde
denotes a random variable). That is, x;; = In[P;; 4+ D;;)/Pi;—1], where
P;; and D,; are the (ex-dividend) price and dividend, respectively, on
security i for day ¢. Consider the cross-temporal sum for the ith security

T
~S
r__ }_‘ : ~
ST = Xit.
t=1

Under continuous compounding, S is the rate of return on security i
over a period of T consecutive days. For example, if t=1and t =T
are, respectively, the first and last days of some month, then S is the
return on security i for that month. Now, suppose that (¥, X, . . . , Xiz)
is a sequence of independent random variables. Under the Student model
(for daily returns) with » > 2, the distribution of S’Jﬂ” converges to a
normal distribution as T — co. This convergence result is a consequence
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of the classical CLT.5 On the other hand, if (¥, %2, . . . , Xjr) is a se-
quence from the stable model with o = a* < 2, then the distribution
of 7 will not converge to a normal distribution because the classical
CLT is not applicable to the stable model with o < 2. Instead, the dis-
tribution of ;7 will be stable with o — o* for all T. Thus, the applica-
bility of the Student model to daily returns implies that there is a time
period (greater than 1 day) such that rates of return defined over this
time period may be described by the normal distribution.

Our own empirical results (see Section VI) for the Student model
indicate that estimates of » for most securities examined are well in
excess of 25 for sum sizes of 20, corresponding to monthly returns.
Since a Student distribution with » ~ 25 is almost indistinguishable from
a normal distribution, it seems reasonable to approximate distributions
of monthly rates of return by normal distributions. Note that if the
summed returns, $;7, on individual securities converge to normality as T
increases, then the portfolio return,

2 0]‘ ‘,S\‘IJ‘T’
i

also converges to normality as T increases, where 6; is the proportion of
the portfolio invested in security j,

3 0= 1.0
J

Whether distributions of summed daily returns converge to normal-
ity or to the stable model with & < 2 has implications for the appro-
priateness of estimation tools. 1f, as a result of convergence, the normal
model is applicable to returns defined over a period longer than 1 day
(e.g., 1 month), then one may proceed as if these returns were generated
from a finite variance process. Consequently, one may use, for example,
“least-squares” estimation methods or spectral analysis. If, however, the
nonnormal stable model is applicable to these returns, then one should
proceed as if these returns were generated from an infinite variance
process, for which sample variances (which are always finite) exhibit
highly erratic behavior; see, for example, the results presented by Man-
delbrot and Fama.” Thus, estimation tools relying upon sample second
moments may induce misleading (and possibly meaningless) results.® In

5. The version of the Central Limit Theorem upon which we are relying
assumes independent summands. As indicated in Section VI, rates of return on a
given security defined over 1 day (or some longer period) conform reasonably
well with this assumption.

6. That is, if the asymptotic distribution of (S o SyT) s N-variate
normal, then the asymptotic distribution of a 11near combmatlon of S =12,

, N is univariate normal. Also note that, if the distribution of (5 7‘ ST, ...,
S T) is N-variate Student (stable) with v = »* (o = a*), then the d1str1but10n of
a llnear combination of §, T, j=1,2,..., N is univariate Student (stable) with
v=7v* (@ = a*).
7. See n. 2 above.
8. The use of truncated sample second moments may not be a desirable
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short, the suitability of measures of dispersion and estimation tools for
returns defined over time intervals longer than 1 day depend upon the
distributional model applicable to daily rates of returns.

The appropriateness of a distributional model is also important for
theories of asset pricing under uncertainty, such as those based upon
the mean-variance framework used in Markowitz, Tobin, Lintner, and
Sharpe.? Suppose that individuals’ preferences may be represented by
continuous bounded utility functions and that individuals maximize ex-
pected utility.'® Then, use of the mean-variance approach in describing
maximum expected-utility strategies is easily justified when utility func-
tions are defined on terminal wealth (or periodic consumption) and
when the distributions of investment outcomes (i.e., rates of return) are
normal.’* If, using this approach, one also postulates nondecreasing
strictly concave utility functions (i.e., “risk aversion”), then one can
demonstrate that the expected utility of an investment varies directly
(inversely) with the first (second) moment of that investment’s outcome.

Now, for the same types of utility functions, consider the implica-
tions of limiting normal and nonnormal stable models for risk-taking
behavior. For the stable model, one can show that the expected utility
of all outcomes for which @ < 2 is strictly less than the expected utility
of their normal counterparts, that is, outcomes with o = 2. More gener-
ally, expected utility varies directly with o, 0 < & << 2.2 Thus, if (as a

remedy for this problem, relative to the alternative of a more appropriate distribu-
tional model; see Mandelbrot (1967) (n. 2 above). This is particularly so if, for
example, the appropriate value of « is not exceedingly close to 2.

9. H. Markowitz, Portfolio Selection: Efficient Diversification of Investments
(New York: John Wiley & Sons, 1959); J. Tobin, “Liquidity Preference as Behavior
Towards Risk,” Review of Economic Studies 26 (February 1958): 65-86; J.
Lintner, “Security Prices, Risk, and Maximal Gains from Diversification,” Journal
of Finance 20 (December 1965): 587-615; “The Valuation of Risk Assets and the
Selection of Risky Investments in Stock Portfolios and Capital Budgets,” Review
of Economics and Statistics 47 (February 1965): 13-37; W. F. Sharpe, “A Simpli-
fied Model for Portfolio Analysis,” Management Science 10 (January 1963):
277-93; “Capital Asset Prices: A Theory of Market Equilibrium Under Condi-
tions of Risk,” Journal of Finance 19 (September 1964): 425-42.

10. The boundedness property is needed to avoid violating utility-theory
axioms when dealing with continuous random variables; see the discussion in
K. J. Arrow, Essays in the Theory of Risk Bearing (Chicago: Markham Publishing
Co., 1971), pp. 61-63, which is based upon the analyses of K. Menger, “Das
Unsicherheitsmoment in der Wertlehre,” Zeitschrift fiir Nationalokonomie 51
(1934): 459-85, reprinted .in Essays in Mathematical Economics in Honor of
Oskar Morgenstern, ed. M. Shubik (Princeton, N.J.: Princeton University Press,
1967). It is particularly important to note that the need for boundedness is not
unique to the specific distributional models considered in this report.

11. The mean-variance framework can also be justified when utility func-
tions are assumed to be quadratic in terminal wealth (or consumption). But this
assumption has some well-known deficiencies within the context of asset-pricing
models; see, for example, Arrow (Essays, pp. 96-97), or G. Hanoch and H. Levy,
“The Efficiency of Choices Involving Risk,” Review of Economic Studies 37 (July
1969): 342.

12. Consider two symmetric-stable Paretian distributions with parameters
(83, ¢4, ;) and (8,, ¢y, @), respectively. In accordance with our assumptions, set



251 Comparison of Distributions as Models

result of convergence) the returns of interest (e.g., monthly rates of
return) may be described by the normal model, then using the stable
model with & < 2 will induce an overstatement (understatement) of risk
(expected utility). If this is the case, and if all securities’ daily returns
cannot be described by the same value of «, one may disprove theoretical
propositions on asset pricing simply because those propositions do not
provide rankings of assets consistent with optimality conditions. For the
problem at hand, this inadequacy is due (once again) to inappropriate
distributional assumptions.

Selecting either the Student or stable model (with oo < 2) for daily
returns has implications for empirical work on daily returns as well as
returns defined over longer time periods. The Student model allows the
use of well-defined density functions. Well-defined density functions for
the stable model exist in only two cases: @ = 1 and o = 2. Thus, the
likelihood function of the Student model can be expressed in closed form,
and maximum-likelihood estimates for all parameters of the model may
be obtained. This permits one to use the available statistical theory on

8, =38, =0 and ¢; =c, =1, and suppose a; > a,. Let F(x[al) and F(x|a2) de-
note the distribution functions conditional upon «, and a,, respectively. Finally,
let U(-) denote a bounded strictly concave nondecreasing utility function. Con-
sider the change in expected utility given by:

E[U(%)|ou] — E[U(%)|az] = AE[U(%)]. (1.1)

Upon integrating (1.1) by parts, one gets:

BUG)] = | [F(xow) — F(xlen)]U(x)dx,
0
::f_oo[F(x|a2) — F(x|ay)]U’ (x)dx (1.2)

+ [ I (xfow) — F(xlan 10/ (x)dx,

where U’(x) = dU/dx. Since the distributions are symmetric about zero, F (x|ay) =
1 — F(—x|e;) and F(x|ay) =1 — F(—x|ay). Thus (1.2) may be rewritten as:

0
AEIUH)] = . [F(xlaw) — F(x]au)1U"(x)dx (2)

+ {0 = FCxjan) — 11 — F(—sla1} U (v)ax.

Given that o; > a,, we have: (1) F(x|ay,) > F(x|oy) for all x € (—o0, 0), (2)
F(0lay) = F(0|ay), and (3) F(x|ay) < F(x|a;) for x € (0, o). This implies that
the first integral in (2) is positive and the second is negative. But, by strict con-
cavity, U’(—x) > U’(x), for x € (0, o). Thus, the first integral in (2) has a value
in excess of the absolute value of the second integral. Consequently, AE[U(¥)] =
E[U(%)|e;]1 — E[U(X)|a,] > 0. A more detailed statement of the reasoning used
here can be had from Lemma 1 and Theorem 3 of Hanoch and Levy, “Efficiency
of Choices Involving Risk.” Related material appears in J. Hadar and W. Russell,
“Rules for Ordering Uncertain Prospects,” American Economic Review 59 (March
1969): 25-34.



The Journal of Business

imum-likelihood estimators. For the stable model, maximum-likeli-
d estimators can be obtained, but the currently available methods for
\g so involve approximations that appear to be quite costly (in terms
omputer time).'® The stable model’s parameters may be estimated
g other estimators, such as those proposed by Fama and Roll.'* But
¢ appears to be no statistical theory for the estimator of a proposed
1e latter works.' And « is perhaps the most important parameter of
stable model. (Note that this entire paragraph says nothing about the
:s incurred if one model is used when, in fact, the other is more
riptively valid. Thus, our remarks do not fully justify selection of
v distributional model.)

C. Additional Remarks

)ughout, we have emphasized the implications of o < 2 and v > 2

not large) for empirical and theoretical work. We did not emphasize

‘reasonableness” or “unreasonableness” of the implied nonexistence

eoretical second moments when a < 2 for the stable model, or the
implied existence of theoretical second moments when v > 2 for the
Student model. It seems to us that emphasizing these factors really
“misses the point.” The nonnormal stable model’s importance does not
lie in its not having a finite theoretical second moment, even though this
feature often attracts the most attention. The importance of this model
does lie in its ability to account for the observed kurtosis of empirical
distributions of daily rates of return; it accomplishes this by indicating a
distribution whose theoretical second moment is infinite.

One additional comment is in order. In the preceding discussion,
we used In[(P; + D;)/P;_4] to measure a rate of return. An often-used
alternative measure is [(P; 4+ D;)/P;_,] — 1. The former measure was
used by Fama, the latter was used by Blume, and both measures were
used by Officer.'® Empirically, these different measurement procedures
do not appear to induce important differences in the kinds of estimation
results to be considered here. The technical reason for this is that In(1 4
r) =~ rif r is not very large, such as |r| < .15. For daily returns on com-
mon stocks (particularly during the postwar period) this technical result

13. Of particular interest here are the estimation procedures discussed in
W. DuMouchel, “Stable Distributions in Statistical Inference” (Ph.D. diss., Depart-
ment of Statistics, Yale University, 1971).

14. E. F. Fama and R. Roll, “Some Properties of Symmetric Stable Dis-
tributions,” Journal of the American Statistical Association 63 (September 1968):
817-36; “Parameter Estimates for Symmetric Stable Distributions,” Journal of the
American Statistical Association 66 (June 1971): 331-38.

15. The asymptotic distributions of the estimators proposed by Fama and

- Roll (ibid.) for & and ¢ are Gaussian because each estimator is a linear combina-
tion of estimated fractiles, which have asymptotic normal distributions. Truncated
means are used to estimate § when o < 2.

16. Fama, “Behavior of Stock Market Prices”; M. E. Blume, “Portfolio
Theory: A Step Toward Its Practical Application,” Journal of Business 43 (April
1970): 152-73; R. R. Officer, “A Time Series Examination of the Market Factor
of the New York Stock Exchange” (Ph.D. diss., University of Chicago, 1971).
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appears to have descriptive validity. All estimation results presented
this report are based on returns measured using: [(P; + D;)/P;_1] —
Given the experiences of others, we are confident that the use of In[(P;
D,)/P;_,] would not have altered our inferences.

III. MODELS FOR RATES OF
) RETURN

The Student and stable models can be derived as continuous mixtu
of a normal distribution. In this derivation, the variance of the norm
distribution is a random variable. When the reciprocal of the variance
follows a gamma-2 distribution, then the unconditional distribution of
returns is Student. When the variance follows a strictly positive stable
distribution with o <C 1, then the unconditional distribution is symmetric
stable with o < 2. Detailed derivations of the Student and stable models
are provided in Appendix A. Some brief remarks on our derivations are
provided in Subsection A. Several alternative models for rates of return
on common stocks are reviewed in Subsection B.

A. Derivation of the Student and Stable Models:
Summary

Our derivation of the Student and stable models uses the notion of a
subordinated stochastic process. Here, the following definitions are
applicable. Let [%(s); s = 0] and [A(s); s = 0] denote stochastic pro-
cesses. Deﬁne another stochastic proeess {Z (s) = X [h(s)], s = 0}. The
process [Z (s)] is said to be subordinate to the process [X (s)]; the pro-
cess [h(s)] is the directing process.

Let X (s) denote the rate of return on a common stock over a time
interval of length s and _suppose that [X ()] 1s a stationary Gaussian
stochastic process, with X (s) independent of X (s*) for all s=£s*. We
assume that these returns are expressed as dev1at10ns about their mean;
hence, E[X (s)] = 0. The random variable 7(s) may be interpreted as
the change in the economic environment (or the change in available in-
formation) occumng during the time interval s. It is assumed that H(s)
is independent of h(s ), for all s £ s*. Before the realization of h(s) is
available, the rate of return over the interval s may be written as Z(s) =
X [h(s)] This formulation allows the distribution of rates of return,
[Z (s)], to incorporate changes in the economic environment over inter-

vals of length s. Specifically, this formulation allows the variance of
returns over the interval s to depend on the realization of (s).

All of the above is used in the derivation of both the Student and
stable models. The factor that distinguishes one model from the other is
the distribution function of h(s) the directing process. If h(s) follows a
strictly positive (asymmetric) stable distribution with « € (0, 1), then
Z(s) will follow a symmetric-stable distribution with o < 2. On the
other hand, if [h(s)] —! follows a gamma-2 distribution (which is also
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asymmetric and strictly positive), then Z(s) will follow a Student distri-
bution.

B. Other Stock Price Models

A number of other models that use a mixture of a normal distribution
and a distribution on the variance of a normal distribution have been
proposed for rates of return on stocks. We will review three of these
models in this section.

Press proposed the following model.’” Let Z(t) denote the log of
the price of a given security at time ¢ and assume that Z@) isa process
with stationary and independent increments. Specifically,

N (%)
2 =C+ ), ¥t X,
k=1
where Z(0) = C is a known constant; iv’l, Cey Yk, ..., is a sequence

of mutually independent random variables following a normal distribu-
tion with mean 6 and variance o2; N(¢) is a Poisson counting process
with parameter A¢, which represents the number of random events occur-
rmg at tlme t; and [X ), t=> 0] is a Weiner process independent of
N (?) and (Yl, Y. ...). The X (¢) is normally distributed with mean O
and variance o2t

To estimate his model, Press used monthly prices of 10 stocks in
the Dow-Jones Industrials from 1926 to 1960. He split the data into
three periods: (a) 1926-50, (b) 1926-55, and (c¢) 1926-60, for which
his sample sizes were at most 300, 360, and 420 observations, respectively.

Press’s method of estimating the model’s parameters (6, A, o1
0,?) was cumulant matching since, according to Press, “The method of
maximum likelihood estimation does not yield explicit estimators in this
problem” (p. 322.). His results showed negative signs for some esti-
mated variances, which he set at zero. He suggests that these anomalous
results were caused by insufficient sample sizes. Model inadequacy is
another possible explanation.

It is apparent from Press’s study that a major problem with his
model is estimating the parameters. However, since Press’s article ap-
peared, the use of a mixture of a normal process and a distribution for
the variance of the normal process has been found more frequently in
the literature on distributions of returns on stocks.

Clark considered a mixture of a normal distribution and a log-
normal distribution for the variance of the normal distribution.'8 Clark
labels the unconditional distribution the “lognormal-normal distribution.”

17. S. J. Press, “A Compound Events Model for Security Prices,” Journal
of Business 41 (July 1968): 317-35.

18. P. K. Clark, “A Subordinated Stochastic Process Model with Finite
Variance for Speculative Prices” (Discussion Paper no. 1, Center for Economic
Research, University of Minnesota, April 1971).
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This distribution has no closed-form expression and, thus, must be ex-
pressed in integral form. This presents some obvious difficulties for em-
pirical work.

After defining the lognormal-normal distribution, Clark compares
this distribution with the stable distribution (and others, though no re-
sults for the others are presented in his paper) using changes in the
prices of cotton futures for two periods: 1947-50 and 1951-55.

The data series Clark uses makes it difficult to compare models.
First, cotton contracts do not have 4-year lives. Thus, Clark had to splice
series across contract lives. Consequently, additional noise may have
been added to his series. Second, the time period from 1951 to 1955
was preceded by a suspension of trading due to existing price controls.
This could have affected the amount of variation in the series at the
beginning of the period, just as trading began. Finally, the open interest
(similar to “shares outstanding”) is not fixed. Volume and price fluc-
tuations may be influenced by changes in open interest.

Another problem with Clark’s results is that he uses the Kolmogorov-
Smirnov test (K-S test) to test goodness-of-fit of the stable and lognormal-
normal models. The critical values of the K-S test used by Clark assume
the parameter values are known, but he estimated the parameters. Thus,
the critical values he uses are inappropriate. Kendall and Stuart point
out:!* “Nothing is known in general about the behavior of the D, sta-
tistic [D,, denotes the K-S statistic for a sample size of n] when param-
eters are to be estimated in testing a composite hypothesis of fit. . . . It
will clearly not remain distribution free.”2° In light of the criticisms pre-
sented above, it seems that Clark’s conclusions that the lognormal-normal
model fits much better than the stable model must be viewed with
caution.

Praetz studied a mixture of a normal distribution and a gamma-2
distribution for the variance of the normal distribution, which results in a
Student distribution.?* This is the same model that we are considering in
this paper. However, the models Praetz compares, the data, his methods
of estimation, and his method of comparison differ from ours.

The models Praetz compares are the: (1) Student distribution, (2)

19. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, 2d ed.
(New York: Hafner Publishing Co., 1968), 3: 458. '

20. A distributional hypothesis is a simple hypothesis if the type of distribu-
tion and all values of the distribution’s parameters are specified in the test of fit.
If estimates of the hypothesized type of distribution need to be used in a test of
fit, then the distributional hypothesis is a composite hypothesis. Some simulation
results on the K-S test of a composite hypothesis of normality are available; see
H. W. Lilliefors, “On the Kolmogorov-Smirnov Test for Normality with Mean and
Variance Unknown,” Journal of the American Statistical Association 62 (June
1967): 399-402. However, these results' do not directly apply to the composite
hypotheses in Clark’s paper, the lognormal-normal and nonnormal stable hy-
potheses.

21. P. D. Praetz, “The Distribution of Share Price Changes,” Journal of
Business 45 (January 1972): 49-55.
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normal distribution, (3) compound events model (Press’s model, de-
scribed earlier), and (4) stable model. The compound events model is
not included in our study.

The data Praetz uses consist of weekly observations on 17 share-
price index series from the Sydney stock exchange from 1958 to 1966.
We use both daily and weekly observations for each of the 30 stocks in
the Dow-Jones Industrials. (It is well to note that such indices often
exhibit artificial serial correlation.)

To estimate the parameters in the models, Praetz first standardized
each data series by subtracting the sample mean and dividing by the
sample standard deviation. He then grouped the standardized data into
26 intervals and estimated the unknown parameters by selecting the
parameters values that minimized the x? statistic, % [observed-expected]-/
expected. In contrast, we used maximum-likelihood estimation for the
Student model and the estimators proposed by Fama and Roll for the
stable model.

Praetz’s method of comparing the models involves comparing the
minimum x?2 statistics of the models. Our method is to test whether the
data converge to normality or are stable and to compute the likelihood
ratio for the two models.

In evaluating Praetz’s study, we first note that his method of “stan-
dardizing” the data is inappropriate. Praetz standardizes by subtracting
the sample mean and dividing by the sample standard deviation. The
simulation results in Fama and Roll suggest the sample standard devia-
tion is an extremely bad estimator of the scale parameter for stable data.??
This may explain why the stable distribution does not fit his data well.

Another point is based on the statement in Praetz’s paper that “the
stable distribution always provides a better fit than the normal” (p. 54).
The stable model will never provide a worse “fit” than the normal model
because the normal distribution is a special case of the stable Paretian
distribution. To estimate « in the stable distribution, Praetz minimizes
the x? statistic with respect to «, with « being constrained to lie within
the interval [1, 2]. The x? statistic for the normal distribution assumes
o = 2. Thus, the x? statistic will never be less for the normal distribution
than for the stable distribution.

The above discussion casts serious doubts on Praetz’s results. In
'this paper, we hope to show, using more appropriate statistical proce-
dures, that the Student model appears to describe rates of return data
better than the stable model.

IV. METHODS FOR MODEL
COMPARISON
This section discusses two methods for discriminating between the stable
and Student models. They are: (1) calculate the likelihood ratio, and

22. Fama and Roll, “Parameter Estimates,” p. 332.
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(2) determine whether the distributions of rates of returns are stable
under addition.

A. The Likelihood Ratio

The likelihood function of n observations is their joint density function
evaluated at the n observations using a given set of parameter values.
Suppose the data are generated by one of two distributions but we are
uncertain about which one. Each distribution has a different likelihood
function. By evaluating each likelihood function at the n observations and
the appropriate estimates, we can compute the ratio of the values of
these two likelihood functions. The likelihood ratio can then be used to
determine the distribution for which the odds are greater. The following
proposition assures us that as the sample becomes large, the ratio of the
values of the two likelihood functions will indicate which distribution has
generated the data.

Let wy, . . ., w, be observations on a sequence of n independent
random variables with common density function f;(-). (In the following
discussion we will omit the parameters when denoting the density func-
tion.) Then their joint density function will be

fuw - o wa) = || o).
i=1

Consider any other (well-defined) density function g;(-) and the corre-
sponding joint density function

n

gn(wl’ cee wn) - H gl(w’i)'

i==1
Finally, define the sequence of likelihood ratios

o gn(wl, Wa, ...y wn)

A, =
" fn(wl’ Wa, oooy wn) ’
gn+1(w17 Wo, o ooy Wy, wn+1)
A»n+1 — s
fn+1(w1, Woy o oo s Wy, wn+1)
A . gn+s(w1’ Woy oo o sy Why oo oy wn+s)
+ —_— .
nre .f?n—{—s(wl, Wa, ... ’ wn, ce ey wn—{—s)
Doob proves that the
k—>o0
with probability one, unless f(-) and g(-) are identical, in which case
Iim A, =1
k-0

with probability one.23

23. J. L. Doob, Stochastic Processes (New York: John Wiley & Sons, 1953),
p- 349.
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_ Given suitable regularity conditions for g;(-) and f,(-) and large
samples, the ratio of likelihood functions evaluated at maximum-likeli-
hood estimates may be given a useful Bayesian interpretation Specifically,
assuming equal prior probabilities for models g;(-) and f,(-), this ratio
represents the asymptotic posterior odds of model g;( ) relative to f;(+).
Detailed discussions of this issue may be found in Jeffreys, Lindley, and
Zellner.2¢

Parameter values are required to calculate the value of the likeli-
hood function for each model. The true parameter values are unknown.
A reasonable alternative is to use maximum-likelihood estimates because
of their large-sample properties. The samples used in most of this paper
are approximately 1,300 observations; consequently, we will assume we
are in a “large-sample” situation. For the Student distribution, the
maximum-likelihood estimates will be used. For the stable distribution
maximum-likelihood estimates are very expensive to compute, particu-
larly for a large number of securities. Fortunately, Fama and Roll have
developed a low-cost method for finding parameter estimates for the
stable distribution.?® Their estimates are “fairly good” in large samples
(see Fama and Roll), and, thus, for the stable distribution we will use
the Fama-Roll estimators.26

Using parameter estimates which maximize the likelihood function
for the Student distribution but not for the stable distribution causes
problems when we are using the likelihood ratio to discriminate between
models. Obviously, the likelihood ratio will favor the Student model
more frequently than if both likelihood functions were evaluated using
maximum-likelihood estimates. In Section VI we discuss simulation re-
sults that were used to assess the severity of this problem. For these
results, the distribution of the data is known to be either stable or Student.
The likelihood functions were evaluated using the same estimating tech-
niques used for actual rates of return. The results for stable data with o
equal to 1.65 or 1.80 (see table 11) indicate that for 1,300 observations,
not using maximum-likelihood estimates for the parameters of the stable
model does not cause incorrect classification (except in one case). For
o = 1.50 there are a number of incorrect classifications (seven out of
20). However, stock prices are generally found to have estimates of «
between 1.65 and 1.80 and, therefore, the results for « = 1.65 and o —=
1.80 are the most relevant for actual rates of return. For smaller sample
sizes (260 or less), the results for stable data seem to indicate the likeli-

24. H. Jeffreys, Theory of Probability, 3d ed. (Oxford: Clarendon Press,
1961), pp. 193-94; D. V. Lindley, “The Use of Prior Probability Distributions in
Statistical Inference and Decisions,” in Proceedings of the Fourth Berkeley Sym-
posium on Mathematical Statistics and Probabilities, ed. J. Newman (Berkeley:
University of California Press, 1961), 1:453-68; A. Zellner, An Introduction to
Bayesian Inference in Econometrics (New York: John Wiley & Sonms, 1971),

. 31-33.
PP 25. Fama and Roll, “Properties.”
26. Ibid., and Fama and Roll, “Parameter Values.”
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hood ratio frequently incorrectly classifies the data as coming from the
Student model. (Incorrect classification does not happen nearly so often
for small sample sizes when the data are Student.) For this reason, we
will use the likelihood ratio to compare the two distributions for the
original observations (‘“‘unsummed”) so that the sample sizes will be
sufficiently large to overcome the problem of not using maximum-likeli-
hood estimates for the parameters of the stable model. A more detailed
discussion of these results is provided in Section VI.

B. Stability

A theoretical property which differentiates the stable and Student distri-
butions is stability. Stability simply means that if we have n identically
and independently distributed random variables, the distribution of their
sum will differ from the distribution of each random variable only by
location and scale parameters. The Student distribution is not stable, but
the symmetric-stable distribution is. For degrees of freedom greater than
2, the distribution of sums of independent identically distributed Student
random variables will tend to a normal distribution. Consequently, we
can use the property of stability to discriminate between the two models.

For rates of return, we can take sums of daily rates of return. If a
daily series follows a stable distribution with a specific characteristic
exponent, then so should the summed series. On the other hand, if a
daily series follows a Student distribution with fixed degrees of freedom,
the summed series will not follow a Student distribution (see Ruben).2”
The distribution for the summed series will have a smaller tail area and
be less peaked than the distribution for the daily series. Therefore, if we
estimate both the degrees-of-freedom parameter and the characteristic
exponent for series with sum sizes of, say, 1, 5, 10, and 20 and observe
that these parameter estimates increase as the sum size increases, then
we can infer that the daily series is nonstable.

V. ESTIMATION OF THE MODEL’S
PARAMETERS
The likelihood function for both statistical models contains three un-
known parameters. In order to calculate the value of the likelihood
function, we must find estimates of these parameters. Obvious candidates
are maximum-likelihood estimates (M.L.E.) since we are interested in
the ratio of the likelihoods. We will use M.L.E. for the Student distribu-
tion. However, as has been discussed in the previous sections, getting
M.L.E. for the stable distributions is both difficult and costly (in terms
of computer time). The best method (to date) for finding M.L.E. for
the stable distribution is given in Du Mouchel.?® However, his method

27. H. Ruben, “On the Distribution of the Weighted Difference of Two
Independent Student Variables,” Journal of the Royal Statistical Society, ser. B.,
22 (1960): 188-94.

28. DuMouchel, “Stable Distributions.”
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still takes considerable computer time. As an alternative, we will use
estimators devised by Fama and Roll (see n. 14). This section outlines
these two estimation procedures. The properties of these estimators are
evaluated (in Section VI) using simulation results.

A. M.L.E. for the Student Distribution
The likelihood function for the Student distribution with location m,
scale H, degrees of freedom v, and sample size 7 is
L(m’H, VX1, -0t ,xn) - H
=1

V(1/2)V

B(l 1 >
2277

The usual method for finding the M.L.E. of m, H, and v is to differentiate
the likelihood function with respect to each parameter, set the resulting
three equations equal to zero, and solve for m, H, and v, the M.L.E.
Unfortunately, finding analytical solutions to these three equations for
m, H, and v is extremely difficult. Therefore, we numerically searched
for the parameter values which maximize the likelihood function. (Our
numerical search routine uses a Fibonacci search on m and v and a
Newton search on H.)

[+ H(x — m)?)= 02 040\ /H,

B. Fama-Roll Estimates for the Stable
Distribution
The finite-sample properties of several estimators for the characteristic
exponent (a), the dispersion parameter (c), and the location parameter
(8) of a symmetric-stable distribution are described in Fama and Roll
(see n. 14); these procedures are briefly described in this section.

Estimator for 8.—The estimator for & is the .75 truncated mean
computed by: (1) ordering the data from largest to smallest, (2) trun-
cating the data so that 12.5 percent is discarded from each extreme, (3)
calculating the mean for the remaining 75 percent of the ordered sample
observations. Fama and Roll (see n. 14) indicate that for a ~ 1.70,
which is a common estimate of « for rates of return, the .75 truncated
mean is a more efficient estimator than the sample mean, the median,
the .25, or the .50 truncated means.

Estimator of c.—Let %; and x; denote the f sample and theoretical
fractile, respectively, from a sample of N observations on X. For the
Cauchy distribution (o = 1) the dispersion parameter, c, equals the
semi interquartile range, 1/2(x.7s — X.55). For 1 < a < 2, ¢ is approxi-
mately equal to the semi interquartile range, suggesting that ¢ might be
estimated by 1/2(X.75 — X.25). Fama and Roll recommend an estimator
that is similar to the estimator of the semi interquartile range but one that
has a smaller asymptotic bias. This estimator, which we will use, is
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A 1 R70— X
0=
2 .827

Fama and Roll (see n. 14) indicate for 1 < o << 2, € has an asymp-
totic bias of less than .4 percent. Additional finite sample properties of ¢
are given in Fama and Roll (see n. 14).

Estimator of o.—Consider a symmetric-Stable random variable, X,
with location §, scale ¢, and characteristic exponent o. Let 2= (¥ — 8)/
c. Then 7 will be a standardized symmetric-stable random variable with
location 0, scale 1, and characteristic exponent c.

The tail areas for the distribution of 2’ are sensitive to changes in a.
We will exploit this to find an estimate for « by studying the f fractile of
the distribution of Z, z;, with f chosen so that it is in the tail of the distri-
bution. Tables of z; for different values of o are available. By using
estimates of z; for different values of o and comparing them to actual
values of z;, we can find an estimate of a.

The estimate we will use for z; is:

Y S
where €'is our estimate of ¢ and %; and £; _; are sample fractiles computed
from our observed data.

Our estimating procedure for « is then: (1) compute Z; from our
rates-of-return series, (2) search for the value of « in the tables of the
standardized symmetric-stable distributions which makes Z, closest to z;.
This value of o will be our estimate. Again, Fama and Roll (see n. 14)
provide sampling results for the properties of «.. Their results suggest that
a suitable value of f for a ~ 1.7, which is applicable to rates of return,
is f = .97.

VI. ESTIMATION RESULTS
The results discussed in this section consist of: (1) results from a Monte
Carlo simulation study based upon simulated observations from the stable
and Student distributions, and (2) results based upon actual daily rates
of return. The simulation study was done to gain some insight into the
finite-sample properties of the estimation and model-comparison methods
that we used for the actual data.

A. The Actual Data
The actual data used are consecutive daily rates of return for each of the
30 securities in the Dow-Jones Industrial Average over the period 1957—
62. The daily rates of return were computed by deducting unity from
daily price relatives adjusted for dividends and capitalization changes
(e.g., stock splits). The time periods of the observations are not identical
for all 30 securities. Typically, the time period is from about the end of
1957 to September 26, 1962. The actual date of the first observation for
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a security varies from January 1956 to April 1958; the date of the last
observation is the same for all 30 securities. These data are the same as
those used by Fama (see n. 2).

Recent work on security returns has emphasized forms of cross-
sectional dependence that results in cross-sectional correlation among
securities’ returns. We did not adjust the data in our sample for such
correlation because it appears that, given our objectives, such an adjust-
ment is not necessary.2?

We will not present evidence regarding the serial independence of
daily returns. Results on this topic, for the 30 securities in our sample,
are provided by Fama (see n. 2). In general, it appears that daily returns,
and returns defined over longer time intervals, do not strongly violate the
assumption of serial independence. The most frequently observed incon-
sistency is the tendency for extreme values of daily returns (of unpredict-
able sign) to succeed extreme values of daily returns.

B. The Design of the Monte Carlo Study
The design of our Monte Carlo Study is as follows: (1) 26,000 random
numbers uniformly distributed over the interval (0, 1) were generated
from a uniform random-number generator (see Appendix B for the prop-
erties of our uniform random numbers). (2) The random numbers from
(1) were used to generate 26,000 random numbers from each of several
stable distributions and Student distributions with prespecified parameter
values. Each set of 26,000 values (in their original order of appearance)
from the stable and Student distributions was partitioned into 20 non-
overlapping samples of 1,300 observations. (3) The estimation proce-

29. The usual method of removing cross-sectional correlation is to base all
estimation results on the residuals of the “market-model,” ﬁtt =a;+ B t+ €
where Ru is the ith security’s rate of return for period ¢, I is the rate of return
on the market index for period ¢, and €, is a serlally 1ndependent disturbance
term, with E(§;,) = 0. For the ith and {,th securities cov(Ru, R;;) 7 0 because
both securities contain the same factor, I,. Once this is removed, it is usually as-
sumed that the residuals are uncorrelatcd, namely, E(€), - €),) =0, for all i and j.
The empirical results of Officer, “Time Series Examination,” for the stable model
showed that estimates of a based directly upon daily rates of return and estimates
of a based upon the market model’s residuals for these daily returns were essen-
tially the same. The primary reason for this result appears to be that the cross-
sectional correlation among daily return is close to zero. It is known, however,
that the cross-sectional correlation for returns increases as the time interval over
which returns are defined increases. When considering sums of 20 daily returns,
Officer’s estimates of a based directly upon sums of daily returns and those based
upon sums of the market model’s residuals for these returns were slightly different.
However, this result showed that the direction in which & moves as a function of
the sum sizes was the same for sums of residuals and sums of daily returns. This
suggests that our inferences about convergence to normality based upon estimates
of o for 1ncreasmg sum sizes will be unaffected by cross-sectional correlation.
B. F. King, in “Market and Industry Factors in Stock Price Behavior,” Journal of
Business 39 (January 1966): 139-90, shows that there is also an mdustry factor
along with the market factor. Thus, if the ith and jth security are in the same in-
dustry, then cov(€,, ]t) 7 0. However, King found that the industry factor was
small and, therefore, the cov(€,, €;) will not be large.
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dures used for the actual price data were used on the random numbers
from the stable and Student distributions for parameter estimates. It
should be noted that the estimating procedure for the Student model
was applied to the simulated stable data and vice versa. Thus, we have
sampling distributions for estimators of the stable (Student) model’s
parameters based upon data actually generated from Student (stable)
distributions as well as data actually generated from stable (Student)
distributions. The purpose of applying the stable model to Student data,
and vice versa, is to offer another means of comparing the models.

For each distributional model, part (2) requires prespecified param-
eter values. We decided to use values of the location and dispersion
parameters that are consistent with values of estimated parameters ob-
served for daily rates of return from a pilot study. Since estimates of v
(for the Student model) and « (for the stable model) are particularly
important for our objectives, we decided to prespecify sets of parameter
values for the Student and stable models that differed only with respect
to their values of v and «, respectively; that is, neither the values of
location parameters (m and 8) nor those of dispersion parameters (H
and c¢) were varied. The prespecified values of the location and dispersion
parameters are: 6 — m — .0003, ¢ = .00725, and H — 6,000. For the
stable model, three values of « were specified: 1.5, 1.65, and 1.8. For
the Student model, three values of v were specified: 3, 5, and 8.

According to the procedure described in (2), the ith observation
from each of the six distributions is associated with the same value of the
uniform number, #(0, 1). Thus, the simulated observations for different
distributions are not independent. This lack of independence is consistent
with our objectives, namely, evaluating results for (1) different values of
v and « for the Student and stable models, respectively, and (2) different
distributional models, holding other things constant [such as the under-
lying values of #%(0, 1)].

C. Discussion of the Simulation Results
In this section, the Monte Carlo simulation results are discussed and then
used to develop guidelines for interpreting the results for actual rates of
return.

Results for estimating v and a.—Our results for estimating v are
given in tables 3, 4, and 6. For a sample size of 1,300 and 20 replica-
tions, we see the following (table 3): (1) when v = 3 and v = 8, the
estimates of v deviate slightly from the true value, though the estimates
are within 2 S.E. of the true value; (2) the sample standard deviation,
and the mean squared relative deviation increase as v increases.? A

30. We used the sample standard deviation (among other things) to mea-
sure the precision of our estimates of v. We could just as easily have used the
standard error of » by dividing all the sample standard deviations by \/20. The
standard deviation and standard error are directly proportional and so either can
be used without changing the results.
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Table 3
Estimates of v for Simulated Student Data
(Sample Size = 1,300)

True Value of »

Replication

Number ry=3 v=1>5 vy=28
PPN 2.80 4.84 7.66
2 e 3.06 5.61 10.21
PP 3.05 5.61 10.71
P 3.31 6.62 13.01
. Z 3.05 5.34 9.43
Y P 2.54 4.33 6.37
P 3.30 6.37 12.75
8 e 2.80 4.85 7.90
L 2.80 4.84 7.65
10 o e e 3.05 5.09 7.90
1l e 3.05 5.34 8.93
12 e e 3.31 6.12 10.97
13 e e 3.06 5.35 8.66
14 i 2.53 3.83 5.60
15 e e 2.53 3.83 5.60
16 e e 2.80 4.84 7.66
17 e 2.79 4.58 7.14
18 e 2.29 3.82 5.35
19 e 2.79 433 6.38
20 e e e 2.54 4.33 6.38
Mean ..............cc0iiinin.. 2.87 4.99 8.31
Standard deviation ............... .28 .80 2.21
VMean squared relative deviation* . . .10 .16 .27

* V(1/N) 2 — ;) /12, where 9 is the average estimate.

possible reason for this decrease in precision as v increases is that the
rate of change in the density function decreases as the degrees-of-freedom
parameter increases. For example, a change from 2 to 3 df changes the
shape of the density function quite perceptibly, whereas a change from
49 to 50 df results in an almost insignificant change in the shape of the
density function. Thus, the likelihood function is much flatter for large
values of v than for small values, resulting in much less precise estimates
of v when the actual degrees-of-freedom parameter is large.

Table 5 shows how the properties of estimates of » change as the
sample size decreases. For “small” samples, n = 65, the estimates of v
for all three values of the degrees-of-freedom parameter appear to be
extremely inaccurate. Our estimates for » — 5 and v = 8 also have large
standard deviations and mean-squared relative deviations for sample sizes
of 260. When using maximum-likelihood estimation for », very large
sample sizes are needed. Even sample sizes as large as 260 appear to be
too small to obtain accurate estimates. A reason for the need for large
sample sizes is that the tail area offers much of the information for de-
tecting differences in v. For sample sizes of 260, there are still a small
number of observations in the tails. Also, as v increases it becomes more
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Table 4 .
Estimates of v for Simulated Student Data
(Sample Size = 260)

True Value of »

Replication
Number y=3 . y=>5 y=2_8
L o e 4.08 7.65 14.03
2 e 2.54 4.34 6.89
P 2.79 4.84 8.66
4 o e 4.58 11.23 55.14
2P 5.34 14.03 60.00*
6 e e 4.08 9.95 35.48
T e e 3.06 5.85 10.98
8 e 4.34 20.42 60.00*
g e 3.31 5.86 9.95
10 .. e 2.54 4.08 5.86
11 3.56 6.62 13.27
12 e 3.31 7.65 23.99
13 2.28 3.57 5.10
14 2.28 3.56 4.85
15 2.79 4.85 7.90
16 ..o 2.03 3.05 3.83
17 2.28 3.31 4.59
18 e 3.05 5.34 10.20
19 e 2.53 4.07 5.87
20 3.06 5.34 9.43
Mean ............... ... ... ..., 3.19 6.78 18.00
Standard deviation ............... .87 4.18 18.52
VMean squared relative deviation .. .27 .62 1.04

* Upper bound established in estimation procedure used for simulated data.

difficult to notice changes in the tails of the density. Thus, even larger
samples are needed.

Our results for estimating o are given in table 6. For sample sizes
of 1,300 and 20 replications we observe a slight downward bias in our
estimates of «. Similar results were found in Fama and Roll (see n. 14).
For sample sizes of 260, we can study table 7 because sums of indepen-
dent stable random variables each with characteristic « are also stable
with characteristic exponent . The results in table 7 indicate that for
smaller samples, the downward bias is more pronounced. For a more ex-
tensive study of estimating ¢, see Fama and Roll (see n. 14).

Results for sums of stable and student random variables.—As indi-
cated earlier, a method of discriminating between the stable and Student
models is to test for convergence to normality. To decide whether the
distribution of rates of return is converging, we must know how quickly
sums of Student random variables converge to normality. To determine
the rate of convergence, we generated Student random variables with
known degrees of freedom and took sums of sizes 5, 10, and 20. We then
computed an estimate of the degrees-of-freedom parameter for each sum
size. Table 8 gives the results for 20 replications and a sum size of 5.
We did not use the results for smaller sum sizes because the estimates of
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Table 5
Comparisons of Estimates of v for Simulated
Student Data for Different Sample Sizes*

True Value of »

Sample
Size . v=3 v=>5 ry=28
1,300:
Mean ..............ccivinnnn. 2.87 © 5.00 8.31
Standard deviation ............. .28 .80 2.21
VMean squared relative deviation .10 .16 .27
260:
Mean .........ccoiiiiiiiiin., 3.19 6.78 18.00
Standard deviation ............. .87 4.19 18.52
VMean squared relative deviation .27 .62 1.04
65:
Mean ..........c.oiiiiiiiinn, 9.74 17.28 26.04
Standard deviation ............. 17.2 22.08 24.45
VMean squared relative deviation  1.77 1.28 .94

* The maximum-likelihood estimation program contained an upper bound of 60 on esti-
mates of » for the simulated data. The number of truncated estimates underlying the results
summarized in this table is as follows:

Sample True Value Number of Truncated
Size of v Estimates of »
260 ... 8 3
65 it 5 2
65 i 8 6

v appear to be extremely erratic; these results are available from the
authors. ‘

Before giving the simulation results, we should note that sums of
independent identically distributed Student random variables do not fol-
low a Student distribution. We shall use the estimates of v only as a de-
scriptive measure of convergence since v can no longer be interpreted as
a Student parameter.

For Student data with » — 3, and sums of size five, the average
estimate of v increases from 2.87 to 4.70. Unfortunately, the standard
deviation and mean-squared relative deviation also increase quite notice-
ably (.281 to 1.52 and .098 to .322, respectively).?! Faster convergence
seems to result for » = 5 and v — 8 with the average value of v changing
from 5.00 to 16.87 and 8.31 to 34.36, respectively. Again, our estimates
of v are extremely inaccurate. From the results just given, we see that
because of sampling error, it is difficult to determine the exact rate of
convergence to normality.

Our alternative to the Student distribution—the stable distribution—

31. Our estimates for » contain a number of values at 60.00. This is due to
a truncating in our estimating procedure. The effect of this truncation is to bias
our estimates of the standard deviation downward. For the actual daily returns,
the upper bound on estimates of » was usually set at 89.984 (see the nn. to the
tables).
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Table 6
Estimates of a for Simulated Stable Data
(Sample Size = 1,300)

True Values of «

Replication
Number a =1.50 a=1.65 o =1.80
P 1.50 1.65 1.80
P 1.51 1.67 1.85
PP 1.46 . 1.62 1.76
4 o e 1.52 1.67 1.83
S e e 1.52 1.60 1.88
6 e 1.40 1.63 1.76
7 1.50 1.66 1.83
8 e 1.52 1.67 1.84
N 1.54 1.70 1.88
10 o 1.55 1.72 1.80
11 1.48 1.63 1.76
12 e e 1.61 1.78 1.80
13 1.51 1.66 1.80
14 1.43 1.57 1.70
15 e 1.45 1.60 . 175
16 .o 1.52 1.67 1.83
17 1.40 1.65 1.70
18 1.36 1.51 1.64
19 1.46 1.60 1.74
20 1.46 1.61 1.76
Mean .............. .. ciiii... 1.48 1.64 1.78
Standard deviation ............... .057 .055 .060
V/Mean squared relative deviation . . .04 .03 .03

implies lack of convergence to normality. To develop guidelines for apply-
ing the stable model to actual data, we generated stable numbers with
known characteristic exponent. We then summed these random numbers
and estimated the characteristic exponent for the sums. Table 8 gives the
results for 20 replications on sums of size five. (Results for sums of sizes
10 and 20 are available from the authors.)

For stable data, our average estimate of o decreases when we take
sum sizes of five (1.485 to 1.46, 1.64 to 1.62, and 1.79 to 1.73). The
standard deviations do not increase as much as they did for the Student
data. The decrease in the estimate of « is not due to sampling error, but
it is probably a downward bias due to the smaller sample sizes used to
estimate o for sum sizes of five. The downward bias in estimates of « was
first found in the extensive simulations of Fama and Roll (see n. 14).
For actual data and approximately 1,300 observations, if the estimate of
a does not decrease when going from sum sizes of one to sum sizes of
five, this suggests convergence.

Table 9 gives a summary comparison of the results from tables 7
and 8 as well as a cross comparison of estimates of v for stable data and
« for Student data. The results indicate that if we estimate « for the
Student data using the Fama-Roll estimating technique, we observe an
increase in the estimate of o as the sum sizes go from one to five. For
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Table 7

Estimates of « for Sums of Size Five from
Simulated Stable Data

(Sample Size = 260 per Replication)

True Value of a

Replication
Number a=150 a=1.65 a=1.80
) 1.45 1.58 1.68
2P 1.46 1.65 1.80
PP 1.50 1.65 1.72
A e 1.60 1.68 1.77
2 1.53 1.60 1.75
S 1.40 1.57 1.65
/2 1.60 1.77 1.77
e 1.50 1.67 1.80
L 1.45 1.57 1.78
10 o e 1.50 1.66 1.76
3 1.53 1.65 1.75
12 1.52 1.66 1.97
3 1.57 1.74 1.80
14 e 1.52 1.65 1.65
15 e 1.28 1.43 1.50
16 o e e 1.30 1.54 1.65
17 e 1.40 1.63 1.74
18 e 1.36 1.40 1.64
19 e 1.33 1.51 1.61
20 e 1.46 1.70 1.80
Mean ...............ciiiiii... 1.46 1.62 1.73
Standard deviation ............... .09 ‘ .09 .09
V/Mean squared relative deviation .. .06 .06 .06

stable data the estimates of o decrease, on average, as we go from sum
sizes of one to five. On the other hand, the estimates of v increase for
both types of data as we go from sum sizes of one to five. This suggests
that a more conservative approach in examining convergence to normality
is to use estimates of « to indicate convergence. Thus, when studying
actual rates of return, we will rely more heavily upon estimates of a to
indicate convergence than estimates of ».

The likelihood ratio—In this section, we present results for the
(natural) log-likelihood ratios. The log-likelihood ratios allow one to
determine which model has the higher likelihood, given the data. For
large samples these log-likelihood ratios provide measures of relative de-
grees of belief in each distributional model (see Section IV-A).

The results for the log-likelihood ratios are summarized in tables 10
and 11. The number computed is the log of: the value of the likelihood
function for the Student distribution divided by the value of the likeli-
hood function for the stable distribution.?? The results are only given for
sum sizes of one. For larger sum sizes, the fact that the number of times
the value was in the wrong direction (i.e., was greater than zero when the

32. The approximation for the stable density function is given in H. Berg-
strom, “On Some Expansions of Stable Distribution Functions,” Arkiv for
Matematik 2, no. 18 (1952): 375-78.
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Table 8

Estimates of v for Sums of Size Five from
Simulated Student Data

(Sample Size = 260 per Replication)

True Value of »

Replication
Number v=3 v=>5 y=28
1o 3.82 7.14 10.21
2 e 4.85 14.80 60.00*
3 e e 5.61 15.56 47.23
4 e 5.09 7.90 9.94
S e 5.35: 9.43 12.24
6 i 3.56 7.90 26.81
T e e e 535 14.55 41.36
8 6.12 34.72 60.00*
It 4.57 15.56 60.00*
10 . 3.06 535 8.42
11 e 6.38 60.00* 60.00*
12 e 9.44 60.00* 60.00*
13 5.86 20.67 60.00*
14 e 4.08 10.71 25.02
15 e 2.79 5.10 8.16
16 o i 4.08 9.19 17.36
17 e 4.08 15.83 60.00*
18 3.06 6.11 12.51
19 3.31 8.92 27.31
20 e 3.56 7.90 20.67
Mean ................. ..., 4.70 16.87 34.36
Standard deviation ............... 1.52 15.82 21.20
VMean squared relative deviation . . 322 938 617

* Upper bound established in estimation program used for simulated data.

data came from a stable distribution) makes it difficult to use these results
(which are available from the authors).

For sums of size one, when the actual data are Student, the log-
likelihood ratios are greater than zero for every replication except one
(when v = 8). For stable data, the ratio is less than zero for all replica-
tions when o = 1.65 and o = 1.80. For o = 1.50, the ratio is greater
than zero seven out of 20 times. Since estimates of « for daily returns are
usually around 1.65, the inaccuracies that exist for o = 1.50 should not
interfere with our using this ratio to discriminate between the two distri-
butions.

From our simulation results we see that the log-likelihood ratio is
an exceptionally good discriminator between the Student and stable dis-
tributions when the samples contain 1,300 observations (approximately
the number of observations available in each series of actual daily re-
turns). For v = 3, 5, 8 and o = 1.65, 1.80 we had only one incorrect
classification from 100 trials.3?

33. The simulation results for all the separate values of o (and ») use the
same uniform numbers to generate the Student and stable-random numbers. The
results, therefore, reflect the influence of changes in » and a, holding everything
else constant. .
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Table 9
Estimates for » and o for Sum Sizes of One and
Five for Simulated Student and Stable Data
Data Estimation Sum
Type Procedure Size True Parameter Value
14
v=3 v=>5 v=2_8
1:
Mean 2.87 5.00 8.31
. .. 795 2.209
Student .......... Student S_Std dev 281 2
‘Mean  4.70 16.87* 3436t
Std. dev. 1.52 15.82 21.20
&
v=3 v=>5 v=2_8
1:
Mean 1.54 1.70 1.80
. X .063 .083
Student .......... Stable S'Std dev. 046
‘Mean  1.68 180t  1.86§
Std. dev. .088 170 .104
Q
a=150 a=165 a=1.80
1:
Mean 1.49 1.64 1.79
. .o .055 .060
Stable ........... Stable g S den 057
Mean 1.46 1.62 1.73
Std. dev. .090 091 .095
)
a=150 a=165 a=1.80
1:
Mean 2.41 2.93 4.40
Std. . .803 3 740
Stable ........... Student 5 td. dev 0%
Mean 2.40 3.10 4.97
Std. dev. .60 .63 1.94

* Two estimates of v truncated at v = 60.

t Seven estimates of » truncated at » = 60.
i Three estimates of a truncated at o = 2.
§ Three estimates of « truncated at o = 2.

Summary of the simulation results—(a) The M.L.E. of » for the
Student model is not very good for sample sizes of 260 and 65 but is
fairly accurate for sample sizes of 1,300. (b) As the degrees of freedom
increase, the standard deviation and mean-squared relative deviation of
the M.L.E. of » increase. (¢) To test for convergence, an increase in o
appears to be a better measure of convergence than an increase in v. (d)
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Table 10
Log-Likelihood Ratios for Simulated Student Data

True Value of »

Replication
Number v=3 vy=>5 v=38
1o, 18 16 10
2 19 13 7
3o 32 18 21
4 21 21 10
5 o 8 11 8
6 .. 8 9 13
T oo 21 18 12
8 7 15 6
9 19 11 5
10 ..o, 9 3 —1
L 13 21 21
12 oo 4 3 6
13 . 16 16 22
14 ... 18 14 26
15 .o 6 9 9
16 ...t 9 11 6
17 ool 15 18 15
18 ..o 23 19 20
19 ..o 7 14 11
20 oo 12 18 5

Note.—Log-likelihood ratio = Loge [likelihood of Student model - likelihood of stable
model]. Digits to the right of the decimal point are omitted. The likelihood ratio for any entry,
x, is y =e=.

Table 11
Log-Likelihood Ratios for Simulated Stable Data

True Value of a

Replication
Number a=15 a=1.65 o =1.80
I 3 -5 —7
2 —19 —4 36
3 28 —1 —1
4 0.9 —1 —0.3
P -9 —7 —2
6 i —77 —11 —12
T oo 7 —1 -2
8 —4 —12 —8
9 —2 —10 -9
10 ..oovininaa, —41 —15 —18
11 . 2 -5 —2
12 0o, —4 -9 —4
13 ool —11 -7 —8
14 ..o, 8 -7 -5
15 coveiiiia... —140 —10 -9
16 ..o, —11 -9 —9
17 o -2 —8 -7
18 .o —957 -3 —2
19 ool —10 —14 —12
20 o 14 —14 —17

Norte.—Log-likelihood ratio = Loge [likelihood of Student model - likelihood of stable
model]. Digits to the right of the decimal point are omitted for log-likelihood ratios greater than
one in absolute value. The likelihood ratio for any entry, x, is y = e=.
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The log-likelihood ratios will almost always indicate the true distribution
when comparing the Student and stable distributions for sum sizes of
one, 1,300 observations, and » =3, 5, 8 or « = 1.65, 1.80. In these
cases, the (approximate) posterior odds in favor of the true distribution
are usually quite high.

D. Results for Rates of Return

In the previous section, we saw that the best methods of discriminating
between the Student and stable models were: (1) tests of convergence to
normality using sum sizes of five, and (2) the value of the log-likelihood
ratios for the daily rates of return. In this section, we present results
from applying these two discriminators to actual rates of return for the
30 securities described in Section VIA. Our-sample sizes range from
1,111 observations for Union Carbide to 1,693 observations for both
Standard Oil of California and General Electric. Sample sizes for every
security are listed in table 12.

Table 12

Sample Size for the Thirty Securities Used in the

Study

Sum Size
1 5

Union Carbide ..............ciiviivnennn. 1,111 223
Dupont .......... ..o, 1,243 248
Proctor and Gamble ...................... 1,447 289
Sears ... e i e 1,236 247
Standard Oil of California ................ 1,693 338
Standard Oil of New Jersey ................ 1,156 231
SWIft oo e e 1,446 289
TeXaCo .« vvvviiinnin it 1,159 231
Bethlehem Steel ..............cccvvun... 1,200 240
Chrysler .........coiiiiiiiinnnnnennnnn. 1,692 338
Eastman Kodak .............c.cciivnunnnn. 1,238 247
United Aircraft ............ccivvvieennnn. 1,200 240
US. Steel ..ottt i 1,200 240
Westinghouse ............coviviiiiiiiaae, 1,446 289
General Electric ..........ccccvitiinennenn. 1,693 338
General Foods .............ccciiiiiunnnnn. 1,408 281
General MOtOI'S .. ..ovvvineinienneennennns 1,446 289
Goodyear . ......iiiiiiii i 1,162 232
International Harvester .................... 1,200 240
International Nickel ...............cccvvun. 1,243 248
International Paper ...................0.... 1,447 289
Johns Manville ................couvnvn... 1,205 241
Allied Chemical .............ccivuivnnnn.. 1,223 244
AlCOA it i e e i e 1,190 238
American Can ............c.ciiiiiiinann.. 1,219 243
American Telephone and Telegraph ......... 1,219 243
American Tobacco ..............cocuuun.. 1,283 256
Anaconda .........iiiiiiiieneaa eeeenn 1,193 238
Woolworth .............ciiiiiiiiinen... 1,445 289

Owens IIlNOIS .........ovvtiivninnnnnn.. 1,237 247
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The results from estimating the degrees-of-freedom parameter for
daily observations are given in table 13. The estimates range from 2.53

Table 13
Estimation Results for Daily Rates of Return

Estimates of

Estimates of the Characteristic
Degrees of Freedom Exponent for
for Student Model the Stable Model
Sum Sizes Sum Sizes Log-Likelihood
Ratios for Sums
1 5 1 5 of Size One*

Union Carbide ............ 7.6562  23.315 1.71 1.80 14.46
Dupont .................. 6.1215 8.267 1.67 1.76 12.81
Proctor and Gamble ....... 3.3021 5.937 1.52 1.80 14.64
Sears ......... ... i 2.8021 4.089 1.55 1.62 9.61
Standard Oil of California ... 4.8368 .5.206 1.62 1.84 17.72
Standard Oil of New Jersey .. 3.5694  27.040 1.61 1.76 7.85
Swift ... i, 4.3281 14.417 1.60 1.78 17.03
Texaco ......coovvvivnnnnn. 5.3455 9.657 1.65 1.83 15.48
Bethlehem Steel ........... 4.7830 6.175 1.64 1.77 10.75
Chrysler ................. 6.3715 9.666 1.73 1.77 10.04
Eastman Kodak ........... 5.3542 3.598 1.72 1.47 7.88
United Aircraft ............ 4.8455 10.394 1.66 1.89 8.71
US. Steel ................ 13.2600 13.452 1.87 1.80 2.99
Westinghouse ............. 6.1128 8.929 1.73 1.75 10.50
General Electric ........... 4.8368 7.287 1.66 1.70 14.38
General Foods ............ 5.0955 5.281 1.67 1.77 10.19
General Motors ........... 5.0955 6.493 1.68 1.78 9.29
Goodyear ................ 4.8368 11.162 1.65 1.77 8.24
International Harvester ..... 5.1042 8.570 1.72 1.73 4.72
International Nickel ........ 3.8194 6.044 1.58 1.65 11.30
International Paper ........ 5.1042 8.096 1.68 1.60 10.78
Johns Manville ............ 5.8542 8.783 1.77 1.72 6.54
Allied Chemical ........... 5.0417  89.9847% 1.73 1.94 7.43
Alcoa .........coiiiinnn. 4.8368 5.725 1.67 1.86 8.16
American Can ............ 3.3198 4.735 1.65 1.61 7.89
American Telephone and

Telegraph .............. 2.5347 2.349 1.45 1.45 10.29
American Tobacco ......... 2.8021 3.351 1.49 1.59 14.29
Anaconda ................ 8.9323 6.731 1.76 1.61 11.27
Woolworth ............... 3.3194 2.561 1.60 1.45 12.61
Owens Illinois ............ 4.5781 9.182 1.60 1.66 14.10

* Log, [likelihood of Student model =+ likelihood of Stable model]. The odds ratio for
any entry, x, is y = e®.
+ Upper bound established in the estimation procedure used for actual data.

for American Telephone and Telegraph to 13.26 for U.S. Steel with the
average estimate 4.79. The estimates of o for the same daily observations
are given in table 13. The estimates range from 1.45 for American Tele-
phone and Telegraph to 1.87 for U.S. Steel. The mean estimate of « is
1.65, which is approximately the value of a found in other studies of
daily returns using the stable model.

The results for estimates of » and « for sum sizes of five are also
given in table 13. The average estimated value of v is 11.22, and the
average estimated value of « is 1.72. Both show an increase. If we have



274 The Journal of Business

simulated stable data with & = 1.65 and we estimate » for sum sizes of
one and then for sum sizes of five, the results in table 9 show that these
estimates of » increase, on average, from 2.93 to 3.10, a very small in-
crease. If we have Student data with » — 5, and we estimate v for sum
sizes of one and five, our estimate of v increases, on average, from 5.00
to 16.87, a substantial increase. Our average estimate of » for the actual
data changes from 4.79 to 11.22; the magnitude of this increase is more
consistent with the case of the Student model applied to Student data
than the Student model applied to stable data.

Similar statements can be made about the changes in estimates of o
for sums of sizes one and five. For simulated stable data with o = 1.65,
the average estimate of « for sum sizes of one is 1.64; for sum sizes of
five, it is 1.62, a slight decrease which is consistent with the downward
bias in our estimator of « as the sample size decreases. For simulated
Student data with » equal to 5.00, the average estimate of o for sum
sizes of one is 1.70; for sum sizes of five it is 1.80. For actual rates of
return, the average estimate of o changes from 1.65 to 1.72 as we go
from sum sizes of one to five. This increase in the average estimate of o
suggests a process that is not stable, but one which is much closer to a
process converging to normality.

Our basic inference from the results about convergence is that the
data appear to converge to normality. This conclusion is based upon how
the estimates of o and v change when we go from sum sizes of one to
sum sizes of five.3* (Results for sum sizes of 10 and 20 are available from
the authors.)

Our second empirical comparison of the two models is based upon
the log-likelihood ratios. The results for the daily returns on the 30 securi-
ties are given in table 13. In every case, the value of the log-likelihood
ratio is greater than zero, indicating the Student model provides a better
description of the data than the stable model. Our simulation results
given in tables 10 and 11 show that this ratio almost always indicates
the correct model. Only when o« = 1.50 were there any major misclassi-
fications. Thus, observing that all values are greater than zero strongly
indicates that the Student model provides a better empirical description
of the data than the stable model.

For large sample sizes, log-likelihood ratios can be interpreted as
log-odds (see Section VI); we shall use this interpretation for the results

34. Our results for estimates of « are consistent with those presented by
Officer who applied the stable model to daily rates of return from the period
July 2, 1962 through July 11, 1969 for a sample of 50 common stocks listed on
the New York Stock Exchange. (Officer’s sample does not include the 30 securities
whose daily returns were used for our own results.) Officer secured estimation
results for sum sizes of 1-5, 7, 10, 15, and 20. The upshot of his results is identical
to that of our own; as the sum size increases, the estimates of a increase, on
average, or remain almost unchanged. As indicated earlier, this result is incon-
sistent with the stable model, conditional on the procedures used to estimate o.
(The procedures used by Officer to estimate the stable model’s parameters are
identical to those that we used.)
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for sums of size 1. When we use table 13, it can be seen that the log-odds
in favor of the Student model are quite high. The lowest log-odds is 2.99
(for U.S. Steel), which corresponds to odds of about 20 to one in favor
of the Student model. Since we did not use maximum-likelihood esti-
mates for the stable model, the reported log-odds are inflated. The adjust-
ments needed to remove this inflation are unknown. Since, however, the
odds are so strongly in favor of the Student model, any seemingly reason-
able adjustment would not, we believe, alter our basic inference: the
Student model appears to describe the data better than does the stable
model. This inference is given additional support by the evidence indi-
cating convergence to normality.

The log-odds reported in table 13 pertain to all observations avail-
able for each security. These results do not indicate which fractiles of
the empirical distributions contribute most to the apparent superiority of
the Student model, as reflected in the log-odds. In order to consider this
issue, we applied the following procedure to the unsummed observations
for three securities: (1) the observations were arranged in ascending
order, (2) the value of the log-odds was then computed for each observa-
tion, and (3) the value of the log-odds was also computed for the first 2
percent of the observations (after the rearrangement in [1]), the second
2 percent, the third 2 percent, etc. The results for each security indicated
that the superiority of the Student model is primarily due to the observa-
tions in the tails of the empirical distributions. A representative plot from
step (3) is provided in figure 1. This plot is based upon the observed
returns for Bethlehem Steel. The sample size for this security is 1,200.
Thus, each plotted value of the log-odds is based upon (.02) (1,200) =
24 ordered observations. (The estimated median would fall between the
twenty-fifth and twenty-sixth set of grouped observations.) The plot has
a U-shape, indicating that the Student model is heavily favored in the
tails of the empirical distribution, whereas the stable model is more
heavily favored around the median of the distribution.

We inferred from our results that the Student model provides a
better empirical description than the stable model. This does not mean
that the rates of return do, in fact, follow a Student model. It only indi-
cates that the latter provides a better empirical fit than the stable model.
The Student model has fat tails as does the stable model, but converges
to normality for large sum sizes. The stable model does not converge to
normality. Some implications of this important difference for theoretical
and empirical work were discussed in Section IL.

Even though the Student model provides a good fit to actual rates
of return, there are some empirical results that it does not describe ade-
quately. First, it has been observed (in, for example, Fama [see n. 2])
that large rates of return tend to be succeeded by large returns of unpre-
dictable sign. This suggests a dependency in rates-of-return series. The
Student (and stable) model studied here assumes returns are indepen-
dent, which is contrary to available empirical evidence. Second, when we
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went from sum sizes of one to sum sizes of five in our simulation study,
the estimates of v always increased. Using table 13, we observe a decrease
in four of the 30 estimated values of » when going to sum sizes of five
(Eastman Kodak, American Telephone and Telegraph, Anaconda, Wool-
worth). This decrease may have occurred because large changes are, on
average, followed by large changes. The dependency among large returns
may cause the tail areas for sum sizes of five to be larger than if the
returns were independent. However, in spite of these empirical deviations
from theoretical expectations, we feel that the Student model offers a
superior alternative to the stable model.

VII. SUMMARY
The Student and symmetric-stable distributions, as models for daily rates
of return on common stocks, were discussed and empirically evaluated.
Both models were derived using the framework of subordinated stochastic
processes. Some important theoretical and empirical implications of these
models were also discussed. The descriptive validity of each model, rela-
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tive to the other, was assessed by applying each model to actual daily
rates of return. Our interpretations of our empirical results were guided
by results from a Monte Carlo investigation of the properties of our esti-
mators and model-comparison methods. The major inference of this re-
port is that, for daily rates of return, the Student model has greater
descriptive validity than the symmetric-stable model.

APPENDIX A

DERIVATIONS OF THE STUDENT

AND STABLE MODELS
Before beginning with the derivations, we state the definition of a subordi-
nated stochastic process. Let [X (s); s = 0] and [h(s) s > 0] denote stochas-
tic processes. Define another stochastic process Z (s) = [h(s)], s = 0}. The
process [Z(s)] is said to be subordinate to the process [X (s)1; the process
[h(s)] is the directing process.3® We shall present models below in which the
Student and symmetric-stable distributions are subordinated stochastic pro-
cesses with [X (s)] being a stationary Gaussian stochastic process.

Let ¥ (At) denote the rate of return over an interval of time [¢, ¢ + 6]
for ¢ > 0 and fixed & > 0. We assume that the rates of return are expressed
as deviations about their mean.

Assume that [XV (At); t = 0] is a stationary Gaussian process with the
following properties:36

E[X(At)] =0, (A1)
Var [X(Af)] = o2A, (A2)
X (Ar) is independent of X (Ar) for all # > ¢ + §,

and any choice of ¢ and 8. (A3)

Next introduce another stochastic process [’ﬁ(At); ¢t = 0] with the prop-
erties:

h(ar) > o, (B1)
ﬁ(At) is independent of A(AY) forall ¢ >t + 6
and any choice of ¢ and 8. (B2)

Finally, consider the subordmated process (Z(Ar) = X [A(AD)]; ¢ = 0}.
Given the assumed properties of [X (At)] and [h(At)], the process [2 (At)] has
the following properties:

EIZ(An] =0, (C1)
Var [Z(Ar)|k(Af)] = a2h(At), (C2)

35. Subordinated stochastic processes are discussed in W. Feller, An Intro-
duction to Probability Theory and Its Applications, 2d ed. (New York: John
Wiley & Sons, 1971), 2: chap. 17, Sec. 7.

36. A stochastic process Y (s) is (strictly) stationary if for every finite se-
quence of points, s;,55, . . . , §,, the distribution function F[Y(s;), Y(s5), . . .,
Y(s,)] is identical to F[Y (s; + k), Y(sy + k), ..., Y (s, + k)] for all values of
the translation parameter k. Additional details are given in Doob.
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Z(Ar) is independent of Z(A¢) for all # > ¢ + 8,
and any choice of ¢and §, (C3)

[Z(Af)] is a stationary stochastic process. (C4)

For a given realization, 2(At), of ﬁ(At), the probability density func-
tion of Z(At) is a conditional normal density function with mean zero and
variance o2h(At), denoted by fy[Z(Af) | 0,02k (At)]. To find the uncondi-
tional distribution of Z(At) we need a distribution for A(Az).

Define g(At) = [h(At)]—1. Suppose that g(At) follows a gamma-2 dis-
tribution with parameters s2As and v denoted by f,s[g(A¢) | s2At, ].37 Then
the unconditional distribution for Z(At) is:

DIZ(AD) [0, H(A1), v] = J, 1IZ]0, g(At)o?lf,ulg(An)[s2At, »] dg(),
(5)

where H(At) = 1/5s2(At) 1/02. The distribution in (1) is a Student distribu-
tion with mean 0, scale H(A¢), and degrees of freedom .

This derivation of the Student model allows the distribution of rates of
returns, [Z(At)], to incorporate changes in the “states of nature” over the
interval [#, ¢ + 8]. The state of nature at ¢ is a complete description of the
economic environment up to time ¢; R(AD) may be 1nterpreted as the change
in state over [, ¢ + 8]. The change in the “state of nature” may be viewed as
a change in the stock of information available to the capital market trans-
actors. )

Observe that the kind of “state” dependency provided by the Student
model is not the same as that considered by, for example, Radner, Arrow,
and Hirshleifer.38 In the latter works, all uncertainty attaches to the “state,”
or change thereof, and given the state, the value of the state-dependent ran-
dom variable is known with certainty. In our scheme, only the distribution
function of Z(At) is known with certainty when the change of state is known.

Prior to introducing the subordinated process [Z (At)], the variance of
the process, g2At, only depended upon the length of the interval of time, At
over which the rate of return was defined. It seems reasonable, however, to
let the number and importance of events occurring within the fixed time inter-
val cause changes in the level of variability in rates of returns. We accomplish
this by introducing the directing process [%(Af)].

37. Raiffa and Schlaifer (p. 227) give the mean and variance of the
gamma-2 density, 72)[g(At)|s2At v), as E(g(At)] = 1/s2At and

1

ar [(A)] = ——————.
Var B(A0) = 45 Fane
38. R. Radner, “Competitive Equilibrium Under Uncertainty,” Econometrica
36 (January 1968): 31-58; K. J. Arrow, “The Role of Securities in the Optimal
Allocation of Risk Bearing,” Review of Economic Studies 32 (April 1964): 91—
96; J. Hirshleifer, “Investment Decision under Uncertainty: Choice Theoretic
Approaches,” Quarterly Journal of Economics 79 (November 1965): 509-36;
“Investment Decision under Uncertainty: Applications of the State Preference
Approach,” Quarterly Journal of Economics 80 (May 1966): 252-77.
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We derived the Student distribution by assuming that 2(Ar) = [itv (At)]1
followed a gamma-2 distribution. The stable model can be derived by assign-
ing a particular asymmetric-stable distribution to F(At). We have not yet
defined the characteristic function of an asymmetric-stable distribution, so we
tend to this task first.

The log ¢haracteristic function of a stable distribution (symmetric or
asymmetric) is:

t

f w(t, a)],

In py(t) = idt — |ct|*[1 4 i

where ¢ is some real number; i =V—1; B is the skewness parameter, with 3 €
[—1, 1]; § is the location parameter; ¢ > O is the scale parameter; is the
characteristic exponent, with « € [0, 2]; and

tan (7 a/2), if as£1
w(t,a) =3 21In(Jt])

T

if a4l

If B3> 0and o < 2, the distribution is skewed to the right; it is skewed to the
left if 8 < 0 and o < 2. A symmetric-stable distribution is defined by 8 = 0.
A strictly positive stable random variable is defined by oo <1 and g8 = 1.

Now, suppose h(At) follows a strictly positive stable distribution with
location parameter equal to zero, thatis, 3 =1 and a € (0, 1). The charac-
teristic function of this process is:

b7 ae) (u) = exp {—yAt|u|*[1 + i(u/|u|) tan (wa/2)1}.  (6)

Consider the subordinated process [f ()] as defined above. If the character-
istic function for A (A¢) is defined by (6), then, as Mandelbrot and Taylor
[1967] demonstrated, the unconditional distribution of [2 (#)] is a symmetric-
stable distribution with characteristic exponent a* = 2« < 2, where « is the
characteristic exponent of the distribution of R (At) 39 This can be shown as
follows. ’

b an (w) = Ez’{exp [iuZ(At)]},
- E';;'I:Ef(exp (uXTh(AD) KAL) = h(AD) ) ] (7)

= E;;'{Exp [—1/2 u20'2i1u(At)]},

since the characteristic function of X [A(A?)] is that of a normal distribution
with mean 0 and variance o2h(At).
Now, let w =i u 02/2. Then (7) becomes

dzan(u) = E{exp [iwhv(At)]} = dwaan(w).

39. An alternative statement of this result appears in W. Feller, p. 348.
The latter work, as well as B. Mandelbrot and H. M. Taylor, “On the Distribution
of Stock Price Differences,” Operations Research 15 (1967): 1057-62, considers
processes with stationary independent increments. Such a framework can be used
for rates of return under continuous compounding by considering increments of
the log-price relative process.
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This becomes
2 ar) (u) = exp{—yAt(a?/2)*|w|?¢[1 — tan (ma/2)]1},
= exp (—PAt|w|?*), (8)

where '9 = y(0?%/2)1 — tan(mwa/2) 1. Equation (8) is simply the charac-
teristic function for a symmetric-stable distribution with characteristic ex-
ponent 2a) < 2.

Note that the methods used to derive the Student and stable models are
identical. The difference between the two models is in the distributional as-
sumptions for the directing process ’h“(At). In the Student model [ﬁ(At)]—1
follows a gamma-2 distribution; in the stable model, 7 (At) follows a strictly
positive stable distribution with o € (0,1).

APPENDIX B
PROPERTIES OF THE UNIFORM
RANDOM NUMBERS USED IN THE
SIMULATIONS
The quality of our simulation results depends, of course, upon the properties
of our sample drawn from the uniform distribution %(0, 1), in particular:
‘the consistency of our sample’s properties with those of the theoretical distri-
bution of %(0, 1) and the randomness of our sample. In this regard, we note
the following:

i. The first and second moments of %(0, 1) are .5 and (1/12) ~ .0833, respec-
tively. The first and second moments of our sample are .498 and .0835, re-

spectively.

ii. For a serially independent series with N = 26,000 observations, the asymptotic
distribution of the estimated first-order serial correlation coefficient, $, has
mean and standard deviation equal to: —(1/N — 1)) = —.38 X 10—¢ and

V1/(N — 1) =.0062, respectively. For our sample, p = .00496.

iii. For a x2 test of the sample cumulative probabilities against #(0, 1), we had a
x2 statistic of 13.514. This statistic is based upon 20 subintervals of (0, 1),
each of length .05. For a x2 random variable with 19 df, ¥2(19), Pr[¥2(19)
= 13.7)]1 = .80.

From these (and other) results, we infer that our samples properties
are consistent with the distribution of %(0, 1) and randomness.





