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This paper presents an eigenvalue test of the efficiency of a portfolio when there is no riskless 
asset, complementing the test of Gibbons, Ross, and Shanken (1989). Besides optimal upper and 
lower bounds, an easily-implented numerical method is provided for computing the exact 
P-value. Our approach makes it possible to draw statistical inferences on the efficiency of a given 
portfolio both in the context of the zero-beta CAPM and with respect to other linear pricing 
models. As an application, using monthly data for every consecutive five-year period from 1926 
to 1986, we reject the efficiency of the CRSP value-weighted index for most periods. 

1. Introduction 

A fundamental problem in finance is whether or not a particular portfolio 
is efficient. In a framework in which all uncertainties about returns on risky 
assets are determined only by the means and variances of the returns, an 
efficient portfolio must have the maximum expected reward (mean return) for 
a given level of risk (variance). Since Markowitz’s (1952) seminal contribution 
to modern portfolio theory, the question of efficiency problem has been of 
concern not only to individual investors and financial managers with respect 
to portfolio choice, but also to researchers in finance with respect to the 
validity of various equilibrium pricing models. It is well known that the 
capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) and 
the zero-beta CAPM of Black (1972) rely on the efficiency of the market 
portfolio. Because of its intrinsic importance, the efficiency of a portfolio has 
been studied and tested extensively in the finance literature. 

*I have benefited from the comments of Wayne Ferson, Campbell Harvey, Christopher 
Lamoureux, Francis Longstaff, Craig Ma&inlay, William Schwert (the editor), and especially 
Philip Dybvig. I am also especially indebted to Jay Shanken (the referee), who provided many 
suggestions that substantially improved the paper. Financial support from the Fossett Founda- 
tion is gratefully acknowledged. 
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Studies of portfolio efficiency have traditionally been cast in the form of 
testing the Sharpe-Lintner CAPM and the zero-beta CAPM. However, these 
tests, which are based on cross-sectional regressions, suffer from an errors- 
in-variables problem. Gibbons (1982) was the first to develop a portfolio 
efficiency test within a multivariate statistical framework, although a similar 
multivariate formulation can be traced back to MacBeth (1975). Gibbons 
suggests the likelihood ratio test (LRT), which relies on an asymptotic 
(chi-squared) distribution. However, Stambaugh’s (19821 simulations results 
show that, in fact, the asymptotic x2 is not a good approximation of the exact 
distribution. The efficiency hypothesis is rejected too often. and the test 
results become less reliable as the number of assets increases. This problem 
was further demonstrated by Shanken’s (1985) theoretical study in which, 
with 40 assets and 60 periods, the asymptotic P-value is 0.01 whereas the true 
P-value is actually 0.92. Clearly, knowing the exact distribution or small 
sample properties of the test statistics is very important for making correct 
inferences. 

When there exists a riskless asset, the exact test of a portfolio’s efficiency is 
provided by Gibbons, Ross, and Shanken (1989). If a riskless asset does not 
exist, the problem is more complex because the zero-beta rate, which is the 
return on the zero-beta portfolio, is unknown and has to be estimated from 
the data. Moreover, the zero-beta rate enters the efficiency constraints by 
multiplication with other parameters, so that the hypothesis to be tested is 
nonlinear and hence it is more difficult to develop an exact test. Gibbons 
(1982) provides a Gauss-Newton numerical procedure for estimating the 
zero-beta rate, but his method is, in general, computationally intensive. 
Fortunately, Kandel (1984,1986) obtains an explicit solution and provides 
some geometric interpretations for the maximum likelihood estimators. 
Shanken (1986) extends this result to market model parameterization and to 
the multibeta case. Although the estimation problem is elegantly solved, the 
testing problem remains. Due to problems in using the asymptotic tests, 
Shanken (1985) derives a small-sample lower bound on the P-value of the 
LRT test, in addition to his approximate P-value based on Hotelling’s 
T2-distribution. Furthermore, Shanken (1986) provides a small-sample upper 
bound on the P-value which is useful for rejecting efficiency without resorting 
to asymptotic results. 

In this paper, we present an eigenvalue test for the efficiency of a given 
portfolio when there does not exist a riskless asset. In particular, if the given 
portfolio is the market portfolio, our procedure represents an exact test of 
the zero-beta CAPM. In contrast with the exact test of Gibbons, Ross, and 
Shanken (1989) in the riskless asset case, our test is unfortunately more 
complex. In our approach, the LRT is shown to be a transformation of an 
eigenvalue that allows us to apply known eigenvalue distributions of multi- 
variate analysis to obtain the exact distribution and optimal upper and lower 
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bounds. The exact distribution is shown to be dependent on a nonnegative 
nuisance parameter. As this nuisance parameter increases, the exact P-value 
also increases. Nevertheless, a maximum likelihood estimator of the nuisance 
parameter is easily obtained and a computational method is provided to give 
the exact P-value at any given level of the nuisance parameter. In addition, 
we provide optimal upper and lower bounds on the exact P-value so that 
inferences can be made without knowing the nuisance parameter. The upper 
bound follows an F-distribution and the lower bound is nonstandard but can 
still easily be computed. The upper bound on the P-value, which is tighter 
than that of Shanken (19861, is particularly useful when the hypothesis is 
close to being rejected. For example, if we find an upper bound of 5%, the 
true significance level must be less than or equal to 5%, so we can assert that 
the efficiency is rejected at the usual 5% level. Our methodology also applies 
to a variety of other linear pricing models. 

In section 2, we provide a detailed account of the approach. First, the 
model and the efficiency implications are described. Second, to understand 
our new approach, the maximum likelihood estimation of the parameters is 
discussed. Third, a test statistic which is a monotonic function of the 
likelihood ratio is proposed. While the primary focus is to derive the exact 
distribution and the optimal upper and lower bounds, some of the statistical 
and economic interpretations are also explored. In section 3, we examine the 
Gibbons, Ross, and Shanken (1989) test from an eigenvalue perspective. in 
section 4, using monthly data for consecutive five-year periods from 
1926-1986, we test the efficiency of the CRSP value-weighted index in the 
market model with twelve industry groups. At the 10% significance level, the 
efficiency hypothesis is rejected for all but two periods. At the 5% level, 
efficiency is rejected in eight of the twelve periods. To see whether the 
rejection is due to the ‘January effect’, we repeat our tests with the returns 
on January deleted. Conclusions and some remarks about future research are 
offered in the final section. 

2. The model and the test of efficiency 

2.1. Asset pricing restrictions 

Our objective is to examine the efficiency of a given portfolio, p, whose 
return is rPt in period t. Notice that efficiency cannot be tested without 
making assumptions about the distributions or law of motions of the asset 
returns. Different assumptions yield different empirical models, and so the 
efficiency hypothesis yields different constraints on the parameters of the 
models to be tested. 
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In our analysis, following Gibbons (19821, we assume that the returns are 
well-described by the ‘market-model’ regression: 

r;t = a, + P;rp, + E,, > i=l >*.-, N, (1) 

where 

rir = return on asset i in period t, 
rpl= return on the given portfolio in period t, 
Ed, = disturbances or random errors, and 
N = number of assets. 

In consideration of the statistical tools available, we follow the tradition of 
most studies by assuming that the disturbances are independent over time, 
and jointly normally distributed each period with a mean of zero and a 
nonsingular covariance matrix Z. This implies that the returns are correlated 
contemporaneously but not across time and that the disturbances have the 
following properties: 

i 

uij if s=t, 
Eaitej, = 

0 otherwise. 

Notice that we examine the efficiency of the portfolio without a riskless 
asset, so that if the portfolio is efficient, we obtain the following nonlinear 
constraints on the parameters of the model: 

H,: ai=YO(l -Pi)? i=l ,...> N. (21 

This is the null hypothesis to be tested. The hypothesis is a nonlinear one, 
because both the ‘zero-beta’ rate, y,,, and pi are unknown and have to be 
estimated from the data. Further, both y0 and pi enter the constraints by 
multiplication with one another. There are many standard approaches for 
dealing with linear constraints, but few available for studying nonlinear ones. 
In fact, both the estimation of the parameters under the constraints (2) and 
the testing problem present a nonstandard problem in multivariate analysis. 
The focus of the paper is to derive a test of the validity of these nonlinear 
constraints and to give optimal upper and lower bounds for its complex exact 
distribution. 

2.2. Maximum likelihood estimators 

There are two maximum likelihood (ML) estimators of the parameters, 
unconstrained and constrained, that are needed later to construct the test 
statistics. For the unconstrained ML estimators, a standard formula is avail- 
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able [e.g., Anderson (1984, pp. 287-289)]. However, it is more difficult to 
obtain the constrained ML estimators, i.e., those values of parameters that 
maximize the likelihood function under the constraints (2). Gibbons (1982) 
provides a Gauss-Newton numerical procedure, but his method, as shown by 
Shanken (1989), is only asymptotically equivalent to the ML estimator. 
Fortunately, an exact closed-form solution was found by Shanken (1986) for 
the multibeta case, which covers our market-model parameterization. The 
constrained estimators thus become straightforward to evaluate. Neverthe- 
less, Shanken’s expression does not seem to allow for easy study of the 
statistical properties of either the estimators or the likelihood ratio test. 

We develop a new approach to obtain a determinant equation that governs 
the constrained ML estimator. The striking feature of our approach is that it 
links the distributional properties of the ML estimators and the likelihood 
ratio to known results of multivariate analysis. In particular, our simple 
expression for the likelihood ratio allows us to find a test statistic whose exact 
distribution can be obtained. Since our approach appears to be relevant to a 
variety of linear pricing models, we present it in some detail. 

To simplify the presentation that follows, we rewrite the return-generating 
process (1) in matrix form: 

R=X@+E, (3) 

where R is a T (observations) X N (asset) matrix of returns, X is a TX 2 
matrix with the first column a vector of ones and the second the portfolio 
returns, 0 is a 2 x N coefficient matrix with the N alphas, a, in the first row 
and the N betas, /3, in the second, and E is the TX N disturbance matrix. 

Notice the fact that the efficiency constraints (2) do not contain any 
elements of the parameter matrix Z, so we can obtain the ML estimators in 
two steps. First, conditional on 8, we maximize the likelihood function with 
respect to E. Then, in the second step, we maximize the so-called ‘con- 
centrated’ likelihood function (the likelihood function in which E is replaced 
by its conditional estimator) with respect to 8 alone. 

By initially not imposing any constraints but then imposing the constraints 
(2) on this maximization, we obtain the unconstrained and constrained ML 
estimators, respectively. Although the unconstrained ML estimator is known, 
we derive its formula in a slightly different way in order to highlight our 
approach to the derivation of the constrained ML estimator. 

With the assumption of normality on the disturbances, the log-likelihood 
function is 

log L( 0, EC) = - F log(2r) - i log IL;1 - 3 trEI;-‘0, (4) 
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where ‘tr’ denotes the trace of a matrix, and 0 is an N X N matrix: 

n=p-XO)‘(R-XO). (5) 

Conditional on 0, it is known [(Anderson, 1984, p. 62, lemma 3.2.2)] that the 
conditional estimator of Z: is given by 

P=+XB)‘(R-XB). 
Replacing E in the log-likelihood function (4) by this conditional estimator, 
we have the concentrated likelihood function: 

log L(0) = - f log 101 + c, (6) 

where C = -NT[log(2r) - log T + 1]/2. Thus, in order to maximize the 
concentrated likelihood function, we need only to minimize 101, the determi- 
nant of the R matrix (5). It is easy to verify that 

R= (R-x&)p-X&J + (@-&)‘xrx(s-s,), 

where &u is defined as 

& = (X’X)_‘X’R. 

Now, the semi-positive definite matrix R is a sum of two other positive 
semi-definite matrices of which the first one does not depend on 8, so its 
determinant must be minimized if the determinant of the second is. There- 
fore, the unconstrained ML estimator of 8 is equal to &,, a well-known 
result. It is worth mentioning that, as far as the computation of &$, is 
concerned, its ith column can be obtained by running an ordinary least- 
squares (OLS) regression of the ith asset on the market return, i.e., regress- 
ing the ith equation of the market model (1). The unconstrained ML 
estimator of E is then given by the cross-products of the residuals divided 
by T. 

To obtain the constrained estimator, we make the following transformation 
of parameters: 

(7) 

Under the null hypothesis that the constraints (2) are true, the column rank 
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of @ must be less than or equal to one. It can thus be expressed as the 
right-hand side. On the other hand, for any parameter values of f = (ti, 5zY 
and q=(q,,..., nNY that minimize 101, the corresponding (Y and /3’s must 
also minimize If21 and satisfy the constraints. Further, as shown later, given a 
solution of 6 and q to the minimization problem, an arbitrary scale such 
as k& and (l/k)9 is still a solution. Although the estimators of 5 and q are 
not unique, there exists one and only one ML estimator of the parameters a 
and /3. 

With the above transformation, we are ready to find the g and q that 
minimize [RI. This is an unconstrained minimization problem. We have first: 

n= (Y-27&Y-Q, R=xg, Y=R- lR;, 

where 1 is a N X 1 vector of l’s and R, is the vector of the returns on the 
given portfolio whose efficiency is to be examined. In comparison with (3, 
the estimator of q conditional on f must have the same algebraic form as 
the unconstrained ML estimator, and hence it is given by 

fj = (X’$‘i’Y. 

Next, we choose some suitable g to minimize the ‘concentrated’ determinant: 

IDI = Ip-i~ jp-xql. 
After a few simplifications, it has the following tractable form: 

JSZI = IY'YI l- 
i 

&VY(Y’Y)-‘Y’x& 

S’(X’X)S 1 

This expression shows that only the second term in the larger parentheses 
needs to be maximized. Consider the maximum of (x’Ax)/(x’Bx), where A 
and B are square matrices and x is any vector with the same column 
number. By the result of matrix theory [Anderson (1984, p. 590, theorem 
A.2.411 we know that the maximum is equal to the largest eigenvalue of A 
with respect to B: 

(A-hB)x=O, 

or the largest root of IA - Bh I = 0. The maximum is obtained when x is the 
corresponding eigenvector. Therefore, if A, and A, where A, 2 A, are the 
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roots of 

IX’Y(Y’Y)_‘Y’X-AX’XI=O, (8) 

the ‘concentrated’ determinant [RI is minimized if 6 is the eigenvector 
corresponding to A,, and the minimum is given by 

lR,I = lY’Yl(1 -A,). (9) 

By using the transformation (71, the constrained ML estimator of (Y and fi 
can be obtained. Although this provides an alternative way for obtaining the 
constrained ML estimator, Shanken (1986) is computationally more efficient, 
because our method requires evaluation of eigenvalues and eigenvectors, 
whereas Shanken’s approach requires only the solution of a quadratic equa- 
tion.* However, as we pointed out before, the value of our method is that it 
allows us to apply the classical distributional results of multivariate statistics 
to derive an exact test of the null hypothesis (2). 

2.3. The eigenvalue test and its optimal bounds 

Consider now an important formula for the likelihood ratio (LR). By 
definition, the LR is the ratio of the likelihood function at the constrained 
ML estimator to that at the unconstrained estimator. Thus, 

(10) 

where the second equality follows from (6), and 0, is the R matrix evaluated 
at the unconstrained ML estimator. Now it can be shown that 

I&l = lY’Yl(l -A,)(1 -A,), (11) 

so, combining (9) with (111, we have the interesting relationship between the 
likelihood ratio and the eigenvalue A2, 

LR = (1 - A2)T’2. (12) 

Since it is always true that 0 5 LR 2 1, the range of A, must be between 0 
and 1, that is, 0 < A, 2 1. This fact can also be proved directly from (8). 

‘Actually, the computational advantage is not clear in the market model, because the 
eigenvalues and eigenvectors are also analytically determined by a quadratic equation. But the 
advantage will be important in a multi-beta model. 
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To test the efficiency constraints (2), we use A, as the test statistic. Since 
A, is a monotonic function of the likelihood ratio, this test is statistically 
equivalent to the likelihood ratio test The exact distribution of A, has a 
simpler form than the LRT and is thus easier to implement. 

Why is A, a measure of deviation from the null? There are at least two 
statistical interpretations. The first is in terms of the likelihoods: the bigger 
the A,, the smaller the LR, i.e., the lower the ratio of the maximum 
likelihood under the null to the maximum likelihood under the alternative. 
Thus as A, increases we can plausibly believe that the null is not valid. The 
second interpretation is in terms of model fitting. It is shown [see (lo>] that 
LR is also a positive power function of the ratio (10, I / Ifi,l). Recall that In,.1 
and 10, I, the so-called generalized variances, measure how the model fits the 
data under both the null and the alternative [Anderson (1984, pp. 259-26311. 
Their ratio thus indicates the relative goodness of fit. As a result, the smaller 
the A,, the higher the ratio (In,/ / ln,l), which implies the fit becomes better 
under the null, making it more difficult to reject the null. 

What economic departures from the null have been measured by A,? If 
there is a riskless asset, Gibbons, Ross, and Shanken (1989) show that 

QE 
qP*)* - S(Pj2 

l+S(J?)* ’ 
(13) 

where S(p*) and S(p) are the Sharpe measures (i.e., the maximum sample 
mean excess return per unit of sample standard deviation) of the ex post 
efficient portfolio, p*, and the (market) portfolio, p, whose efficiency is 
under study. If p is indeed efficient, we would expect the difference between 
S(p*) and S(p) to be small, and hence Q should be small. If S(p*) is 
sufficiently greater than S(p), the return per unit of risk (Sharpe measure) 
for portfolio p is much lower than that for the ex post efficient portfolio, 
making it natural to reject the null hypothesis that the portfolio p is ex ante 
efficient. In the present zero-beta case, even though there does not exist a 
riskless asset, the same relation is still valid [see Shanken (1985,1986)1 if we 
interpret the maximum likelihood estimator of y0 as the risk-free borrowing 
and lending rate. By using (12) and (131, it immediately follows that 

Q 
A,= - 

l+Q’ (14) 

Thus, A, is an increasing function of Q. As a result, it measures the ex post 
departure of the null that the efficiency constraints (2) are valid. If we find 
ex post that the Sharpe measure of the market portfolio S(p) is very close to 
that of the efficient portfolio S(p*), Q and hence A, will be close to zero, 

JF.E. G 
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and we have little evidence against the null. Otherwise, we may reject the 
null because of a big difference, or equivalently, a high A, value. 

The exact density (and distribution) of A, is unfortunately much more 
complex than the exact test of Gibbon, Ross, and Shanken (1989) in the 
riskless asset case. For one thing, it depends on unknown parameters even 
under the null hypothesis. More specifically, let w, 2 w2 2 0 be the roots of 

WDz-WS’ - wzl = 0, (15) 

where S is a 2 x 2 nonsingular matrix such that XX = S’S. It was observed 
earlier that the null hypothesis is true if and only if the rank of @ is less than 
or equal to one [or equivalently, the rank of (S@E-‘@‘$I is not greater than 
one]. Therefore, under the null we must have wZ = 0, although we do not 
know the value of wi. The exact density is shown to be dependent upon the 
nuisance parameter wi (see Theorem 4 in appendix A). To emphasize the 
dependence, we write the probability ProbU, <x) as Prob(A, <x/w,) wher- 
ever it is necessary. (This should not be confused with conditional probabili- 
ties.) In practice, the exact P-value is of interest for drawing inferences. 
Although we have to know wi to compute the P-value, we can use an 
estimated value of w, (in particular, the maximum likelihood estimator) and 
the method described in appendix B to arrive at the P-value. Numerical 
results show that a small perturbation of o, does not change the P-value very 
much. 

Theoretically, however, it is of interest to know how the probability 
Prob(A, <x/w,) changes as the true but unknown parameter wi varies. This 
is useful because it indicates the bias when we evaluate Prob( A 2 < x I o ,I at an 
estimated value of 0,. The following theorem asserts the monotonicity of this 
probability in wi: 

Theorem 1. Under the null hypothesis that the constraints (2) are true, if 
N 2 2 and T 2 N + 2, then the probability Prob(A, < x Iw , > is a decreasing 
function in w,, 

Prob(A, <x/w’,) < Prob(A, <x/o’{), 

whenever W; > w’;, 0 I w’,, w’; 5 1. 

Proof. See appendix A. 

Theorem 1 states that, if we compute Prob(A, <x(w,) at a value of wi 
higher than the true value, we will underestimate the true probability. In 
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other words, we will have a lower bound for the true probability. Alterna- 
tively, the result will be an upper bound if we use a value of wr that is lower 
than the true value. 

The monotonicity implies that if lim,, j3c Prob(A, < x lo,) exists, it must be 
a lower bound on Prob(h, < x lo,) for all possible values of or. Formally, 
based on Schott (1984), who in turn extended Saw (19741, we have:2 

Theorem 2. Under the null hypothesis that the constraints (2) are true, if 
N 2 2 and T 2 N + 2, then we bane the following lower bound on the distribu- 
tion of A,: 

P(h, IXIW,) 2 P 
x(T-- N) 1 (1 -x)(N- 1) ’ VW, 20. 

The bound is optimal in the sense that the limit of the left-hand side, 
lim w, _,a ProbCA, < x Iw ,), obtains the bound us the parameter CO, goes to 
infinity. 

Proof. See appendix A. 

By the same token, Prob(h, < ~10) is the optimal upper bound on the 
probability Prob(A, <xlwr). Theorem 1 implies that the latter is less than or 
equal to the former; the equality occurs if and only if w, = 0. Based upon 
Nanda (1947) or Pillai (1956), a closed-form expression for the distribution of 
this optimal upper bound can be derived: 

Theorem 3. Under the null hypothesis that the constraints (2) are true, if 
N 2 2 and T 2 N + 2, then we have the following upper bound’ on the 
distribution of A,: 

P(A, IX~W,) I 1 -k, 2/‘-‘t2”2+‘( 1 - t)2n’+‘dt 
0 

_,?+l(l _X)“‘+‘~j’-Xt9(l _t)“ld,j, 

‘In terms of our framework, Shanken (1986) also derived a lower bound on Probth, <xlw,), 
but our bound is tighter and enjoys the optimality pointed out in Theorem 2. However, his 
bound is more general in that it is also a bound under the alternative. An additional lower bound 
can also be derived based on Muirhead and Chikuse (1975) which we will not pursue since we do 
not consider alternative hypotheses here. 

‘Shanken (1985) also derived an upper bound on Prob(h, <xiw,) in addition to his approxi- 
mate P-value based on Hotelling’s T2-distribution. 
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where n1 = (N - 3)/2, n2 = (T-N - 3)/2, k, = T(T - 1)/4lYN - l)T(T - 
N - 11, k, = k&z, + n2 + 2), and T(a) is the gamma function (evaluated ut 
a). The bound is optimal in the sense that the left-hand side P(A, _< x Iwl ) 
obtains the bound at o1 = 0. 

Proof. See appendix A. 

Both Theorem 2 and Theorem 3 provide lower and upper bounds that are 
easily computed on the probability Prob(A, < xlor). They translate immedi- 
ately into upper and lower bounds on the P-value. An upper bound on the 
P-value, if it is small, is useful for rejecting the null hypothesis. On the other 
hand, a lower bound on the P-value, if it is large, is useful for accepting the 
hypothesis. Other than being optimal and easy to compute, the bounds also 
have the attractive feature that they are independent of any unknown 
parameters. This is in contrast with the exact distribution which depends on 
omega, a nuisance parameter that is a complex function of the unknown true 
alpha’s and beta’s as well as the covariance matrix. 

3. The GRS test: An eigenvalue perspective 

We have shown that the likelihood ratio test of the efficiency of a portfolio 
with no riskless asset is equivalent to an eigenvalue test. An unusual feature 
about the eigenvalue test is that its exact distribution not only has a complex 
form, but it also depends on a nuisance parameter even under the null. This 
is in contrast with the Gibbons, Ross, and Shanken (1989) test (in which a 
riskless asset exists) which has a simple F-distribution under the null; no 
nuisance parameters are involved. To shed light on this difference, it is of 
interest to derive their test from an eigenvalue perspective. 

If there is a riskless asset, we can interpret the returns, rif, in the market 
model (1) as excess returns; the efficiency of the given portfolio rp thus 
implies the following constraints on the parameters: 

H,: ffi = 0, i=l ,...? N. (16) 

As in the previous section, the likelihood ratio for testing this hypothesis can 
be shown to have the same form as (10) except that the constrained 
determinant IR,I is replaced by 

M&l =I(R-RJq(R-R,B)/, 

where b = (R,R;)-‘R;R is the constrained estimator of /3 under (16). 
Presumably, we can follow (9) or (11) in decomposing Ifi,/ into a product of 
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eigenvalues and possibly some other factors. However, there will be no 
simplification in the likelihood ratio expression because, due to the nature of 
the hypothesis, the eigenvalues in the decomposition do not have the same 
form as those in (11). As a result, a different method of decomposition has to 
be used. 

In fact, there is a general and well-known method of decomposition in 
multivariate statistical analysis which is applicable to generic linear hypothe- 
ses, of which (16) is a special case. For both linear hypotheses and many 
others, the idea is to transform the likelihood ratio into a function of 
eigenvalues. Then the likelihood ratio test is obtained and results on eigen- 
value distributions are used to obtain its distribution. Very often, functions of 
some or all of the eigenvalue themselves are chosen as the test statistics. 
Since these tests do not seem to be widely known in the econometrics 
literature, we discuss them briefly in what follows. Based on this general 
discussion, we obtain, in particular, the Gibbon, Ross, and Shanken test from 
an eigenvalue perspective. 

Consider testing a general linear hypothesis in a multivariate regression 
model. The matrix form of the model, (31, can clearly be generalized into a 
multivariate regression by interpreting X as a TX K matrix and 0 as a 
K x N matrix. Letting A and C be known q X K and q x N matrices, we 
want to examine if there are linear relationships among the parameters 0, 

H,: AO=C. (17) 

In the univariate case, this is the familiar linear hypothesis testing problem in 
a regression model and we have the commonly used F-test. In the multivari- 
ate case, the testing problem becomes much more complex, although there 
are many well-known tests available whose exact distribution can be com- 
puted (at least in principle); most of these tests are derived from an 
eigenvalue perspective. 

To test (171, it can be shown [see, e.g., Muirhead (1982, ch. 10) for details] 
that the likelihood ratio test has the eigenvalue decomposition: 

LRT= (fic1 +fj))-T’2> 
where s = min(q, N), fi > . . . > f, > 0 are positive eigenvalues of 
0;1/2HR;‘/2, and H = f2, - R, and R, and R, are the constrained and 
unconstrained cross-products of the residuals. If hypothesis (17) is true, we 
expect the LRT to be close to one. Other than the LRT itself, we may use 
functions of the eigenvalues, fi > . . . >f, > 0, to examine how close the 
LRT is to one. For example, if the maximum root, fi, is close to zero, we 
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expect the LRT to be close to one. This line of reasoning leads to the 
following well-known tests of (17). 

Wilk’s A-test: 

n=n<1 
i=l 

Hotelling-Lawley S Tt-test: 

+f;). 

Tn2 = c ft. 
i=l 

Pillai’s test: 

v=;,+. 
I 

Roy5 largest root test: 

W=f,. 

All tests reject the null for large observed statistic values. To understand 
why no nuisance parameters are present in the null case, notice that the 
distribution of 0, is central Wishart, independent of the distribution of H 
which is noncentral Wishart with the noncentrality parameter: 

A =~-1/L(A8-C)'[A(X'X)-'A']-1(~~-C)~-'/2. 

Under the null, A = 0, and the eigenvalues are thus independent of any 
unknown parameters of the model. For example, the exact distribution of 
Wilk’s A-test is a product of independent beta random variables with degrees 
of freedom dependent only on T, K, N, and 4. 

Returning to the efficiency hypothesis (161, we have s = 1. The above four 
tests collapse to be equivalent to a single test: the likelihood ratio test. In this 
case, using the relationship between beta and F-distributions, the LRT has 
an F-distribution [see, e.g., Muirhead (1982, p. 458)]. This is the same result 
obtained by Gibbon, Ross, and Shanken. 

It should be noted that the above tests may have usefulness beyond the 
scope of this paper. As alternative exact small-sample tests, they may be used 
to test the mean-variance spanning hypothesis of Huberman and Kandel 
(1987). Moreover, because financial theories do not specify which benchmark 
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portfolios should be included in the right-hand side of the multi-beta model, 
it may be interesting to examine the zero hypothesis of the coefficient matrix 
of those benchmark portfolios.4 This hypothesis can be tested jointly with the 
efficiency hypothesis. Economic intuition together with statistical tools are 
helpful in identifying the benchmark portfolios and analyzing their contribu- 
tions to the efficiency tests. 

4. Empirical results 

As an application, we use our test to examine the efficiency of the CRSP 
value-weighted index. Twelve value-weighted industry portfolios are used, 
following Sharpe (19821, Breeden, Gibbons, and Litzenberger (1989), 
Gibbons, Ross, and Shanken (1989), and Ferson and Harvey (1990). The 
market return is the value-weighted New York Stock Exchange return 
available from the Center for Research in Security Prices (CRSP) at the 
University of Chicago. All returns used in the market model are raw returns 
(in contrast, returns in excess of the riskless rate must be used when there is 
a riskless asset). 

Given that the twelve industry portfolios are adequately described by the 
market model, the empiricist must choose an appropriate sample size. If the 
sample size T is too small, the maximum likelihood estimation of the true 
parameters may not be very accurate. In fact, T must be greater than N both 
for the invertibility of the covariance matrix and the requirements of the 
theorems. On the other hand, concerns of parameter stability suggest that T 

not be too large. Following most practices, we choose five-year subperiods 
with T = 60 as the sample size. 

The results are provided in table 1. The first two columns are the 
maximum likelihood estimators of wr and y0 under the null hypothesis that 
the restrictions (2) are valid.5 There are no standard errors reported for the 
estimations because no such results have become available yet. The next 
column reports the value of the statistic A,, followed by its exact P-value, P,,, 
evaluated at the maximum likelihood estimator of w, (see appendix B for the 
details of computation). By comparison, we also report the approximate 
P-values, P, and PJK, of Shanken (1985) and Jobson and Korkie (1982). An 
upper bound from Shanken (19861, U,, is included to compare with our 
optimal upper bound U, (Theorem 2). The final column reports the optimal 
lower bound,h L, a result of Theorem 3. The overall P-value is reported at 

4Shanken (1987a) and Kandel and Stambaugh (1987) discuss how to test portfolio efficiency if 
only proxies on the true benchmark portfolios are available. 

‘Somewhat surprisingly, the constrained ML estimator of w, is identical numerically to its 
unconstrained ML estimator, a fact to be established theoretically. 

‘Shanken (1985) also derives a lower bound. 
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the bottom row following Shanken (19851, who proposes a general method of 
aggregating P-values over subperiods. The novelty of this aggregation is that 
it allows one to make inferences over the whole period without assuming the 
stationarity of the parameters during that period. However, it is still neces- 
sary to assume the stationarity in each of the subperiods as well as the 
independence of the return residuals across subperiods. 

We observe from table 1 that the nonnegative nuisance parameter or is 
likely to be large for our return data. Of all the subperiods, the lowest 
estimator is 46.28 and the highest is 397.49. Since they are increasing 
functions of oi, the exact P-values evaluated at the estimated wl’s should 
not be far from the upper bounds in the same subperiod. This is verified by 
comparing the values of PO with U,. The various P-values, P,, Ps, and PJK, 

are remarkably close to one another; the differences are within 1% in most 
subperiods. Since the true P-value is the exact distribution at the true but 
unknown parameter value w,, we do not know the accuracy of PO, P,, and 
P JK. Notice that PJK, which is the P-value of Bartlett’s corrected large 
sample test [Bartlett (1938, p. 3811, is justified only asymptotically. Although 
P, is a small-sample approximation, it is difficult to assess the error. The 
disadvantage of using PO is that it can only be computed by specifying a value 
of w,, due to the unfortunate fact that the exact distribution depends on the 
nuisance parameter [as is true of the exact distributions of many other 
likelihood ratio tests in canonical correlation analysis, e.g., Muirhead (1982, 
ch. 1111. However, there are important advantages to using our exact distribu- 
tion. First, the dependence on the nuisance parameter becomes less and less 
important as the sample size increases. Second, given a finite sample, if the 
estimator of o1 is close to the true w,, PO is also close to the true P-value; if 
the estimator of wi is the true wi, P, must be the true P-value. Furthermore, 
our results allow computation of the exact P-values at different assumed 
values of w1 around the ML estimator, so that the sensitivity to inference can 
be examined. 

The statistical significance of the efficiency of the CRSP value-weighted 
index can be seen immediately from the optimal upper and lower bounds. At 
the usual 5% significance level, we clearly reject efficiency for all the 
subperiods except four. If we raise the significance level to lo%, there are 
only two subperiods, February 1931 to January 1936 and February 1981 to 
January 1986, for which we cannot reject efficiency, possibly due to either the 
inability to bound the true P-value at the given significance level or the high 
significance level the index entertains. For example, for the periods February 
1936 to January 1941 and February 1941 to January 1946 at the 5% signifi- 
cance level, the values of U, for these two periods are greater than 5%, but 
the values of L are not. However, the PO’s, the exact P-values evaluated at 
the ML estimators of w,, suggest that we do not reject efficiency in these two 
periods at the 5% level. For the periods February 1931 to January 1936 and 
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February 1981 to January 1986, since the P-values are greater than 12% and 
38%, respectively, we are certain that we cannot reject the efficiency of the 
CRSP value-weighted index at both the 5% and 10% significance levels. In 
the above analysis, it is observed that Shanken’s upper bound, U,, derived 
from a different motivation, performs reasonably well. However, there are 
cases where the exact P-values are needed to make inference. 

To understand why efficiency is rejected in so many subperiods, we want to 
compare the sample Sharpe measure of the index with that of the sample 
tangent portfolio. If there is a big difference between them, we would expect 
to reject the efficiency hypothesis from the familiar mean-variance analysis. 
Given the symmetric treatment of positive and negative Sharpe measures, we 
can consider only the positive ones without loss of generality. For example, 
let us consider why we have rejected the efficiency in the period of February 
1926 to January 1931. For this period, U, = 0.019. As discussed in the second 
section, if we regard y0 = 0.0043% as the riskless rate of return (monthly), 
then the sample Sharpe measure of the index is S(p) = 0.0394. However, a 
value of A, = 0.3541 implies that the ex post efficient portfolio has a Sharpe 
measure of S(p*) = 0.7420, which is ten times as high as S(p). As a result, 
the rejection of index efficiency comes as no surprise. 

One may argue that the rejection of the efficiency of the index is caused by 
either the ‘size effect’ or the ‘January effect’ [see, e.g., Keim (1983) and 
Lamoureux and Sanger (1989)]. Since the portfolios used here are obtained 
by the industry grouping procedure of Sharpe (19821, it seems plausible to 
assume the absence of the ‘size effect’ and focus our attention instead on the 
‘January effect’. For example, if the market model is reasonably well-speci- 
fied for February-December and the index is efficient, an inclusion of the 
abnormal returns in January may result in an inaccurately higher value of the 
statistic A,, which leads to rejections of the efficiency hypothesis. Therefore, 
we rerun the above test with the returns in January deleted. Although the 
results are not reported here, they are very similar to those with the returns 
on January included. In almost all the periods, there are no significant 
differences in either the statistic A, or the P-values. No matter how weak or 
strong the January effect in industry-grouped portfolio, it does not appear to 
have much impact on the multivariate efficiency tests, which is consistent 
with a similar conclusion reached by Shanken (1985). In summary, it seems 
that, given the assumption that the market model is well-specified in those 
periods, the rejection of efficiency is most likely caused by the fundamentally 
inefficient behavior of the index. 

5. Conclusions and topics for future research 

This paper presents an eigenvalue test for the efficiency of a given 
portfolio when there does not exist a riskless asset. To facilitate its applica- 
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tion, optimal upper and lower bounds are provided which can be easily 
computed. The eigenvalue test makes it possible to draw statistical inferences 
on the efficiency of a given portfolio not only in the context of the zero-beta 
CAPM but also with respect to other linear pricing models. The statistical 
and economic interpretations of our test are explored, and then as an 
application of the eigenvalue test, we study the efficiency of the CRSP 
value-weighted index in a single zero-beta CAPM model with twelve industry 
groups. Using monthly data for consecutive five-year periods from 1926-1986, 
both with and without January returns, efficiency is rejected for most of the 
periods at the usual significance levels. 

Several topics for future research can be suggested: 
(1) An accuracy study of the maximum likelihood estimation through 

further application of our approach. A practitioner wishing to use the 
zero-beta CAPM in portfolio analysis may be interested not only in getting 
good estimates of the parameters but also in assessing the possible noise in 
the estimation. While both Shanken (1986) and this paper have presented the 
maximum likelihood estimators of the parameters, such as the zero-beta rate 
yO, the standard errors or the finite moments properties are not known. 

(2) Further empirical studies of indices other than the CRSP value- 
weighted index studied here, or even an international version of the zero-beta 
CAPM. It would also be interesting to explore the causes of the rejections 
found in this paper. For example, rejection may be due to misspecification of 
the market model in which case Brennan’s (1970) after-tax CAPM which 
incorporates the effects of both taxes and dividends may better manifest the 
efficiency of the indices. Alternatively, it would be interesting to extend the 
study to Litzenberger and Ramaswamy’s (1979) model that explicitly consid- 
ers taxes, dividends, and margin constraints. 

(3) A generalization of the test to the multi-beta CAPM. Recall the 
market model of section 2: 

rit = ai + pir,, + ,si,, i=l >..., N. (1) 

If we regard rPt as a 1 x K vector containing the returns on the K reference 
portfolios, then pi becomes /Ii, a K X 1 vector consisting of the K betas of 
asset i with respect to the reference portfolios. The economic interpretations 
of the model are well known and efficiency implies the following constraints 
on the parameters: 

H,: (yi = YO( l -S:lK) 2 i=l ,‘.‘I N, (2’) 

where 1, is a K X 1 vector of 1’s. The test statistic and its optimal and lower 
bounds may be generalized and its exact distribution may be obtained 
explicitly in principle. However, instead of a simple infinite series expression 
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as Theorem 4 of appendix A, zonal polynomials such as in James (1964) 
[alternatively see Muirhead (1982, ch. 711 have to be used. Nevertheless, the 
computational method of appendix B may be extended to evaluate the exact 
P-values. Furthermore, it appears that the test is also relevant to Shanken’s 
(1989) more general version of the multi-beta CAPM. 

(4) A Bayesian posterior analysis and an odds ratio test of the zero-beta 
CAPM. Prior information and prior densities may be explored, based on 
which the posterior densities are easily obtained. The omegas are the 
functions of interest for posterior analysis. Although the integrations that 
have to be evaluated cannot be done analytically, the Monte Carlo integra- 
tion with importance sampling [Geweke (1988,1989)] can be utilized to 
obtain reliable numerical results, as demonstrated in Harvey and Zhou (1990) 
and Zhou (1990). Notice that the null is valid if and only if the parameter 
w2 = 0. Thus it is possible to obtain odds ratios, which lead to the posterior 
probabilities for the validity of the efficiency hypothesis. 

(5) Applying the approach to alternative linear pricing models. For exam- 
ple, the exact distribution clearly offers a lower bound on the test of the 
CCAPM of Breeden, Gibbons, and Litzenberger (1989) and has the potential 
to give the exact distribution. In addition, it is of great interest to apply the 
method into the testing of the arbitrage pricing theory and the conditional 
CAPM models [e.g., Gibbons and Ferson (198.5)]. Moreover, the method can 
be extended to test the rank of the unknown regression parameter matrix, 
making it widely applicable in economics, especially in simultaneous models. 
One such application is in the study of the term structure of interest 
rates along the lines of Hansen and Hodrick (19831, Campbell (19871, and 
Stambaugh (1988). 

Appendix A: Proofs of the theorems 

All of the proofs are based upon the following result about the joint 
density of A, and A,: 

Lemma. Zf N r 2 and T 2 N + 2, the joint density of A, and A, is given by 

d(A,>h) =k,(A, -A&Wdn’[(l -A,)(1 -AdIn 

where d = iWE_‘M’, A4 = L@, A = diag(A,, A& etr is the exponential func- 
tion of the trace operator, and 1 F,(a; b; M,; Al21 is the hypergeometric function 
of matrix arguments [see James (1964) or Muirhead (1982, ch. 711. 
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Proof. Notice first that both X’X and Y’Y are assumed to be nonsingular 
matrices throughout the paper. (These assumptions are harmless.) Since X is 
fixed in the empirical model, if the return on the market portfolio is not 
constant, X’X should be invertible. Although Y is a random matrix, the 
nonsingularity of E implies that Y’Y must be nonsingular with probability 
one [Dykstra (197011. 

To obtain the density, it is worth noting that h, and A, [see (8)] are also 
nonzero roots of 

IY’x(x’x)-‘X’Y-AY’YI=O. (A.1) 

Let H be a T x T orthogonal matrix such that 

where L, U, and V are 2 X 2, 2 X N, and CT - 2) X N matrices, respectively. 
Then it follows that Y’X(X’X)-‘X’Y= U’U, and thus we can write (A.l) as 

(U’U - A( U’U + V’V) 1 = 0. (A.2) 

Now notice that 

trE?;-‘(Y-X@)‘(Y-X@) =trE-‘(HY-HX@)‘(HY-HX@) 

=trZ.L[Z- (‘z)[[Z- (Lz)]. 

From the density of Y we obtain the joint density of U and V (up to a 
constant): 

IBI-T’2etr(-f~~‘(U-L@)‘(U-L@))xetr(-~E~1V’V). 

(A.3) 

This implies that U and V must be independent and each of the rows has a 
normal distribution. Consider the joint density of eigenvalues, 6, 2 a,, of 

Iu(v’v)-‘U-61(=0. (A.4) 

For the distribution of eigenvalues of commonly-used matrices in multivari- 
ate analysis, James (1964) provides a detailed discussion and analytically 



186 G. Zhou, An eigenvalue test of portfolio eJyicienc~ 

derives the joint densities. As one of the results, the joint density of 6, and 
6, is shown to be [see also Muirhead (1982, p. 454, theorem 10.4.5)] 

(6%) (N-3)/2 

kd61 -s2) [(l +a,)(1 +62)]r’2 

where A = diag(6,, 6,). Transforming the variables back to A, A, = S,/(l + 
6,), and A, = S,/(l + S,), we immediately obtain the lemma. Q.E.D. 

Denote by W,(N, I,, fi> and W,(T - N, I,> the noncentral and central 
Wishart densities, respectively. By using James (1964) [or Muirhead (1982, 
p. 450, theorem 10.4.2)] and the lemma, we have: 

Corollary. If N 2 2 and T 2 N + 2, the joint density of A, and A, has exactly 
the same form as the joint density of the eigenvalues of A(A + B)- ‘, where 
A- W,(N,Z,,dZ) and B- W,(T-N,Z,). 

The corollary suggests that we can apply any result about the latter density 
function to the density function of the former, which is useful in that it is 
often easier to study the second density function (for which there are many 
results available). 

Proof of Theorem 1 

The proof follows from our lemma and Perlman and Oklin (1980). In a 
different context, the result is the well-known monotonicity of power func- 
tions. 

Proof of Theorem 2 

The proof follows 

Proof of Theorem 3 

The proof follows 

from the corollary and Schott (1984). 

from the corollary and Nanda (1947) or Pillai (1956). 
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An Explicit Expression for the Exact Density 

Based on the lemma and Muirhead (19751, an explicit expression for the 
exact density of A, under the null is given by: 

Theorem 4. Under the null hypothesis that the constraints (2) are true, if 
N 2 2 and T 2 N + 2, then the exact density of A, is 

f(hz) =k, eeWii2 2 i C,,,A;‘( 1 - A2)Zn2+k+2 
j=O k=O 

XF(-n, -j+k,n,+ l,n,+k+3,1-A,), 

where n, = (N - 3)/2, It2 = (T - N - 3)/2, I’(a) is the gamma function 
(evaluated at a), k, = T(T - 1)/4UN - l)T(T - N - l), and 

c_ 

1.k 
= (T/2)j(-j)k(fol)‘(~)kr(n2 + ljrtk + 2, 

(N/2)jj!(k!)2r(n2+k+3) ’ 

with factorial function (a), = a(a + 1) . . . (a + (j - l)), Va, and F(a, 6, c; z) is 
the hypergeometric function (or Gaussian function): 

F(a,b,c;z) = 1 + c 3o (a)i(b), z, 

j=l (C)jj! 

Proof. Under the null, w1 is the single nonzero eigenvalue of fi: 

ImE-wL - WZJ = 0, 

or (15). By the lemma, we need to integrate out A, in the joint density. By 
using Muirhead (1975, corollary 11, we have 

T = , F,( T/2; N/2; h/2, A) 

m (T/‘2)j ($(A, +Ar)m,)j 
= j?o (N/2)j j! 
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Notice it remains difficult to get a closed-form expression for r which 
contains terms of (A, + Az). To eliminate these terms, we apply Rainville 
(1960, p. 6.5, theorem 24) with y/(1 -y) = (A, - hz)/(A, + A,) or y = (A, - 
A,)/(2A,), to obtain the result that 

T= 5 cTi2)j (b-‘lh~)‘~~, ._ 
j=O (N/2)j j! 

(A-5) 

To obtain the marginal density of A,, let (1 - A,)t = 1 -A, or t = (1 - AI)/ 
(1 -A,) and A, = AZ. Expanding ,F, into a series and integrating it term by 
term with respect to t and then using the identity [Rainville (1960, p. 47, 
theorem 16)]: 

/ 
$yl -@+‘[l - (1 -A&]"-dt 

0 

T(n, + l)r( k + 2) 
= 

T(n,+k+3) 

x,F,(-n,-j+k,n,+l,n,+k+3,1-A,), 

we immediately obtain Theorem 4. Q.E.D. 

Appendix B: The computation of the exact distribution 

We evaluate the exact distribution only under the null that the restrictions 
(2) are valid, for our method extended to the general case becomes complex. 
The null case implies that o2 = 0, but w1 remains unknown. Nevertheless, 
for any given x between 0 and 1, the exact value of Prob(A, < x Iw,) can be 
evaluated at the maximum likelihood estimator of 0,. Therefore we assume 
below that wr is given. 

The corollary offers a straightforward method for obtaining reliable com- 
putational results. By the corollary, A, = 6&l + &),, where 6, is the smallest 
eigenvalue of the matrix AB- ’ with A N W,(N, Z,,fl> and B N W,(T- N,Z,). 
Now, by the familiar property of the hypergeometric function of matrix 
arguments, we know R matters in the distribution only through its eigen- 
values. This allows us to replace R by diag(w ,, w,) = diag(w , , 0). So, by 
Muirhead (1982, p. 448, theorem 10.3.81, we have A = U’U and B = V'V 
whose elements are random variables or zeros as follows: 
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where &(wl) denotes a noncentral x2 random variate with noncentrality 
parameter wi, ,&-I denotes a central x2, NO, 1) a standard normal, and all 
the random variates are independent from one another. It is thus straightfor- 
ward to generate U and V. For each such generation, a,, as the smallest 
eigenvalue of 

@v-‘)‘(w-‘) -6,1,/=0, 

can be analytically solved. Thus Prob(G, <x/(1 - x)lw ,), which is equal to 
Prob(A, <xJw,), can be easily determined by generating a number of U and 
V and then computing the percentage of the 6,‘s which satisfy 6, <x/(1 - x1. 
The P-value is then given by one minus this percentage. Furthermore, tables 
can be made as a function of T, N, and o 1. 

An alternative method is to evaluate the integration of f(h,) (see Theorem 
4) over the interval [O, x) as a series of incomplete beta functions, or else to 
integrate f(h,) numerically. Still another method is to evaluate the density by 
computing a six-dimensional integral suggested by the corollary. However, we 
advocate the previous approach, which is essentially a Monte Carlo integra- 
tion approach [see, e.g., Geweke (1988,1989)], because it is easy to imple- 
ment and generally applicable. In our present applications, the computa- 
tional load is very light and so we choose the number of repetitions to be 
100,000, which should deliver very satisfactory results. Indeed, for w1 = 0, we 
obtain the same value (0.1241, which is the last entry in table 1 for the period 
1931/2-1936/l, as the analytical result from Theorem 3. On a SPARCsta- 
tion 1 + , all computations reported in the paper were finished in 40 minutes. 
For readers who are interested in more details, a Fortran program is 
available upon request. 
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