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Testing the two-parameter asset pricing theory is difficult (and currently infeasible). Due to a 
mathematical equivalence between the individual return/beta’ linearity relation and the market 
portfolio’s mean-variance efficiency, any valid test presupposes complete knowledge of the 
true market portfolio’s composition. This implies, inter alia, that every individual asset must 
be included in a correct test. Errors of inference inducible by incomplete tests are discussed 
and some ambiguities in published tests are explained. 

If the horn honks and the mechanic concludes that 
the whole electrical system is working, he is in deep 
trouble. . . 

Pirsig (1974) 

1. Introduction and summary 

The two-parameter asset pricing theory is testable in principle; but arguments 
are given here that: (a) No correct and unambiguous test of the theory has 
appeared in the literature, and (b) there is practically no possibility that such a 

*This is Part I of a three-part study. Parts 11 and III are summarized in the introduction 
here. but will appear in later issues. A copy of the complete paper can be obtained by writing 
the author at: Graduate School of Management, University of California, Los Angeles, 
CA 90024. USA. 

**This paper was written while the author was at the Centrc d’Enseignement Sup&ieur des 
Afl’aires. France. Eugene Fama, Michael C. Jensen, John B. Long, Jr., Stephen Ross and 
Bruno H. Solnik provided many useful comments and Patricia Porter provided excellent 
secretarial service. While the paper was being written, Fama pointed out that his new book 
(1976) contains some of the same analysis and conclusions. New papers by Stephen Ross 
(forthcoming) and John B. Long (1976) contain results emphasized, and formerly believed 
to have been discovered, here. The reader will be able to verify, however, that most of this 
material is non-redundant. 

To the authors criticised hem: these papers were singled out because they are the best and 
most widely read on the subject. I have written some papers in this area too and have taught 
the subject to a numbcr,of unsuspecting students. So, the absence of detailed self-criticism 
should be attributed to the greater importance of the other papers and does not imply any 
personal prescicncc. None was present. 
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test can be accomplished in the future. This broad indictment of one of the 
three fundamental paradigms of modern finance will undoubtedly be greeted 
by my colleagues, as it was by me, with scepticism and consternation. The 
purpose of this paper is to eliminate the scepticism. (No relief is offered for the 
consternation.) 

Here are the paper’s conclusions: 

(1) There is only a single testable hypothesis associated with the generalized 
two-parameter asset pricing model of Black (1972). This hypothesis is: 
‘the market portfolio is mean-variance efficient’. 

(2) All other so-called implications of the model, the best known being the 
linearity relation between expected return and ‘beta’, follow from the market 
portfolio’s efficiency and are not independently testable. There is an ‘if and 
only if’ relation between return/beta linearity and market portfolio mean- 
variance efficiency. 

(3) In any sample of observations on indivjdual returns, regardless of the gener- 
ating process, there will always be an infinite number of ex-post mean- 
variance efficient portfolios. For each one, the sample ‘betas’ calculated 
between it and individual assets will be exactly linearly related to the in - 
dividual sample mean returns. In other words, if the betas are calculated 
against such a portfolio, they will satisfy the linearity relation exac+ 
whether or not the true market portfolio is mean-variance efficient. (The 
same properties also hold ex ante, of course). These results are implied in 
earlier literature [e.g., Ross (1972)], but I do not believe that their full 
consequences have been adequately explored previously. Some of these 
consequences are: 

(4) The theory is not testable unless the exact composition of the true market 
portfolio is known and used in the tests. This implies that the theory is not 
testable unless all individual assets are included in the sample. 

(5) Using a proxy for the market portfolio is subject to two difficulties. First 
the proxy itself might be mean-variance efficient even when the true market 
portfolio is not. This is a real danger since every sample will display efficient 
portfolios that satisfy perfectly all of the theory’s implications. For example, 
suppose there exist 1000 assets but only 500 are used in the sample. For the 
sample, there will exist well-diversified portfolios of the 500 assets that seem 
to be reasonable proxies for the market and for which observed returns are 
exactly linearily related cross-sectionally to observed betas. On the other 
hand, the chosen proxy may turn out to be inefficient; but obviously, this 
alone implies nothing about the true market portfolio’s efficiency. Further- 
more, most reasonable proxies will be very highly correlated with each other 
and with the true market whether or not they are mean-variance efficient. 
This high correlation will make it seem that the exact composition is un- 
important, whereas it can cause quite different inferences. 
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(6) As a case in point, a detailed discussion is provided of the papers by Fama 
and MacBeth (1973). Black, Jensen, and Scholes (1972) and Blume and 
Friend (1973), in the context of their rejection of the Sharpe-Lintner model. 
It is shown that their tests results are fully compatible with the Sharpe- 
Lintner model and a specification error in the measured ‘market’ portfolio. 
A misspecification would have created bias and non-stationarity in the fitted 
cross-sectional risk/return lines even if there were a constant riskless return. 
For the Black, Jensen and Scholes data, for example, there was a mean- 
variance efficient ‘market’ proxy that supported the Sharpe-Lintner model 
perfectly and that had a correlation of 0.895 with the market proxy actually 
employed. However, it cannot be ascertained without further analysis 
whether this other portfolio satisfied all the requirements of a good market 
proxy (such as positive proportions invested in all assets). 

The market portfolio identification problem constitutes a severe limitation 
to the testability of the two-parameter theory. No two investigators who disagree 
on the market’s measured composition can be made to agree on the theory’s 
test results. However, suppose that advances in electronic monitoring of human 
capital and other non-traded assets make the market portfolio’s true composition 
knowable; or more realistically, suppose a given composition is just agreed upon 
by everyone relevant. How should the mean-variance efficiency of this known 
composition portfolio be tested? Part II of the paper (to appear in a later issue) 
investigates the peculiar econometric problems associated with such testing, 
viz. : 

(7) A direct test of the proxy’s mean-variance efftcicncy is difficult computa- 
tionally because the full sample covariance matrix of individual returns 
must be inverted and statistically because the sampling distribution of the 
efficient set is generally unknown. Some possible solutions to the statistical 
problems are presented. They include tests based on the fact that the market 
portfolio must have positive proportions invested in all assets; large sample 
distribution-free tests; and tests based on the sampling distribution of the 
efficient set assuming Gaussian returns. 

(8) Testing for the proxy’s efficiency by using the return/beta linearity relation 
also poses empirical difficulties: 

(a) The two-parameter theory does not make a prediction about para- 
meter values but only about the form (linear) of the cross-sectional 
relation. Thus, econometric procedures designed to obtain accurate 
parameter estimates are not very useful. 

(b) Specifically, the widely-used portfolio grouping procedure can support 
’ the theory even when it is false. This is because individual asset 
deviations from exact linearity can cancel out in the formation of 
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portfolios. (Such deviations are not necessarily related to betas.) 
Some simulated data given by Miller and Scholes (1972) were used 
as an example of such an occurrence. Deviations in these data were 
known to be related to generating process asymmetry which would 
not have been detectable in grouped observations. 

(9) Several others tests are proposed for the linearity relations. These include: 
(a) An Aitken-type procedure that gives unbiased cross-sectional tests 

with individual assets, and 
(b) a procedure that exploits asymptotic exact linearity by measuring 

the rate of decrease of cross-sectional residual variance with respect 
to increasing time-series sample size. 

In Part III of the paper (to appear in a future issue), some of the common 
uses of the two-parameter theory are called into question: 

(10) Deviations from the return/beta linearity relation are frequently linked 
with some other phenomenon. The validity of such linkages is criticised 
using the Jensen measure of portfolio performance as an example. If the 
‘market* proxy used in the calculations is exactly (not significantly different 
from) ex-post efficient, all of the individual Jensen performance measures 
gross of expenses will be identically (not significantly different from) zero. 
They can be (significantly) non-zero only if the proxy market portfolio is 
(significantly) not effcieni. But if the proxy market portfolio is not efficient, 
what is the justification for using it as a benchmark in performance evalua- 
tion? 

(11) The beta itself is criticiscd as a risk measure on two grounds: first, that it 
will always be (significantly) positively related to observed average in- 
dividual returns if the market index is on (not significantly off) the positively 
sloped section of the ex-post efficient frontier, regardless of inoesfors’ 
attirudes toward risk; and second, that it depends, non-monotonically, 
on the particular market proxy used. About the second point: if two in- 
vestors happen to choose two different ‘market’ portfolios, both of which 
are mean-variance efficient, the same security might have a beta of 1.5 
for the first investor and 0.5 for the second. This is intuitively obvious 
since beta is supposed to be a relatioe measure of risk. But less obvious is 
the fact that if both investors increase the proportions this security re- 
presents in their ‘markets’, its beta will change and it can increase for one 
investor and decrease for another. 

An appendix to this part (I) contains a compact analytic derivation of the 
efficient set propositions and includes a few original results (e.g., identity of 
the efficient portfolio that maximizes cross-sectional variation in beta). 
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2. The testable feature of asset pricing theory and 
the features that have been ‘tested’ 

2.1. Eficient set mathematics 

We should begin any quantitative enquiry by setting forth the relationships 
that are mutually and logically equivalent. The mathematics of the mean- 
variance efficient set serves just such a purpose, for it exposes several logically- 
equivalent relations among mean returns and covariances (which are the building 
blocks of the asset pricing theory). The mathematics is mostly available else- 

where [see, e.g., Sharpe (1970), Merton (1972), Black (1972), SzegS (1973, 
Fama (1976), Long (1976)l and a compact statement of all the familiar results 
plus some new ones is provided in the appendix. 

The efficient set mathematics has been discussed most usually in terms of 
ex-ante returns and covariances. To emphasize the purely mathematical nature 
of the results, however, I should like to state it in terms of an observed sample 
of returns on N assets. No presumption is made about the population that 
generated this sample. It can be any probability law imaginable. Furthermore, 
no mention need be made about equilibrium, risk aversion, homogeneous 
anticipations, or anything else like that. There are only two assumptions: 

(A.]) The sample product-moment covariance matrix, V, is non-singular. 

(A.2) At least one asset had a different sample mean return from others. 

These are very weak assumptions. (A.l) simply rules out assets whose returns 
were constant during every period in the sample and it excludes any pair of 
linear combinations of assets that were perfectly correlated during the sample 
period. (A.2) merely requires some sample variation in the critical variable of 
interest. After all, it is cross-sectional variation in the mean return which asset 
pricing theory strives to explain. 

Given the sample covariance matrix and the arithmetic sample mean returns 

(expressed as an N x 1 column vector R), the sample frontier of efficient ex-post 
portfolios can be easily obtained. This frontier enumerates all the portfolios 
that had minimal sample variance for each given level of mean sample return. 
Suppose we choose one of these portfolios, say portfolio m, with sample return 
r which lies on the positively-sloped part of the efficient frontier. (That is, 
t:Lre is no other portfolio with the same sample variance that had a higher 

mean return.) Then the following statements are true: 

(S.1) There exists a unique portfolio, denoted z, that had a correlation of zero 
with m during the sample period and that lies on the negatively-sloped 

segment of the sample efficient frontier; this implies that the sample 
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return of m was greater than that of z, r,,, > rr. (For a formal proof, 
see the appendix, Corollary 3.) 

For any arbitrary asset or portfolio, say j, the sample mean return is 
equal to a weighted average of rz and r, where the weight of m is exacfly 
the sample linear regression slope coefficient ofj on m, i.e., 

where 

rJ E (1 -Pj>r,+Bjrm, for all j, (1) 

s, = 
sample covariance of j and m 

sample variance of m 

(Proof: Appendix, Corollary 6). 

Statement (S.l) is related to the following facts: 

(S.3) Every portfolio on the positively-sloped segment of the sample efficient 
set was positively correlated with every other one (Corollary 4). 

(S.4) Every sample efficient portfolio except the global minimum sample 
variance portfolio has an orthogonal portfolio with finite mean return 
(Corollary 3). 

It is easy to see that (S.3) and (S.4) imply that r,,, > rz because we have chosen m 
to lie in the positively-sloped segment of the sample eficient frontier. 

Proposition S.2, on the other hand follows from: 

(S.5) The investment proportions of any sample efficient portfolio can be 
expressed as a weighted average of the proportions in any other two 
sample efticient portfolios whose means are different (Corollary 5). 

Given (SJ), it is a simple matter to prove (1); see the appendix or, e.g., Black 
(1972, p. 450). In fact, a more general proposition than (1) follows readily from 
(S.5). Let A and B be any two arbitrary sample efficient portfolios, ex-post 
correlated or not, but with different sample mean returns. Then: 

(S.6) The mean return on any arbitrary asset, j, is given exactly by 

rJ = (I-&)rA+&B, for all j (4 

(Corollary 6.A). 
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In eq. (2) Bi is the multivariate sample slope coefticient for B from the regression 
of rj on r, and rB. Furthermore, this regression coefficient has a simple form, 

B; = k,i, - ~,4lmml- ~,43, 

where bik is the sample covariance of i and k. It is easy to see that (1) is merely 
a special case of (2) that obtains when A is chosen to be B’s orthogonal sample 
portfolio. 

Expression (2) can be considered a logical equivalent to assumptions (A.l) 
and (A.2). In other words, given an observed non-singular sample covariance 
matrix and at least two different sample mean returns, every observed mean 
return has exactly the relation shown in (2). Equivalently, every observed sample 
‘beta’ conforms exactly to the rearrangement of (l), 

A converse statement is also true: 

(S.7) Let fl be the (Nx 1) column vector of simple regression slope coefficients 
computed between individual assets and some portfolio m. Then the 
vector of mean returns R is an exact linear function of the vector /3 only 
if m is a sample e5cient portfolio; i.e., in general, 

R = rr I+@,,,-rJ/?, (4) 

if and only if rm is ex-post efficient [r, is the mean return on m’s corres- 
ponding e5cient orthogonal portfolio and I is the unit vector, see Ross 
(1972, 1973)]. 

It follows that mean returns are not exact linear functions of betas when m is 
not enicicnt. This does not imply that mean returns are necessarily related to 
non-linear functions of beta. They are just not exacrly linear. For example, 
the relation 

R = a+gj? 

is a possibility if m is inefficient; where a is a vector whose elements are non- 
constant but are unrelated to the elements of p, and g is a scalar constant. 

Before going on to the theory of asset pricing, it is well to emphasize the 
nature of these mathematical relations, Identity symbols have been used in (1) 
through (4) because they really are identities. Given the choice of m as ex-post 
efficient, these expressions hold exactly. They do not, therefore, provide any 
information about the state of nature or about the process that generated the 
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sample. The underlying probability law might be anything and the relations 
above would always be observed ex-post. This has relevant implications for 
testing the asset pricing theory, as we shall see. 

2.2. A redew of some asset pricing theory tests 

Three widely-quoted empirical papers on asset pricing theory are Black, 
Jensen and &holes (1972), Blume and Friend (1973), and Fama and MacBetb 
(1973).’ Let us examine what they said they were testing: The statement in 
Fama and MacBeth is very clear. They refer to a portfolio m which is on the 
ex-ante efficient frontier as seen by a single investor. This leads to the derivation 
of an equation identical to (1) but with investors* subjective parameters instead 
of sample parameters. The resulting equation [Fama-MacBeth (1973, p. 610)] 

8 . . . has three testable implications: (Cl) the relationship between the 
expected returns on a security and its risk in any efficient portfolio m is 
linear. (C.2) /?, is a complete measure of the risk of security i in the efficient 
portfolio m; no other measure of the risk of i appears in (6) [eq. (1) here]. 
(C.3) in a market of risk-averse investors, higher risk should be associated 
with higher return; that is E(&,,)-E(&,) > 0.’ [RO is the same as rr here.] 

Given that the word ‘risk’ has replaced the parameter /?, we have already seen 
that Fama and MacBeth’s (C. 1), (C.2). and (C.3) are simply implications of the 
fact that m is assumed ex-ante efficient. 2 If m is known to be efficient, these 
relations are not independently testable. They are tautological. When m is 
ellicient, the expected return must be linear in p and E(fl,) must exceed E(K,). 
Incidentally, given the assumption that m is efficient, their last inequality has 
nothing to do with risk aversion. It is purely the mathematical implication of the 
assumption about m and the definition of p. It is totally independent of investor 
preferences since it follows from the mathematical property (S.l). Conversely, 
if Fama and MacBeth’s (C.1) is true, and ex-ante /I is an exact linear function 
of ex-ante expected return, then m must be ex-ante mean-variance efficient. 

It is clear from the authors’ discussion that they are aware of these internal 

‘There are other interesting papers containing similar tests. e.g., Petit and Westerfjeld (1974) 
and Modigliani. Pogue. Scholes and Solnik (1972). Petit and Weslerfield’s test of the asset 
pricing theory is actually identical lo Black, Jensen and Scholes’ although Petit and Wateriield 
seem 10 deny this. Modigliani. Pogue, Scholes and Solnik carry out a similar test for eight 
different European stock markets. Palacios(l973)and Rosa(l975) present detailed investigations 
for Spain and France respectively. Roll (1973) gives a comparative test of the asset pricing 
theory and the optimal growth model using the same methodology. Set also Fama and MacBcth 
(1974a). Fama and Macbeth (1974b) investigate the extension of amt pricing theory jnto a 
multi-period context. Roll and Solnik (1975) apply the methodology to exchange rates. 

‘(C.2). the statement that no other risk measure except /J is important, presupposes that /I 
measures risk. Whether it measures risk or not. however, it is the only variable on the right side 
of (1). (r. and r, are constant cross-sectionally.) Thus, it is the only cross-sectional explanatory 
variable of any kind. 
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relations. For example, on page 609 they state, ‘. . . there are conditions on 
expected returns that are implied by the fact that in a two-parameter world 
investors hold efficient portfolios.’ But on page 610 they make a statement 
inconsistent with the facts and with their own knowledge of the mathematics: 
‘To test conditions (C.lHC.3) we must identify some efficient portfolio m.’ 
Of course, if m is identified as efficient, there is no need to test (C.lt(C.3). 
(See also the self-contradictory second paragraph on p. 614.) 

But there are testable hypotheses in the Fama-MacBeth paper. The hypotheses 
really are : 

(H.1) Investors regard as optimal those particular investment portfolios that 
are mean-variance efficient. 

Assuming identical probability assessments by all investors, this hypothesis 
leads to: 

(H.2) The ‘market portfolio’ is ex-ante efficient. 

The ‘market portfolio’ is defined as a value-weighted combination of all 
assets (p. 611). Fama and MacBeth credit Black (1972) with deducing (H.2) 
given (H.1) and given homogeneous investor expectations. The Black proof is 
quite simple: Since all investors have identical beliefs and hold efficient port- 
folios, every investor holds a linear combination of two arbitrary efficient port- 
folios. Since the market portfolio is by construction a linear combination of the 
portfolios of individual investors, it is also a linear combination of these two 
efficient portfolios and is therefore also efficient [because the linear combination 
of any two efficient portfolios is also efflcicnt by the basic mathematical property 
of the efficient set, (SS)]. Interestingly, Black states that Lintner (1969) ‘. . . has 
shown that removing [the] assumption [of homogeneous anticipations] does not 
change the structure of capital asset prices in any significant way’ (p. 445). 
Nevertheless, Black’s proof of the market portfolio’s efficiency does require 
homogeneity. This might be relaxed in a more general (and as yet unknown) 
proof; but Fama (1976, ch. 7) has argued that, in fact, no equilibrium model 
with non-homogeneous anticipations is testable.’ 

‘On page 447 at the beginning of his discussion of efficient portfolios, Black makes a state- 
ment that seems to be in conflict with the results here. He claims that Cass and Stiglitz (1970) 
have shown 

4 . . . that if the returns on securities are not assumed to be joint normal, but are allowed 
to lx arbitrary, then the set of efficient portfolios can be written as a weighted combination 
of two basic portfolios on/y for a special class of utility functions’ (italics added). 

It is clear from his subsequent discussion that Black was referring to mean-ouriunce efficient 
portfolios. Thus, his statement is false. Efficient mean-variance portfolios can n/ways be con- 
structed as a ‘weighted combination of two basic portfolios’. Furthermore Cass and Stiglitz 
never claimed the contrary. What they did was to enumerate the set of utility functions for 
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In both the Black paper and the Fama-MacBeth paper there exists a bit of 
unfortunate wording about the efficient set mathematics and about optimal 
investment choices. At first, it might seem that the resulting confusion would 
be only niinor. But when it comes to empirical testing and to specifying exactly 
those relations that are empirically rejectable and are valid scientific hypotheses, 
this possible confusion is of great significance. 

The only viable (i.e., rejectable) hypothesis that we have so far been able to 
uncover is (H.2), the market portfolio is mean-variance efficient.4 The assump- 
tions which are sufficient for this result are rather strong: Perfect capital markets, 
homogeneous anticipations, two-parameter probability distributions of returns. 
But there is also another assumption that has received little attention in the 
literature: namely, the market portfolio must be identifiable. 

This last assumption is very important when we consider that there will 
always be some portfolio which is ex-post efficient and will bring about exact 
observed linearity among ex-post sample mean returns and ex-post sample betas. 
If we do not know the composition of the market portfolio, we might by chance 
select a proxy that is close to mean-variance efficient. In fact, it may be hard 
to find a highly-diversified portfolio that is sufficiently far inside the ex-post 
efficient frontier to permit the detection of statistically significant departures 
from mean return/beta exact linearity. We will return to this point later. First, 
let us see what some of the other papers have been testing. 

The widely-quoted paper by Black, Jensen, and Scholcs (1972) makes no 
mention of the possible efficiency of the market portfolio and its importance 
for the linear relation between return and ‘beta’. In fact, however, the authors 
modestly claim that their ‘. . . main emphasis has been to test the strict traditional 
form of the asset pricing model’ (p. 113). by which they mean the original 
Sharpe (1964), Lintner (1965) model similar to (I), but with rr replaced by a 
‘risklcss’ return. [This modci results from the asset pricing theory assumptions 
listed above, and used by Black to derive (I), plus the extra assumption that 
investors can borrow and lend as much as they like at a riskless interest rate.] 
Black, Jensen, and Scholes explicitly deny that they have provided tests of any 
other hypothesis. However, the Black model is clearly in the backs of their 
minds and on page 81 they even go so far as to provide a historical glimpse of 
Black’s theoretical progress by asserting that he ‘was able’ to derive his model 

which all investors would construct their optimal portfolios as a weighted average of two basic 
portfolios. Under a restrictive set of preferences, each investor would regard a mean-variance 
efficient portfolio as optimal; but as Cass and Stiylitz show, there are other investor preferences 
which would lead lo ‘separation’ (or the choice of an optimal portfolio which is a weighted 
combination of two others). under which the optimal portfolio is not mean-variance efficient. 
[See also Hakansson (1969). Jacob (1970) and Ross (1976). The last reference gives separa- 
tion results for probability distributions instead of utility functions.] 

4Fama and MacBeth also provide an ingenious time-series test of market competition, 
given the hypothesis (H.2). However, this part of their paper is about a different set of hypo- 
theses than our subject here. 
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‘after we had observed this phenomena’ (that mean returns are linearly related 
to calculated beta coefficients but supposedly with a different slope and intercept 
than those implied by the Sharpe-Lintner theory). The graphs plotted by 
Black, Jensen, and Scholes appear to portray a very linear mean return/beta 
relation over long sample periods. Unlike Fama and MacBeth, however, no 
formal test of linearity is provided. (It must not have seemed necessary given 
the authors’ goal.) Thus, no formal information is given on the possible efficiency 
of the measured market portfolio, nor about the hypothesis (H.2). 

4 direct test of linearity was provided by one of the authors [Jensen (1972a, 
1972b)], who, using the same data as those used by Black, Jensen and Scholes, 
presented results from a regression similar to the one later computed by Fama 
and MacBeth. In fact, the fitted equations are nearly identical in form but the 
measurement methods were somewhat different and the ‘market’ portfolios 
used in calculating betas were different. ’ This was evidently sufficient to create 
some disparity between the two sets of results. We cannot ascertain the exact 
extent of the disparity because the sub-periods reported in the two papers were 
not identical. At least the signs of coefficients on squared beta terms were in 
agreement, being negative during the longer sample periods. The statistical 
significance of these negative signs is less clear. For example, the coefficient 
given by Fama-MncBeth for the squared beta term during 1946-55 was -0.0076 
(p. 623). The same coefiicient given by Jensen for an overlapping period, July 
1948 to March 1957, was -0.0055. The associated f-statistics were far apart, 
howcvcr, Fams-MacBcth’s was -2.16 whereas Jensen’s was only -0.524.6 
This difTcrcncc may very well be due to Fama and MacBcth’s presumably more 
powerful test but thcrc is no way to bc sure without a complete replication. 

It might be worthwhile carrying out such a replication because the linearity is 
directly rclatcd to the market portfolio’s eficicncy. We can already be sure that 
the ‘market’ portfolios used by Jensen and by Fama and MacBeth did not lie 
exactly on the sample eCient frontier. If they had been exactly efficient, the 
relation between the mean r&urn vector and the vector of sample betas would 
have been exactly linear and it was not. ’ But it is not necessary for the basic 
hypothesis (H.2) (the market portfolio is ex-ante efficient) that the observed 
market portfolio be exactly ex-post eficient in every period. It only needs to be 
ellicient over ‘sufXciently’ long periods. Now both Jensen and Fama-MacBeth 
find no significant non-linearity over the longest sample period nor do they find 

‘Cf. Jensen (1972b. pp. 385-388) with Fama and MacBcth (1973, pp. 615-617). 
‘Jensen reported a r-statistic with rcspcct to a non-zero theoretical value which he derived 

from Merton’s (1973) continuous time model. The number above is his I-statistic for a hypo- 
thesized coefficient of zero. 

‘Actually, this is not entirely true for Fama-MacBcth since they did not USC concfdrrenl 
sample mean returns and betas. Thus, some deviation from linearity might have been observed 
in their results, cvcn if the ‘market’ portfolio had been exactly sample efficient, because the 
sample betas might not have been stationary. Part II of this paper will examine the importance 
for testing the basic hypothesis of attempting to purge measurement errors from sample betas. 
(This was the reason Fama and MacBeth did not use concurrent observations.) 
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any significance for non-beta ‘measures of risk’ such as standard deviation. 
Although this is consistent with their market portfolio proxies having been 
sample efficient over the long term, it is also consistent with their proxies having 
been inefficient (as we will soon see). 

Interestingly, Fama and MacBeth offer a possible explanation for the sig- 
nificance of non-linear beta terms during some sample periods: viz., they suggest 
that there are omitted variables from the theory for which the non-linear terms 
act as proxies. Of course, their results are also consistent with the simpler 
explanation that the Fama-MacBeth ‘market’ portfolio was not exactly ex-post 
efficient in every sub-period. This alone implies that non-linear terms could be 
significant. It is also true that the non-exact ex-post efficiency of the market 
might induce significance in individual standard deviations (i.e., in non-portfolio 
risk measures). 

2.3. Tests of the Sharpe-Lintner model 

Let us now turn to an ancillary examination of the evidence offered by Black, 
Jehsen and Scholes and by others against the original Sharpe-Lintner theory. 
It will be useful to have the following supplementary results from the efficient 
set mathematics. 

Given the following additional assumption: 

(A.3) There exists an asset whose return was a constant, rr, during the sample 
period. 

Then : 

(S.7) 

(S.8) 

The sample efficient set (in the mean-variance space) is a parabola with 
a tangent on the return axis at rF. 

Suppose we denote the ‘risky efficient set’ as the ensemble of portfolios 
with minimum variance excluding asset F. Then results (S. 1) through (S.6) 
still hold for the portfolios composing this ‘risky efficient set’. 

In particular, for any ex post portfolio composed entirely of risky assets and 
lying on the positively-sloped segment of the ‘risky efficient set’, sample mean 
returns on all assets are exact linear functions of sample betas as portrayed by 
eq. (1); sample mean r, in (1) is the return on a portfolio lying on the negatively- 
sloped segment of the risky efficient set whose return was uncorrelated with the 
return on m during the sample period. 

In other words, we have the familiar diagram shown in fig. 1, where m, m+ 
and z are all portfolios composed of risky assets only and are all on the sample 
risky efficient boundary. The portfolio m* is the sample ‘tangent’ portfolio 
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whose return, according to Corollary 3.A of the appendix, is determined by the 
riskless return, r,, and of some simple functions of the mean return vector of 
individual assets and of the sample covariance matrix. Portfolio z has been chosen 
to have zero sample correlation with portfolio m, a feat that is always possible 
for any position of m. 

SCWlPlO 
Mean 

Efficient Set 

Sample 

Deviation 

Fig. 1. The sample risky efficient set, sample market proxy and sample zero-beta portfolio. 

Now let us consider the sample linearity property between mean return and 
beta. First, if portfolio m is used to compute beta, we must have the mathematical 
result already found, 

‘1 = f, + km - r.WJ. for all j. 

On the other hand we might choose portfolio m+ to compute the betas. This will 
produce a different set of sample betas because m and M* are not perfectly 
correlated. Denoting these second betas by /I;, we must have also another line- 
arity relation, 

‘J = rp + (fine - rJD;, for all j. 

What about z*, the risky efficient portfolio that is uncorrelated with m* ? Since 
it too must be usable in yet another linearity relation with the /?*‘s, it must 
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have the same mean return as rP In fact, it is quite easy to prove that this is SO.’ 

Furthermore, since there is an infinite number of efficient risky portfolios along 
the positively-sloped boundary, there is an infinite number of these linearity 
relations, all equally satisfied exactly (but all with different beta vectors). In 
particular, rr and r,,, would have their own p: and Bz in (5b) and would satisfy 
the second linearity relation above. Note that j?: must be noncero because 
e5cient orthogonal portfolios are unique. Thus, even though m and z are 
uncorrelated, m* and z must be correlated. Furthermore, although m*‘s ortho- 
gonal portfolio is constrained to have the same sample return as the riskless 
return, there is no such restriction on portfolio z. Depending on the relative 
positions of m and m*, rr can be greater or less than rF.9 

Armed with these purely logical results which are true for any sample satisfy- 
ing assumptions (A.l), (A.2), and (A.3), let us turn to the published tests of the 
original Sharpe-Lintner theory. First, what are the principal hypotheses of this 
theory? They are: 

(H.3) Investors can borrow or lend at the riskless rate, rF. 

(H.!) (Same as before.) They consider that mean-variance efficient portfolios 
arc optimal. 

Thus, each individual would compose his portfolio of the risklcss asset F 
and his subjective tangent portfolio m *. If investors had homogeneous prob- 
ability assessments, they would all have the same tangent portfolio. Thus: 

(H.4) The cx-ante efficient tangent portfolio is the market portfolio of all 
assets. 

Of course, since there seems to be littlc possibility of rcjccting (H.3) or even 
(H.l) with direct information, we arc left with (H.4) as the testable hypothesis. 

Black, Jensen, and Scholes rejected the Sharpe-Lintncr theory as a result 
of the following ‘test’: First, a ‘market’ portfolio was chosen and sample betas 
were calculated via a procedure designed carefully to remove measurement 
error. Then, the cross-sectional mean return/beta linearity relation was csti- 

“By Corollary 3.A of the appendix, a tangent drawn to any point p on the efficient frontier 
intersects the return axis at the level of the mean return on p’s orthogonal portfolio. Since m* 
is, by definition, located at the tangency drawn from rp, we must have rF = rr.. In the mean- 
variance space, there is a little-known analogous property: a line from any point p on the 
efficient frontier that passes through the global minimum variance position also intersects 
the return axis at the level ofp’s orthogonal portfolio. In general, ifp is efficient, every portfolio 
orthogonal top will have return r, = (u-_r,)/(b-cr,) where a, b, and c are the ‘efficient set 
constants’ (see appendix, Definition A.9). 

9r. will exceed rl if and only if r, > r,.. 
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mated in the form 

‘1 - rF = 90+91B,+4* 

where 2, is the estimated residual. 
The basic results were that PO exceeded zero, that 91 was less than r,,,-r,, 

and that PO was highly variable from one sub-period to another. This led them 
to reject hypothesis (H.4). 

Given our preceding analysis of the efficient set mathematics, we are entitled 
to be suspicious of their conclusion. Unless Black, Jensen, and Scholes were 
successful in choosing m* (in fig. 1) for their market portfolio, their results are 
fully compatible with the original Sharpe-Lintner model. This is readily seen 
in the two ex-post equations (5a) and (5b). Suppose, for example, that their 
‘market’ portfolio was really m rather than m*. Then solve (5b) for i = z and 
use this to replace rz in (5a). The result is 

r -r / F = P:(rm*-rF)+ [r,-rF-Pf(rm*-rF)l~j. 

Now we have already seen that p: must be non-zero” and that the Sharpe- 
Lintncr theory implies r,,,. > rF ex-ante (and ex-post asymptotically with in- 
creasing time-series sample size and with stationarity). Thus, the estimated 
coctficient PO in (6) is seen to be equal to fir(r,,,. -rF) given validity of the Sharpe- 

Lintner theory and ctlicicncy of the measured ‘market’ portfolio m. Furthermore, 
since Black, Jensen, and Scholes’ constant term. PO, is a function of the true 
tangent portfolio, m*, whose return is a random variable, WC should expect 
to set an intcrtcmporal variation in their constant term even when rF is a fixed 
number. There will be an offsetting variation in 9,. the slope of (6). 

No calculations were made by Black, Jcnscn, and Scholes to ascertain whether 
their market portfolio was in fact close (statistically) to the ex-post tangent 
portfolio over long periods. But we can be absolutely certain that it was not! 
Why? Bccausc the pure mathematics of the eff~cicnt set tell us that the relation 
(5b) is exacr!y satisfied in every cx-post sample for which assumptions (Al), 
(A.2), and (A.3) were true. Assumption (A.3), a constant return existed, was 
indeed approximately satisfied during all their sample periods. Thus, we can be 
sure that for each sample period there was a portfolio m* whose associated 
sample beta vector was a linear function of the mean return vector and for which 
the coefficients of (6) satisfied PO = 0. Since the sample beta vector calculated by 
Black, Jensen, and Scholes differed signilicantly from the vector that satisfied 
(5b) and did not approach that vector as the time series sample size increased, 

‘OAs a reminder. /?. l is dclincd the sample analog of Cov(r,. r, )/Var(r,.); i.e., the beta for 
the proxy zsro-bets portfolio (2) computed against the rrrre market portfolio (nr’). N.B.: 
This ‘zero-beta’ portfolio has a beta of zero only against m. It has a non-zero beta against all 
other efficient portfolios. 
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we know that their ‘market’ portfolio was not statistically close to the tangent 
portfolio.” 

On the other hand, one should note also that an ex-post verification of (5b) 
would not have implied that (A.3) was valid. In other words, the purely mathe- 
matical proposition (5b) can be observed even if investors are totally prohibited 
from access to a riskless asset. Consider the following scenario as an example: 
Investors are totally excluded from riskless borrowing and lending. Nevertheless, 
the government publishes each period a number called the riskless rate of interest. 
It follows that each period there will exist some portfolio m* whose associated 
betas along with the published number exactly satisfy (5b). This observed m* 
will not necessarily be the market portfolio, of course. How can we distinguish 
empirically this scenario from the Sharpe-Lintner model where riskless borrow- 
ing and lending is fully permissible? We cannot do so from the linearity relation 
(6) alone. We must have independent information on the true market portfolio’s 
identity. Only then can we determine whether this particular portfolio is or is not 
the tangent portfolio and thereby distinguish between the two scenarios. 

In summary, even if Black, Jensen, and Scholes had been unable to reject the 
hypothesis that PO equals zero and that there is a linear beta/mean return trade- 
off, they would not have been entitled to support the Sharpe-Lintner theory. 
They shouldn’t have rejected the theory either upon not finding PO = 0. Their 
test is simply without rejecting power for hypothesis (H.4). 

Black, Jensen, and Scholes realized that using a misspecified ‘market’ portfolio 
would result in a measured 9,, from (6) not equal to zero. However, they thought 
mistakenly that the 9,, would have to be constant even with the misspecification 
(cf. their page 1 IS). This was a critical oversight, for it led to a professional 
consensus that the Sharpe-Lintner theory was false. It seems probable (at least 
to me) that such an opinion would have been held less widely if the market 
index’ composition had been correctly perceived as rhe critical variable in under- 
standing the test results; that is, if we had realized that a readjustment of the 
market portfolio’s proportions might have reconciled the test results as well 
to Sharpe’s and Lintner’s theory as to Black’s. 

It may occur to the reader that the Black, Jensen, and Scholes paper tested 
a joint hypothesis: the Sharpe-Lintner theory and the hypothesis that the port- 
folio they used as the ‘market’ proxy was the true market portfolio. This joint 
hypothesis was indeed tested and it was rejected. We can conclude therefrom 
that either 

(a) the Sharpe-Lintner theory is false, or 
(b) the portfolio used by Black, Jensen, and Scholes was not the true market 

portfolio, or 
(c) both (a) and (b). 

“In the next section their results are used lo actually calculate the mean and variance of this 
sample tangent portfolio (see table 1). 
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There lies the trouble with joint hypotheses. One never knows what to conclude. 
Indeed, it would be possible to construct a joint hypothesis to reconcile any 
individual hypothesis to any empirical observation. In the present case, fortun- 
ately, there is at least the information that (b) is false. The portfolio used by 
Black, Jensen, and &holes was certainly not the true market portfolio; but 
whether it was statistically close to the true market portfolio [thus leading to 
conclusion (a)] or whether it was closer than the Sharpe-Lintner assumptions 
are to reality is beyond our capacity to know. 

As for the other papers, Fama and MacBeth present tests of the Sharpe- 
Lintner theory which are similar in spirit, form, and conclusion to those of 
Black, Jensen, and Scholes (see their section VI, pages 630-633). The explicit 
stated hypothesis is that PO from (6) be insignificantly different from zero.‘* 
Their conclusion is that ‘. . . the most efficient tests of the S-L (Sharpe-Lintner) 
hypothesis . . . support the negative conclusions of others’ (p. 633), (because PO 
was found to be significantly different from zero). Probably because of the nature 
of their methodology, Fama and MacBeth, unlike Black, Jensen, and Scholes, 
did not consider the variability of PO as an additional piece of condemning 
evidence against the Sharpe-Lintner hypothesis. Thus, they did not draw Black, 
Jensen, and Scholes’ second erroneous inference.” 

Blume and Friend (1973) provide an equivalent set of empirical results but 
interpret them quite differently. They begin by explicitly stating the Black model 
[essentially eq. (l)], and they take a similar tack in asserting that the observed 
zero-beta return, rrr must equal the riskless rate, rr,‘* in order for the Sharpe- 
Lintner hypothesis to be supported. They also find that the observed estimate 
of r, is significantly different from r, and thus reject the Sharpe-Lintner hypo- 
thesis. 

They are clearly bothered by this conclusion, however, because they are 
convinced that a nearly riskless interest rate did exist. They state that: ‘If returns 
are measured in real terms, the only risk in holding governments of appropriate 
maturities would stem from unexpected changes in the price level . . . [and] 
. . . this risk . . . has been very small’ (p. 20). The second step in the argument 
leading to their inquietude is the conclusion that if a riskless asset does exist, 
the intertemporal variance in the zero-beta portfolio’s return (i.e., in rZ) must be 

*'On page 630, they state: ‘In the Sharpe-Lintncr two-parameter model of equilibrium 
one has. in addition to conditions (C.l)-(C.3), the hypothesis that E(~c,) = RI,.' (This is 
equivalent to Black, Jensen, and Scholes’ model because Fama and MacBeth did not subtract 
RI, from both sides of the linearity relation.) 

“The first inference was fe’s significant positivity. BJS stated clearly that misspecitication 
in the market proxy portfolio could cause this. The second inference was intertemporal varia- 
tion in PO. They incorrectly thought that misspecification could not cause this. It was really 
this second crucial inference which induced them to state that the Sharpe-Lintner model was 
rejected by the data. 

“This is, of course. equivalent to PO being zero in eq. (6). 
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zero (see their discussion on pages 22-23),ls and they claim to have demon- 
strated the falsity of this empirical implication in their earlier article (1970). 

This leads to an interesting conclusion: namely, the ‘return generating process’ 
corresponding to Black’s model *. . . cannot explain the observed returns of all 
financial assets . . . . Nonetheless . . . it may be . . . adequate . . . for a subset 
of all financial assets, such as common stocks on the NYSE . . . . If this be SO, 
the minimum variance zero-beta portfolio consisting only of common stocks 
would not be the zero-beta portfolio of the capital asset pricing model. However, 
. . . the expected return on all zero-beta assets and in particular a zero-beta 
portfolio consisting only of common stocks must be the same, namely the risk- 
free rate if such an asset exists’ (pp. 22-23, italics theirs). 

Blume and Friend have been quoted here at some length because their article 
illustrates the confusion that can arise from an insufficient understanding of 
efficient set mathematics. Some of their statements might very well be true; 
for example, that a riskless asset exists and that ‘the zero-beta portfolio consist- 
ing only of common stocks would not be rhe zero-beta portfolio [of the global 
market]‘. This last phrase might have led them to a correct understanding, for 
they seemed to be considering two ‘market’ portfolios, one consisting only of 
equities and one consisting of all assets in existence. Their mistake was brought 
about by concluding that two such distinct ‘market’ proxy portfolios would be 
associated with zero-beta (or orthogonal) portfolios having the same mean 
return and that this return must be equal to the riskless rate of interest. That 
conclusion is false. For example, suppose we consider the possibility that both the 
equities-only portfolio and the global all-assets portfolio are both mean-variance 
efficient. If these two portfolios had different mean returns and are not perfectly 
correlated, then the mean returns of their associated zero-beta portfolios must 
differ. Of course, if the Sharpe-Lintner hypothesis is valid, the global market 
portfolio’s associated zero-beta portfolio would have an expected return equal 
to the riskless interest rate. This would imply nothing whatever about the equi- 
ties-only zero-beta portfolio, the one actually used by Blume and Friend in their 
tests. 

Blume and Friend conclude with some statements that illustrate the dangers 
of ad hoc theorizing. Their results supposedly (1) ‘indicate a negative differential 
between the required rates of return on high-grade corporate bonds and on 
stock on a risk-adjusted basis’, and (2) indicate that the supposed differential 
‘ . . . is consistent either with segmentation of markets, inadequacies of the return 
generating model used in this paper,16 or a deficient short sales mechanism* 
(p. 32). Since corporate bonds were not included in the empirical work,l’ the 
first statement must be due to the observation that PO was not zero, i.e., that the 

‘“Their argument is a bit clouded by being couched in the framework of the ‘return generat- 
ing Process’, but the inference above is indeed there. 

leThe generating model corresponds to Black’s theory. 
“A brief mention of bonds was contained in their note 24, page 31. 
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measured zero-beta return exceeded significantly the measured riskless return. 
This observation is perfectly consistent with non-segmented markets, with the 
Black model or the Sharpe-Lintner model, and with perfecr short selling oppor- 
tunities; in other words, with the precisely opposite set of circumstances to those 
postulated in their second statement. 

One page earlier, Blume and Friend assert that ‘. . . the observed risk-return 
tradeoff would certainly have been highly non-linear in all periods’ if corporate 
bonds had been ‘. . . included in the analysis’ (p. 31). The evidence offered to 
support this is that corporate bonds indexes have measured betas close to zero, 
a fact that has no relevance for linearity. 

If bonds had been included in the analysis, they might have been included in a 
new ‘market’ proxy and a new observed efficient set would have been obtained. 
The resulting linearity, or lack thereof, would have been completely dependent 
on the ex-post efficiency of this new market portfolio. If bonds were not made 
part of the market portfolio proxy, the risk-return tradeoff would still have been 
linear, including the bonds’ returns and betas, unless the market proxy was 
signific,antly not ex-post mean-variance efficient. If it was significantly not 
efficient, there was no justification for its use as a proxy. 

Blume and Friend conclude from their analysis: ‘. . . Even without allowing 
for the tax advantages of debt financing, the cost of bond financing may have 
been substantially smaller than the risk-adjusted cost of stock financing and 
probably smaller than the risk-adjusted cost of internal financing’ (pp. 31-32). 
We suddenly encounter a conclusion about an important economic quantity 
(internal financing) upon literally its first and only mention in the entite.paper, 
and WC arc told that is dearer than bond financing on a risk-adjusted basis. 
Still reeling, WC come to the linal paragraph and its assessment that ‘. , . in the 
current state of testing of the capital asset theory, the evidence points to seg- 
mentation of markets as bctwcen stocks and bonds, even though there are few 
legal restrictions which would have this effect’ (p. 32)! 

In summarizing all thcsc empirical exercises about the Sharpe-Lintner theory, 
one is obliged to conclude that not a single paper contains a valid test of the 
theory. In fact, as Fama (1976, ch. 9) has recently concluded, there has been no 
unambiguous test of this theory in the published literature. Furthermore, it is 
easy to see that the prospect is dim for the ultimate achievement of such a test. 
We can well imagine that the critical issue of contention will always be the 
irlcnrir, of the true market portfolio. Some portfolio will always occupy the 
Sharp+Lintner tangency position; but whether the position will be occupied 
by a value-weighted average of all the assets in existence seems to be a difficult 

question. 
In summarizing the three major papers in a broader context, two of them 

contained a formal test of elliciency for the market portfolio proxy. This test 
was the explicit inclusion of non-linear beta terms in the cross-sectional risk- 

return relation. Both Fama and MacBcth and Blume and Friend concluded 
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that the non-linear terms were insignificantly different from zero. What does this 
tell us about the major hypothesis (H.2) of generalized asset pricing theory? 
In so far as we are ignorant of how close their proxy market portfolios were to 
the real thing, it tells us nothing at all. On the other hand, if we are willing to 
ussume a close approximation between real and proxy markets, then the test 
results do not reject the basic hypothesis that the true market portfolio is efficient. 
(I shall argue in the next section, however, that such a ‘good’ approximation 
should be confronted with a strong dose of scepticism.) 

Black, Jensen, and Scholes did not present a formal test of the linearity rela- 
tion and thus gave no formal evidence about their proxy’s efficiency. [Jensen 
(1972a, 1972b) did do this with the same data, however.] Their other stated test, 
of the Sharpe-Lintner theory, is certainly open to question since no information 
was provided about the proxy market’s relation ta the Sharpe-Lintner tangency. 
(In fact, we know there was a difference between the ex-post Sharpe-Lintner 
tangency portfolio and Black, Jensen, and Scholes’ ‘market’. See above.) 
Therefore, for the Black, Jensen, Scholes paper taken in isolation from Jensen’s 
addition, no hypothesis whatever was tested unambiguously. 

3. h-Ieasuring the market and testing the theories 

3.1. The Sharpe-Lintner case 

As mentioned earlier in connection with Black, Jensen, and Scholes’ con- 
clusions, there has been in the literature some consideration of mis-mcasliring 
the market portfolio. Black, Jensen, and Scholes thought that a mis-specified 
market would cause a bias in the cross-sectional risk-return intercept from the 
Sharpe-Lintncr prediction, but that the intercept would be intertemporally 
constant. But as we have seen, an incorrect market portfolio can cause both 
a bias and variation of the intercept over time, even when the Sharpe-Lintner 
theory is the true state of nature. 

Mayers (1973) also considered the question of omitted (and non-marketable) 
assets and reached a similar conclusion with respect to the empirical implica- 
tions: ‘. . . the primary testable propositions of the extended [Mayers] model are 
the linearity of the risk-expected return relationships . . . and the implication 
that no other variables . . . should be systematically related to expected return’ 
[Mayers (1973, p. 266)]. 

These conclusions about the empirical implications of Mayers’ model are very 
interesting for the following reason (among others): his derived risk coefficient, 
though denoted by the symbol ‘p’, is not the simple regression slope coefficient 
of the other models. For a given marketable asset, Mayers’ beta depends on that 
marketab1.e asset’s return covariance with aggregate non-marketable assets’ 
returns. This implies that a mean-variance efficient marketable portfolio for one 
investor need not necessarily be mean-variance efficient for another; and thus, 
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there is no longer a mathematical equivalence between mean-variance efficiency 
and beta/expected return linearity. 

It is not clear whether this makes the Mayers model more or less easily testable. 
The problem of non-identifiability of the market portfolio (in this case, of the 
marketable market portfolio) is still present since its return also appears in 
Mayer? linearity relation. In addition, there is a new problem in measuring the 
return to aggregate nonmarketable capital. On the other hand, if these measure- 
ment problems were resolved, the Mayers model may be more easily testable 
because the linearity relation is more structured - it requires a particular relation 
between marketable and non-marketable aggregate portfolio returns. Further- 
more, the testability of this structure does not seem to be hindered by a mathe- 
matical equivalence to the mean-variance efficiency of either portfolio. 

Returning now to the simpler Sharpe-Lintner theory, despite the overwhelm- 
ing importance for testing of measuring the market return properly, references 
to the consequences of doing it improperly are rather rare. In a typical reference, 
Petit and Westerfield simply say that the market ‘. . . is commonly measured by a 
stock market index. such as the Fisher Link Relative Index or the Standard and 
Poor’s 500 . . .’ (p. 58 l), and they pick yet a third proxy for their own calculations 
(the Fisher Combination Investment Performance Index). Blume and Friend 
also use this latter index and make no mention of its being only a proxy. Curious- 
ly, they do mention that the all-equities ‘zero-beta’ portfolio may be only an 
approximation (p. 23). but, as already noted, they draw an incorrect inference 
from this fact and they make no reference to the one-to-one relation between an 
error in the market proxy and an error in the zero-beta proxy. 

Fama and MacBeth used ‘Fisher’s Arithmetic Index, an equally weighted 
average of all stocks listed on the New York Stock Exchange’ (p. 614). This 
index is not even close to a value-weighted index and should never be suggested 
as a market proxy. But Fama and MacBeth make no mention of possible error 
in the proxy’s measurement, despite the fact that their paper comes closest to a 
systematic exploitation of the efficient set mathematics and its implications. 
Given Fama’s more recent statements (1976), it is safe to say.that he would not 
choose this index again. 

One analysis of mis-measurement of the market portfolio was presented by 
Miller and Scholes (1972, pp. 63-66). They report an experiment which had an 
important influence on the research of others. It is often mentioned in conversa- 
tions and sometimes in print. For example, in his review article, Jensen (1972a) 
states that Miller and Scholes ‘. . . conclude that the improper measurement of the 
market portfolio returnsdoes not seem to be causing substantial problems’(p. 365). 

Miller and Scholes studied the following problem: Suppose that individual 
returns are generated by a process containing a ‘true’ market index, M*, 

Br = PL+ii*, 

where /I1 is constant and ql is a random variable with zero mean. 

(7) 
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Suppose also that only a proxy index, m, is identifiable and that its returns 
satisfy the same equation, 

Miller and Scholes then ask the question, what would be the large sample value 
of PI in a cross-sectional model of the form 

K = 90+916,+$, 

where I?, is the time-series sample mean of Bi, 6, is the simple least-squares 
time-series regression slope coefficient of the individual return & on the proxy 
market, 8, and .?, is the estimated residual. They show under quite general 
conditions that 9, will be asymptotic to 

The term in brackets contains two squared correlation coefficients, a cross- 
sectional one between true and estimated beta and a time-series one between 
true and proxy market return.” 

Miller and Scholes went on to an empirical analysis. Having first estimated the 
cross-sectional model (9) using an all-equities proxy for the market, they re- 
estimated (9) with a 25% bond index and then with a 50% bond index. The 

coefficients 9, ‘. . , were virtually unchanged , . .’ (p. 66) in the three cases. They 
state that empirically ‘. . . the correlation between the old and new indexes was 
very close to one’ (p. 66). i.e., that r2(R,, R,.) z 1 if R,. is taken as the ‘old’ 
index. Also, the old and new ‘coefficients of risk’ were almost perfectly correlated, 

r2(& Br) = 1. This implied that the old and new estimates of y, were proportion- 
al by the factor /I, which is the beta of the new proxy index with respect to 
the old proxy. 

Conclusion: if the market proxy is perfectly correlated with the true market, 
the resulting cross-sectional model would yield a 9, exactly proportional to the 
y, computed by using the true market. It is easy to see, therefore, that the 
Sharpe-Lintner basic hypothesis (H.4) would be supported by the data, and by 
this test procedure, if it were true.” 

The key to understanding the nature and significance of this conclusion is the 

“Note that the y0 would be intertemporally constant in the Miller-Scholes framework. 
Thus, their model is consistent with the Black, Jensen, Scholes interpretation of &, which is 
misleading in the case of a mis-measured market proxy portfolio. 

’ “A simple way to set this is as follows: Suppose the returns in (7) and (8) are excess returns, 
that V, = 0. and that the Sharpe-Lintncr (HA) is valid. Then the cross-sectional model (9) 
would yield the asymptotic result, &, = 0 and pr = R,. where R, is the market proxy ~X~CSS 
mean return. Then it would appear from the data that the market proxy is et?icient and equal 
to the Sharp+Lintner tangent portfolio. 
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perfect correlation between the proxy and the true market. Of course, if such a 
perfect correlation were the state of nature (and everyone knew it), the mean- 
standard deviation efficient frontier would be a line composed of various com- 
binations of the proxy and true markets. This alone implies the existence of a 
riskless return, one particular linear combination, and it also implies an infinity 
of Sharpe-Lintner tangent portfolios, any one of which would support (H.4) 
in the cross-sectional tests. 

Since the mere presence of perfect correlation between the true and proxy 
markets implies the Sharpe-Lintner result, how are the Miller-Scholes results 
to be reconciled with the results of Black, Jensen, and Scholes, Blume and Friend 
and Fama and MacBeth, all of whom rejected the Sharpe-Lintner theory. 
Miller and Scholes actually anticipated an econometric reconciliation which 
will be discussed in detail in the next section. There exist other explanations and 

one very simple possibility will be discussed next. 
Actually, Miller and Scholes (and others)” only found almost perfect cor- 

relation between two pr0.r~ market portfolios. The demonstration of such a 

correlation for the fncc market was beyond their (and is beyond our) econometric 
ingenuity for the simple reason that the true market portfolio is unknown. 
This suggests a reconciliation of the body of empirical results based on either 
(a) the true mnrkct is not pcrf?cri~ correlated with the mcasurcd proxies, or 
(b) perfect correlation only exists among incffcicnt portfolios. Explanation 
(b) is inconsistent with equilibrium unless there are restrictions on short-selling. 
Even if there wcrc such restrictions, howcvcr, the computation of sample betas 
with an incfflcicnt portfolio would give an asymptotically (time-series-wise) 
not exactly-linear mean return beta relation. It would thcrcforc seem unlikely 

that this particular explanation has much validity. 

To understand explanation (a), we need to know the efTcct of market proxy 
correlation on the deviation bctwccn the Sharpc-Lintncr implications and the 

obscrvcd results. For cxamplc, rcfcrring again to fig. 1, whcrc IH* is the true 

market portfolio and 111 is the proxy, what is the relation bctwcen the distance 
rz-rF on the one hand and the correlation between 2,. and F,,, on the other 

hand? From the geometry nlonc, WC obscrvc that this must depend upon the 

curvature of the risky eflicicnt set and on its distance from the return axis. 

It also must dcpcnd on the absolute and relative positions of m and nz*. If both 

arc located far out on the positive segment of the cflicicnt frontier, they might be 

nearly pcrfcctly correlated and yet imply a large and significant dilTcrencc be- 

twecn the returns rF and rz on their orthogonal portfolios. 

Some simple numerical examples may scrvc to illustrate the possible mngni- 

tudes involved. There are two hypothetical states of nature contained in the 
two examples in table I. The numbers are not just made up, however. Those 

2oSce, for exnmplc. Fisher (1966). Table 4.S (p. 8 I) of Loric and ihcdey (I97?), gives COr- 

rctation coefiicicnts for five commonly-u\ed indexes. for data from the mid-20’s to thC mid-60’s, 
ranging between 0.906 and 0.985. 
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in the ‘Given’ panel come directly from Black, Jensen, and Scholes’ tables 5 and 
7 (1972) - for Example 1 - and from Morgan’s table 3 (1975) - for Example 2. 
Example 1 contains ex-post results calculated from monthly returns for 1931-65. 
Example 2 also contains ex-post numbers but for 5-day intervals from July 1962 
through December 1972. ‘l Only the 3.0 riskless interest rate in Example 2 is a 

Table 1 

Examples of the cx-post risky efficient set and of sample correlation among efficient portfolios. 

Numerical values (%/annum) 

Quantity Symbol 
Example 1 Example 2 
(BJS results) (Morgan results) 

Given: 
Riskless return 
Market proxy return 

Mean 
Standard deviation 

Return on market proxy’s efficient 
orthogonal portfolio 

Mean 
Standard deviation 

Implied by the above: 
Global minimum variance portfolio r0 

Mean 
Standard deviation 

Sharpc-Lintncr tangent portfolio rn. 
Mean 
Standard deviation 

Correlation coefRcient between market 
proxy’s rclurn and return on S-L tangent 
portfolio P 

1.920 

18.96 
106.9 

5.976 4.067 
51.10 52.14 

8.392 6.469 
46.10 33.12 

12.34 12.75 
58.49 17.74 

0.8952 0.9860 

3.0 

15.54 
101.4 

pure assumption. The source paper provided no measure of the riskless return 
and 3 percent was chosen as a reasonable but conservative figure for the period. 

Given one additional and strong assumption, estimates for the global mini- 
mum variance and Sharpe-Lintner tangent portfolios are implied by the riskless 
return, the market proxy and the market proxy’s orthogonal (zero-beta) efficient 

lIThe BJS and Morgan numbers have been made comparable by using suitable annualisation 
multipliers. The BJS numbers were multiplied by 1200 and the Morgan numbers by 36500/7. 
Morgan gave several diKerent mea&es of m and I. I used the numbers in the first column of 
his table 3. p. 371. and the first of each pair. To obtain the standard deviation of the market 
proxy, I assumed that his ‘risk premium: mean/std. error’ was computed as 

Nm - r.)\/5221/~/(a.‘+a,‘), 522 = samplesize. 

I am indebted to him for private correspondence that certified the validity of this assumption. 
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portfolio that were provided in the source papers. The crucial assumption is that 
the market proxy and its associated zero-beta portfolio are actually located 
on the ex-post efficient frontier. ” If m and z are both efficient, the variance of 
each one is related to its mean by the efficient set quadratic equation, (A.ll) 
of the appendix, which contains the three ‘efficient set constants’, a, b and c. 
In addition, since m and z were orthogonal by construction, their means are 
related by a third expression (A.15) which is the general equation relating the 
mean returns of orthogonal efficient portfolios. Since this expression also con- 
tains the e5cient set constants, there results a non-linear system of three equa- 
tions in the three unknowns, (I, b and c. Usually, as in the case of our examples 
here, the system has a unique solution. Once the three efficient set constants are 
determined, all the other information of table 1 is computable in a straight- 
forward way. The Sharpe-Lintner tangent portfolio’s return requires addition- 
ally that the riskless interest rate be assigned a value. 

The examples’ relevance derives from the tangent portfolio and its correlation 
with the proxy market portfolio. In Example 1, Black, Jensen, and Scholes’ 
data indicate that the Sharpe-Lintner tangent portfolio had an average monthly 
return of 12.3 (percent per annum) from 1931-65 and that its ex-post correlation 
with their market proxy was on the order of 90 percent. Notice that the tangent 
return was only 65 percent of the market proxy return, despite the significant 
correlation. Also note that the Black, Jensen, and Scholes zero-beta proxy re- 
turned 5.976 (percent per annum) on average. As mentioned previously, this 
finding was used by them to deny the validity of Sharpe-Lintner theory (because 
5.976 was significantly greater than 1.920, the estimated riskless return). 

There is a possible way to examine the validity of their conclusion. Using 
the same data, a different consistency check of the Sharpe-Lintner model would 
involve the individual asset investment proportions in the observed tangency 
portfolio. If any of these were significantly negative, the tangency portfolio 
would not satisfy the qualities of a market portfolio, which must have positive 
investments in all assets. ” The suggested exercise (it has not yet been done by 
anyone, to my knowledge), has been termed a ‘consistency check’ rather than 
a ‘test’ of the Sharp+Lintner theory because of the many assets omitted from 
the Black, Jensen, and Scholes sample. The omission of even a single asset 
can in principle cause an observed tangency portfolio to alter in composition 

**There are several reasons why this is a strong assumption and why the results of table 1 
should only be considered as examples. In both the Black, Jensen, Scholes and the Morgan 
papers, the samples consisted only of equities. Thus, it is very unlikely that the market proxy 
was exactly mean-variance efficient. Even if the samples had included all assets. the zero-beta 
measured portfolios were probably not precisely on the ex-post mean-variance boundary 
because the full covariance matrix was never inverted to find the efficient set constants. For 
example, Morgan estimated the etlicient set by using a sample of 89 portfolios of 6 securities 
each (p. 365). This estimate of the efficient set would have differed, although perhaps in only a 
minor way, from the efficient set computed using the 534 (89 x 6) individual stocks. 

“1 am indebted to Michael C. Jensen for suggesting this procedure. 
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from totally positive to some negative proportions. (The alteration is not merely 
an allocation of the former weight of the omitted asset to the remaining assets 
because the entire efficient set can change.) Nevertheless, the calculation would 
be worthwhile because it would at least provide an insight into the possibility 
of incorrect inferences arising from market proxy portfolio misspecification 
within the Black, Jensen, and Scholes universe of securities. Unfortunately, the 
calculation cannot be reported here because it requires the full sample covariance 
matrix and the sample mean return vector of individual assets. These are not 
in my possession. 

The Morgan data, which cover a later periodthan the Black, Jensen,and Scholes 
data, imply an even higher correlation between the marketproxy and the Sharpe- 
Lintner ex-post tangency portfolios. This is due partly to a lower mean return of 
the market proxy and partly to a larger assumed riskless return which has caused 
the tangent portfolio to lie closer to the proxy. 24 However, the same qualitative 
conclusions obtain: Efficient portfolios are highly correlated and the Sharpe- 
Lintner thecry is consistent with the data and a mis-specified market index. 

Recall that all efficient portfolios on the positively-sloped segment are posi- 
tively correlated. It is also true that the correlation increases with increasing 
mean returns of the two portfolios in question (holding constant the difference 
between their means). In the two numerical examples of table 1, for instance, 
all efficient portfolios with returns between 14 and 49 percent for Example 1 
and with returns between 12 and 36 percent for Example 2 had squared cor- 
relations with the market proxy greater than 90 percent. 

The implications of this are clear: Any hypothesis, such as Sharpe-Lintner, 
that makes a spccilic prediction about the position of the market portfolio, is 
likely to bc highly susceptible to a type II error-being rejected when it is true. 
IIcuristically, a small error in measuring the market’s composition can cause 
an error in testing the theory. The market proxy may be almost perfectly cor- 
rclatcd with the true market and yet a significant dilfcrence can emerge between 
the proxy zero-beta return and the true zero-beta return (or the risklcss return). 

3.2. The gcneralixd ussct pricing rhcory case 

For testing the Sharpc-Lintncr hypothesis (H.4), the identifiability of the 
market portfolio is a serious problem. For the more general asset pricing hypo- 
thesis (H.Z), it is perhaps even a more serious problem. For (l-1.4), we can at least 
get an idea of the conscqucnccs of a mis-specihed market portfolio by assuming 
that the proxy market is ellicicnt. Then, the ex-post tangent portfolio can be 
calculated as in the above examples and its return and reasonableness can be 

2’Thc effect of the risk& rat assumption is easy to nssess. For an assumption of 2% 
rather than 3”/& the correlation bcrwecn market proxy and tnngcnt portfolio would ha\;c been 
0.9587. For 47:. the correlation would have been 0.9999. Thus a considerable range of assump- 
tions for the risklcss rate would have given the same general impression. 
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judged against external criteria. For example, it might have been expected that 
the true market portfolio had less variance and less return than the Black, 
Jensen, and Scholes and the Morgan all-equities proxies, perhaps because equi- 
ties are more variable than the average asset. Or, if the all-equities proxies had 
been combined with bonds, human capital, and real estate in reasonable pro- 
portions, the resulting mixture might have been closer to the observed tangent 
portfolio. Naturally, such possibilities are mere conjectures. They are not test- 
able hypotheses, again for the simple reason that the true market portfolio has 
an unknown composition. 

For the more general hypothesis (H.2), such judgements based on common- 
sense interpretation of the results are likely to be unavailable. (H.2) merely 
requires that the true market be somewhere on the positively-sloped segment of 
the mean-variance efficient frontier. For relatively small (time-series) sample 
sizes, this hypothesis is highly susceptible to a type I error, being acceptable 
when it is false; but as the number of time-series observations increases, the 
hypothesis will almost surely be rejected, even when it is true. To see why, first 
consider the fact that the true market portfolio has a positive proportion invested 
in every individual asset. This implies that every reasonable candidate for the 
market proxy must have totally positive investment proportions. In many cases, 
in fact, the investment proportions are either the positive constant I/N for the 
included assets (and zero for excluded assets), or the proportions display little 
cross-sectional variation. We know, therefore, that all such candidates for the 
proxy market portfolio must lie in a relatively small region of the mean-variance 
space. 

Suppose, for example, that the true eflicicnt set is given by the curve lab&d 
‘I’ in fig. 2. In this particular example, cfficicnt portfolios bctwccn A and B 
arc assumed to have totally positive investment proportions. As shown in the 
appendix, Theorem 3, an efficient set like I, whose global minimum variance 

portfolio has totally positive investment proportions, will occur if the variance 
of every individual asset exceeds its covariances with all other individual assets 
(if ui > o,, for alli # i). Above the point n and below the point B, at least 

one asset has negative investment proportions. Suppose the asset that leaves the 
efficient set at point A is indexedj. Then the curve I_, would be the efhcient set 
ifj did not exist. /and I_, are tangent at a single point at most. (There might 
have been no finite tangency becausej might have had a positive or a negative 

weight in all portfolios on I.) ” But since the weight is assumed negative above 
A and positive below A, it must be zero at A. Since it is zero everywhere on I_,, 
A must be a tangency. (, and I_, obviously cannot cross since they are minima.) 

“The curve I_ ,, with one omitted asset, is olked as an expositional example. In general, 
thcrc will be more than one omitted asset from any empirical sample and so there will bc no 
common point bctwecn the true efficient frontier and the sample efficient frontier, except in an 
unusual circumstance (the unusual circumstance being that all omitted assets have their zero 
investment proportions at a common point on the true efficient set). 
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If (H.2) is true, the true market portfolio must lie on the boundary I between 
A and B, say at m*. If m is chosen as the market proxy, all empirical tests will 
support (H.2) because the proxy m does indeed lie on the reduced efficient 
boundary I_, which lacks asset j_ Although proxy portfolio m is inefficient 
globally (since it lies below I), this fact will not be detectable by any test using 
the reduced subset without j. 

Mean 

Roturn 

Variance 

Fig. 2. Totally positive portfolios and the efficient boundary. 

Thus (H.2) will be supported correctly, but for the wrong reason. On the other 
hand, suppose that the true market is really inefficient and lies within Z at the 
point labelledp. Then the same exact test with market proxy m will support (H.2) 
incorrectly. In fact, it seems that this is the greatest danger. For any subset of 
assets, there exists an ‘efficient frontier’ whose constituent portfolios will 
satisfy all empirical tests of (H.2). As long as the investment proportions in the 
subset of assets are totally positive somewhere along this reduced boundary, 
a ‘reasonable’ market proxy will be available and it will support (H.2) since it 
will be subset efficient. 
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On the other hand, the geometry makes evident that a type II error is also 
quite possible. Suppose that portfolio q has been chosen as the market proxy 
and that (H.2) is true and that m* is truly e5cient and lies on I. In this case, a 
large sample will almost surely reject (H.2) since the proxy does not even lie 
on the reduced efficient set I_,. Note that this will occur even when the proxy is 
highly correlated with the true market m* and is also highly correlated with a 
proxy which is subset efficient. 

The empirical situation is aggravated by this likelihood of a high correlation 
between the true market and the proxy, whether (H.2) is true or false. Such a 
high correlation is bound to make it seem that the exact identity of the market 
is of relatively minor significance and the temptation will be great to modify 
the market proxy slightly to obtain the desired result, whether it be rejection or 
acceptance of (H.2). In fact, if the identity of the true market is a matter of dis- 
pute among different researchers, there may be no way to settle the validity of 
(H.2) with any size of sample. The only exception would seem to be when (H.2) 
is false, the true state of nature is depicted by efficient set II in fig. 2 and the 
sample contains every asset. In this case, no totally-positive portfolio is efficient 
and large (time-series) samples would reject (H.2) unambiguously. 

In principle, such a test is easy to construct. As shown in the appendix, the 
investment proportions for portfolios that lie on the ex-post e5cient boundary 
are given by the N x 1 vector 

X-B ; ) 0 
where B is an (Nx 2) matrix of constants that depend only on the mean returns 
and sample covariances of the N individual assets, and r is the mean return of 
the ex-post efficient portfolio whose investment proportions are given by X. 
Since B contains constants, the test simply involves computing X at two points - 
at the minimum and maximum observed individual returns, rmln and r,,, to 
obtain 

and X,,,,, E B . 

Then if there is a single element that is significantly negative in both X,,,,,, and 
X m.rr (H.2) is false. This follows because every totally positive portfolio lies 
between r,,,{, and r,,,.,. Thus, if all efficient portfolios in this interval have one 
or more significantly negative investment proportions, there is no totally positive 
mean-variance efficient portfolio. Unfortunately, this ‘test’ is only valid in 
principle. The full covariance matrix of all individual assets is required to 
compute the matrix B. Furthermore, the sampling variation of B would generally 
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be unknown. Finally, the cost of collecting data for etlery existing asset would 
be nrohibitive. 

In summary of this section, the sole viable hypothesis of generalized asset 
pricing theory is (H.2) - the true market portfolio is ex-ante efficient. This 
hypothesis offers a non-trivial challenge to our econometric ingenuity and the 
challenge has not yet been satisfactorily met. The problem can be summarised 
by noting that in a given sample there are always portfolios which do not reject 
(H.2) and that little external information is available on the true market port- 
folio’s exact composition. Furthermore, even a small mis-specification of the 
proxy’s composition can lead to the wrong conclusion. What might seem a 
trivial mis-specification in an ordinary statistical application can be of crucial 
importance for testing (H.2). 

Appendix 

The eficient set mathematics2 6 

The efficient set (or etlicient portfolio frontier) is composed of portfolios with 
minimum variance at each possible level of mean return. Ex-ante variances 
and mean returns of individual assets must be estimated or subjectively deter- 
mined. The ex-post ellicicnt set is a sample statistic, the set of minimum sample 
variance portfolios. 

Given the characteristics of individual assets, a portfolio is completely charac- 
ter&d by the proportions invested in its constituent securities, 

where xiP is the proportion of portfolio p invested in asset i, and X, is a vector 
subject to the constraint 

XJ = 1, (A.0 

I denoting the unit vector. When speaking of a single portfolio, we will suppress 
the subscript p on the vector X. 

The parameters of the efficient set problem are the mean return vector of 
individual assets, 

R = Ilr,ll, 

26As mentioned in the text, most of the results in this appendix have appeared previously. 
See particularly Merton (1972). which is the original full analytic treatment of the efficient set 
mathematics. SzegG (1975) seems to be the only other relatively complete treatment but Sharpe 
(1970). Black (1972) and Fama (1976) also contain many of the same results. I have made no 
attempt to ascribe originality. 
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and the covariance matrix of individual returns, 

These can be either population values or they can be sample product moments. 
The mathematics that follows does not require a distinction, merely a set of 
numbers R and V. Any portfolio’s mean and variance are given by 

rP = X’R, 

c7; = X’ vx. 

Similarly, the covariance of any 

by 

0 
PIP2 

= x;,vx,,. 

(A.21 

(A.3) 

two arbitrary portfolios (say p1 and pZ) is given 

(A-4) 

Necessary and su$icient condition for a portfolio to be eficient 

The efficient set is found by minimizing ui subject to the two constraints 
(A.1) and (A.2). The Lagrangian is 

L = X’VX-A,(X’R-rp)-J.2(X’I-1), 

where AI and AZ are undetermined multipliers. The first extremum conditions 
are the vector 

VX = f(l,R+&~), 

plus the constraints (A. I) and (A.2). 

(A.3 

If the joint distribution of individual returns is non-degenerate, the covariancc 
matrix is positive definite (and non-singular), and all efftcient portfolios satisfy 

X = f V-’ (RI) 4 

0 
~ . 

2 
(A.6) 

Non-degeneracy simply implies that no two distinct linear combinations of 
assets are perfectly correlated and that no asset has zero variance. We shall see 
later how to find the effkient set when this condition is not satisfied. When the 
probability distribution is non-degenerate, the second-order conditions for a 
minimum are satisfied because the covariance matrix is positive definite. 

The equation of the eficient set 

Different efficient portfolios are determined by different values of the multi- 
pliers in eq. (A.6). The result can be written in a more intuitive way, however, 
as shown in the following: 

JFE B 
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Theorem I. If no linear combination of assets has :ero variance and at least 

two assets have different mean returns, the incestment proportions of a mean- 

cariance ejicient portfolio whose mean return is r,, are gicen by the cector 

X= V-‘(R I)A-’ ; , 
0 

where the (2 x 2) matrix A is defined as 

A = (R 1)’ V-‘(R I). (A.8) 

Boo/: The assumptions in the ‘if’ clause guarantee that V is positive definite 
aod that (RI) has rank two. This implies that A is non-singular and positive 
definite. Then pre-multiplying eq. (A.6) by (R I)’ gives 

= A-’ (R I)’ X, 

and by using constraints (A.l) and (A.2), this simplifies to 

+(;j = A-‘(;). 

Substitution for j(i:) in eq. (A.6) then gives eq. (A.7). Q.E.D. 

The matrix A is the fundamental matrix of information about the basic data 
contained in the means and covariances of individual assets. As we shall see, 
the elements of A contain sufficient information to prove all the important 
results of the cfftcient set mathematics. Since A is 2 x 2 and symmetric, it con- 
tains only three distinct constants. 

Definition 

a = R’V-‘R, b = R’V-‘1, c = CV-‘l, 

are the ‘efficient set constants’ contained in the matrix 

(A.9) 

For example: 
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CoroNary I. The variance of any mean-variance eficient portfolio is related to 
its mean by the parabola 

17: = (rp l)A-’ F , 
0 

which can be written in scalar notation as 

u’, = (a-2br,+cri)/(ac-b’). (A.1 1) 

Proof. The efficient investment proportions given by eq. (A.7) can be used in 
the general formula for a portfolio’s variance, (A.3), to give 

~7: = (rp l)A”(R [)‘Y-’ VY-‘(R l)A-‘(r, 1)’ 

= (rp l)A-’ AA-‘(r, 1)‘. Q.E.D. 

The minimum variance portfolio 

One portfolio of special interest is the global minimum variance portfolio. 
Its mean and variance are found easily from the minimum of eq. (A.lO). 

Corollary 2. The global minimum variance is 

a: = l/c. (A.12) 

The portfolio with this variance has mean return 

r. = b/c, (A.13) 

and its investment proportions are given by 

x0 = v-+/c. (A.14) 

It is positively correlated with all portfolios and assets and its covariance with all 
individual assets and all portfolios is a fixed constant, ai, which is its own variance. 

Proof. Eq. (A.13) is obtained from the zero of the first derivative of eq. 

(A.1 l), 

0 = -b-cr,. 

This gives a minimum if the second derivative of eq. (A.1 l), 

Zc/(ac - b 2), 
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is positive. From eq. (A.9). we note that c must be positive since it is a quadratic 
form of the positive definite matrix V -I. The denominator is positive because 
it is the determinant of A which is also positive definite. 

Eq. (A.12) is obtained by substituting eq. (A.13) in the general formula for 
the variance of e5cient portfolios, (A.1 1). Similarly, substituting eq. (A.13) 
into eq. (A.7) gives 

which is eq. (A.14). 
The last statement about the covariance of the minimum-variance portfolio 

is obtained as follows: Let X, be any arbitrary vector of investment proportions. 
Then the covariance between this portfolio,j, and the global minimum variance 
portfolio is 

=JO = x;vxo = x;qc = l/c. Q.E.D. 

Heuristically, the minimum variance portfolio nturt be positively correlated 
with all other portfolios. If it were not, a further combination would result in 
another portfolio whose variance was even smaller. A heuristic reason for the 
constancy of the covariance is more subtle: but consider the following: Find the 
minimum variance portfolio that could be obtained from any arbitrary pair 
of assets. It can be verified readily that this minimum coincides with one or the 
other assets if and only if their covariance equals one of their variances. The same 
thing is true when one of this arbitrary pair is the global minimum variance 
portfolio. Since it is indeed the minimum, its variance must equal the arbitrary 
covariance (which is thus seen to be constant and independent of the second 
asset). 

Eficient portfolios and correlation 

Corollary 3. For every eficient portfolio except the global minimum variance 
portfolio there exists a unique orthogonal efficient portfolio with finite mean. 
If the first efficient portfolio has mean rP, its orthogonal portfolio has mean r, 
given by 

r, = (a - br,)/(b - cr,). (A.15) 
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Furthermore, portfolio z always lies on the opposite-sloped segment of the eficient 
set from portfobo p. 

Proof. By using eq. (A.7) in eq. (A.4), we can obtain the covariance between 
any arbitrary pair of e5cient portfolios, say between p and q, as 

uqp = (r,l) A-’ ‘;9 . 
0 

(A.16) 

If p and q are orthogonal, this covariance is zero. Thus, putting q = z gives 
the equation 

(rr 1)(_;_3(:) = 0, 

from which eq. (A.15) follows directly. [Note that the determinant of A has been 
eliminated from eq. (A.16).] Uniqueness is obvious from eqs. (A.7) and (A.15). 

The second part of the corollary follows by noting that if r, is on thenegatively 
sloped efficient set segment, its return must be smaller than the return on the 
global minimum variance portfolio, i.e., r, < b/c. Then from eq. (A.15), 
(a- br,)/(b- cr,,) < b/c. If the return on r,, also satisfied r,, < b/c then b-err 
would be positive and we would have 

a - br, < (b/c)(b - err), 

or a-6*/c c 0. But since c is positive, this is a contradiction because ac-b* is 
recognized as the determinant of A, which is positive. Thus, rr must exceed b/c 
and be on the positively-sloped segment. Q.E.D. 

The geometry of these orthogonal portfolios is useful, as can be seen in the 
following: 

Corollary 3.A. In the return-variance space, the line passing between the 
eficient portfolio p and the global minimum variance portfolio intersects the 
return axis at r,. In the return-standard deviation space, the tangent to the e&ient 
set at rr intersects the return axis at r,. 

Proof In the mean-variance space, the slope of the line connecting portfolios p 
and G is 

(‘P - re)/(a2, - c3, 

and its intercept on the return axis is 
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Substituting for r0 and 0: from eqs. (A.13) and (A.12) and simplifying, this 
expression reduces to (br,-a)/(~,-b) which is rz in eq. (A.1 5). Thus the first 
statement is proven. To prove the second, it is easiest to use the first derivative 
of eq. (A.1 1). This provides an expression for the tangent to the efficient set in 
the mean-standard derivation space. Multiplying this tangent by bP and sub- 
tracting the result from r,, gives eq. (A.15). Q.E.D. 

Corollary 4. All portfolios on the positively-sloped segment of the eficient 
set are positively correlated. 

ProoJ From eq. (A.16) we can see that any two efficient portfolios, p and q, 
will be negatively correlated if and only if 

a-b(r,+rJ+c rprrl < 0, 

which ivplies that 

a- br, < r&b-crp). 

If p is on the positively-sloped efficient segment, b - crp < 0, and thus r* < r,, 
where z is p’s orthogonal portfolio. But z must lie on the negatively-sloped 
segment, from Corollary 3. Thus, q is also on the negatively-sloped segment 
since its return is smaller than rr. Q.E.D. 

It is easy to see by the same argument that all portfolios on the negatively- 
sloped segment arc positively correlated too. Only portfolios that lie sufficiently 
far apart, and on opposite sides of the efficient set, are negatively correlated. 
Heuristically, if investors do wish to minimize variance and maximize expected 
returns, all investors who agree on the probability distribution would hold 
positively correlated portfolios. 

The separation or ‘two-fund’ theorem 

Corollary 5 (‘Two-Fund Theorem’). The investment proportions vector of 
every mean-variance eficient portfolio is a linear combination of the proportions 
vector: of two other eficient portfolios whose means are diflerent. 

Proof. From eq. (A.7). the investment proportions are seen to be linear in 
the mean return. This is so because the (Nx 2) matrix, B E V-‘(R I)A”, 
contains only constants (N is the number of individual assets). Thus, if pl, p2 
and p, are efficient portfolios and a is a constant given by a = (r3 - rJ/(rI - rl), 
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then 

cxr,+(l-z)rz 

1 

= ax,, +(l -a)XPI, Q.E.D. 

According to Corollary 5, if we identify two efficient portfolios, all others 
can be constructed as a linear combination of these two. We might as well pick 
two portfolios whose means and variances are easy to compute. One would 
certainly be the global minimum variance portfolio with mean and variance 
given by eqs. (A.13) and (A. 12). Its investment proportions, eq. (A.14), are 
simply the sums of the rows of the inverse covariance matrix, Y-’ (normalized 
by the sum of all elements of V-‘). A second easily-computable efficient port- 
folio is the one with mean return rl - a/b. Its variance is 0: = a/b* and its 
investment proportions are 

X, = V-‘R/b. (A.17) 

From Corollary 3, eq. (A.15). we observe that this portfolio’s orthogonal port- 
folio has a mean of zero.” Thus, its associated covariance vector is proportional 
to the mean return vector. Its investment proportions are very easy to compute 
as can bc seen in eq. (A.17). 

Relations among individual asset parameters 
Corollary 6. The covariance vector of individual assets with any portfolio can be 
expressed as an exact linear function of the individual mean returns vector if and 
only if the portfolio is eficient. 

Proof of Suficiency. The vector of covariances between individual assets 
and a particular efficient portfolio is given by VX, where X is the portfolio’s 
investment proportions vector, From eq. (A..7), this implies 

VX= (R&4-’ ;p . 
0 

(A.18) 

Since A-‘(y) contains two constants, VX is linear in R. Q.E.D. 

Although eq. (A.18) is perfectly acceptable as a result, it can be rewritten in 

a more traditional and perhaps more recognizable form. Note that the (2 x 1) 

2’I am indebted to Eugene Fama for pointing out this fact. 
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vector A-‘(y) can be simplified as 

where z is p’s orthogonal portfolio. Substitution back into eq. (A.18) gives 

R = rzl+(rp-rz)B, (A.19) 

where j3 E KY/u’, is the vector of simple regression slope coefficients of indivi- 
dual assets on efficient portfolio p (the ‘betas’). Since the covariances are linear 
in the mean return, of course the ‘betas’ are too. 

Proof of Necessity. Let the vector of covariances with an arbitrary portfolio 
m be an exact linear function of the mean returns, 

vx, = a,R+a,l, 

where a, and a2 are arbitrary constants. Then the vector X,,, is equal to 

X” = a,V”R+a,V-‘r 

= albX, +a,cX,,, 

where X, is the vector of investment proportions for special efficient portfolio 1 
[WC cq. (A.l7)], and X0 is the vector of proportions for the global minimum 
variance portfolio (b and c are two of the three efficient set constants). 

Since the constraint (A.l) must apply to all such vectors, including the vector 
X,,,, we must have 

a,b+a,c = 1. 

Thus X,,, is a weighted average of two efficient vectors X, and X0 and, by 
Corollary 5, X, also is efficient. Q.E.D. 

A slightly more general form of the linearity property can be obtained. Let us 
suppose that portfolios A and B are chosen arbitrarily and that the multioariate 
regression coefficients are computed between individual asset returns and these 
two portfolios’ returns. Then: 

Corollary 6.A. 28 Let vectors of m~rltivariate regression coeflcients be calcu- 
lated between individual asset returns (as dependent variables) and the returns o 

*‘I am indebted to John B. Long. Jr. for pointing out a previous error in this corollary. 
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two imperfectl~correlated portfolios A and B (as explanatory variables). Then 
both multivariate regression coeficient vectors are exact linear functions of the 
mean return vector if and only if A and B are eficient. Furthermore, 

(a) the coeficient vector for asset j on portfolio A is given by 

(V-G - a,&/(aj - bAB) = (R - rel)/(r,, - rB), (A.20) 

and similarly for portfolio B with the A and B subscripts interchanged; and 
(b) the two coeficient vectors sum to the unit vector. 

Proof of Suflciency. If statement (a) is true, the proof of exact linearity is 
identical to the proof of Corollary 6 because (A.20) shows that the multivariate 
coefficient vector is linear in the covariance vector VX,. Since a linear function 
of a linear function is also linear, the result follows immediately. 

To prove parts (a) and (b), first note that the usual multivariate coefficient 
of A obtained by regressing j on A and B would have been 

But since A and B are mean-variance efficient, this multivariate coefficient can 
be simplified. Noting from eq. (A.19) that c]B = &(r,-rz,,)/(rg-rz,), where zB 
is B’s orthogonal portfolio, and noting analogous expressions for ojA and Q,,~, 
eq. (A.21) can bc rewritten as 

or 

P; = 

P; = 

(r,-rrJ(rB-rzo)-(r,-rzs)(rB-rrl) 

(rA - r,,)(r~ -rrJ-(rA-rzs)(rB-rJ’ 

rJ - rE =jA - =A5 

-=z* 
rABrB =A -=AB 

(A.22) 

This proves part (a). Since the same development can be made in behalf of 
portfolio B, the multivariate coeffkient against B must be (r,-r,,)/(~~-rA) = 
1 -pi. This proves part (b). Q.E.D. 

Proof of Necessity. Let both multivariate coefficient vectors be exact linear 
functions of the mean return vector. Using the general definition (A.21) of 
multivariate coefficients and the same procedure as that contained in the neces- 
sity proof of Corollary 6, it can be shown that the vectors W, and W,, defined 

by 
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and 

are efficient. (Here, jAB = Q,&;.) 
Adding the two equations in order to eliminate X, gives 

Since the coefficients of W, and W, sum to 1 -~BAfiAB, X, is a linear combina- 
tion of two efficient vectors and is therefore also efficient (by Corollary 5). 
An identical development proves the efficiency of vector X,. Since A and B are 
efficient, statements (a) and (b) are true. Q.E.D. 

Suppose that some non-efficient portfolio q has been used to estimate a vector 
of betas. There exists an efficient portfolio p that has the same mean return, 

TP 
= r , and for which eq. (A.19) is satisfied. But the betas of eq. (A.19) are 

VXp/afp whereas the betas estimated with portfolio q are fl = VXJui. Using the 
estimates fl, (A.19) can be rewritten as 

R E rr + (r(- r,)fl + r+ F’(X,/k - X,), 
aq 

(A.23) 

where k = u:/u,‘. The expression (A.23) is linear in the vector fl if and only if 
the last term is a constant vector. But ifq is not efficient, then k < 1. This implies 
that the last term can be constant only if rp # rq, which is a contradiction. 
(This is actually an equivalent proof to that used for Corollary 6; but it has the 
advantage that the deviations from a linear return-beta relation caused by using 
an inefficient base portfolio are given explicit display.) 

One featureof eq. (A.23) is of particular interest: It would be quite possible 
that a subset of the elements of Xp and X, be equal; and if the returns and betas 
for this particular subset were calculated, they would be exactly linearly related 
when taken alone. Thus the full set:of data is not conrinuou.sl_~ non-linear even 
when the base portfolio is inefficient. 

To reiterate, an efficient set calculated from a subset of assets will pass through 
portfolios that are inefficient globally. But since such portfolios are efficient 
for the subset, their associated subset of betas will be exactly linear in the subset 
of mean returns. 

Corollary 7. The proportion invested in a given individual asset changes 
monotonically along the eficient frontier. 

Proof. By inspection from eq. (A.7). (The gradient vector of X with respect 
to rp is a constant vector.) 
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This corollary implies that if an individual asset represents a non-zero pro- 
portion in any efficient portfolio, it is held in of/efficient portfolios except at most 
one. It is either held in positive amount or sold short in all others. N.B. It is 
mathematically possible that some assets are positively (or negatively) rep- 
resented in all efficient portfolios and even that the individual proportion is a 
constant. 

The gradient vector of eq. (A.7) can be written as 

8 X/Jr, = a$-‘(R/r,, -t)/(rl -r,,), (A.24) 

where rl and r,, are means of, respectively, the special efficient portfolio 1 
(see Corollary 5), and of the global minimum variance portfolio. ai is the global 
minimum variance. The gradient vector of the covariance between individual 
assets and efficient portfolios is a(VX)/& and thus it is also monotonic. Since 
rr > r,-, if r,, is positive, we see that as the efficient portfolio’s return increases, 
the covariance between a given asset and the portfolio increases (is zero, or 
decreases) when the asset’s mean return is larger (equal to, or smaller) than the 
return on the global minimum v.ariance portfolio. 

In contrast, the betas computed with efficient portfolios are not monotonic. 
In fact: 

Corollary 7.A. To every individual asset, there corresponds a unique pair of 
orthogonal portfolios which provides the maximum and minimum betas for that 
asset. These portfolios have returns 

r = rx,f~~~z, &I, (A.23 

where 2, is the eficient portfolio whose return is orthogonal to the return of asset 
j, ai is the globul minimum variance, and A is the eficient set information matrix 
(A.8). 

Proof. The beta of any individual asset with efficient portfolio p is given by 

/I, = (r, l)A-‘(r, I)‘/+ (A.26) 

Differentiating with respect to rP gives a function whose zero is a quadratic 
equation in rp. Some tedious algebra simplifies the result to (A.25). (Note that 
0: is a function of rp.) 

To prove that the maximum and minimum beta eficicnt portfolios are 
orthogonal, simply use (A.4). Their covariance is 

(r,+K i)A-‘(r,-K l)‘, 
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In scalar notation, this reduces to 

(a - 2br,, + a,: - cK2)/lA [, 

and since 

t7 Z, = (a-2brz,+cr,2,)/lAl = cK2/lA(, 

the covariance is zero. Q.E.D. 

An asset whose return is greater than the return on the minimum variance port- 
folio will be positively correlated with all efficient portfolios on the positive 
segment. This implies that its maximum-beta efficient portfolio will have return 
rz,+aOa,, @I, and its minimum-beta efficient portfolio will have return equal 
to the smaller root of eq. (A.25).29 

A straightforward application of I’Hapitals’ rule to eq. (A.26) shows that 
every individual beta converges to zero as the efficient portfolio’s return grows 
indefinitely large (or small). (This does not violate the fact that the weighted 
average beta is always one because the investment proportions grow indefinitely 
large in absolute value.) As an implication, the cross-sectional variance in beta 
is determined by the particular efficient portfolio used in the computation. 
When the global minimum variance portfolio is used, all betas are equal to I.0 
and their cross-sectional variance is zero. At an infinite return, all betas con- 
verge to zero and again their cross-sectional variance is zero. Naturally, there 
must exist an efficient portfolio whose associated betas have a maximum cross- 
sectional variation : 

Corollary 7.8. The_ maximum cross-sectional variance in beta is given by 
eirher one of the two eflcientportfolios whose returns are 

rP = r,+ai JIAI, (A.27) 

where r,, and c$ are the mean and variance of the global minimum variance port- 
folio and A is the e#cient set information matrix (A.8). 

3vAs an example, for the Black, Jensen, and Scholes data of table 1 in the paper, an asset 
with the same return as the proxy market, r, = 18.96 percent, would have had a maximum 
beta of 1.66 and a minimum of -0.659 over all efficient portfolios. (Assuming that the BJS 
market proxy and its zero beta portfolio were in fact etlicicnt.) The two ct?icient pdrtfolios 
that would have provided these maximum and minimum betas had returns of 11.6 and 0.375 
percent, respectively. 
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Proof. It is possible to prove this result directly from the definition of beta, 
but the algebra is tedious. A shorter proof uses the fact that all beta vectors 
computed for efficient portfolios are exactly linear in the mean return vector 
(see Corollary 6). From the linearity relation (A.19), we must have 

B = CR - v)l(rp - rz), (A.28) 

and the cross-sectional variance in beta is therefore 

Var (B) = Var (R>/(r,-rZ)2. (A.29) 

The cross-sectional variance of individual returns, Var (R), is a constant with 
respect to movements along the efficient set. Thus, Var (/I) is maximized when 
IrP-rZl is minimized. From Corollary 3, we note that r, is a simple function of 
rP [eq. (A.15)]. The first derivative of rp-rr with respect to r,, gives a quadratic 
equation in rp whose solution is eq. (A.27). Q.E.D. 

It is evident that the two portfolios which satisfy eq. (A.27) lie symmetrically 
on oppositely-sloped segments of the efficient frontier. The elements of their 
two associated beta vectors must therefore be equal and of opposite sign.30 
They are also orthogonal. These are the only orthogonal efficient portfolios 
whose variances are equal and by Corollary 3.A, their variance is 2ai. 

The cficient set when the minimum variance is zero 

A special problem arises when the lcast-risky portfolio has zero variance.” 
This could bc caused by the cxistcnce of a risklcss asset but the possibilities for 
its occurrence arc much broader. In gcncral, it occurs if the covariance matrix 
of returns is only positive semi-definite; that is, if there exists a vector of invest- 
ment proportions X, such that XLVX, = 0. 

Since Y is no longer of full rank, its singularity precludes the direct calculation 
of the investment proportions vector. The simplest and most intuitive way to 
find them is to proceed in two steps as follows. First, find the efficient set para- 
bola for the restricted group composed of all mutually non-degenerate assets. 
This means that any non-risky assets and one member of each pair of perfectly- 
correlated assets must first be discarded. A ‘risky efficient set’ is constructed 
from the remaining assets. For example, if the original N assets had covariance 

“Continuing the numerical example with the Black, Jensen and Scholes data (table I), the 
cfflcicnt portfolios with returns 13.44 and 3.44 percent would have maximized the cross- 
sectional beta variance. 

“Mathematically speaking. there is nothing to preclude several zero-variance portfolios 
with dilTercnt mean returns. Of course rational asset pricing would preclude such an event 
since in the absence of restrictions on short-selling, an infinite return could be obtained without 
a risk. 
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matrix V with rank L c N, N-L rows and columns of V would be discarded 
to obtain an L x L covariance matrix, V,, with full rank. It is obvious that all the 
results found previously for V when it had rank N must apply to the restricted 
set o/L assets whose covariunce matrix is V,. In particular, Theorem 1 and Corol- 
laries l-7 all apply to the reduced space of L assets. A reduced ‘risky efficient set’ 
can be derived; the betas calculated against portfolios that lie on this ‘risky 
efficient set’ are linear in the reduced vector of mean returns. The minimum 
variance among portfolios of the L assets is l/r’V,_-‘I; and so on. 

This implies : 

Theorem 2. Let an efficient set be computedfrom the L assets whose covariance 
matrix is non-singular. Then the global eficient set is composed of 

aX, = au; VL1[(RL - r&/(ro -m (A.30) 

as investment proportions in the L assets and 1 - ar’X, in the zero-variance asset F. 
The scalar a is positive for eficicnt portfolios on the positive (negative) segment if 
rF is less (greater) than the return r,, on the minimum variance portfolio of the L 
assets. ai is this minimum variance. 

Proof. Since the global minimum variance is zero, the efficient set is com- 
posed of line scgmcnts in the mean-standard deviation space. This means that 
there is some tangent to the reduced (L asset) mean-standard deviation efficient 
set which passes through rF and gives the global efficient set. From Corollary 
324, we see that the return at the tangency point must be the solution to 

rp = (br, - a)@, - b), 

where a, b. and c arc the three ‘efhcicnt set constants’ for the L assets only. 
This equation is rcvcrsiblc, which implies 

rr = (brF - a)/(crF - b). 

Substituting rz in (A.7) gives the XL investment proportions vector used in 
(A.30). 

The last part of the theorem is established by noting that 

rF - r* = (a - 2br, + cr:)/(cr, - b). 

The numerator is positive since lALl = ac-b2 > 0. 
Thus rr 5 rF implies rF 2 b/c = ro. Q.E.D. 

An alternative proof proceeds directly from the variance of the reduced set 
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of efficient portfolios. In other words, we can find the minimum with respect to 
rr of 

a2u2 P’ 

subject to 

r = ar,+(l-a)r,. 

Using the efficient set variance formula for af, the first derivative of a2ai is 
zero when 

(‘P - rJ(crp - 6) - ((1 - 2brp + cr,‘) = 0, 

and this reduces to 

rp = (br, - u)/(crr - b). 

Corollary. When V is singular, all positive-variance eficient portfolios are 
per/ectly correlated. 

ProoJ Theorem 2 shows that the vector ax, of investments in the reduced L 
asset space is proportional for all positive variance efficient portfolios. The 
remaining investment, 1 -al’XL, is placed in a zero-variance asset. Thus, the 
returns on all efficient portfolios are exactly linearly related. Q.E.D. 

Qualitative results for investment proportions vectors 

The sign pattern of the investment proportions vector of an efficient portfolio 
is an important datum in several contexts. For example, the interdiction of 
short-selling would leave a region of the efficient frontier unchanged if and only 
if that region were characterized by totally non-negative investment proportions, 
x 1 0. 

Perhaps more importantly, there may exist no efficient vector such that 
X > 0. This means that no efficient portfolio has positive investments in all 
individual assets; which would imply, in turn, that the ‘market’ portfolio 
(composed of all assets) could not be efficient. If the reader thinks there must be 
some efficient portfolio whose X vector is positive, the counter-example in the 
footnote is offered.32 There seems to be no necessary economic reason to con- 

“Let three assets have mean return vector and covariancc matrix, 

R’ = (1 2 3) and V = 
G : 19. 

Using eq. (A.7). it can be verified readily that every efficient portfolio contains a zero investment 
in the second asset. 
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sider such examples pathological. In particular, the argument that such mean 
(anticipated) returns must be out of equilibrium presupposes that investors 
regard mean-variance efficiency as optimal. 

When the global minimum variance is zero, the entire efficient set is composed 
of linear combinations of X, and XL (see Theorem 2 above). Suppose that F 
is a single riskless individual asset. Then we can restrict our attention to XL >( 0. 
When the global minimum variance is positive, things are slightly more compli- 
cated because a totally positive vector X might occur anywhere within the 

range trm.X, fminl, i.e., between the maximum and minimum individual asset 
returns. 

A beginning to this problem is suggested by the following: 

Theorem 3 [ Debreu-Herstein (2953)]. Suppose the covariance matrix is 
non-negative. Then if the global minimum variance portfolio has totally positive 
investment proportions, the variance of every individual asset is larger than each 
of its associated covariances. 

Proof. Suppose we put V -I = sl- Q. Where I is the (Nx N) identity 
matrix and Q > 0. Debreu and Herstein showed that V >= 0 if and only ifs is 
larger than the largest eigenvalue of Q. This implies that in the matrix sl- Q, 
all diagonal elements are positive and all off-diagonal elements are negative 
Furthermore, they also showed (p. 603). that if the sum of every row of sl- Q. 
is positive, and if d,, is the cofactor of its ith row andjth cohrmn, then d,, > drJ 
for all i # j [see also Quirk and Saposnik (1968, pp. 210-21 I)]. Q.E.D. 

This result can be intcrpretcd as follows. The weights X, of the global mini- 
mum variance portfolio arc proportional to the sums of the rows of V-’ [see 
(A.14)]. Thus a necessary condition for X0 > 0 is that each of V’s diagonal 
elements exceeds every off-diagonal element in the same row. Heuristically, 
such a condition implies weak correlation among every pair of assets. For any 
pair, say i andj, we must have not only u:oj > a; (which is always satisfied 
when V is non-singular), but also of > a,, and uj > o,,. The minimal variance 
formed by every combination of two assets must bc associated with a positive 
investment in both assets. Viewed geometrically, the locus of portfolios formed 
from every pair of assets is bowed outward toward the return axis between them. 
It seems likely that this result can be generalized to the case when V contains 
some negative covariances but I have not been able to find a proof. 

Since the global minimum variance portfolio has strictly positive proportions 
in this case, by Corollary 7 above there must be a finite range of efficient port- 
folios with strictly positive investment proportions in its neighborhood. 

In fact, every efficient portfolio, whose return r,, satisfies 

(R I)A-’ I;p > 0, 
0 
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has a totally positive investment proportions vector [cf. Debreu and Herstein 
(1953, p. 601)]. This condition is equivalent to 

(R-r&,-r,) > 0, 

where r, is p’s orthogonal portfolio and 0 is the global minimum variance 
portfolio. From the geometry Corollary 3.A, it is easy to see that (R - rz~>(rp- r,J 
is strictly positive for some fP in rmin 5 rP 6 r,.,,_. Since in the present case the 
global minimum variance portfolio is totally positive, fmin < rc, < r,,,_, and 
there is a finite range where the vector is positive. If the covariance matrix satis- 
fies the conditions of Theorem 3, we must have the following bounds on ortho- 
gonal portfolios association with f,,,_ and rmrn: 

Unfortunately, this result does not, constitute a necessary condition for the 
existence of some totally positive efficient proportions vector. Examples are 
easy to construct where the global minimum variance portfolio has negative 
investment proportions but where another efficient portfolio is totally positive. 
Typically, this would occur when r0 is outside the range [f,,,_, rmin] and when 
there are relatively strong positive correlations among individual assets. In 
other words, when there are certain assets whose variances are inferior to some 
of their associated covariances. It is only for sufficiently strong correlations 
that X becomes non-positive everywhere (as in the example of footnote 32). 
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