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It has become standard practice in the cross-sectional asset pricing literature to evaluate

models based on how well they explain average returns on size-B/M portfolios,

something many models seem to do remarkably well. In this paper, we review and

critique the empirical methods used in the literature. We argue that asset pricing tests

are often highly misleading, in the sense that apparently strong explanatory power (high

cross-sectional R2s and small pricing errors) can provide quite weak support for a model.

We offer a number of suggestions for improving empirical tests and evidence that

several proposed models do not work as well as originally advertised.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The finance literature has proposed a wide variety of
asset pricing models in recent years, motivated, in part, by
the well-known size and book-to-market (B/M) effects
in stock returns. The models suggest new risk factors to
help explain expected returns, including labor income
(Jagannathan and Wang, 1996; Heaton and Lucas, 2000;
Jacobs and Wang, 2004; Santos and Veronesi, 2006),
growth in macroeconomic output and investment
(Cochrane, 1996; Vassalou, 2003; Li, Vassalou, and Xing,
2006), growth in luxury, durable, and future consumption
(Ait-Sahalia, Parker, and Yogo, 2004; Bansal, Dittmar, and
Lundblad, 2005; Parker and Julliard, 2005; Yogo, 2006;
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Hansen, Heaton, and Li, 2006), innovations in assorted
state variables (Brennan, Wang, and Xia, 2004; Campbell
and Vuolteenaho, 2004; Petkova, 2006), and liquidity risk
(Pastor and Stambaugh, 2003; Acharya and Pedersen,
2005). In addition, the literature has suggested new
variables to summarize the state of the economy, includ-
ing the surplus consumption ratio (Campbell and
Cochrane, 1999), the consumption-to-wealth ratio
(Lettau and Ludvigson, 2001; Duffee, 2005), the housing-
collateral ratio (Lustig and Van Nieuwerburgh, 2004),
and the labor income-to-consumption ratio (Santos and
Veronesi, 2006).

Empirically, many of the proposed models seem to do a
good job explaining the size and B/M effects, an observa-
tion at once comforting and disconcerting—comforting
because it suggests that rational explanations for
the anomalies are readily available, but disconcerting
because it provides an embarrassment of riches. Review-
ing the literature, one gets the uneasy feeling that it
seems a bit too easy to explain the size and B/M effects, a
concern reinforced by the fact that many of the new
models have little in common economically with each
other.
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Our paper is motivated by the suspicion above.
Specifically, our goal is to explain why, despite
the seemingly strong evidence that many proposed
models can explain the size and B/M effects, we remain
unconvinced by the results. We offer a critique of
the empirical methods that have become popular in the
asset pricing literature, a number of prescriptions for
improving the tests, and evidence that several proposed
models do not work as well as the original evidence
suggested.

The heart of our critique is that the literature has
inadvertently adopted a low hurdle to meet in claiming
success: high cross-sectional R2s (or low pricing errors)
when explaining average returns on Fama and French’s
(FF, 1993) 25 size-B/M portfolios. This hurdle is low
because the size-B/M portfolios are well known to have
a strong factor structure, in particular, FF’s factors explain
more than 90% of the time variation in the portfolios’
realized returns and more than 80% of the cross-sectional
variation in their average returns. Given those features, we
show that obtaining a high cross-sectional R2 in other
models is easy because loadings on almost any proposed
factor are likely to line up with expected returns—basi-
cally all that is required is for a factor to be (weakly)
correlated with SMB or HML but not with the tiny,
idiosyncratic three-factor residuals of the size-B/M port-
folios.

The problem we highlight is not just a sampling issue,
i.e., it is not solved by getting standard errors right. In
population, if returns have a covariance structure like that
of size-B/M portfolios, loadings on a proposed factor will
line up with true expected returns so long as the factor
correlates only with the common sources of variation in
returns. The problem is also not solved by using a
stochastic discount factor (SDF) approach. Under the same
conditions that give a high cross-sectional R2, the pricing
errors in an SDF specification will also be small, a result
that follows immediately from the close parallel between
the regression and SDF approaches (see, e.g., Cochrane,
2001).

This is not to say that sampling issues are unimportant.
Indeed, the covariance structure of size-B/M portfolios
also implies that, even if we do find factors that explain
little of the cross-sectional variation in true expected
returns, we are still reasonably likely to estimate a high
cross-sectional R2 in sample. As an illustration, we
simulate artificial factors that are correlated with returns
but produce zero true cross-sectional R2s for FF’s size-B/M
portfolios. We show that a sample adjusted R2 might need
to be as high as 44% to be statistically significant in
models with one factor, 62% in models with three factors,
and 69% in models with five factors. Further, with three or
five factors, the power of the tests is extremely small: the
sampling distribution of the adjusted R2 is almost the
same when the true R2 is zero and when it is as high as
70% or 80%. In short, the high R2s reported in the literature
are not as impressive as they might, on the surface,
appear.

The obvious question is then: What can be done?
How can asset pricing tests be improved to make them
more convincing? We offer four suggestions. First, since
the problems are caused by the strong factor structure of
size-B/M portfolios, one simple solution is to include other
portfolios in the tests, sorted, for example, by industry,
beta, or other characteristics. Second, because the pro-
blems are exacerbated when a model’s risk premia are
estimated as free parameters, another simple solution is
to impose restrictions on the risk premia when theory
provides appropriate guidance. For example, zero-beta
rates should be close to the risk-free rate, the risk
premium on a factor portfolio should be close to its
average excess return, and the cross-sectional slopes in
conditional models should be determined by the volatility
of the equity premium (see Lewellen and Nagel, 2006).
Third, we argue that the problems are likely to be less
severe for generalized least squares (GLS) than for
ordinary least squares (OLS) cross-sectional regressions,
so another, imperfect, solution is to report the GLS R2. An
added benefit is that the GLS R2 has a useful economic
interpretation in terms of the relative mean-variance
efficiency of a model’s factor-mimicking portfolios (this
interpretation builds on and generalizes the results of
Kandel and Stambaugh, 1995). The GLS R2 provides an
imperfect solution because it suffers from the same
problems as the OLS R2 in some situations (as do other
common asset pricing statistics).

Finally, because the problems are exacerbated by
sampling issues, a fourth partial solution is to report
confidence intervals for test statistics, not rely just on
point estimates and p-values. We describe how to do so
for the cross-sectional R2 and other, more formal statistics
based on the weighted sum of squared pricing errors,
including Shanken’s (1985) cross-sectional T2 statistic,
Gibbons, Ross, and Shanken’s (1989) F-statistic, and
Hansen and Jagannathan’s (1997) HJ distance. For the
latter three statistics, the confidence intervals again have
a natural economic interpretation in terms of the relative
mean-variance efficiency of a model’s factor-mimicking
portfolios.

Our suggestion to report confidence intervals has two
main benefits, even apart from the other issues considered
in this paper. The first is that confidence intervals can
reveal the often high sampling error in the statistics—by
showing the wide range of true parameters that are
consistent with the data—in a way that is more direct and
transparent than p-values or standard errors (standard
errors are insufficient because asset pricing statistics are
typically biased and skewed). The second advantage of
confidence intervals over p-values is that they avoid the
somewhat tricky problem of deciding on a null hypoth-
esis. In economics, researchers typically set up tests with
the null hypothesis being that a model does not work, or
does not work better than existing theory, and then look
for evidence to reject the null. (For example, in event
studies the null is that stock prices do not react to the
event.) Asset pricing tests often reverse the approach: the
null is that a model works perfectly (zero pricing errors)
which is ‘accepted’ as long as we do not find evidence to
the contrary. This strikes us as a troubling shift in the
burden of proof, particularly given the limited power of
many tests. Confidence intervals mitigate this problem
because they simply show the range of true parameters
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1 This argument works most cleanly if P has three factors, matching

FF’s model. It should also apply when P has two factors because size-B/M

portfolios all have multiple-regression market betas close to one in FF’s

model (see Fama and French, 1993). In essence, FF’s model is really just a

two-factor model for the purposes of explaining cross-sectional variation

in expected returns (on size-B/M portfolios).
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that are consistent with the data without taking a stand
on the right null hypothesis.

We apply these prescriptions to a handful of proposed
models from the recent literature. The results are
disappointing. None of the five models that we consider
performs well in our tests, despite the fact that all seemed
promising in the original studies.

The paper proceeds as follows. Section 2 formalizes
our critique of asset pricing tests. Section 3 offers
suggestions for improving the tests, and Section 4 applies
the prescriptions to several recently proposed models.
Section 5 concludes.

2. Interpreting asset pricing tests

In what follows, R is a vector of excess returns on N test
assets (in excess of the risk-free rate) and F is a vector of K

risk factors that perfectly explain expected returns,
meaning that mR�E[R] is linear in the N�K matrix of
stocks’ loadings on the factors, B�cov(R, F)var�1(F). For
simplicity, and without loss of generality, we assume that
the mean of F equals the cross-sectional risk premium
on B. Thus, our basic model is mR ¼ BmF, or

R ¼ BF þ e; ð1Þ

where e is a vector of mean-zero residuals with
cov(e, F)=0. The only assumption we make at this point
about the covariance matrix of e is that it is nonsingular,
so the model is completely general. [Eq. (1) has no
economic content since an appropriate F can always be
found; for example, any K portfolios that span the
tangency portfolio would work.]

We follow the convention that all vectors are column
vectors unless otherwise noted. For generic random
variables x and y, cov(x, y)�E[(x�mx)(y�my)0]. We use i to
denote a conformable vector of ones, 0 to denote a
conformable vector or matrix of zeros, and I to denote a
conformable identity matrix. M denotes the matrix I–ii0/d
that transforms, through pre-multiplication, the columns
of any matrix with row dimension d into deviations from
their means.

The factors in F can be thought of as a ‘true’ model that
is known to price assets; it serves as a benchmark but we
are not interested in it per se. Instead, we want to test a
proposed model P consisting of J factors, with associated
factor loadings C�cov(R, P)var�1(P). We will say that P

perfectly explains the cross section of expected returns if
mR=Cg for some risk-premium vector g (which, ideally,
would be determined by theory).

A common way to test whether P is a good model is to
estimate a cross-sectional regression of expected returns
on factor loadings:

mR ¼ ziþ Clþ a; ð2Þ

where l denotes a J�1 vector of regression slopes. In
principle, we could test three features of Eq. (2): (i) z

should be roughly zero (that is, the zero-beta rate should
be close to the risk-free rate); (ii) l should be non-zero
and might be restricted by theory; and (iii) a should be
zero and the cross-sectional R2 should be one. In practice,
empirical tests often focus on the restrictions that la0
and the cross-sectional R2 is one (the latter is sometimes
treated only informally). The following observations
consider the conditions under which P appears to be well
specified in such tests.

Observation 1. Suppose F and P have the same number of

factors and cov(F, P) is nonsingular. Then P perfectly explains

the cross section of expected returns if cov(e, P)=0, i.e., if P is

correlated with R only through the common variation

captured by F, even if P has arbitrarily small (but nonzero)

correlation with F and explains little of the time variation in

returns.

Proof. If cov(e, P)=0, then stocks’ factor loadings on P

are linearly related to their loadings on F: C�cov(R, P)
var�1(P)=B cov(F, P)var�1(P)=BQ, where Q�cov(F, P) var�1(P).
It follows that mR=BmF=Cl, where l=Q�1mF. &

Observation 1 says that, if P has the same number of
factors as F, testing whether expected returns are linear in
betas with respect to P is nearly the same as testing
whether P is uncorrelated with e, a test that does not seem
to have much economic meaning in recent empirical
applications. In particular, in tests with size-B/M portfo-
lios, we know that RM, SMB, and HML (the model F in our
notation) explain nearly all of the time variation in returns
(more than 92%), so the residual in R=BFþe is both small
and largely idiosyncratic. In that setting, we do not find it
surprising that many macroeconomic factors are corre-
lated with returns primarily through RM, SMB, and
HML—indeed, we would be more surprised if cov(e, P)
was not close to zero. In turn, we are not surprised that
many proposed models seem to explain the cross section
of expected size-B/M returns about as well as RM, SMB,
and HML. The strong factor structure of size-B/M portfo-
lios makes it likely that their loadings on almost any
proposed factor will line up with expected returns.1

Put differently, Observation 1 provides a skeptical
interpretation of recent asset pricing tests, in which
unrestricted cross-sectional regressions (or equivalently
SDF tests; see Cochrane, 2001) have become the norm.
In our view, many empirical tests say only that a number
of proposed factors are correlated with SMB and HML,
a fact that might have some economic content but seems
like a fairly low hurdle to meet in claiming that a proposed
model explains the size and B/M effects.

It is important to note that, in Observation 1, pricing
errors for the proposed model are exactly zero and the
model works perfectly, in population, based on any metric
of performance. Thus, our concern about tests with
size-B/M portfolios is not just a critique of the OLS R2

but also applies to formal statistics such as Hansen’s
(1982) J-test, Shanken’s (1985) T2 statistic, and Hansen
and Jagannathan’s (1997) HJ distance. We will discuss
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2 Let qi
0 be the ith row of Q. The off-diagonal terms of Q(Q0Q)�1Q0 can

be expressed as qi
0 (Q0Q)�1qj for iaj, and the matrix Q0Q equals Siqiqi

0 .

qi is independent of qj for iaj and is mean independent of qiqi
0 (because

of normality), implying that E[qi|Q0Q and qjai]=0 and, thus,

E[qi
0 (Q0Q)�1qj]=0. Also, the diagonal elements of Q(Q0Q)�1Q0 must

all have the same expected values since the elements of Q are assumed

to be identically distributed. It follows that E[Q(Q0Q)�1Q0]=(1/K)

E[tr(Q(Q0Q)�1Q0)IK]=(1/K) E[tr(Q0Q(Q0Q)�1)]IK=(J/K)IK.
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later, however, a number of reasons to believe the problem
is less severe in practice for formal asset pricing statistics.

Observation 2. Suppose returns have a strict factor struc-

ture with respect to F, i.e., var(e) is a diagonal matrix. Then

any set of K assets perfectly explains the cross section of

expected returns so long as the K assets are not asked to price

themselves (that is, the K assets are not included on the left-

hand side of the cross-sectional regression and the risk

premia are not required to equal their expected returns). The

only restriction is that cov(F, RK) must be nonsingular.

Proof. Let P=RK in Observation and re-define R as the
vector of returns for the remaining N�K assets and e as the
residuals for these assets. The strict factor structure
implies that cov(e, RK)=cov(e, BKFþeK)=0. The result then
follows immediately from Observation 1. &

Observation 2 is useful for a couple of reasons. First, it
provides a simple illustration of our argument that, in
some situations, it is easy to find factors that explain the
cross section of expected returns: under the common
arbitrage pricing theory (APT) assumption of a strict factor
structure, any collection of K assets would work. Obtain-
ing a high cross-sectional R2 is not very difficult when
returns have a strong factor structure, as they do in many
empirical applications.

Second, Observation 2 illustrates that it can be impor-
tant to take restrictions on the cross-sectional slopes
seriously. In particular, the result hinges on the fact that
the risk premia on RK are not required to equal the factors’
expected returns, as theory would require. To see why,
Observation 1 (proof) shows that the cross-sectional
slopes on C are l ¼ Q�1mF, where Q is the matrix of slope
coefficients when F is regressed on RK. In the simplest case
with one factor, l simplifies to mK/cor2(RK, F), which clearly
does not equal mK unless cor(RK, F) ¼ 1 (the formula for l
follows from the definition of Q and the fact that
mK ¼ BKmF). The implication is that the problem high-
lighted by Observations 1 and 2—that ‘too many’ factors
explain the cross section of expected returns—would be
less severe if the restriction on l was imposed (RK would
price the cross section only if cor(RK, F) ¼ 1).

Observations 1 and 2 are rather special since, in order
to get clean predictions, they assume that a proposed
model P has the same number of factors as the known
model F. The intuition goes through when JoK because,
even in that case, we would typically expect the loadings
on proposed factors to line up (imperfectly) with expected
returns if returns have a strong factor structure. The next
observation generalizes our results, at the cost of changing
the definitive conclusion in Observations 1 and 2 into a
probabilistic statement.

Observation 3. Suppose F has K factors and P has J factors,

with JrK. Assume, as before, that P is correlated with R

only through the variation captured by F, meaning that

cov(e, P) ¼ 0 and that cov(F, P) has rank J. In a generic sense,

made precise below, the cross-sectional R2 in a regression of

mR on C is expected to be J/K.

Proof. By a generic sense, we mean that nothing is known
about the proposed factors and, thus, we treat the
loadings on P as randomly related to those on F

(a similar result holds if we treat the factors themselves
as randomly related). More specifically, suppose F is
normalized to make B0MB/N=IK, i.e., the loadings on F are
cross-sectionally uncorrelated and have unit variances, so
loadings on all factors have the same scale. Observation 1
shows that C=BQ, where Q is a K� J matrix. A generic sense
means that we view the elements of Q as randomly drawn
from a N[0, s2

q] distribution. The proof then proceeds
as follows: In a regression of mR on i and C, the R2 is
mR
0 MC(C0MC)�1C0MmR/mR

0 MmR. Substituting mR=BmF and
C=BQ, and using the assumption that B0MB/N=IK, the R2

simplifies to mF
0 Q(Q0Q)�1Q0mF/mF

0 mF. The result then
follows from observing that E[Q(Q0Q)�1Q0] is a diagonal
matrix with J/K on the diagonal,2 so E[R2] ¼ mF

0 [(J/K)IK]mF/
mF
0 mF ¼ J/K. &

Observation 3 generalizes Observations 1 and 2. Our
earlier results show that, if a K-factor model explains both
the cross section of expected returns and much of the
time-series variation in returns, it should be easy to find
other K-factor models that also explain the cross section of
expected returns. The issue is messier with JoK. Intui-
tively, the more factors that are in the proposed model,
the easier it should be to find a high cross-sectional R2 as
long as the proposed factors are correlated with the ‘true’
factors. Thus, we are not surprised if a proposed three-
factor model explains the size and B/M effects about as
well as the FF factors, nor are we surprised if a one- or
two-factor model has some explanatory power. We are

impressed if a one-factor model works as well as the FF
factors, since this requires a single factor to capture the
pricing information in both SMB and HML. (We note again
that size-B/M portfolios all have FF three-factor market
betas close to one, so the model can be thought of as a
two-factor model consisting of SMB and HML for the
purposes of explaining cross-sectional variation in
expected returns.)

Fig. 1 illustrates these results using simulations with
FF’s 25 size-B/M portfolios, moving beyond the specific
assumptions underlying Observations 1–3. We calculate
quarterly excess returns on the 25 portfolios from 1963 to
2004 and explore, in several simple ways, how easy it is to
find factors that explain expected returns (or, put
differently, how rare it is to find factors that do not). The
figure treats the average returns and sample covariance
matrix as population parameters. Thus, like Observations
1–3 the figure focuses on explaining expected returns in
population, not on sampling issues (which we consider
later).

The three panels generate different types of artificial
factors to explain expected returns. The simulations
in Panel A match the assumptions underlying
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Fig. 1. Population R2s for artificial factors. We randomly generate

artificial factors and report the simulated distribution of population

R2s when expected returns on the Fama-French 25 size-B/M portfolios

are regressed on their artificial factor loadings (quarterly average returns,

variances, and covariances from 1963 to 2004 are treated as population

parameters in the simulations). In Panel A, macro factors are generated

by randomly drawing a 3�1 vector of weights, w, from a standard

normal distribution, defining a factor P=F0w, where F=[RM, SMB, HML]. In

Panel B, factors are constructed as zero-investment combinations of the

size-B/M portfolios by randomly drawing a 25�1 vector of weights from

a standard normal distribution. In Panel C, the procedure for Panel B is

repeated but only factors with (roughly) zero expected returns are

retained. The plots show the 5th, 50th, and 95th percentiles of the

simulated distribution based on 5,000 draws of up to five factors at a

time.

3 These facts in no way represent an indictment of Fama and French

(1993) since one of their main points was precisely that returns on the

size-B/M portfolios could be summarized by a small number of factors.

Our simulations just indicate that the factors they constructed are far

from unique in their ability to explain cross-section variation in expected

returns on the size-B/M portfolios.
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Observations 1–3 most closely: we generate artificial
‘macro’ factors that are correlated with RM, SMB, and HML
but not with the three-factor residuals of the size-B/M
portfolios. Specifically, we randomly draw 3�1 vectors of
weights, wi, from a standard normal distribution, each
defining a factor Pi=w0 iFþni, where F=[RM, SMB, HML] and
ni is an arbitrary random variable independent of returns.
The covariance between returns and Pi is then gi=cov(R, Pi)=
cov(R, F)wi. We repeat this five thousand times, generating
up to three artificial factors at a time, and report the cross-
sectional R2 when size-B/M portfolios’ expected returns are
regressed on the gi. The simulations capture the idea that a
proposed factor correlates at least somewhat with the
common factors in returns (the FF factors) but, consistent
with it being macroeconomic, is orthogonal to the idiosyn-
cratic residuals of the size-B/M portfolios.

The results in Panel A suggest that it can be easy to find
factors that help explain expected returns on the size-B/M
portfolios. Taken individually, half of our artificial factors
produce an OLS R2 greater than 0.15 and 23% produce an
R2 greater than 0.50 (the latter is not reported in the
figure). Using two factors, the median R2 is 0.79 and a
remarkable 89% of the models have an R2 greater than
0.50. These high values reflect the fact that FF’s model is
basically a two-factor model for the purpose of explaining
cross-sectional variation in expected returns. Finally, with
three factors, the simulated R2 always matches the cross-
sectional R2 of FF’s model, 0.81.

In Panel B, we relax the assumption that our artificial
factors are completely uncorrelated with the residuals of
the 25 size-B/M portfolios. Specifically, we generate
factors that are simply random combinations of the size-
B/M portfolios by drawing a 25�1 vector of portfolio
weights from a standard normal distribution (the weights
are shifted and re-scaled to have a mean of zero and to
have one dollar long and one dollar short). The logic is that
any asset pricing factor can always be replaced by
an equivalent mimicking portfolio of the test assets—

equivalent in the sense that the model’s pricing errors do
not change—and these simulations explore how easy it is
to stumble across mimicking portfolios that explain the
cross section of expected returns. In a sense, the simula-
tions also explore how special the FF factors are: How
much worse does a random combination of the size-B/M
portfolios perform relative to RM, SMB, and HML in terms
of cross-sectional explanatory power?

Panel B again suggests that it is easy to find factors that
explain expected returns on the size-B/M portfolios. The
median R2 using one factor is 0.15, jumping to 0.67, 0.78,
0.82, and 0.84 for models with two, three, four, and five
factors, respectively. More than 71% of our artificial two-
factor models and 92% of our artificial three-factor models
explain at least half of the cross-sectional variation in
expected returns. Ten percent of the two-factor models
and 30% of the three-factor models actually explain more
cross-sectional variation than the FF factors.3

Finally, Panel C repeats the simulations in Panel B with
a small twist: we keep only artificial factors (random
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combinations of the 25 size-B/M portfolios) that have
roughly zero expected returns. These simulations illus-
trate how important it can be to impose restrictions on
the cross-sectional slopes. Theoretically, the risk premia
on the artificial factors in Panel C should be zero,
matching their expected returns, but the panel ignores
this restriction and just searches for the best possible fit in
the cross-sectional regression. Thus, the simulated R2s
differ from zero only because we ignore the theoretical
restrictions on the cross-sectional slopes and intercept.

The additional degrees of freedom turn out to be very
important, especially with multiple factors. The median
R2s are 0.03, 0.52, and 0.64 for models with one, three, and
five factors, respectively, while the 95th percentiles are
0.53, 0.67, and 0.72. Twenty-four percent of the artificial
three-factor models and 54% of the artificial five-factor
models explain at least half of the cross-sectional
variation in expected returns, even though properly
restricted R2s would be zero.

These results show that it may be easy to explain
expected returns, in population, when assets have a
covariance structure like that of the size-B/M portfolios.
Our final observation suggests that the problem can be
worse taking sampling error into account.

Observation 4. The problems are exacerbated by sampling

issues: If returns have a strong factor structure, it can be easy

to find a high sample cross-sectional R2 even in the unlikely

scenario that the population R2 is small or zero.

Observation 4 is intentionally informal and, in lieu of a
proof, we offer simulations using FF’s 25 size-B/M
portfolios to illustrate the point. The simulations differ
from those in Fig. 1 because, rather than study the
population R2 for artificial factors, we now focus on
sampling variation in estimated R2s conditional on a given

population R2. The simulations have two steps. First, we fix
a true cross-sectional R2 that we want a model to have and
randomly generate a matrix of factor loadings, C, which
produces that R2. Factor portfolios, P=w0R, are constructed
to give those factor loadings, i.e., we find portfolio
weights, w, such that cov(R, P) is linear in C.4 Second, we
bootstrap artificial time series of returns and factors by
sampling, with replacement, from the historical time
series of size-B/M returns (quarterly, 1963–2004). We then
estimate the sample cross-sectional adjusted R2 for the
artificial data by regressing average returns on estimated
factor loadings. The second step is repeated four thousand
times to construct a sampling distribution of the adjusted
R2. In addition, to make sure the particular matrix of
loadings generated in step 1 is not crucial, we repeat that
4 Specifically, for a model with J factors, we randomly generate J

vectors, gj, that are uncorrelated with each other and which individually

have explanatory power of c2=R2/J (and, thus, the correct combined R2).

Each vector is generated as gj=cmsþ(1–c2)1/2ej, where ms is the vector of

expected returns on the size-B/M portfolios, shifted and re-scaled to have

mean zero and standard deviation of one, and ej is generated by

randomly drawing from a standard normal distribution (ej is trans-

formed to have exactly mean zero and standard deviation of one, to be

uncorrelated with ms, and to make cov(gi, gj)=0 for iaj). The factor

portfolios in the simulations have covariance with returns (a 25�1

vector) given by the gj.
step ten times, giving us a total sample of 40,000 adjusted
R2s corresponding to an assumed true R2.

Fig. 2 shows results for models with one, three, and five
factors. The left-hand column plots the distribution of the
sample adjusted R2 (5th, 50th, and 95th percentiles)
corresponding to true R2s of 0.0–1.0 for the simulations
described above. The right-hand column repeats the
exercise but uses factors that are imperfectly correlated
with returns, as they are in most empirical applications.
We start with the portfolio factors used in the left-hand
panels and add noise equal to three times their variance.
Thus, for the right-hand plots, a maximally correlated
combination of the size-B/M portfolios would have a time-
series R2 of 0.25 with each factor.

The figure suggests that a sample adjusted R2 must be
quite high to be statistically significant, especially for
models with several factors. Focusing on the simulations
in the right-hand column, the 95th percentile of the
sampling distribution is 44% using one factor, 62% using
three factors, and 69% using five factors when the true
cross-sectional R2 is zero. Thus, even if we could find
factors that have no true explanatory power (something
that seems unlikely given our population results above), it
would still not be too unusual to find fairly high R2s in
sample. Further, with multiple factors, the ability of the
sample R2 to discriminate between good and bad models
is quite limited since the distribution of the sample R2 is
similar across a wide range of true R2s. For example, with
five factors, a sample R2 greater than 73% is needed to
reject that the true R2 is 30% or less (at a 0.05 one-sided
significance level), but that outcome is unlikely even if the
true R2 is 70% (probability of 0.17) or 80% (probability of
0.26). The bottom line is that, in both population and
sample, the cross-sectional R2 does not seem to be a very
useful metric for distinguishing among models.
2.1. Related research

Our appraisal of asset pricing tests overlaps with a
number of studies. Roll and Ross (1994) and Kandel and
Stambaugh (1995) argue that, in tests of the capital asset
pricing model (CAPM), the cross-sectional R2 is not very
meaningful because, as a theoretical matter, it tells us
little about the location of the market proxy in mean-
variance space. We reach a similarly skeptical conclusion
about the R2, but our main point—that it can be easy to
find factors that explain expected returns when assets
have a covariance structure like that of the size-B/M
portfolios—is quite different. The closest overlap comes
from our simulations in Panel C of Fig. 1, which show that
factor portfolios with zero mean returns might still
produce high R2 in unrestricted cross-sectional regres-
sions. These portfolios are far from the mean-variance
frontier by construction (they have zero Sharpe ratios) yet
often have high explanatory power, consistent with the
results of Roll and Ross and Kandel and Stambaugh.

Kan and Zhang (1999) study cross-sectional tests with
so-called useless factors, defined as factors that are
independent of asset returns. They show that regressions
with useless factors can be misleading because the usual
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Fig. 2. The figure shows the sample distribution of the cross-sectional adjusted R2 (average returns regressed on estimated factor loadings) as a function

of the true R2 for artificial asset-pricing models with one to five factors, using Fama and French’s 25 size-B/M portfolios as test assets (quarterly returns,

1963–2004). In the left-hand panels, the factors are constructed as combinations of the 25 size-B/M portfolios (the weights are randomly drawn, as

described in the text, to produce the true R2 reported on the x-axis). In the right-hand panels, noise is added to the factors equal to three times their

variance, to simulate factors that are not perfectly spanned by returns. The plots are based on 40,000 bootstrap simulations (ten sets of random factors;

4,000 simulations with each).
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asymptotic theory breaks down, due to the fact that the
cross-sectional spread in estimated loadings goes to zero
as the time series grows. Our results, in contrast, focus on
population R2s and apply to factors that are correlated
with asset returns.
Ferson, Sarkissian, and Simin (1999) also critique asset
pricing tests, emphasizing how difficult it can be to
distinguish a true ‘risk’ factor from an irrationally priced
factor portfolio. They show that loadings on a factor
portfolio can be cross-sectionally correlated with expected
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returns even if the factor simply picks up mispricing.
Our analysis is different because it applies to general
macroeconomic factors, not just return factors, and high-
lights the difficulties created by the strong covariance
structure of the size-B/M portfolios.

Some of our results are reminiscent of the literature on
testing the APT and multifactor models (see, e.g., Shanken,
1987, 1992a; Reisman, 1992). Most closely, Nawalkha
(1997) derives results like our Observations 1 and 2,
though with a much different message. In particular, he
emphasizes that, in the APT, well-diversified variables
(those uncorrelated with idiosyncratic risks) can be used
in place of the true factors without any loss of pricing
accuracy. We generalize his theoretical results to models
with JoK proposed factors, consider sampling issues, and
emphasize the empirical implications for recent tests
using size-B/M portfolios.

Finally, our critique is similar in spirit to a contem-
poraneous paper by Daniel and Titman (2005). They show
that, even if expected returns are determined by firm
characteristics such as B/M, a proposed factor can appear
to price characteristic-sorted portfolios simply because
loadings on the factor are correlated with characteristics
in the underlying population of stocks (and forming
portfolios tends to inflate the correlation). Our ultimate
conclusions about using characteristic-sorted portfolios
are similar, but we highlight different concerns, empha-
sizing the importance of the factor structure of size-B/M
portfolios, the impact of using many factors and not
imposing restrictions on the cross-sectional slopes, and
the role of both population and sampling issues.

3. Improving asset pricing tests

The theme of Observations 1–4 is that, in situations
like those encountered in practice, it may be easy to find
factors that explain the cross section of expected returns.
Finding a high cross-sectional R2 and small pricing errors
often has little economic meaning and, in our view, does
not, by itself, provide much support for a proposed model.
The problem is not just a sampling issue—it cannot be
solved by getting standard errors right—though sampling
issues exacerbate the problem. Here, we offer a few
suggestions for improving empirical tests.

Prescription 1. Expand the set of test portfolios beyond
size-B/M portfolios.

Empirical studies often focus on the size and B/M effects
because of their importance. This practice is understand-
able but problematic, since the concerns highlighted
above are most severe when a couple of factors explain
nearly all of the time variation in returns, as is true for
size-B/M portfolios. One simple solution, then, is to use
additional portfolios that do not correlate as strongly with
SMB and HML. Reasonable choices include portfolios
sorted by industry, beta, volatility, or factor loadings (the
last being loadings on the proposed factor; an alternative
would be to use individual stocks, but errors-in-variables
problems could make this impractical, or statistically
based portfolios, such as those described by Ahn, Conrad,
and Dittmar, 2009). Bond portfolios might also be used.
The idea is to price all portfolios at the same time, not in
separate cross-sectional regressions.

Two points are worth emphasizing. First, the additional
portfolios do not need to offer a big spread in expected
returns; the goal is simply to relax the tight factor
structure of size-B/M portfolios. A different way to say
this is that adding portfolios can be useful as long as they
exhibit variation in either expected returns, on the left-
hand side of the cross-sectional regression, or in risk, on
the right-hand side. One is necessary, not both.

Second, we acknowledge the concern that no model
is perfect and will explain all patterns in the data.
This truism makes it tempting to view a model as
successful if it explains even one or two anomalies, such
as the size and B/M effects. The problem with this view,
however, is that tests with size-B/M portfolios alone
do not provide a sufficient test of a model, for all of
the reasons discussed in Section 2. It just does not seem
practical to judge a model as ‘successful’ if it works
only on those assets. Put differently, we expect many
models to price the size-B/M portfolios about as well as
the Fama-French factors, so tests with size-B/M portfolios
alone do not provide a meaningful way to distinguish
among the theories (though some of our suggestions
below can help).

Fig. 3 illustrates the benefits of expanding the set of
test assets. We replicate the simulations in Fig. 1 but,
instead of using only size-B/M portfolios, we augment
them with FF’s 30 industry portfolios. As before, we
explore how well artificial factors explain, in population,
the cross section of expected returns (average returns,
variances, and covariances from 1963 to 2004 are treated
as population parameters). The artificial factors are
generated in three ways. In Panel A, the factors are
constructed by randomly drawing 3�1 vectors of
weights, wi, from a N[0,1] distribution, defining a factor
Pi=w0iFþni, where F=[RM, SMB, HML] and ni is orthogonal to
returns. In Panel B, the factors are constructed as zero-
investment combinations of the size-B/M-industry
portfolios by randomly drawing a 55�1 vector of
portfolio weights from a N[0,1] distribution. In Panel C,
we repeat the simulations of Panel B but use only factor
portfolios with expected returns of zero. The point in each
case is to explore how easy it is to find factors that
produce a high population cross-sectional R2. (Section 2
provides a more complete description of the simulations.)

Fig. 3 suggests that it is much ‘harder,’ using artificial
factors, to explain expected returns on the 55 portfolios
than on the 25 size-B/M portfolios (the median and 95th
percentiles for the latter are repeated from Fig. 1 for
comparison). For example, in models with three factors,
the median R2s in Panels A, B, and C are 35%, 21%, and 11%,
respectively, for the full set of 55 portfolios, compared
with median R2s of 81%, 78%, and 52% for the size-B/M
portfolios. The difference between the size-B/M portfolios
and the full set of 55 portfolios rises substantially for
models with multiple factors, consistent with the factor
structure of size-B/M portfolios being important. In short,
explaining returns on the full set of portfolios seems to
provide a higher hurdle for a proposed model.
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Fig. 3. Population R2s for artificial factors: simulations using size-B/M and

industry portfolios. We randomly generate artificial factors and report the

simulated distribution of population R2s when expected returns on the

Fama-French 25 size-B/M portfolios alone (FF25; dotted lines) or

augmented with the Fama-French 30 industry portfolios (FF25þ30ind;

solid lines) are regressed on their artificial factor loadings (quarterly

average returns, variances, and covariances from 1963 to 2004 are treated

as population parameters in the simulations). In Panel A, macro factors are

generated by randomly drawing a 3�1 vector of weights, w, from a

standard normal distribution, defining a factor P=F0w, where F=[RM, SMB,

HML]. In Panel B, factors are constructed as zero-investment combinations

of the size-B/M-industry portfolios by randomly drawing a 55�1 vector of

weights from a standard normal distribution. In Panel C, the procedure for

Panel B is repeated but only factors with (roughly) zero expected returns

are retained. The plots show the median and 95th percentile of the

simulated distribution based on 5,000 draws of up to five factors at a time.
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Prescription 2. Take the magnitude of the cross-sectional
slopes seriously.

The literature sometimes emphasizes a model’s high
cross-sectional R2 but does not consider whether the
estimated slopes and zero-beta rates are reasonable. Yet
theory often provides guidance for both that should be
taken seriously, i.e., the theoretical restrictions should be
imposed ex ante or tested ex post. Most clearly, theory
says that the zero-beta rate should equal the risk-free rate.
A possible retort is that Brennan’s (1971) model relaxes
this constraint if borrowing and lending rates differ, but
this argument is not convincing in our view: (riskless)
borrowing and lending rates are not sufficiently different,
perhaps 1–2% annually, to justify the extremely high zero-
beta estimates in many papers. An alternative argument is
that the equity premium is anomalously high, �a la Mehra
and Prescott (1985), so it is unfair to ask a consumption-
based model to explain it. However, it does not seem
reasonable to accept a model that cannot explain the level
of expected returns.

A related restriction, mentioned earlier, is that the risk
premium associated with a factor portfolio should be the
factor’s expected excess return. For example, the cross-
sectional price of market-beta risk should equal the
aggregate equity premium, and the price of interest-rate
risk, captured by movements in long-term Tbond returns,
should equal the expected Tbond return over the risk-free
rate. In practice, this type of restriction could be tested in
cross-sectional regressions or imposed ex ante by focusing
on time-series regression intercepts (Jensen’s alphas).
Below, we discuss ways to incorporate the constraint into
cross-sectional regressions (see also Shanken, 1992b).

As a third example, conditional models generally imply
concrete restrictions on the cross-sectional slopes, a point
emphasized by Lewellen and Nagel (2006). For example,
Jagannathan and Wang (1996) show that a one-factor
conditional CAPM implies a two-factor unconditional
model: Et�1[Rt]=btgt-E[R]=bgþcov(bt, gt), where bt and
gt are the conditional beta and equity premium, respec-
tively, and b and g are their unconditional means. The
cross-sectional slope on cov(bit, gt) in the unconditional
regression should be one but that constraint is often
neglected in the literature. Lewellen and Nagel discuss
this issue in detail and provide empirical examples from
recent tests of both the simple and consumption CAPMs.
For tests of the simple CAPM, the constraint can be
imposed using the conditional time-series regressions of
Shanken (1990), if the relevant state variables are all
known, or the short-window approach of Lewellen and
Nagel, if they are not.

Prescription 3. Report the GLS cross-sectional R2.

The literature typically favors OLS over GLS cross-
sectional regressions. The rationale for neglecting GLS
regressions appears to reflect concerns with the statistical
properties of GLS and the apparent difficulty of interpret-
ing the GLS R2, which, on the surface, simply tells us about
the model’s ability to explain expected returns on
‘re-packaged’ portfolios, not the basic portfolios that are
of direct interest (if m and B are expected returns and
loadings for the test assets, OLS regresses m on [i B] while
GLS regresses V�1/2m on V�1/2[i B], where V=var(R)).
We believe these concerns are misplaced, or at least
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overstated, and that GLS actually has some advantages
over OLS.

The statistical concerns with GLS are real but not
prohibitive. The main issue is that, because the covariance
matrix of returns must be estimated, the exact finite-
sample properties of GLS are generally unknown and
the asymptotic properties of textbook econometrics can
be a poor approximation, especially when the number of
assets is large relative to the length of the time series
(Shanken, 1985, provides examples in a closely related
context; see also Shanken and Zhou, 2007). But we see
little reason this problem cannot be overcome using
simulation methods or, in special cases, the finite-sample
results of Shanken (1985) or Gibbons, Ross, and Shanken
(1989).

The concern that the GLS R2 is hard to interpret also
seems misplaced. In fact, Kandel and Stambaugh (1995)
show that the GLS R2 is, in some ways, a more meaningful
statistic than the OLS R2: when expected returns are
regressed on betas with respect to a factor portfolio, the
GLS R2 is completely determined by the factor’s proximity
to the minimum-variance boundary while the OLS R2 has,
in general, little connection to the factor’s location in
mean-variance space (see also Roll and Ross, 1994; this
result assumes the factor is spanned by the test assets).
Thus, if a market proxy is nearly mean-variance efficient,
the GLS R2 is nearly one but the OLS R2 can, in principle, be
anything. A factor’s proximity to the minimum-variance
boundary is not the only metric for evaluating a model,
but it does seem to be both economically reasonable and
easy to understand. The broader point is that, while the
OLS R2 might be relevant for some questions—for
example, asking whether a model’s predictions of ex-
pected returns are accurate for a given set of assets
(subject to the limitations discussed in Section 2)—the
GLS R2 is probably more relevant for other questions—for
example, asking how well a model explains the risk-return
opportunities available in the market.

The same ideas apply to models with non-return
factors. In this case, Appendix A shows that a GLS
regression is equivalent to using maximally-correlated
mimicking portfolios in place of the actual factors and

imposing the constraint that the risk premia on the
portfolios equal their excess returns (in excess of the zero-
beta rate if an intercept is included). The GLS R2 is
determined by the mimicking portfolios’ proximity to the
minimum-variance boundary, i.e., the distance from
the boundary to the ‘best’ combination of the mimicking
portfolios. Again, this distance seems like a natural metric
by which to evaluate a model since any linear asset pricing
model boils down to a prediction that the factor-mimick-
ing portfolios span the mean-variance frontier. The
appendix also shows that the GLS R2 is closely linked to
formal asset pricing tests, such as Shanken’s (1985) cross-
sectional test of linearity or the HJ distance (see also Kan
and Zhou, 2004).

One implication of these facts is that obtaining a high
GLS R2 would seem to be a more rigorous hurdle than
obtaining a high OLS R2: a model can produce a high OLS
R2 even though its factor mimicking portfolios are far from
mean-variance efficient, while the GLS R2 is high only if
the model can explain the maximum Sharpe ratio
available on the test assets.

The implicit restrictions imposed by GLS are not a full
solution to the problems discussed in Section 2. Indeed,
Observations 1 and 2 apply equally to OLS and GLS
regressions (both R2s are one given the stated assump-
tions). But simulations with artificial factors, which relax
the strong assumptions of the formal propositions,
suggest that finding a high population GLS R2 in practice
is much less likely than finding a high OLS R2. Fig. 4
illustrates this result. The figure shows GLS R2s for the
same simulations reported in Fig. 1, using artificial factors
to explain expected returns on FF’s size-B/M portfolios
(treating their sample moments from 1963 to 2004 as
population parameters; the OLS plots are repeated for
comparison). The plots show that, while artificial factors
have some explanatory power in GLS regressions, the GLS
R2s are dramatically lower than the OLS R2s. The biggest
difference is in Panel C, which constructs artificial factors
that are random, zero-cost combinations of the 25 size-
B/M portfolios, imposing the restriction that the factors’
Sharpe ratios are zero. The GLS R2s are appropriately zero
because the risk premia on the factors match their
expected returns (zero), while the OLS R2 are often 50%
or more in models with multiple factors.

The advantage of GLS over OLS regressions in the
simulations seems to come from two sources. The first,
discussed above, is that GLS forces the risk premium on a
factor (or the factor’s mimicking portfolio, in the case of
non-return factors) to equal its expected return, and the
GLS R2 is determined solely by the factor’s location in
mean-variance space. The second is that, in practice, FF’s
factors have much less cross-sectional explanatory power
in a GLS regression than in an OLS regression using the
size-B/M portfolios: the GLS R2 is just 19.5%, compared
with an OLS R2 of 80.9%. The implication is that a
proposed model must do more than simply piggy-back
off SMB and HML if it is to achieve a high GLS R2. Both
issues suggest that, in practice, obtaining a high GLS R2

represents a more stringent hurdle than obtaining a high
OLS R2.

Prescription 4. If a proposed factor is a traded portfolio,
include it as one of the test assets on the left-hand side of
the cross-sectional regression.

Prescription 4 builds on Prescription 2, in particular, the
idea that the cross-sectional price of risk for a factor
portfolio should be the factor’s expected excess return.
One simple way to build this restriction into a cross-
sectional regression is to ask the factor to price itself, that
is, to test whether the factor itself lies on the estimated
cross-sectional regression line.

Prescription 4 is most important with GLS regressions.
When a factor portfolio is included as a left-hand-side
asset, GLS forces the regression to price the asset
perfectly: the risk premium on the factor exactly
equals the factor’s average return in excess of the
estimated zero-beta rate (in essence, the asset is given
infinite weight in the regression). Thus, a GLS cross-
sectional regression, when a traded factor is included as a
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Fig. 4. Population OLS and GLS R2s for artificial factors. We randomly generate artificial factors and report the simulated distribution of population OLS

and GLS R2s when expected returns on the Fama-French 25 size-B/M portfolios are regressed on their artificial factor loadings (quarterly average returns,

variances, and covariances from 1963 to 2004 are treated as population parameters in the simulations). In Panel A, macro factors are generated by

randomly drawing a 3�1 vector of weights, w, from a standard normal distribution, defining a factor P=F0w, where F=[RM, SMB, HML]. In Panel B, factors

are constructed as zero-investment combinations of the size-B/M portfolios by randomly drawing a 25�1 vector of weights from a standard normal

distribution. In Panel C, the procedure for Panel B is repeated but only factors with (roughly) zero expected returns are retained. The plots show the 5th,

50th, and 95th percentiles of simulated distributions based on 5,000 draws of up to five factors at a time.
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test asset, is similar to the time-series approach of Black,
Jensen, and Scholes (1972) and Gibbons, Ross, and
Shanken (1989).

Prescription 5. Report confidence intervals for the cross-
sectional R2.
Prescription 5 is less a solution to the problems
highlighted above—it does nothing to address the concern
that many factor models will produce high population
R2s—than a way to make the sampling issues more
transparent. We suspect researchers would put less
weight on the cross-sectional R2 if the extremely high
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sampling error in it was clear (extremely high when using
size-B/M portfolios, though not necessarily with other
assets). More generally, we find it surprising that papers
often emphasize this statistic with little regard for its
sampling properties (exceptions include Jagannathan,
Kubota, and Takehara, 1998; Bansal, Dittmar, and
Lundblad, 2005).

The distribution of the sample R2 can be derived
analytically in special cases but we are not aware of a
general formula that incorporates first-stage estimation
error in factor loadings. An alternative is to use simula-
tions like those in Fig. 2, one panel of which is repeated in
Fig. 5. By inspection, the simulations indicate that the
sample OLS R2 is often significantly biased and skewed by
an amount that depends on the true cross-sectional R2.
These properties suggest that reporting a confidence
interval for R2 is more meaningful than reporting just a
standard error.

The easiest way to get confidence intervals is to ‘invert’
Fig. 5, an approach suggested by Stock (1991) in a different
context. In the figure, the sample distribution of the
estimated R2, for a given true R2, is found by slicing the
picture along the x-axis (fixing x, then scanning up and
down). Conversely, a confidence interval for the true R2,
given a sample R2, is found by slicing the picture along the
y-axis (fixing y, then scanning across). For example, a
sample R2 of 0.50 implies a 90% confidence interval for the
population R2 of roughly [0.25, 1.00], depicted by the
dotted line in the graph. (Formally, the confidence interval
represents all values of the true R2 for which the
estimated R2 falls within the 5th and 95th percentiles of
the sample distribution.) The extremely wide interval in
this example illustrates just how uninformative the
sample R2 can be.
Prescription 6. Report confidence intervals for the
weighted sum of squared pricing errors.
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Fig. 5. Sample distribution of the cross-sectional adjusted R2. This figure

repeats the ‘One factor’ panel of Fig. 2. It shows the sample distribution

of the cross-sectional adjusted R2 as a function of the true cross-sectional

R2 for a model with one factor using Fama and French’s 25 size-B/M

portfolios as test assets (quarterly returns, 1963–2004). The simulated

factor is a combination of the size-B/M portfolios (the weights are

randomly drawn to produce the given true R2, as described in Section 2).

The plot is based on 40,000 bootstrap simulations (ten sets of simulated

factors; 4,000 simulations with each).
Prescription 6 has the same goal as Prescription 5: to
provide a better measure of how well a model performs.
Again, Prescription 6 does not address our concern that it
is easy to find factors that explain expected returns on
size-B/M portfolios. But confidence intervals should at
least make clear when a test has low power: we might not
reject that a model works perfectly, but we also will not
reject that the pricing errors are large. Conversely,
confidence intervals can reveal when a model is rejected
because the pricing errors are estimated precisely, not
because they are large. In short, confidence intervals allow
us to better assess the economic significance of the
results.

The weighted sum of squared pricing errors is an
alternative to the cross-sectional R2 as a measure of
performance. The literature offers several versions of
such statistics, including Shanken’s (1985) cross-sectional
T2 statistic, Gibbons, Ross, and Shanken’s (GRS, 1989) F

statistic, Hansen’s (1982) J statistic, and Hansen and
Jagannathan’s (1997) HJ distance. Confidence intervals
for any of these can be obtained using an approach similar
to Fig. 5, plotting the sample distribution as a function of
the true parameter. We describe here how to get
confidence intervals for the GRS F test, the cross-sectional
T2 (or asymptotic w2) statistic, and the HJ distance, all of
which have useful economic interpretations and either
accommodate or impose restrictions on the zero-beta rate
and risk premia.

The GRS F statistic tests whether the time-series
intercepts are all zero when excess returns are regressed
on a set of factor portfolios, R=aþBRPþe. Let â be the OLS
estimate of a given a sample for T periods. The covariance
matrix of â, conditional on the realized factors, is O=cS,
where S�var(e), c�(1þs2

P)/T, and s2
P is the sample max-

imum squared Sharpe ratio attainable from combinations
of P. GRS show that, under standard assumptions, the
statistic S=c�1â0SOLS

�1â, is asymptotically w2 and, if e is
multivariate normal conditional on RP, the statistic
F=S� (T�N�K)/[N(T�K�1)] is small-sample F with non-
centrality parameter c�1a0S�1a and degrees of freedom N

and T�N�K. The term a0S�1a equals the model’s un-
explained squared Sharpe ratio, the difference between
the population squared Sharpe ratio of the tangency
portfolio (y2

t) and that attainable from P (y2
P). Thus, an

exact confidence interval for y2
z�a0S

�1a can be found by
inverting a graph similar to Fig. 5, showing the sample
distribution of F as a function of y2

z (i.e., finding the set of
y2

z for which F is between the chosen percentiles of an
F distribution with noncentrality parameter c�1y2

z ).
Fig. 6 illustrates the confidence-interval approach for

testing the unconditional CAPM. The test is based on FF’s
25 size-B/M portfolios from 1963 to 2004, and our market
proxy is the Center for Research in Security Prices (CRSP)
value-weighted index. The size and B/M effects are strong
during this sample (the average absolute quarterly alpha
is 0.96% across the 25 portfolios), and the GRS F statistic,
3.49, strongly rejects the CAPM with a p-value of 0.000.
The graph shows, moreover, that we can reject that the
squared Sharpe ratio on the market is within 0.21 of the
squared Sharpe ratio of the tangency portfolio: a 90%
confidence interval for yz

2 is [0.21, 0.61]. Interpreted
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Fig. 6. Sample distribution of the GRS F statistic and confidence interval

for yz
2. This figure provides a test of the CAPM using quarterly returns on

Fama and French’s 25 size-B/M portfolios from 1963 to 2004. The sample

distribution of the F statistic, for a given value of the true unexplained

squared Sharpe ratio, yz
2, is found by slicing the graph along the x-axis

(fixing yz
2 then scanning up to find percentiles of the sample

distribution). A confidence interval for yz
2, given the sample F statistic,

is found by slicing along the y-axis (fixing F then scanning across). yz
2 is

the squared Sharpe ratio of the tangency portfolio minus that of the CRSP

value-weighted index. F=c�1â0SOLS
�1â(T�N�1)/[N(T�2)], where N=25,

T=168, and cE1/T. It has an F distribution with noncentrality parameter

c�1yz
2 and degrees of freedom N and T�N�1. The sample F is 3.49, and

the corresponding 90% confidence interval for yz
2 is depicted by the dark

dotted line.
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differently, following MacKinlay (1995), there exists a
zero-beta portfolio that, with 90% confidence, has a
quarterly Sharpe ratio between 0.46 (=0.211/2) and 0.78
(=0.611/2). This compares with a quarterly Sharpe ratio for
the market portfolio of 0.18 during this period. The
confidence interval provides a good summary measure
of just how poorly the CAPM works.

Shanken’s (1985) T2 test is like the GRS F test but
focuses on pricing errors, or residuals, in the cross-
sectional regression of expected returns on factor load-
ings, mR=ziþBlþa. The T2 test can be used with non-return
factors and does not restrict the zero-beta rate to be the
risk-free rate (unless the intercept is omitted). The test is
based on the traditional two-pass methodology: Let b be
the matrix of factor loadings estimated in the first-pass
time-series regression and let x=[i b] be regressors in the
second-pass cross-sectional regression (with average
returns as the dependent variable). The estimated pricing
errors, â, have asymptotic variance Sa=(1þl0SF

�1l)ySy/T,
where y�I–x(x0x)�1x0 and the term 1þl0SF

�1l accounts
for estimation error in b.5 The T2 statistic is then
T2
�â0Sa

þâ, where Sa
þ is the pseudoinverse of the esti-

mated Sa based on consistent estimates of the para-
meters (the pseudoinverse is required because Sa is
singular). Appendix A shows that T2 is asymptotically w2

with degrees of freedom N–K–1 and noncentrality para-
meter a0Sa

þa=a0(ySy)þa[T/(1þl0SF
�1l)]. The quadratic,

q�a0(ySy)þa, again has an economic interpretation, in
this case measuring how far factor-mimicking portfolios
are from the mean-variance frontier. Specifically, let RP be
5 Appendix A explains these results in detail. The variance Sa is

derived under the null that a=0. Also, Shanken (1985) analyzes GLS, not

OLS, cross-sectional regressions. Our appendix shows that the OLS-based

test described here is equivalent to his GLS-based test.
K portfolios formed from the test assets that are
maximally correlated with the factors, and let y(z) be a
‘generalized’ Sharpe ratio, using the zero-beta rate, rfþz, in
place of the risk-free rate. The appendix shows that
q=yt2(z)�yP

2(z), the difference between the maximum
generalized squared Sharpe ratio on any portfolio and that
attainable from RP. (The zero-beta rate in this definition is
the one that minimizes q and turns out to be the GLS zero-
beta rate.) Therefore, as with the GRS F test, a confidence
interval for q can be found by plotting the sample
distribution of the T2 statistic as a function of q, using
either the asymptotic w2 distribution or a simulated small-
sample distribution (a third possibility, applying the
logic of Shanken, 1985, would be to replace the asymptotic
w2 distribution with an approximate finite-sample F

distribution).
The final test we consider, the HJ distance, focuses on

SDF pricing errors, a=E[w(1þR)�1], where w=g0þg01P is a
proposed SDF and we now define R as an Nþ1 vector of
total (not excess) returns including the riskless asset. Let
m be any well-specified SDF. Hansen and Jagannathan
(1997) show that the distance between w and the set of
true SDFs, D�minmE[(w–m)2], is the same as a0H�1a,
where H�E[(1þR)(1þR)0] is the second-moment matrix
of gross returns. To get a confidence interval for D,
Appendix B shows that D=yz

2/(1þrf)
2, where yz

2 is the
model’s unexplained squared Sharpe ratio, as defined
earlier (see also Kan and Zhou, 2004). Thus, like the GRS F

statistic, the estimate of D is small-sample F up to a
constant of proportionality (assuming that P consists of
return factors). A confidence interval can then be obtained
using the approach described above.
4. Empirical examples

The prescriptions above are relatively straightforward
to implement and, while not a complete solution to the
problems discussed in Section 2, should help to improve
the power and rigor of empirical tests. As an illustration,
we report tests for several models that have been
proposed recently in the literature. Cross-sectional tests
in the original studies focus on FF’s size-B/M portfolios,
precisely the scenario for which our concerns are greatest.
Our goal here is neither to disparage the papers—indeed,
we believe they provide economically important
insights—nor to provide a full review of the often
extensive empirical tests in each paper, but only to show
that our prescriptions can dramatically change how well a
model seems to work.

We investigate models for which data are readily
available. The models include: (i) Lettau and Ludvigson’s
(LL, 2001) conditional consumption CAPM (CCAPM), in
which the conditioning variable is the aggregate con-
sumption-to-wealth ratio CAY (available on Ludvigson’s
website); (ii) Lustig and Van Nieuwerburgh’s (LVN, 2004)
conditional CCAPM, in which the conditioning variable is
the housing collateral ratio MYMO (we consider only their
linear model with separable preferences; MYMO is
available on Van Nieuwerburgh’s website;); (iii) Santos
and Veronesi’s (SV, 2006) conditional CAPM, in which the
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Table 1
Empirical tests of asset pricing models, 1963–2004.

The table reports slopes, Shanken t-statistics (in parentheses), and other statistics from cross-sectional regressions of average excess returns on

estimated factor loadings for eight asset pricing models. Returns are quarterly, in percent. The test assets are Fama and French’s 25 size-B/M portfolios

used alone or together with their 30 industry portfolios. The OLS R2 is an adjusted R2. The cross-sectional T2 statistic tests whether pricing errors in the

cross-sectional regression are all zero, with simulated p-values in brackets; it is proportional to the distance, q, that a model’s mimicking portfolios are

from the minimum-variance boundary, measured as the difference between the maximum generalized squared Sharpe ratio and that attainable from the

mimicking portfolios. The sample estimate of q is reported in the final column. Ninety-five percent confidence intervals for the true R2s and q are reported

in brackets next to the sample values. The models are estimated from 1963 to 2004 except Yogo’s, for which we have factor data through 2001. The

variables are: cay=Lettau and Ludvigson’s (2001) consumption-to-wealth ratio; Dc=log consumption growth; my=Lustig and Van Nieuwerburgh’s (2004)

housing-collateral ratio based on mortgage data; RM=CRSP value-weighted excess return; sw=labor income to consumption ratio; DIHH, DICorp, DINcorp=log

investment growth for households, nonfinancial corporations, and the noncorporate sector, respectively; DcNdur, DcDur=Yogo’s (2006) log consumption

growth for nondurables and durables, respectively; SMB, HML=Fama and French’s (1993) size and B/M factors.

Model/assets Variables OLS R2 GLS R2 T2 q

LL (2001) Const cay Dc cay�Dc
FF25 3.33 (2.28) �0.81 (�1.25) 0.25 (0.84) 0.00 (0.42) 0.58 [0.30, 1.00] 0.05 [0.00, 0.50] 33.9 [p=0.08] 0.44 [0.00, 0.72]

FF25þ30 ind. 2.50 (3.29) �0.48 (�1.23) 0.09 (0.53) �0.00 (�1.10) 0.00 [0.00, 0.35] 0.01 [0.00, 0.20] 193.8 [p=0.00] 1.31 [0.18, 1.08]

LVN (2004) Const my Dc my�Dc
FF25 3.58 (2.22) 4.23 (0.76) 0.02 (0.04) 0.10 (1.57) 0.57 [0.35, 1.00] 0.02 [0.00, 0.35] 20.8 [p=0.57] 0.45 [0.00, 0.48]

FF25þ30 ind. 2.78 (3.51) 0.37 (0.13) �0.02 (�0.09) 0.03 (1.40) 0.09 [0.00, 1.00] 0.00 [0.00]a 157.1 [p=0.04] 1.32 [0.00, 0.96]

SV (2006) Const RM sw
�RM

FF25 3.07 (1.96) �0.95 (�0.58) �0.21 (�2.06) 0.27 [0.00, 1.00] 0.02 [0.00, 0.40] 26.0 [p=0.63] 0.46 [0.00, 0.30]

FF25þ30 ind. 2.57 (2.77) �0.49 (�0.44) �0.09 (�1.99) 0.08 [0.00, 1.00] 0.02 [0.00, 0.40] 160.8 [p=0.07] 1.31 [0.00, 0.72]

LVX (2006) Const DIHH DICorp DINcorp

FF25 2.47 (2.13) �0.80 (�0.39) �2.65 (�1.03) �8.59 (�1.96) 0.80 [0.75, 1.00] 0.26 [0.05, 1.00] 25.2 [p=0.29] 0.34 [0.00, 0.48]

FF25þ30 ind. 2.22 (3.14) 0.20 (0.19) �0.93 (�0.58) �5.11 (�2.32) 0.42 [0.20, 1.00] 0.04 [0.00, 0.55] 141.2 [p=0.11] 1.27 [0.00, 0.84]

Yogo (2006) Const DcNdur DcDur RM

FF25 1.98 (1.36) 0.28 (1.00) 0.67 (2.33) 0.48 (0.29) 0.18 [0.00, 1.00] 0.04 [0.00, 0.55] 24.9 [p=0.69] 0.46 [0.00, 0.30]

FF25þ30 ind. 1.95 (2.27) 0.18 (1.01) 0.19 (1.52) 0.12 (0.11) 0.02 [0.00, 0.60] 0.05 [0.00, 1.00] 159.3 [p=0.06] 1.24 [0.00, 0.78]

CAPM Const RM

FF25 2.90 (3.18) �0.44 (�0.39) �0.03 [0.00, 0.55] 0.01 [0.00, 0.25] 77.5 [p=0.00] 0.46 [0.12, 0.48]

FF25þ30 ind. 2.03 (2.57) 0.10 (0.09) �0.02 [0.00, 0.35] 0.00 [0.00, 0.05] 225.2 [p=0.00] 1.34 [0.18, 0.96]

Cons. CAPM Const Dc
FF25 1.70 (2.47) 0.24 (0.89) 0.05 [0.00, 1.00] 0.01 [0.00, 0.50] 60.6 [p=0.01] 0.46 [0.06, 0.66]

FF25þ30 ind. 2.07 (3.51) 0.03 (0.15) �0.02 [0.00, 0.65] 0.00 [0.00]a 224.5 [p=0.00] 1.34 [0.18, 1.02]

Fama-French Const RM SMB HML
FF25 2.99 (2.33) �1.42 (�0.98) 0.80 (1.70) 1.44 (3.11) 0.78 [0.60, 1.00] 0.19 [0.05, 0.65] 56.1 [p=0.00] 0.37 [0.06, 0.42]

FF25þ30 ind. 2.21 (2.14) �0.49 (�0.41) 0.60 (1.24) 0.87 (1.80) 0.31 [0.00, 0.90] 0.06 [0.05, 0.35] 200.4 [p=0.00] 1.24 [0.12, 0.90]

a The model’s GLS R2 falls below the 2.5th percentile of the sampling distribution for all values of the true GLS R2, i.e., the estimated GLS R2 is

unusually small given any true R2.
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conditioning variable is the labor income-to-consumption
ratio sw; (iv) Li, Vassalou, and Xing’s (LVX, 2006)
investment model, in which the factors are invest-
ment growth rates for households (DIHH), nonfinancial
corporations (DICorp), and the noncorporate sector (DINcorp)
(we consider only this version of their model); and (v)
Yogo’s (2006) durable-consumption CAPM, in which the
factors are the market return, RM, and the growth rates in
durable and nondurable consumption, DcDur and DcNdur

(we consider only his linear model; the consumption
series are available on Yogo’s website). For comparison,
we also report results for three benchmark models: the
unconditional CAPM, the unconditional CCAPM, and FF’s
three-factor model.

Table 1 reports cross-sectional regressions for all eight
models. The tests use quarterly excess returns (in percent)
from 1963 to 2004 and highlight our suggestions in
Section 3. Specifically, we compare results using FF’s 25
size-B/M portfolios alone (FF25) with results for the
expanded set of 55 portfolios that includes their 30
industry portfolios (FF25þ30 ind). Our choice of indus-
try portfolios is based on the notion that they should
provide, in any reasonable sense, a fair test of the models
(in contrast to, say, momentum portfolios whose returns
seem to be anomalous relative to any of the models).
We report OLS regressions supplemented by the GLS R2,
the cross-sectional T2 statistic, and the sample estimate of
the statistic q described earlier, equal to the difference
between the maximum generalized squared Sharpe ratio
and that attainable from a model’s mimicking portfolios
(q is zero if the model fully explains the cross section of
expected returns).

Confidence intervals for the true values of q and the
cross-sectional R2s are obtained using the approach
described in Section 3. For the R2, we simulate the
distribution of the sample R2 for true R2s between 0.0
and 1.0 and invert plots like Fig. 5. The simulations are
similar to those in Figs. 2 and 5, with the actual factors
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for each model now used in place of artificial factors.6

We also use simulations to get a confidence interval for q,
instead of relying on asymptotic theory, because the
length of the time series in our tests (168 quarters) is
small relative to the number of test assets (25 or 55). The
confidence interval for q is based on the T2 statistic
because q determines the noncentrality parameter of T2’s
(asymptotic) distribution. Thus, we simulate the distribu-
tion of the T2 statistic for various values of q and replicate
the tests in Fig. 6, with q playing the same role as yz

2 in the
GRS F test. The p-value we report for the T2 statistic also
comes from these simulations, with q=0.

Table 1 shows four key results. First, adding industry
portfolios dramatically changes the performance of the
models, in terms of slope estimates, cross-sectional R2s,
and T2 statistics. Compared to regressions with only size-
B/M portfolios, the slopes estimated using all 55 portfolios
are almost always closer to zero and the cross-sectional
R2s drop substantially. The adjusted OLS R2 drops from
58% to 0% for LL’s model, 57% to 9% for LVN’s model, 27% to
8% for SV’s model, 80% to 42% for LVX’s model, and 18% to
3% for Yogo’s model. In addition, for these five models, the
T2 statistics are insignificant in tests with size-B/M
portfolios but reject, or nearly reject, the models using
the expanded set of 55 portfolios. The performance of FF’s
three-factor model is similar to the other five—it has an R2

of 78% for the size-B/M portfolios and 31% for all 55
portfolios—while the simple and consumption CAPMs
have small adjusted R2s for both sets of test assets.

The second key result is that the sample OLS R2 is often
uninformative about a model’s true population perfor-
mance. Our simulations show that, across the five main
models in Table 1, a 95% confidence interval for the true R2

has an average width greater than 0.70 using either set of
test assets. In regressions with size-B/M portfolios, we
cannot reject that all models work perfectly, but we also
cannot reject that the true R2s are quite small, with an
average lower bound for the confidence intervals of 0.28.
(LVX’s model is an outlier, with a lower bound of 0.75.) In
tests with all 55 portfolios, four of the five confidence
intervals include 0.00 and the fifth includes 0.20—that is,
using just the sample R2, we cannot reject that the models
have essentially no explanatory power. Two of the
confidence intervals cover the entire range of R2s from
0.00 to 1.00. The table suggests that sampling variation in
the R2 is just too large to use it as a reliable metric of
performance.
6 The only other difference is that, to simulate data for different true

cross-sectional R2s, we keep the true factor loadings the same in all

simulations, equal to the historical estimates, and change the vector of

true expected returns to give the right R2. Specifically, expected returns

in the simulations equal m=h(Cl)þe, where C is the estimated matrix of

factor loadings for a model, l is the estimated vector of cross-sectional

slopes, h is a scalar constant, and e is randomly drawn from a N[0, se2]

distribution. The constants h and se are chosen to give the right cross-

sectional R2 and to maintain the historical cross-sectional dispersion in

average returns. In principle, the simulations should consider how the

distribution of the sample R2 changes as a function of all unknown

parameters that affect its distribution, not just as a function of the true

R2. Our approach of varying just the true R2, given estimates of the other

parameters, provides an approximate confidence interval.
The third key result is that none of the models provides
much improvement over the simple or consumption
CAPM when performance is measured by the GLS R2 or
q. This is true even for tests with size-B/M portfolios, for
which OLS R2s are quite high, and is consistent with our
view that the GLS R2 provides a more rigorous hurdle than
the OLS R2. The average GLS R2 is only 0.08 across the five
models using size-B/M portfolios and 0.02 using the full
set of 55 portfolios (compared with GLS R2s of 0.00–0.02
for the simple and consumption CAPMs). Just as impor-
tant, confidence intervals for the true GLS R2 typically rule
out values close to one. Across the five models, the
average upper bound for the true GLS R2 is 0.56 for the
size-B/M portfolios and 0.43 for all 55 portfolios (all but
one of the confidence intervals include 0.00).

The distance q is closely related to the GLS R2 and, not
surprisingly, suggests similar conclusions. It can be
interpreted as the maximum generalized squared Sharpe
ratio (defined relative to the optimal zero-beta rate) on a
portfolio that is uncorrelated with the factors, equal to
zero if the model is well specified. For the size-B/M
portfolios, the sample q is 0.46 for the simple and
consumption CAPMs, dropping to 0.44 for LL’s model,
0.45 for LVN’s model, 0.46 for SV’s model, 0.34 for LVX’s
model, and 0.46 for Yogo’s model. Adding the 30 industry
portfolios, the CAPM has a sample q of 1.34, compared
with 1.31, 1.32, 1.31, 1.27, and 1.24 for the other models.
Confidence intervals for the true q are generally quite
wide, so even when we cannot reject that q is zero, we also
cannot reject that q is large. Again, this is true even for the
size-B/M portfolios, for which the models seem to perform
well if we narrowly focus on the T2 statistic’s generally
large p-values under the null.

Finally, in the spirit of taking seriously the cross-
sectional parameters (Prescription 2), the table shows that
none of the models explains the level of expected returns:
the estimated intercepts are all substantially greater than
zero. The regressions use excess quarterly returns, so the
intercepts can be interpreted as the estimated quarterly
zero-beta rates over and above the risk-free rate. Annual-
ized, the zero-beta rates range from 7.8% to 14.3% above

the risk-free rate. These estimates cannot reasonably
be attributed to differences in lending versus borrowing
costs.

Most of the other parameters in Table 1 are not pinned
down precisely by theory, making it difficult to test
restrictions on the slopes. The key exception is that both
factors in SV’s conditional CAPM are portfolio returns—

swRM can be interpreted as a dynamic portfolio, provided
the riskfree asset is traded—implying that the risk premia
should equal the factors’ expected excess returns (Lewel-
len and Nagel, 2006, provide an alternative interpretation
of this constraint and discuss restrictions on the slopes in
conditional consumption CAPM models like those of LL
and LVN). The point estimates for SV’s model, using either
set of portfolios, are far from the factors’ average excess
returns during the sample (1.53% for RM and �0.01% for
swRM), suggesting that unrestricted regressions might
significantly overstate the model’s explanatory power.
More formally, if we impose the restrictions (i.e., we
require the model to price RM and swRM), the OLS and GLS
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R2s become negative for both sets of portfolios, even with
an intercept in the regression. The T2 statistic jumps from
26.0 to 89.2 for the size-B/M portfolios and from 160.8 to
233.7 for the full set of 55 portfolios (the p-value drops
from 0.63 to 0.00 in the first case and from 0.07 to 0.00 in
the second). The confidence interval for q, closely related
to the T2 statistic, extends from 0.16 to 0.72 for the size-
B/M portfolios and from 0.16 to 1.12 for the full set of
portfolios. The R2s are lower, of course, if we force the
zero-beta rate to be the risk-free rate, and the T2 statistics
increase further, to 96.9 and 240.1 (again with p-values of
0.00).7

In sum, despite the seemingly impressive ability of the
models to explain cross-sectional variation in average
returns on size-B/M portfolios, none of the models
performs very well once we expand the set of test
portfolios, consider the GLS R2 and confidence intervals
for the true R2s and q statistics, or ask the models to price
the risk-free asset and, in the case of SV’s model, the factor
portfolios.
5. Conclusion

Our basic conclusion is that asset pricing models
should not be judged by their success in explaining
average returns on size-B/M portfolios (or, more generally,
on portfolios for which a couple of factors are known to
explain most of the time-series and cross-sectional
variation in returns). High cross-sectional explanatory
power for size-B/M portfolios, in terms of high R2 or small
pricing errors, is simply not a sufficiently high hurdle by
which to evaluate a model. In addition, the sample cross-
sectional R2 and other common test statistics do not
appear to be very informative about the true (population)
performance of a model, at least in our tests with size,
B/M, and industry portfolios.

The problems we highlight are not just sampling
issues, though the sample properties of test statistics do
make them worse. In population, if returns have a
covariance structure like that of size-B/M portfolios, true
expected returns will line up with true factor loadings so
long as a proposed factor is correlated with returns only
through the variation captured by the two or three
common components in returns. The problems are also
not solved by using an SDF approach, since SDF tests are
very similar to traditional cross-sectional regressions.

The paper offers four main suggestions for improving
empirical tests. First, because the problems are tied to the
strong covariance structure of size-B/M portfolios, one
suggestion is to include other portfolios in the tests, for
example, portfolios sorted by industry or factor loadings.
7 An alternative to imposing the slope constraints directly is to

include the two factors as additional test assets, as suggested in

Prescription 4. The OLS results in this case are fairly similar to those in

Table 1: the R2s change by less than 0.01, while the T2 statistics increase

from 26.0 to 32.5 (p-value of 0.58) for the size-B/M portfolios and from

160.8 to 208.2 (p-value of 0.01) for all 55 portfolios. GLS regressions

provide stronger evidence against the model because they force the

regression to price the two factors exactly, as discussed earlier, so they

are equivalent to tests that directly impose the slope constraints.
Second, because the problems are exacerbated by the fact
that empirical tests often neglect theoretical restrictions
on the cross-sectional intercept and slopes, another
suggestion is to take their magnitudes seriously when
theory provides appropriate guidance. Third, because the
problems appear to be less severe for GLS regressions, a
partial solution is to report the GLS R2 in addition to, or
instead of, the OLS R2. Last, because the problems are
exacerbated by sampling issues, our fourth suggestion is to
report confidence intervals for cross-sectional R2s and
other test statistics using the techniques described in the
paper. Together, these prescriptions should help to im-
prove the power and informativeness of empirical tests,
though they clearly do not provide a perfect solution.

The paper contributes to the cross-sectional asset
pricing literature in a number of additional ways: (i) we
provide a novel interpretation of the GLS R2 in terms of the
relative mean-variance efficiency of factor-mimicking
portfolios, building on the work of Kandel and Stambaugh
(1995); (ii) we show that the cross-sectional T2 statistic
based on OLS regressions is equivalent to that from GLS
regressions (identical in sample except for the Shanken-
correction terms), and we show that both are a transfor-
mation of the GLS R2; (iii) we derive the asymptotic
properties of the cross-sectional T2 statistic when the true
pricing errors differ from zero and provide an economic
interpretation of the noncentrality parameter; and (iv) we
describe a way to obtain confidence intervals for measures
of model misspecification based on the GRS F statistic,
cross-sectional T2 statistic, and HJ distance, in addition to
confidence intervals for the cross-sectional R2. These
results are helpful for understanding cross-sectional asset
pricing tests.

Appendix A

This appendix derives the asymptotic distribution of
the cross-sectional T2 statistic, provides an economic
interpretation of the distribution’s noncentrality para-
meter, and discusses the connection between the T2

statistic and the GLS R2.
Let Rt be the vector of excess returns on N test assets

and Ft be a vector of K factors in period t. Both are
assumed, in this appendix, to be IID over time. The assets’
factor loadings are estimated in the first-pass time-series
regression, Rt=cþBFtþet, and the relation between ex-
pected returns and B is estimated in the second-pass
cross-sectional regression, E[R]=ziþBgþa, or more com-
pactly, m=Xlþa, where m�E[Rt], X�[i B], l0�[z g0], and a is
the vector of true pricing errors. To be precise, l and a
depend on whether we are considering OLS or GLS
regressions: The true OLS slope is l=(X0X)�1X0m and
pricing errors are a=ym, where y�I�X(X0X)�1X0; the true
GLS slope is l*=(X0V�1X)�1X0V�1m and pricing errors are
a*=y*m, where y*�I�X(X0V�1X)�1X0V�1 and V�var(Rt). In
practice, of course, the cross-sectional regression is
estimated with average returns substituted for m and
estimates of B substituted for the true loadings.

We begin with a few population results that are useful
for interpreting empirical tests. We omit the time sub-
script until we turn to sample statistics.
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Result 1. The cross-sectional slope and pricing errors in a

GLS regression are the same if V is replaced by S�var(e).

Thus, we use V and S interchangeably in the GLS results

below depending on which is more convenient for the issue at

hand.

Proof. See Shanken (1985). The result follows from
(X0V�1X)�1X0V�1=(X0S�1X)�1X0S�1. &

Recall that a=ym and that a*=y*m. The quadratics
q=a0[ySy]þa and q*=a*0[y*Sy*0]þa*, where a superscript þ
denotes a pseudoinverse, are important for interpreting
the cross-sectional T2 test. The analysis below uses the
facts, easily confirmed, that y and S�1y* are symmetric, y

and y* are idempotent (y=yy and y*=y*y*), y=yy*, y*=y*y,
and yX=y*X=0.

Result 2. The quadratics q and q* are unchanged if S is

replaced by V. Together with Result 1, this result implies that

the T2 statistic, from either OLS or GLS, is the same regardless

of which covariance matrix is used.

Proof. yX=y*X=0 implies that yB=y*B=0. Result 2 then
follows from the fact V=BSFB0þS, so yV=yS and
y*V=y*S. &

Result 3. The OLS and GLS quadratics are identical, i.e., q=q*.

Proof. The quadratics are defined as q=a0[ySy]þa
and q*=a*0[y*Sy*0]þa*. Using the definition of a pseudo-
inverse, it is straightforward to show that [ySy]þ=S�1y*
and [y*Sy*0]þ=S�1(y*)þ, implying that q=a0S�1y*a
and q*=a*0S�1(y*)þa*.8 In addition, a*=y*a and S�1y*=
y*0S�1, from which it follows that q*=a0y*0S�1(y*)þy*a=
a0S�1y*(y*)þy*a=a0S�1y*a=q. &

Result 4. The OLS and GLS quadratics simplify to

q*=a*0S�1a*=a*0V�1a*. This result implies that our cross-

sectional T2 statistic matches that of Shanken (1985).

Proof. Result 3 shows that q*=a0S�1y*a. Recall that y* is
idempotent, S�1y* is symmetric, and a*=y*a. Therefore,
q*=a0S�1y*y*a=a0y*0S�1y*a=a*0S�1a*. &

Mimicking portfolios for the factors are the K portfolios,
RP, maximally correlated with F. The weights defining RP

can be interpreted as slopes in the regression F=kþwP
0 Rþs,

where cov(R, s)=0 (we ignore the constraint that wP
0 i=i

for simplicity; the weights can be scaled up or down
to make the constraint hold without changing the
substance of any results). Thus, wP=V�1cov(R, F)=V�1BSF

and stocks’ loadings on the mimicking portfolios are
C=cov(R, RP)SP

�1=VwPSP
�1=BSFSP

�1.

Result 5. The cross-sectional regression (OLS or GLS) of m on

B is equivalent to the cross-sectional regression of m on C,

with or without an intercept, in the sense that the intercept,
8 More precisely, S�1(y*)þ is a generalized inverse of y*Sy*0 , though

not necessarily the pseudoinverse (the pseudoinverse of A is such that

AAþA=A, AþAAþ=Aþ, and AþA and AAþ are symmetric; a generalized

inverse ignores the two symmetry conditions). It can be shown that

using S�1(y*)þ in the quadratic q* is equivalent to using the

pseudoinverse.
R2, pricing errors, and quadratics q and q* are the same

in both.

Proof. The first three claims, that the intercept, R2, and
pricing errors are the same, follow directly from the fact
that C is a nonsingular transformation of B. The final claim,
that the quadratics are the same regardless of whether we
use F or RP, follows from the fact that the pricing errors are
the same and the quadratics can be based on V, i.e.,
q*=a*0V�1a*, where V is invariant to the set of factors. &

Result 6. The GLS regression of m on B or m on C, with or

without an intercept, prices the mimicking portfolios

perfectly, i.e., a�P=wP
0 a*=0. It follows that the slopes on C

equal mP�z*i, the expected return on the mimicking portfolio

in excess of the GLS zero-beta rate (for this last result, we

assume that wP is scaled to make wP
0 i=i).

Proof. From the discussion prior to Result 5, wP=V�1BSF,
implying that a�P=SFB0V�1a*=SFB0V�1y*m. Further,
X0V�1y*=0, from which it follows that B0V�1y*=0 and,
hence, a�P=0. This proves the first half of the result. Also,
by definition, a*=m�z*i�Cg�P , where g�P are the GLS slopes
on C. Therefore, a�P=wP

0 a*=mP�z*i�g�P=0, where wP
0 m and

CP=wP
0 C=IK. Solving for g�P proves the second half of the

result. &

Result 7. Pricing errors in a GLS cross-sectional regression of

m on C are identical to the intercepts in a time-series

regression of R–z*i on RP–z*i. It follows that q and q* equal

yt2(z*)�yP
2(z*), where y(z*) is an asset’s generalized Sharpe

ratio with respect to rfþz* (the asset’s expected return in

excess of rfþz* divided by its standard deviation), t is the

tangency portfolio with respect to rfþz*, and yP is the

maximum squared generalized Sharpe ratio attainable

from RP.

Proof. Intercepts in the time-series regression are
aTS=m�z*i�C(mP�z*i). From Result 6, these equal a* since
g*P=mP�z*i. The interpretation of the quadratics then
follows immediately from the well-known interpretation
of a0TSS�1aTS (Jobson and Korkie, 1982; Gibbons, Ross, and
Shanken, 1989), with the only change that the Sharpe
ratios need to be defined relative to rfþz*. &

Result 8. The GLS R2 equals 1�q/Q=1�q*/Q, where

Q=(m�mgmvi)0V�1(m�mgmvi) and mgmv is the expected return

on the global minimum variance portfolio (Q depends only on

asset returns, not the factors being tested). Further, the GLS

R2 is zero if and only if the factors’ mimicking portfolios all

have expected returns equal to mgmv (i.e., they lie exactly in

the middle of mean-variance space), and the GLS R2 is one if

and only if some combination of the mimicking portfolios lies

on the minimum-variance boundary.

Proof. The GLS R2 is defined as 1�a*0V�1a*/(m�znfi)0V�1

(m�znfi), where znf is the GLS intercept when m is
regressed on a constant. The first claim in Result 8 follows
from observing that a*0V�1a* is the same as q* (see Result
4) and znf is the same as mgmv. The second claim, which we
state without further proof, is a multifactor generalization
of results in Kandel and Stambaugh (1995), with mimick-
ing portfolios substituted for non-return factors. The key
fact is that q*=Q�(mP�mgmvi)0SP*�1(mP�mgmvi), where S*P
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is the residual covariance matrix when RP is regressed on
the Rgmv. Thus, q* is zero (the GLS R2 is one) only if some
combination of RP lies on the minimum-variance bound-
ary, and q* equals Q (the GLS R2 is zero) only if
mP=mgmvi. &

Together, Results 1–8 describe key properties of GLS
cross-sectional regressions, prove the equality of the OLS
and GLS quadratics q and q*, and establish the connections
among the location of RP in mean-variance space, the GLS
R2, and the quadratics. All of the results have exact
parallels in sample, redefining population moments as
sample statistics.

Our final results consider the asymptotic properties of
the cross-sectional T2 statistic under the null that pricing
errors are zero and generic alternatives that they are
not. The T2 statistic is, roughly speaking, the sample
analog of the quadratics q and q* based on the traditional
two-pass methodology. Let r be the vector of average
returns, b be the sample estimate of B, and v and S be
the usual estimates of V and S. The corresponding
estimates of X, y, and y* are x�[i b], ŷ�I�x(x0x)�1x0, and
ŷ*�I�x(x0v�1x)�1x0v�1. Therefore, the estimated OLS
cross-sectional regression is r ¼ xl̂ þ â, where l̂ ¼
ðx0xÞ�1x0r and â=ŷr, and the estimated GLS regression is
r ¼ xl̂

�

þ â
�
, where l̂

�

¼ ðx0v�1xÞ�1x0v�1r and â*=ŷ*r.
Equivalently, by substituting r=(1/T)StRt into the equa-
tions, the slope and pricing errors can be interpreted as
time-series averages of period-by-period Fama-MacBeth
estimates. We focus on OLS regressions in what follows
but, as a consequence of the sample analog of Result 3
above, we show that the T2 statistics from OLS and GLS are
equivalent.

Our analysis below uses the following facts:
(1)
 Rt=mþBUFtþet, where UFt=Ft�mF.

(2)
 m=Xlþa=xlþ(X�x)lþa=xlþ(B�b)gþa.

(3)
 BUFt=b UFtþ(B�b)UFt.

(4)
 ŷx=0 and ŷb=0.
9 We use the terminology of a limiting distribution somewhat

informally here because, as the result is stated, the noncentrality

parameter goes to infinity as T gets large unless a and q* are zero. The

asymptotic result can be stated more formally by considering pricing

errors that go to zero as T gets large: Suppose that a*=T�1/2d*, for some

fixed vector d*. For this sequence of a*, the T2 statistic converges in

distribution to a w2 with noncentrality parameter d*0S�1d*/(1þg0SF
�1g).
Combining these facts, the pricing error in period t is
ât�ŷRt=ŷ(B�b)gþŷaþŷ(B�b)UFtþŷet and the time-series
average is â ¼ ŷðB� bÞgþ ŷaþ ŷðB� bÞUF þ ŷet , where an
upper bar denotes a time-series average. Asymptotically,
b-B; ŷ-y; UF-0, and ēt-0, where - denotes conver-
gence in probability. These observations, together with
ya=a, imply that â is a consistent estimator of a. Also, the
second-to-last term, ŷðB� bÞUF , converges to zero at a
faster rate than the other terms and, for our purposes, can
be dropped: â=ŷ(B�b)gþŷaþŷēt.

Result 9. Define d�â�ŷa. Asymptotically, T1/2d converges in

distribution to N(0, TSd), where Sd=ySy(1þg0SF
�1g)/T.

Proof. This result follows from observing that d is the
same as â when a=0, the scenario considered by Shanken
(1985, 1992b), and the term (1þg0SF

�1g) is the Shanken
correction for estimation error in b. More formally,
d=ŷ(B�b)gþŷēt. The asymptotic distribution is the
same substituting y for ŷ, and the two terms have
asymptotic mean of zero and are uncorrelated with each
other under the standard assumptions of OLS regres-
sions (i.e., in a regression, estimation error in the slopes
is uncorrelated with the mean of the residuals).
The asymptotic covariance is, therefore, Sd=var[y(B�b)g]þ
var[yēt]. Let vec(b�B) be the NK�1 vector version of b�B,
stacking the loadings for asset 1, then asset 2, etc., which
has asymptotic variance S�SF

�1/T from standard regres-
sion results. Rearranging and simplifying the formula
for Sd, the first term becomes var[y(B�b)g]=
g0SF

�1g(ySy)/T and the second term becomes var[yēt]=
ySy/T. Summing these gives the covariance matrix. &

A corollary of Result 9 is that, under the null that a=0,
T1/2 â also converges in distribution to N(0, TSd). To test
whether a=0, the cross-sectional T2 statistic is then
naturally defined as T2

�â0Sd
þâ, where Sd is the sample

estimate of Sd substituting the statistics ŷ, S, ĝ, and SF

for the population parameters y, S, g, and SF. Thus,
T2 ¼ â½ŷSŷ�þâ½T=ð1þ ĝ 0S�1

F ĝÞ�. The key quadratic here,
q̂=â0[ŷSŷ]þâ, is the sample counterpart of q defined earlier.
Result 3 implies that this OLS-based T2 statistic is identical
to a GLS-based T2 statistic defined using q̂*, the sample
equivalent of the GLS quadratic q* (the T2 statistics are
identical assuming the same Shanken-correction term,
ĝ 0S�1

F ĝ, is used for both; they are asymptotically equiva-
lent under the null as long as consistent estimates of g and
SF are used for both). Moreover, Result 4 implies that
T2 ¼ â

�0
S�1â

�
½T=ð1þ ĝ 0S�1

F ĝÞ�.

Result 10. The cross-sectional T2 statistic is asymptotically

w2 with degrees of freedom N�K�1 and noncentrality

parameter q*T/(1þg0SF
�1g). Alternatively, from Result 7,

the noncentrality parameter can be written as [yt2(z*)�

yP
2(z*)]T/(1þg0SF

�1g).9

Proof. The cross-sectional pricing errors are â=dþŷa=
ŷ(dþa), where the first equality follows from the defini-
tion of d and the second follows from the fact that ŷd=d.
The T2 statistic, therefore, becomes T2=(dþa)0ŷSd

þŷ(dþa).
Using the definition Sd

þ and facts from the proof of
Result 3, it is straightforward to show that ŷSd

þŷ=Sd
þ and,

thus, T2=(dþa)0Sd
þ(dþa). Sd

þ/T is a consistent estimate
of Sd

þ/T, so the T2 statistic has the same asymptotic
distribution as (dþa)0Sd

þ(dþa). [Sd
þ/T-Sd

þ/T because
Sþd =T ¼ S�1ŷ

�
=ð1þ ĝ 0S�1

F ĝÞ, which clearly converges to
Sd
þ/T=S�1y*/(1þg0SF

�1g).] From Result 9, T1/2d converges
in distribution to N(0, TSd), where Sd has rank N–K–1. This
implies that, asymptotically, d0Sd

þd is central w2, while
(dþa)0Sd

þ(dþa) is noncentral w2 with noncentrality
parameter a0Sd

þa, both with degrees of freedom N–K–1.
Result 10 then follows from observing that the noncen-
trality parameter equals q*T/(1þg0SF

�1g). &
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Appendix B

This appendix derives the small-sample distribution of
the HJ distance when returns are multivariate normal and
the factors in the proposed model are portfolio returns (or
have been replaced by maximally correlated mimicking
portfolios). R is defined, for the purposes of this appendix,
to be the Nþ1 vector of total rates of return on the test
assets, including the riskless asset.

Let w=g0þg01RP be a proposed SDF. The HJ distance is
defined as D�minmE[(m�w)2], where m represents
any well-specified SDF, i.e., any variable for which
E[m(1þR)]=1. Hansen and Jagannathan (1997) show that,
if w is linear in asset returns (or is the projection of a non-
return w onto the space of asset returns), the m* that
solves the minimization problem is linear in the return on
the tangency portfolio, i.e., m*=v0þv1Rt for some con-
stants v0 and v1, and D=E[(m*�w)2].

The constants g0 and g1 are generally unknown and
chosen to minimize D=E[(m*�g0�g01RP)2]. This problem is
simply a standard least-squares projection problem, so D

turns out to be nothing more than the residual variance
when m* is regressed on a constant and RP. Equivalently, D

is v1
2 times the residual variance when Rt is regressed on a

constant and RP: D=v1
2var(e), where e is from the

regression Rt=s0þs01RPþe. Kandel and Stambaugh (1987)
and Shanken (1987) show that the correlation between
any portfolio and the tangency portfolio equals the ratio of
their Sharpe ratios, yx/yt. Thus, s1 gives the combination of
RP that has the maximum squared Sharpe ratio, denoted
yP

2, from which it follows that D=v1
2(1�yP

2/yt2)st2. The
constant v1 equals �yt/[st(1þrf)] (see, e.g., Cochrane,
2001), implying that the HJ distance is D=(yt2

�yP
2)/

(1þrf)
2=yz

2/(1þrf)
2, where yz

2 can be interpreted as the
proposed model’s unexplained squared Sharpe ratio.

The analysis here is cast in terms of population
parameters but equivalent results go through in sample.
Thus, the estimated HJ distance, D̆, is proportional to the
difference between the sample squared Sharpe ratios of
the ex post tangency portfolio and the portfolios in RP.
Following the discussion in Section 4, the sample HJ
distance is therefore proportional to the GRS F statistic:
D̂=Fc/(1þrf)

2[N(T�K�1)/(T�N�K)], where c=(1þsP
2)/T.

It follows immediately that, up to a constant of propor-
tionality, D̂ has an F distribution with noncentrality
parameter c�1yz

2=c�1(1þrf)
2D.
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