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A framework is presented for investigating the mean-variance elliciency of an unobservable 
portfolio based on its correlation with a proxy portfolio. A sensitivity analysis derives the highest 
correlation between the proxy and a portfolio that reverses the inference of a test of Sharne- 
Lintner tangency. For- example, the maximum correlation between the value-weighted 
NYSE-AMEX portfolio and a portfolio inferred tangent ranges from 0.76 to 0.48. We also test 
whether the correlation between the proxy and the tangent portfolio exceeds a given level. This 
hypothesis is often rejected for the NYSE-AMEX proxy at a correlation of 0.7. 

1. Introduction 

Many asset pricing models imply the mean-variance efficiency of one or 
more benchmark portfolios. Models for which the benchmarks have been 
identified include the Capital Asset Pricing Model (CAPM), the intertemporal 
consumption-based model, and the Arbitrage Pricing Theory.’ Researchers 
concerned with testing asset pricing models have faced at least two important 
questions in recent years. First, how does one test the mean-variance efficiency 
of a given portfolio in a finite sample? Second, how can one make inferences 
about the mean-variance efficiency of a benchmark when its exact rate of 
return is unobservable? 

In addressing the problem of testing a given portfolio’s efficiency, re- 
searchers have sought to apply methods that account for finite-sample variabil- 
ity. Various tests are developed and applied by Gibbons (1982), Stambaugh 
(1982), Jobson and Korkie (1982), and Shanken (1985). Ross (1983) and 

l We are grateful to Eugene Fama, Wayne Ferson, Richard Green, participants in workshops at 
the Ohio State University and the University of Chicago, an anonymous referee, and especially 
John Long (the editor) for helpful comments and discussions. This research was conducted while 
the second author was a Batterymarch Fellow. 

‘The CAPM is due to Sharpe (1964). Lintner (1965). and Black (1972): the consumotion-based 
intertemporal model is due to-B&eden (1979); the Arbitrage Pricing Theory is due to Ross (1976). 
Benchmark portfolio efficiency is discussed by Fama (1976). RolJ (1977), and Ross (1977) for the 
CAPM, by Breeden (1979) for the consumption model, and by Chamberlain (1983), Grinblatt and 
Titman (1987). and Huberman. Kandel and Starnbaugh (1987) for the Arbitrage Pricing Theory. 
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Kandel (1984a) obtain analytical solutions for computing one such test, the 
likelihood ratio. The distribution of the tests in finite samples has been 
investigated analytically [Ross (1983) Shanken (1985) and Gibbons, Ross and 
Shanken (19SS)] and through simulations [Gibbons (1980) Stambaugh (1981), 
Jobson and Korkie (1982), and Ma&inlay (1985)]. 

Precise measurement of the relevant benchmark return can be difficult. Roll 
(1977) discusses how unobservability of the market portfolio’s return presents 
problems in testin, 0 the CAPM. When the benchmark portfolio is measured 
imprecisely by a proxy, the researcher may wish to investigate the sensitivity of 
inferences to alternative specifications of the proxy. One approach is to repeat 
tests using various proxies (Stambaugh (1982)]. Another approach, pursued in 
this study, is to ask whether any portfolio in a class of portfolios would 
provide a different inference, where the class includes all portfolios satisfying 
some specified relation (e.g., correlation) with the original proxy. 

We characterize an alternative proxy portfolio in terms of the correlation 
between its return and the return on the original proxy. This characterization 
allows us to define a class of alternative proxies as all portfolios having a 
sample correlation of at least, say, 0.9 with the original proxy. We then ask 
whether any portfolio in that class gives an inference about mean-variance 
efficiency that differs from the inference about the original proxy. This 
question is examined in a finite-sample context. We also test whether the 
ex ante correlation between the proxy and the Sharpe-Lintner tangent port- 
folio of the global asset universe exceeds a given value. Thus, our study 
integrates the problems of finite-sample tests and benchmark-portfolio mea- 
surement. 

A brief example can illustrate the type of information provided by the 
approach developed here. Using weekly data from July 1969 through October 
1975, the second of three subperiods, a likelihood ratio test can reject at the 
0.05 significance level the hypothesis that the value-weighted portfolio of all 
New York and American Stock Exchange stocks is the Sharpe-Lintner 
tangent portfolio. We find that no alternative index portfolio whose sample 
(ex post) correlation with that original proxy exceeds 0.50 could have provided 
a different inference. In addition to conducting this ex post sensitivity analysis, 
we also reject in the same subperiod the hypothesis that the original proxy has 
an ex ante correlation of at least 0.70 with the Sharpe-Lintner tangent 
portfolio of the global universe of assets. If the market portfolio has a 
correlation of at least 0.70 with the NYSE-AMEX value-weighted proxy, then 
the latter result also rejects the CAPM. 

The paper proceeds as follows. Section 2 first analyzes the above problem 
when all parameter values are given. This framework allows us to introduce 
the relevant mean-variance mathematics before turning to the complications 
of finite-sample variability. The starting point is Roll’s (1977) welI known 
example, in which he shows that the market proxy used by Black, Jensen and 
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Scholes (1972) is correlated 0.9 with the sample Sharpe-Lintner tangent 
portfolio. We show that the correlation between the tangent portfolio and the 
proxy is sensitive to how one constructs the efficient set. This applies for both 
the population and the sample. For example, if the set is constructed from 16 
portfolios of stocks and bonds, the sample correlation between the tangency 
and the proxy of Black, Jensen and Scholes drops to 0.48. If still more assets 
are used to construct the set, the correlation can only decrease. The last 
statement follows from the result that the correlation between a proxy and the 
tangent portfolio is simply the ratio of their Sharpe measures. 

Section 2 also discusses a more general question examined by Kandel and 
Stambaugh (1986): where, in mean-variance space, are the portfolios having 
correlations with a given proxy of at least, say, 0.9? Do such portfolios include 
points on the minimum-variance boundary? Do they include the Sharpe- 
Lintner tangency? Do they exist at all levels of mean return? A complete 
analytical characterization of this set of portfolios is provided in Kandel and 
Stambaugh (1986). In section 2, we illustrate graphically the properties of this 
set that are useful in deriving the sensitivity analysis and the tests in sections 3 
and 4. 

Section 3 expands the analysis to include finite-sample inference. We 
analyze the sensitivity of inferences based on the likelihood ratio test of 
tangency in the presence of a riskless asset. As Ross (1983) demonstrates, this 
test has a known finite-sample distribution and, conveniently for our purposes, 
can be constructed easily from parameters of the sample efficient set. The 
latter feature allows us to extend the analytical results in section 2 and to 
compute the highest sample correlation between the proxy and a portfolio 
that, in the same sample, reverses the inference about the proxy’s tangency. 
Using stock and bond returns data, we compute that correlation for various 
proxies and sets of assets. In many cases, the correlation is quite high. In other 
cases, there are no portfolios that would reverse inferences, whatever the 
correlation. The latter cases occur when, for that sample, there is no rejection 
region for the likelihood ratio test for standard test sizes. 

Section 4 presents a new test of the hypothesis that a given proxy is 
correlated ex ante at least p,, with the ex ante tangent portfolio. The null 
hypothesis is, in fact, a joint hypothesis that some portfolio .whose exact return 
is unobservable, e.g., the market portfolio, is both (i) the ex ante tangent 
portfolio of the global universe of all assets and (ii) correlated ex ante at least 
p0 with the given observable proxy. The null hypothesis is rejected if the proxy 
itself is inferred non-tangent for the econometrician’s observed asset universe 
by Ross’s test and if the highest sample correlation between the proxy and a 
portfolio that is inferred tangent is too low. The latter sample statistic is 
derived in section 3, and it is used there for sensitivity analysis within the same 
sample. In section 4 the same statistic is used in a formal test whose 
signiftcance level is bounded from above. 
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In a recent paper, Shanken (1987) suggests an approach for testing the 
hypothesis that the correlation between an observable proxy and the ex ante 
tangent portfolio of the econometrician’s observed asset universe exceeds a 
given level. His approach gives a test statistic whose distribution depends on 
an unknown parameter. Given that parameter, which can be estimated, the 
approach provides exact significance levels for a test of this hypothesis. The 
second part of section 4 generalizes Shanken’s approach slightly to consider 
instead the ex ante tangent portfolio of the global asset universe, and we 
obtain a test whose significance level is bounded from above, conditional on 
the unknown parameter. We then apply this test and obtain inferences similar 
to those produced by the first approach. Both approaches indicate that the 
above hypothesis is typically rejected at conventional significance levels for p0 
equal to 0.9, and often for p0 equal to 0.8 or 0.7, when the market proxy is 
either the equally weighted or value-weighted portfolio of New York and 
American Stock Exchange stocks. 

Section 5 reviews the paper’s conclusions. 

2. Correlations between a given portfolio and alternative portfolios 

This section explores the relations that govern the correlation between the 
returns on a given proxy portfolio and the returns on (i) the Sharpe-Lintner 
tangent portfolio, (ii) other portfolios on the minimum variance boundary, and 
(iii) arbitrary feasible portfolios, given only the locations of the latter in 
mean-variance space. We also note that these relations give a simple implica- 
tion about the relevant benchmark portfolio of a subset of assets. The relations 
in this section are stated in terms of ex ante values, but they hold (and are 
subsequently used) for both ex ante and sample values. 

2.1. The correlation between the proxy and the tangent portfolio 

Given a universe of n risky assets and a riskless asset, define 

/J(P) = mean return on portfolio p, 

o(p) = standard deviation of the return on portfolio p, 
p( p, q) = correlation between returns on portfolios p and q, 

r = riskless return. 

The Sharpe measure of a portfolio is the ratio of its mean excess return to 
its standard deviation of return. That is, the Sharpe measure of p is given by 
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The Sharpe-Lintner tangent portfolio is the portfolio of the n risky assets 
with the maximum Sharpe measure.’ 

The term ‘minimum-variance portfolio’ will be used throughout the paper to 
denote a portfolio on the minimum-variance boundary of the risky assets. A 
circurnllex will denote a sample value. The following notation is used to 
denote various portfolios of the n risky assets in the universe: 

a = proxy portfolio, 
y = ex ante tangent portfolio, 
? = sample tangent portfolio, 
p, = minimum-variance portfolio whose return is uncorrelated with the mini- 

mum-variance portfolio p, i.e., p._ is a ‘zero-beta’ portfolio with respect 

to P, 
p*= minimum-variance portfolio with the same mean return as portfolio p. 

As established in the following proposition, Sharpe measures provide a 
convenient way to compute the correlation between the proxy and the tangent 
portfolio. 

Proposition 1. 3 

Pb? Y) = WP(Y>. (2) 

Proof. The linear mean-beta relation implied by the tangency of y gives 

p(a)-r= y:(y) MY) - 4 = g-+~Y)[P(v) - 4. (3) 

Solving (3) for p(a, y) gives 

[P(a) - rl/da> 
da9 y, = [P(Y) - d/WY) 

= S(a)/S(Y). 0 (4 

In his critique of tests of the CAPM, Roll (1977) constructs efficient sets 
from sample parameters and then computes the correlation between a market 
proxy and the sample tangent portfolio. In Roll’s examples, the correlations 
are high, 0.9 or more, which leads Roll to suggest that rejections of the CAPM 
can be reversed easily with an alternative proxy that is highly correlated with 
the original. Proposition 1 is useful in analyzing such examples. As we 

*We aSSume throughout that such a portfolio exists for both the population and the sample, 
which is equivalent to assuming that the riskless return is less than the mean return on the 
portfolio of risky assets having the smallest variance. 

‘See also Jensen (1969) and Long (1977) for related results. 
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demonstrate, the correlation between the proxy and the sample tangent 
’ portfolio is sensitive to how one constructs the efficient set. 

We construct several sample minimum-variance boundaries using monthly 
returns on various assets for the overall period January 1926 through Novem- 
ber 1978 and for two subperiods. All returns are in excess of the one-month 
Treasury Bill rate [from Ibbotson and Sinquefield (1982)]. Our market proxy is 
the equally weighted New York Stock Exchange (NYSE) index. following 
Black, Jensen and Scholes (1972), one of the studies from which Roll (1977) 
generates his examples. The first column of table 1 displays the correlation 
between the equally weighted NYSE and the tangent portfolio for three 
minimum-variance boundaries. (The tangent emanates from the origin, since 
we use excess returns.) The first minimum-variance boundary is essentially the 
same one constructed by Roll. That is, we form a zero-beta portfolio in the 
manner of Black, Jensen and Scholes and compute a series of monthly returns 
on that portfolio. The boundary is then generated as all possible combinations 
of the NYSE and the zero-beta portfolio, using the return series to estimate 
the necessary parameters. Consistent with Roll’s finding, the correlations 
between the NYSE proxy and the sample tangent portfolio are 0.9 or more in 
this case. 

The other two boundaries constructed here, unlike the first, are not assumed 
to include the equally weighted NYSE. Rather, that portfolio now- lies some- 
where inside the sample boundary. We construct the first of these alternative 
boundaries from a universe containing the equally weighted NYSE plus ten 
equally weighted common stock portfolios formed by ranking firms into 
deciles of market value of equity at the end of the previous year.” The 
correlations between the sample tangent portfolio of this boundary and the 
NYSE proxy are considerably lower than in the original example - 0.60 for 
the overall period. 

The decline in the correlation from the first boundary to the second is easily 
understood given the following corollary: 

Corollaq 1. For a given proxy a, p( a, y) cannot increase as risk? assets are 
added to the universe (and y changes). 

Proof. Use Proposition 1 and the fact that S(y) cannot decrease as the 
universe expands. 0 

This corollary is illustrated further with the third boundar)-. which is 
constructed by adding the value-weighted NYSE and four bond portfolios to 

4The ten size-ranked portfolios exclude firms for which market values cannot be computed at 
the end of the previous calendar year. Thus the equally weighted NYSE index, which includes all 
stocks on the Exchange in any month, is not a redundant asset here. 
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Table 1 

Sample correlations between the equally weighted &YSE (EW) and portfolios on the minimum- 
variance boundary 

Assets used to construct 
the minimum-variance boundary 

Number Description 

Correlation between EW Maximum correlation 
and the Sharpe-Lintner between EW and a 

tangent portfolio portfolio on the boundary 

2 

11 

16 

2 

11 

16 

2 

11 

16 

l/1926-11/1978 

EW plus the BJS 0.994 
zero-beta portfolioa 

EW plus ten size-ranked 0.596 
portfolios of common sto&sb 

EW, the size-ranked portfolios, 0.484 
the value-weighted NYSE, 
and four bond portfolios’ 

l/1926-12/1952 

EW plus the BJS 0.920 
zero-beta portfolio 

EW plus ten size-ranked 0.440 
portfolios of common stocks 

EW, the size-ranked portfolios, 0.269 
the value-weighted NYSE, 
and four bond portfolios 

l/1953-11/1978 

EW plus the BJS 0.902 
zero-beta portfolio 

EW plus ten size-ranked 0.528 
portfolios of common stocks 

EW, the size-ranked portfolios, 0.438 
the value-weighted NYSE, 
and four bond portfolios 

1.000 

0.783 

0.484 

1.000 

0.650 

0.328 

1.000 

0.883 

0.550 

“The zero-beta portfolio is formed in essentially the same manner as Black, Jensen and Scholes 
(1972). 

bAll firms on the NYSE are assigned to deciles based on the market value of equity at the end of 
the previous year. Portfolios are equally weighted. 

‘The four bond portfolios consist of long-term U.S. Government bonds, long-term high-grase 
corporate bonds, BAA-rated corporate bonds, and below-BAA-rated corporate bonds. 

the previous universe of eleven stock portfolios. The bond portfolios consist of 
long-term U.S. Government bonds, long-term high-grade corporate bonds, 
BAA-rated corporate bonds, and below-B&I-rated corporate bonds.’ The 
correlations between the sample tangent portfolio and the NYSE proxy are, as 
they must be, lower than in the previous case - 0.48 for the overall period. 
Adding more assets can only decrease the correlation still further. 

‘The first two series are from Ibbotson and Sinquefield (1982); the latter two are from Ibbotson 
(1979). 
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2.2. The correlation between the proxy and portfolios on the minimum-cartance 

boundary 

When a riskless asset exists, the above examples illustrate the difference. in 
terms of correlation, between the proxy and the portfolio that, ex post. 
supports the Sharpe-Lintner pricing theory. When no riskless asset exists, a 
similar analysis is possible. In the latter case, however, there is no longer a 
unique boundary portfolio of the risky assets. Rather, many portfolios on the 
positively sloped minimum-variance boundary could in principle support the 
more general Black (1972) version of the two-parameter modeL6 

The following propositions are useful in understanding the correlation 
between the proxy and portfolios on the minimum variance boundary. 

Proposition 2. For any minimum-variance portfolio p. 

(5) 

Proof. Replace r with p( p,) in the proof of Proposition 1. 0 

Proposition 3. The minimum-variance portfolio having the highest correlation 

with a is a*, the minimum-variance portfolio having the same mean return as a. 

The maximum correlation is 

p(a,a*) = u(a*)/u(a). 

Proof. Consider an arbitrary minimum-variance portfolio p. Let (I*,, a,) be 
the point in mean-standard-deviation space on the line tangent to the mini- 
mum-standard-deviation boundary at p with ~1 LI = ,u( a). Then 

da7 P) = iptp) _pL(pz)l~u(p) (Prwsition2) 

= [P(a)-P(PP,)l/da) _ a, 

[kz-cl(PJl/% o(a) ’ 

Since, for all choices of p, a,< a(a*), p(a, p) is maximized at a, = u(a*), 
which is accomplished by choosing p = a*.’ q 

‘We say ‘many’ rather than ‘any’ because, as Ehrbar (1984) notes, portfolios on the positively 
sloped boundary but below the point of tangency of a ray emanating from - 100’5 are inefficient 
for investors not constrained to invest all their money. 

‘We are grateful to John Long for suggesting this method of proof. 



S. Kandel and R. F. Stambaugh. ‘Mean-oanance eficrency 69 

If the question of primary interest is the sensitivity of inferences to choosing 
alternative proxies, then an important boundary portfolio is the one having the 
highest correlation with the original proxy. That portfolio is, in a sense, the 
one that most easily reverses a violation of the pricing theory. From Proposi- 
tion 3, that boundary portfolio is the one with the same mean return as the 
original proxy. 

The second column of table 1 displays the maximum sample correlation 
between the equally weighted NYSE and portfolios on the sample minimum 
variance boundaries described earlier. For the first boundary, the maximum 
correlation equals one, since the proxy lies on the boundary by construction. 
The maximum correlations for the other boundaries are, as in the previous 
examples, considerably lower. In fact, for the overall period and for the most 
inclusive boundary, the boundary portfolio having maximum correlation with 
the proxy happens to be the sample tangent portfolio. In other words, the 
sample tangent portfolio in that case has the same mean return as the NYSE 
proxy (by Proposition 3). 

As in the previous examples, the decline in correlations as assets are added 
to the universe is easily understood given the following corollary: 

Corollary 2. For a given proxy a, the maximum correlation between a and a 
portfolio on the minimum-variance boundary cannot increase as risky assets are 
added to the universe. 

Proof. Use Proposition 3 and the fact that a( a*) cannot increase as the 
opportunity set expands. 0 

2.3. The correlation between the proxy and an arbitrary portfolio 

We have examined the correlation between a proxy portfolio and portfolios 
on the minimum-variance boundary, but a more complete characterization is 
possible. Where, in mean-variance space, are the portfolios correlated at least 
pa with the proxy? Kandel and Stambaugh (1986) provide a complete analyti- 
cal characterization, in mean-variance space, of the set of portfolios having 
correlation of at least pa with a given proxy. Here we illustrate graphically the 
properties of this set that are useful in developing the sensitivity analysis in 
section 3. 

We restrict attention to a universe of risky assets having a non-singular 
variance-covariance matrix, and we assume that the proxy does not lie on the 
minimum-variance boundary. Consider the set of portfolios whose correlation 
with the proxy is at least pa. For pa = 1, the set contains only the proxy itself. 
The set expands as p0 declines. For sufficiently low values of pa, the set 
contains portfolios at all levels of mean return. Roll (1980) shows, for 
example, that portfolios uacorrelated with an inefficient proxy exist at all 
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levels of mean return. For intermediate values of no, the set contains portfolios 
only at certain levels of mean return. 

Just as the set of portfolios correlated at least p0 with the proxy expands as 
p0 declines, the region of mean-variance space that this set of portfolios can 
occupy also expands as p0 declines. Fi g. 1 displays some examples of these 
regions for various values of p,,. We plot the regions in mean-standard-devia- 
tion space, given that most readers are probably more familiar with graphs in 
those dimensions. The minimum-standard-deviation boundary is constructed 
from the sixteen stock and bond portfolios used in the earlier examples, where 
parameters are estimated over the 1926-1978 period. We again use the equally 
weighted NYSE as the proxy. Thus, the graphs represent the same proxy and 
asset universe used to compute the third row of table 1. The parameter values 
are annualized, and the returns are stated in excess of the T-Bill rate. 

All portfolios having a correlation of at least p0 with the proxy lie in a 
convex region in mean-standard-deviation space, although that region can 
also contain portfolios whose correlation with the proxy is less than po. The 
region may or may not be bounded in various directions, depending on po. 
The four cases displayed in fig. 1 illustrate some of the possibilities. For a 
sufficiently high po, as in the first case where p. = 0.999, the region is bounded 
in all directions. When p. = 0.9, portfolios having the required minimum 
correlation exist at all mean returns greater than a critical level, but for a given 
mean, the variance of such portfolios is bounded. When p. = 0.7, the portfolios 
exist at all mean returns, and the variance has no upper bound. The same is 
true when p. = 0.45, except the region of portfolios then extends to include 
points on the minimum-standard-deviation boundary. Given the earlier discus- 
sion surrounding table 1, recall that when p. = 0.48, the region touches the 
boundary at one point - the point with the same mean return as the proxy. 

2.4. Benchmark portfolios for subsets 

Investigations of asset pricing models must use subsets of the global 
universe of assets. The above relations also provide a relevant benchmark 
portfolio formed from a subset of assets. Let b denote the benchmark 
portfolio of the global universe, which is identified by the pricing theory, and 
let p’ be the portfolio from the subset of assets that is most highly correlated 
with 6. The following corollaries, easily shown given Propositions 1 and 2, 
establish p’ as a relevant benchmark for testing the pricing theory with the 
subset of assets. 

Corollary 3. If b is the Sharpe-Lintner tangent portfolio for the global universe 

of assets, and p’ is the portfolio from a subset of assets that is most highly 
correlated with b, then p’ is the tangent portfoho for the subset of assets. 
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Fig. 1. Regions containing the portfolios having correlation with the proxy (a) greater than 01 
equal to the value given. 



72 S. Kandel and R. F. Stambaugh, Mean-variance eflcienc), 
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Fig. 1. (continued) 
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Proof. For any portfolio p of the subset, Proposition 1 gives p(b, p) = 
S( p)/S(b). Since this correlation is m aximized for p =p’, S( p’) is the 
maximum Sharpe measure for any portfolio of the subset, and thus p’ is the 
tangent portfolio for the subset. 0 

Corollary 4. If b is on the minimum-variance boundary of all assets, and p’ is 
the portfolio from a subset of assets that is most highly correlated with b, then p’ 
is on the minimum-variance boundary of the subset of assets. 

Proof. Identical to Corollary 3 except that, using Proposition 2, Sharpe 
measures are defined with respect to p(bL) instead of r. •i 

Corollary 3 implies, for example, that if the tangency of p’ is rejected on a 
subset of assets, then the tangency of b for the global universe is also rejected. 
It is important to note that the exact construction of p’ is not likely to be 
known by the researcher. In the discussions that follow, however, it is 
sufficient to view the observable portfolio (Y as a proxy for the unobservable 

P’- 

3. The sensitivity of finite-sample inferences 

The previous section addresses the question of how similar, in terms of 
correlation, is the proxy portfolio to a sample efficient portfolio that supports 
the pricing theory exactly. In a finite sample, however, there will also be 
sample inefficient portfolios for which the hypothesis of ex ante efficiency 
cannot be rejected. Those portfolios are not sufficiently ‘far’ from sample 
efficiency to rule out parameter estimation error as the cause of their sample 
inefficiency. The correlations in table 1 essentially provide information about 
inference sensitivity in infinite samples. We address in this section the issue of 
inference sensitivity in finite samples. 

We coninue to pose the question raised originally by Roll (1977) and 
pursued in the previous section: how highly correlated with the original proxy 
can an alternative proxy be and still provide a different inference about 
ex ante mean-variance efficiency? In an infinite sample, this question is 
interesting only if the original proxy is inefficient - if the proxy happens to be 
efficient, there are clearly inefficient portfolios ‘close by’ whose correlations 
with the proxy are arbitrarily close to unity. In a finite sample, however, the 
question of inference reversal becomes interesting whether or not the proxy is 
inferred to be inefficient, since a sample inefficient portfolio is not necessarily 
inferred to be ex ante inefficient. 
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3. I. The statistical framework 

The sensitivity of finite-sample inferences obviously depends, inter alia, on 
the type of test performed. We investigate here the sensitivity of the likelihood 
ratio test of whether a given portfolio is the Sharpe-Lintner tangent portfolio. 
A transformation of the test statistic has a finite-sample F distribution, as 
shown by Ross (1983). Another convenient feature of the test for our purposes 
is that it can be characterized completely in terms of the sample mean-stan- 
dard-deviation space. A portfolio’s tangency is accepted or rejected by com- 
paring its estimated Sharpe measure to that of the sample tangent portfolio. If 
the difference in squared Sharpe measures is large enough, tangency is 
rejected. Specifically, 

has an F distribution with n - 1 and T - n degrees of freedom if p is the 
ex ante tangent portfolio, where n is the number of assets and T (2 n) is the 
number of time series observations [Ross (1983)].8 

Our objective is to describe, in terms of sample correlation with the original 
proxy CY, the portfolios that are inferred (i) tangent if a is inferred non-tangent 
or (ii) non-tangent if a is inferred tangent. The first step is to observe that, in 
some cases, no such reversal of inferences is possible for any correlation. For a 
given sample of assets, F has a maximum of 

T= 
T-n ~ 
n_1sW2? 

which is attained when s(p) = 0. Note that F could still be less than F,, the 
critical F value for significance level B. In such a case, which is more likely to 
occur in samples where n is large relative to T, there are no feasible portfolios 
whose tangency is rejected at significance level 19. 

When 2 in (8) exceeds F,, then the ex post rejection region is non-empty 
and can be characterized in terms of critical Sharpe measures. In such a case, 

the likelihood ratio test rejects tangency of p if I$( p) ( < Scatr, where 

s CRIT = 

and v = (n - l)/(T - n). [Set F= FB in (7) and solve for s(p).] Tangency is 

‘See also Gibbons, Ross and Shanken (1985) and Ma&inlay (1985). 
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accepted for portfolios with sample Sharpe measures that are either high 

enough ( > Sc,) or low enough (< - Sc,,). Given the symmetric treatment 
of positive and negative Sharpe measures, the test’s power clearly is greatest 
against a zero Sharpe measure and diminishes as the Sharpe measure moves 
either up or down. The test ignores the restriction that the mean excess return 
of the tangent portfolio is strictly positive. 

Combined with our earlier analysis in section 2.3, the critical Sharpe 
measures provide a simple way to address the issue of inference sensitivity. 
For a given p,, first construct the region, denoted @, in sample mean- 
standard-deviation space containing portfolios having sample correlation of at 
least pa with the proxy a. (Recall that examples of such a region are displayed 
in fig. 1.) Next construct the lines representing the critical Sharpe measures, 
s CRIT and -sCRIT. If either line passes through @, then whatever the inference 
about a’s tangency, some portfolio having a sample correlation of at least p0 
with a gives a different inference. 

As described earlier, the region @ expands as p,, decreases. Fig. 2 illustrates 
two cases, where the universe contains the same sixteen risky assets used in the 
previous section, parameters are estimated for the 1926-1952 subperiod, and 
the proxy a is the equally weighted NYSE. The critical Sharpe measure 
(SCRIT) reflects a 0.05 signihcance level, and a lies in the rejection region. In 
fig. 2A, 0 is constructed with pa = 0.95, and no points in @ lie in the 
acceptance region. When p0 is lowered to 0.70 in fig. 2B, Qi then crosses SCRIr, 
so some portfolios in @ then lie in the acceptance region. We compute the 
highest p0 for which the region @ is tangent to one of the critical Sharpe 
measures, that is, the highest p0 for which a reversal of inferences is possible. 

Proposition 4. Assume F> F, (non-empty rejection region). The maximum 
correlation between a and a portfolio that is inferred (i) tangent if a is inferred 
non-tangent or (ii) non-tangent if a is inferred tangent at significance level 0, is 
given by 

where 

(10) 

c(a) = ( [S(~)2-S&][~($)2-S(a)2]]1’2. 

Proof. By Proposition 6 in Kandel and Stambaugh (1986), the maximum 
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Fig. 2. Portfolios that plot above the dashed line whose slope is SC,,, are inferred to be the 
ex ante tangent portfolio at a significance level of 0.05. Tangency is rejected for the original proxy 
as well as for all portfolios correlated at least 0.95 with the proxy (part A). Some portfolios 

correlated at least 0.70 with the proxy are inferred to be the ex ante tangent portfolio (part B). 
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sample correlation between a and a portfolio with sample Sharpe measure S is 

P(S) = 
S&Y) + c(a) 

Qf)2 ’ 
(11) 

with c(a) defined as above except that S replaces Sc,,,. It is easily verified 
that p’(S) -C 0 (> 0) if $(a) < S (> S), which implies that a portfolio satisfy- 
ing the conditions of the proposition will lie on a critical Sharpe measure. (A 
portfolio beyond the boundary of the critical region cannot produce a higher 
correlation.) Therefore S can be either Sc,, or -Sc,,,, whichever produces 
the higher correlation. From (ll), the higher correlation occurs for S = Sc,,, 
when i(a) > 0 and for S = - SCIUT when s( (Y) =C 0, and this choice is 
accomplished in (10). 0 

We note here that the alternative portfolios considered in Proposition 4 
consist of different combinations of the original n assets used in the test. We 
do not investigate empirically the sensitivity of inferences when assets are 
added (n increases). With an infinite number of time-series observations, such 
sensitivity can be discussed easily. In that case, the only portfolio that will 
reverse an inference of non-tangency is the tangent portfolio itself. As dis- 
cussed in section 2, the correlation between the original proxy OL and the 
tangent portfolio cannot increase as more assets are added to the universe (and 
to the tangent portfolio). With a finite number of time-series observations, 
however, the problem of inference sensitivity when the number of assets is 
increased becomes less straightforward. In fact, it is difficult to pose a question 
in a way that could elicit an interesting answer. 

The major problem in finite samples stems from how one handles the 
number of time-series observations (T). Holding T fixed presents one prob- 
lem, but letting T increase presents another. For example, if T is held fixed as 
assets are added, the size of the rejection region can decrease. Unless i(f), the 
maximum sample Sharpe measure, increases sufficiently, Sc,, in (9) will 
decrease as the number of assets (n) increases. In fact, the ex post rejection 
region can disappear if F in (8) falls below the critical F value, F,. Therefore, 
an inference of non-tangency of the original proxy a could be reversed by a 
portfolio highly correlated with a, after adding enough assets to sufficiently 
reduce the rejection region of the test. On the other hand, if time-series 
observations are added in order to overcome the above problem, then a 
reversal of inferences could again occur for a portfolio highly correlated with 
the original proxy a, but the reversal could arise solely from the additional 
time-series observations. Indeed, one could in principle reverse the original 
inference by testing the same proxy using the longer time series. For these 
reasons, we confine our attention to alternative portfolios of the original n 
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Table 2 

Sensitivity of the F test of Sharpe-Lintner tangency using monthly returns.” 

Maximum correlation 
between the proxy and a 
portfolio that gives the 
opposite inference at 

significance level 

0.10 0.05 0.01 

Market 

proxyb 

Sample 
Sharpe 

measure 
of proxy 

Sample correlation 
of the proxy with 

the sample tangent 
portfo!io 

f-value of 
the test of 

tangency of 
the proxy 

EW 0.127 
VW 0.109 

EW 0.131 
\;W 0.110 

EW 0.140 
VW 0.120 

l/1926-11/1978 (T= 635, $7) = 0.262)’ 

0.483 0.008 0.972 
0.416 0.004 0.952 

l/1926-12/1952 (T= 324, s(T) = 0.487) 

0.269 O.ooO 0.791 
0.226 0.000 0.764 

l/1953-11/1978 (T= 311, i(f) =0.320) 

0.438 0.089 0.999 
0.372 0.059 0.992 

0.986 0.999 
0.970 0.995 

0.817 0.863 
0.791 0.840 

0.999 noned 
0.999 none 

‘The set of risky assets consists of sixteen portfolios: ten portfolios of common stocks of the 
New York Stock Exchange, the equally weighted and the value-weighted NYSE portfolios, and 
four bond portfolios. The ten stock portfolios are based on market value deciles at the end of the 
previous year and they are equally weighted portfolios. 

bFW: equally weighted NYSE; VW: value-weighted NYSE. 
‘S( 3) is the sample’s maximum Sharpe measure. 
d‘None’ indicates that there is no rejection region ex post, 

assets. Given the preceding discussion of benchmarks for subsets of assets 
(section 2.4) such an investigation is relevant for testing asset pricing theories. 

3.2. Results with the monthly data 

Table 2 displays values of &(oL), the maximum sample correlation that 
allows reversal of inferences about tangency, in tests using the monthly returns 
data. The proxies are the equally weighted NYSE (EW) and the value-weighted 
NYSE (VW), and tangency is tested with respect to the sixteen risky assets 
examined earlier. In addition to the sample Sharpe measure [$(a)] of the 
proxy, ir,( (u) depends on the maximum sample Sharpe measure [.‘?(p)], the 
number of assets (PI), the number of observations (T), and the significance 
level of the test (0). Thus, table 2 provides only a few examples of the analyses 
that could be conducted for various proxies and collections of assets. Nev- 
ertheless, some interesting observations emerge. 

When reversals of inferences are possible, the correlations with alternative 
portfolios that allow such reversals are often higher than table 1 might lead 
one to suspect. For example, the equally weighted NYSE is correlated only 



S. Kandel and R. F. Stambaugh, Mean-canance eficiency 19 

0.48 with the sample tangent portfolio in the o*/erall period (table l), but there 
exists a portfolio correlated as high as 0.99 with that proxy that would reverse 
the inference of ex ante non-tangency at the 0.05 significance level. In this 
case, the proxy lies very close to the critical Sharpe measure. Although such a 
result need not always occur, this example illustrates the often dramatic effect 
of allowing for finite-sample variability. A similar comparison can be made in 
the first subperiod, except that each of the correlations is lower than in the 
overall period (0.48 becomes 0.27; 0.99 becomes 0.82). 

A rather different phenomenon occurs in the second subperiod. No portfolios 
would have been inferred to be non-tangent at significance levels of 0.01 or 
less. This illustrates the possibility discussed earlier, where the maximum of 
the test statistics [F in (S)] is less than the critical F value. Here again, 
however, observe the contrast between infinite and finite samples. In an 
infinite sample, all portfolios would be inferred non-tangent except one - the 
tangency. In the finite sample, no portfolios would be inferred non-tangent. 
Thus, any other portfolio would reverse an original inference of tangency in an 
infinite sample, whereas no portfolio could reverse such an inference in this 
finite sample. 

3.3. Results with weekly data 

Although the above discussion ihustrates well a range of outcomes that can 
occur when investigating the sensitivity of inferences, the implied stationarity 
assumptions are fairly strong. The overall period of 53 years and the subperi- 
ods of 27 and 26 years are long by usual standards. Shorter subperiods, while 
relaxing the assumed station&y, result in fairly small numbers of time-series 
observations when using monthly data, and the power of the test is thereby 
reduced (the rejection region is often empty ex post in such cases). In order to 
illustrate the above sensitivity analysis without imposing such strong stationar- 
ity assumptions, we conduct additional tests using weekly data. 

Weekly returns are computed for ten value-weighted portfolios formed by 
ranking all firms on the New York and American Exchanges by market value 
at the end of the previous year. We use as two market proxies both the equally 
weighted and value-weighted portfolios of stocks on the NYSE-AMEX. The 
riskless rate is the return on a U.S. Treasury Bill with one week to maturity.9 
We test the tangency of each proxy with respect to a universe of twelve risky 
assets consisting of the ten size portfolios and both market proxies. Table 3 
reports the results of the same sensitivity analysis conducted in table 2, except 
that now the analysis is performed on three periods, each about six years (324 
weeks) in length. Thus, the number of time-series observations (T) is the same 
as in the first subperiod in table 2, but the period is only one fourth as long. 

9 We thank Richard Rogalski for providing the Treasury Bill data. 
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Table 3 

Sensitivity of the F test of Sharpe-Lintner tangency using weekly returns.’ 

Sample 

Market 

proxy b 

Sharpe 
measure 
of proxy 

EW 0.200 
VW 0.097 

EW 0.018 
VW 0.034 

EW 0.178 
VW 0.047 

Maximum correlation 
between the uroxv and 

Sample correlation 
of the proxy with 

the sample tangency 
portfolio 

P-value of 
the test of 

tangency of 
the proxy 

a portfolio mat gives 
the opposite inference 

at significance level 

0.10 0.05 0.01 

l/2/63-6/25/69 (T = 324, s(f) = 0.445)’ 

0.449 0.000 0.876 0.897 0.934 
0.218 0.000 0.733 0.763 0.819 

7/2/69-10/l/75 (T = 324, s(F) = 0.681) 

0.026 0.000 0.433 0.459 0.510 
0.051 0.000 0.455 0.481 0.531 

10/8/75-12/23/81 (T = 324, i(7) = 0.608) 

0.292 0.000 0.686 0.709 0.753 
0.077 0.000 0.511 0.539 0.591 

“The set of risky assets consists of twelve portfolios: ten portfolios of stocks of the New York 
and American Exchanges and their value-weighted and equally weighted portfolios. The ten 
portfolios are based on market value deciles at the end of the previous year and they are 
value-weighted portfolios. 

bEW: equally weighted NYSE-AMEX; VW: value-weighted NYSE-AMEX. 
‘S( 7) is the sample’s maximum Sharpe measure. 

Tangency of both proxies is rejected strongly in all three subperiods. At a 0.05 
significance levei, the maximum sample correlation between the proxy and a 
portfolio inferred to be tangent, i&(a), ranges from 0.76 to 0.48 for the 
value-weighted NYSE-AMEX and from 0.90 to 0.46 for the equally weighted 
index. 

If &(a) is high, as occurs for some cases in tables 2 and 3, then the 
researcher knows there exists a portfolio highly correlated (in his sample) with 
the original proxy that will give a different inference about the pricing theory. 
This does not mean that any highly correlated portfolio will reverse inferences. 
For example, Stambaugh (1982) obtains the same inferences from several 
highly correlated market proxies. Rather, a high j&,(B) means that without 
specifying additional characteristics of reasonable alternative proxies, the 
researcher is unable to conclude that his inferences cannot be easily reversed 
by another portfolio. Additional characteristics could include, for example, the 
condition that the alternative proxies resemble portfolios of aggregate wealth 
or the condition that all asset weights be positive. Such conditions are not 
imposed in computing &(a) in tables 2 and 3. 
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4. Testing the efficiency of an unobservable portfolio using partial information 

The approach outlined in the previous section allows the researcher to 
investigate the ex post sensitivity of inferences to alternative specifications of 
the proxy portfolio. This approach is potentially useful if, for example, the 
researcher believes that the returns on an observable proxy have a sample 
correlation of at least pa with the unobservable portfolio of interest. Such 
partial information about the unobservable portfolio can also be included in 
the test itself, in the form of the ex ante correlation between the proxy and the 
unobservable portfolio. 

Other studies discuss the value of partial information in evaluating the 
efficiency of an unobservable portfolio. Examples of such partial information 
include the non-negativity of market portfolio weights [Roll (1977) and Green 
(1986)] and upper bounds on the relative value and return variance of a 
missing asset [Kandel(1984b) and Shanken (1986)]. Shanken (1984) derives an 
inequality relation that contains the (multiple) correlation between the unob- 
servable portfolio and a set of observable instruments, and he suggests that 
this relation could be useful in formulating tests of asset pricing theories. 

We assume that the researcher summarizes his partial information about the 
unobservable portfolio by specifying a lower bound on the ex ante correlation 
between that portfolio and an observable proxy cx. We also distinguish 
between the global universe of all assets and the observed universe consisting 
of the subset of n assets used by the econometrician. The unobservable 
portfolio can contain any assets in the global universe. Let y* denote the 
ex ante tangent portfolio of the global universe (as distinct from y, the ex ante 
tangent portfolio for the observed universe of n assets). The nul1 hypothesis is 
a joint hypothesis that the unobservable portfolio is (i) the ex ante tangent 
portfolio of the global universe and (ii) ex ante correlated at least p0 with the 
proxy. In other words, 

Special cases of Ho include those where the global universe is identical to the 
observed universe and where p. = 1. Thus, Ho is a generalization of the 
hypothesis tested in previous investigations of the CAPM, wherein the tangency 
of a given proxy was tested. 

In this section we discuss two alternative approaches to testing Ho. Both 
approaches, in general, give tests whose signi&ance levels can be bounded 
above. We first develop in section 4.1 an approach that uses the preceding 
sensitivity analysis. We then examine in section 4.2 an alternative approach, 
similar to that of Shanken (1987), which uses the distribution of the statistic in 
(7) under non-tangency of the tested portfolio (p). The latter distribution 
includes an unknown nuisance parameter, but, given that parameter, the 
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approach gives an exact significance level when the global universe is identical 
to the observed universe. 

4.1. A test based on the sensitiviry analysis 

Before proceeding to the formal development of the test, we first provide a 
brief informal description. Consider two sets of portfolios consisting of assets 
in the observed universe: (i) the portfolios inferred, at significance level 8, to 
be y, the ex ante tangent portfolio of the observed universe, and (ii) the 
portfolios inferred, at significance level 4, to have a correlation of at least p,, 
with the proxy a. Note that both of these sets of portfolios can be observed by 
the researcher. The probability that y lies outside the first set is 8, and, if H, 
is true, the probability that y lies outside the second set is at most 4 [since H, 
implies that p(a, y) 2 po, by Corollary 11. If H, is true, then the probability 
that the two sets are disjoint is at most 19 + #, and this provides us with the 
test developed below. 

Let S,,,(S) be the critical Sharpe measure [in (9)] for testing the tangency 
of a given portfolio at significance level 8. The portfolio a is inferred 
non-tangent if ]&a) 1 < S CRIT(B). In the previous section we derived &,(a), 
the maximum sample correlation between cr and any portfolio that is inferred 
tangent at significance level 0 when a is inferred non-tangent. Using the 
distribution of the sample correlation of bivariate normal random variables, 6, 
given the true population value, p, define the critical value pi(p,,, I/J) such that 

Reject H, if (i) ]s(a)] < S cRIT(B) and (ii) j&(a) < pi(p,,, #). In other words, 
reject H, if the tangency of a is rejected at significance level 6’ and the 
maximum correlation between a and a portfolio inferred tangent is less than 
pi(p,,, 4). As proved in the following proposition, the significance level (size) 
of this test is at most 8 + 4. 

Proposition 5. 

(14) 

Proof. Consider the sample correlation between the proxy a and the ex ante 
tangent portfolio of the observed universe y, denoted $(a, y). The weights in 
y, and therefore the returns on y, are not observed by the researcher, so 
fi( a, y) cannot be computed. Nevertheless, this hypothetical sample correla- 
tion is useful in proving the proposition. 



S. Kandel and R. F. Stambaugh, Mean-variance e@ctenq 83 

Define the events 

(D) 1%) I < &I&). 

First observe that [A, fl B] =, C by transitivity. Next observe that [A, n C] = 
D, since the tangency of a is rejected (by A,) and y gives the same inference 
(by C). [Note that s(v) is the hypothetical sample Sharpe measure of the 
ex ante tangent portfolio of the observed universe.] Therefore 

Pr[A, n A,n BlH,,] I Pr[A, n CIH,] 

I Pr[D(H,] = Pr[D] = 0. (15) 

Next observe that 

Pr[A, n A, n (- B)(H,] I Pr[ - BIH,] 

<Pr[-B(p(a.y)zp,] 14. (16) 

The second inequality follows from Corollary 1 and the implication that H, 
implies p(a, y) 2 po. The third inequality follows from (13) and the fact that, 
for a fixed pl(pO, #), the probability on the left-hand side of (13) is decreasing 
in p. The probability in (14), Pr[A, n A,IH,], can be written as 

Pr[A, n A,lH,]=Pr[A, n A,nBIH,]+Pr[A,nA2n(-B)lH,], 

and combining this with (15) and (16) gives the desired result. 0 

The choice of 8 and $ in the above test is arbitrary. Together both 
parameters determine the maximum significance level of the test, but we do 
not know which combination of 8 and $J gives the highest power. In order to 
give a simple illustration of the test, we specify 19 = 4. In addition, the exact 
sampling distribution of the correlation coefficient is rather complicated, so in 
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computing pr(p,,, $) we use Fisher’s z transformation, in which 

1+; 
z = ilog- 

- 1-C (17) 

is distributed approximately Normal [see Kendall and Stewart (1977, eq. 
16.77) for the moments of the distribution]. 

In table 4. we apply the test to the same weekly return data analyzed in 
table 3. Consider the lirst row of table 4, where the above hypothesis is tested 
in the first subperiod with pa equal to 0.9, a maximum significance level of 
0.10 (= 19 + $), and the value-weighted NYSE-AMEX as the proxy. The test 
proceeds as follows. First, the tangency of the proxy itself is rejected at a 
significance level of 0.05 (= S). The maximum sample correlation between the 
proxy and a portfolio inferred tangent, &(a), equals 0.763 (column 3). Up to 
this point, we have simply repeated the procedure in table 3. Next compute 
pl(pO, 4) for p,, = 0.9 and 4 = 0.05, and this value is 0.881 (column 4). Since 
this value exceeds &(a), we reject Ha. The same procedure is repeated in table 
4 for maximum significance levels 0.05 and 0.01, for pa equal to 0.8 and 0.7, 
and with the equally weighted NYSE-AMEX as an alternative proxy. 

For the value-weighted index, H, is rejected in the last two subperiods for 
p. = 0.7 at a significance level of at most 0.01. In the first subperiod, H, is 
rejected at the 0.01 level with pa = 0.9 and at the 0.10 level for pa = 0.8, but H, 
is not rejected for p0 = 0.7 in that subperiod. The results for the equally 
weighted index are similar, the primary exceptions being that H, with p0 = 0.7 
is rejected only in the second subperiod and H, is not rejected at all in the 
first subperiod. In general, these results suggest that if the correlation between 
either of these proxies and the market portfolio exceeds 0.9, or even a lower 
value, then the CAPM is rejected. 

4.2. A test based on the power function of Ross’s statistic 

As described in section 3, Ross’s test statistic is distributed central F when 
the tested portfolio is the ex ante tangent portfolio of the observed universe. 
When the tested portfolio is-not the tangent portfolio, the same test statistic is 
distributed, conditional on S(a), as non-central F, with non-centrality param- 
eter 

A= T [S(Y)*--s(~)*], 
1 + S(a)* 

(18) 

as shown by Gibbons, Ross and Shanken (1985) [see also Ma&inlay (1985)]. 
This result is useful for understanding the power function of Ross’s test of 
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tangency against various alternatives, but, as Shanken (1987) demonstrates in 
a slightly different fashion, the same result can be used to test the hypothesis 

P(a- Y) 2 PO. 
Using Proposition 1, we can rewrite (18) as 

T 
A= 

1 + 3(Cx>2 
S(Y)‘[l -P2hY)l. 09) 

In addition to T and s(a), which are known to the researcher, the non-central- 

Table 5 

Test of Hc: p(a. y*) 2 pc, conditional on the maximum Sharpe measure [S(y)].” 

S(Y) 

Upper bounds on the p-values for the test of H, 

Proxy (a): vWb Proxy (a): EWb 

p0 = 0.9 PO = 0.8 pe = 0.7 p. = 0.9 p0 = 0.8 po = 0.7 

0.3 0.000 
0.4 0.001 
0.5 0.004 
0.6 0.025 
0.7 0.100 
0.8 0.281 

0.3 0.000 
0.4 0.000 
0.5 0.000 
0.6 0.000 
0.7 0.000 
0.8 0.000 

0.3 O.OflO 
0.4 0.000 
0.5 O.OOG 
0.6 0.000 
0.7 O.OOQ 
0.8 0.000 

l/2/63-6/25/69 (T = 324, & 7) = 0.445)’ 

0.001 0.004 0.001 
0.011 0.056 0.005 
0.087 0.328 0.026 
0.345 0.763 0.099 
0.719 0.970 0.212 
0.941 0.999 0.533 

7/2/69-10/l/75 (T = 324, i( 7) = 0.681) 

0.000 0.000 0.000 
0.000 0.000 0.000 
O.OOil O.COO 0.000 
O.OQO O.ooO 0.000 
0.000 0.014 O.ooO 
0.006 0.143 0.000 

10/8/75-12/23/81 (T = 324, s(i) = p.608) 

O.OQO 0.000 0.000 
O.OOG 0.000 0.000 
0.000 O.CGO 0.000 
0.001 0.015 0.000 
0.011 0.151 0.000 
0.088 0.546 0.001 

0.006 0.022 
0.053 0.181 
0.246 0.586 
0.604 0.914 
0.890 0.994 
0.986 0.999 

0.000 0.000 
O.OCO O.MJO 
0.000 0.000 
O.OO+l 0.000 
0.000 0.014 
0.006 0.140 

0.000 0.000 
O.OCQ 0.000 
O.OQO 0.002 
0.002 0.041 
0.031 0.272 
0.178 0.703 

aThe null hypothesis (H,) states that the proxy portfolio (a) has an ex ante correlation of at 
feast p,, with the Sharpe-Lintner tangent portfoljo of the global universe (y * ). S( 7) is the 
maximum ex ante Sharpe measure of the observed universe of assets. The tests are based on 
weekly returns. The set of twelve risky assets consists of ten value-weighted portfolios based on 
market-value deciles at the end of the previous year, the value-weighted NYSE-AMEX portfolio, 
and the equally weighted NYSE-AMEX portfolio. 

“JJIV: value-weighted NYSE-AMEX; EW: equally weighted NYSE-AMEX. 
‘S(T) is the sample’s maximum Sharpe measure. 
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ity parameter depends on the unknown parameters p( a, y) and S(y) (the 
maximum ex ante Sharpe measure of the observed universe). Given a value of 
S(y), however, a test of H, is straightforward. Note that the non-centrality 
parameter h is decreasing in p( OL, y), so that a test of the hypothesis p( a, y) 2 

p. can be based on the non-central F distribution with h evaluated at 
p(a, y) = po. The (exact) significance level of this test gives an upper bound 
for the significance level of a test of Ha, since H, implies that p(a, y) L po, 

given Corollary 1. The significance levels for both tests are identical if the 
global and observed universes coincide (y * = y ). 

Table 5 displays results of the above test for values of p,, equal to 0.9, 0.8 
and 0.7, using the same subperiods and weekly return data as in tables 3 and 
4. We show results for values of the maximum Sharpe measure of the observed 
universe, S(y), ranging from 0.3 to 0.8. The ex post values of i(f), also 
shown, range from 0.445 to 0.681. The non-centrality parameter h, and thus 
the p-value as well, increases with S(y), and the increases in the p-values can 
be large in table 5 as S(y) increases to 0.7 and 0.8. Such apparent sensitivity 
to the larger values of S(y) suggests caution in interpreting the results. 
Nevertheless, for values of S(y) near or slightly larger than the ex post values, 
the inferences provided by this method are similar to those obtained in table 4. 

5. Summary and conclusions 

This paper presents a framework for investigating the mean-variance 
efficiency of an unobservable portfolio based on its correlation with an 
observable proxy portfolio. We first analyze some useful mean-variance 
relations based on the correlation between a given proxy portfolio and other 
portfolios in both the observed and global universes. We then develop a 
sensitivity analysis that provides the highest sample correlation between the 
proxy and a portfolio that reverses the inference of a test of Sharpe-Lintner 
tangency. Extending that analysis, we formally test whether an observable 
proxy is ex ante highly correlated with the ex ante tangent portfolio. 

We conclude that the correlation between the tangent portfolio and the 
market proxy is sensitive to how one constructs the efficient set, both ex ante 
and in the sample. In his critique of tests of the CAPM, Roll (1977) shows that 
the sample inefficient market proxy used by Black, Jensen and Scholes (1972) 
is correlated 0.9 with the estimated Sharpe-Lintner tangent portfolio. He 
concludes that inferences about the CAPM can be reversed easily with an 
alternative market proxy whose return is highly correlated with the return on 
the original proxy. Starting with the same minimum-variance boundary con- 
structed by Roll, we show that the correlation between the sample tangent 
portfolio and the proxy of Black, Jensen and Scholes decreases as additional 
assets are added to the observed universe. For example, the correlation drops 



88 S. Kandel and R.F. Srambaugh. Mean-uarlance efficiency 

to 0.48 when the universe consists of sixteen portfolios of stocks and bonds. 
The decline in correlation is easily understood when one realizes that the 
correlation between the proxy and the tangent portfolio is the ratio of the 
Sharpe measures of the two portfolios. 

The relation between correlations and Sharpe measures also implies that the 
mean-variance efficiency of a ‘ true’ benchmark portfolio, possibly containing 
all assets, is rejected if one rejects efficiency of a particular alternative 
benchmark portfolio in an observed universe consisting of a subset of assets. 
The relevant alternative benchmark in the observed universe is the portfolio 
from the observed universe that is most highly correlated with the true 
benchmark. 

In a finite sample we analyze the sensitivity of inferences using a likelihood 
ratio test of Sharpe-Lintner tangency. Ross (1983) demonstrates that the test 
statistic has a known finite-sample distribution, and he derives a representa- 
tion of the test statistic in mean-variance space. Combining Ross’s geometric 
representation with the mean-variance analysis described in section 2 [and 
derived in Kandel and Stambaugh (1986)], we obtain the highest sample 
correlation between the proxy and a portfolio that reverses the inference about 
the proxy’s tangency. 

When monthiy data of long periods (26-52 years) are used to test the 
tangency of the equally weighted or value-weighted NYSE, there are some 
cases where no rejection region exists at standard test sizes and other cases 
where the correlation that reverses the inference about the tangency of the 
NYSE portfolio is quite high. When weekly data of shorter periods (about 6 
years) are used, the tangency of both the equally weighted and value-weighted 
NYSE-AMEX portfolios is rejected. The maximum sample correlation be- 
tween the NYSE-AMEX proxy and a portfolio inferred to be tangent at the 
0.05 level ranges from 0.76 to 0.48 for the value-weighted portfolio and from 
0.90 to 0.46 for the equally weighted portfolio. 

We extend the preceding sensitivity analysis to test whether a given observa- 
ble proxy portfolio is correlated at least p0 with the ex ante tangent portfolio 
of the global universe. We apply the test to weekly returns data for common 
stocks, with both the equally weighted and the value-weighted NYSE-AMEX 
indexes as the observable proxies. The null hypothesis is in fact a joint 
hypothesis that the unobservable benchmark portfolio is (i) the ex ante 
tangent portfolio and (ii) highly correlated (at least p,,) with the NYSE-AMEX 
index. This hypothesis is almost always rejected for p0 equal to 0.9 and is often 
rejected for p,, equal to 0.8 and even 0.7. 
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