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A framework is presented for investigating the mean-variance efficiency of an unobservable
portfolio based on its correlation with a proxy portfolio. A sensitivity analysis derives the highest
correlation between the proxy and a portfolio that reverses the inference of a test of Sharpe-
Lintner tangency. For example, the maximum correlation between the value-weighted
NYSE-AMEX portfolio and a portfolio inferred tangent ranges from 0.76 to 0.48. We also test
whether the correlation between the proxy and the tangent portfolio exceeds a given level. This
hypothesis is often rejected for the NYSE-AMEX proxy at a correlation of 0.7.

1. Introduction

Many asset pricing models imply the mean-variance efficiency of one or
more benchmark portfolios. Models for which the benchmarks have been
identified include the Capital Asset Pricing Model (CAPM), the intertemporal
consumption-based model, and the Arbitrage Pricing Theory.! Researchers
concerned with testing asset pricing models have faced at least two important
questions in recent years. First, how does one test the mean-variance efficiency
of a given portfolio in a finite sample? Second, how can one make inferences
about the mean-variance efficiency of a benchmark when its exact rate of
return is unobservable?

In addressing the problem of testing a given portfolio’s efficiency, re-
searchers have sought to apply methods that account for finite-sample variabil-
ity. Various tests are developed and applied by Gibbons (1982), Stambaugh
(1982), Jobson and Korkie (1982), and Shanken (1985). Ross (1983) and

* We are grateful to Eugene Fama, Wayne Ferson, Richard Green, participants in workshops at
the Ohio State University and the University of Chicago, an anonymous referee, and especially
John Long (the editor) for helpful comments and discussions. This research was conducted while
the second author was a Batterymarch Fellow.

!The CAPM is due to Sharpe (1964), Lintner (1965), and Black (1972); the consumption-based
intertemporal model is due to Breeden (1979); the Arbitrage Pricing Theory is due to Ross (1976).
Beachmark portfolio efficiency is discussed by Fama (1976), Roll (1977), and Ross (1977) for the
CAPM, by Breeden (1979) for the consumption model, and by Chamberlain (1983), Grinblatt and
Titman (1987), and Huberman, Kandel and Stambaugh (1987) for the Arbitrage Pricing Theory.
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Kandel (1984a) obtain analytical solutions for computing one such test, the
likelthood ratio. The distribution of the tests in finite samples has been
investigated analytically {Ross (1983), Shanken (1985), and Gibbons, Ross and
Shanken (1985)] and through simulations {Gibbons (1980), Stambaugh (1581),
Jobson and Korkie (1982), and MacKinlay (1985)].

Precise measurement of the relevant benchmark return can be difficult. Roll
(1977) discusses how unobservability of the market portfolio’s return presents
problems in testing the CAPM. When the benchmark portfolio is measured
imprecisely by a proxy, the researcher may wish to investigate the sensitivity of
inferences to alternative specifications of the proxy. One approach is to repeat
tests using various proxies {Stambaugh (1982)]. Another approach, pursued in
this study, is to ask whether any portfolio in a class of portfolios would
provide a different inference, where the class includes all portfolios satisfying
some specified relation (e.g., correlation) with the original proxy.

We characterize an alternative proxy portfolio in terms of the correlation
between its return and the return on the original proxy. This characterization
allows us to define a class of alternative proxies as all portfolios having a
sample correlation of at least, say, 0.9 with the original proxy. We then ask
whether any portfolio in that class gives an inference about mean-variance
efficiency that differs from the inference about the original proxy. This
question is examined in a finite-sample context. We also test whether the
ex ante correlation between the proxy and the Sharpe-Lintner tangent port-
folio of the global asset universe exceeds a given value. Thus, our study
integrates the problems of finite-sample tests and benchmark-portfolio mea-
surement.

A brief example can illustrate the type of information provided by the
approach developed here. Using weekly data from July 1969 through October
1975, the second of three subperiods, a likelihood ratio test can reject at the
0.05 significance level the hypothesis that the value-weighted portfolio of all
New York and American Stock Exchange stocks is the Sharpe-Lintner
tangent portfolio. We find that no alternative index portfolio whose sample
(ex post) correlation with that original proxy exceeds 0.50 could have provided
a different inference. In addition to conducting this ex post sensitivity analysis,
we also reject in the same subperiod the hypothesis that the original proxy has
an ex ante correlation of at least 0.70 with the Sharpe-Lintner tangent
portfolio of the global universe of assets. If the market portfolio has a
correlation of at least 0.70 with the NYSE-AMEX value-weighted proxy, then
the latter result also rejects the CAPM.

The paper proceeds as follows. Section 2 first analyzes the above problem
when all parameter values are given. This framework allows us to introduce
the relevant mean-variance mathematics before turning to the complications
of finite-sample variability. The starting point is Roll’s (1977) well known
example, in which he shows that the market proxy used by Black, Jensen and
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Scholes (1972) is correlated 0.9 with the sample Sharpe-Lintner tangent
portfolio. We show that the correlation between the tangent portfolio and the
proxy is sensitive to how one constructs the efficient set. This applies for both
the population and the sample. For example, if the set is constructed from 16
portfolios of stocks and bonds, the sample correlation between the tangency
and the proxy of Black, Jensen and Scholes drops to 0.48. If still more assets
are used to construct the set, the correlation can only decrease. The last
statement follows from the result that the correlation between a proxy and the
tangent portfolio is simply the ratio of their Sharpe measures.

Section 2 also discusses a more general question examined by Kandel and
Stambaugh (1986): where, in mean—variance space, are the portfolios having
correlations with a given proxy of at least, say, 0.9? Do such portfolios include
points on the minimum-variance boundary? Do they include the Sharpe-
Lintner tangency? Do they exist at all levels of mean return? A complete
analytical characterization of this set of portfolios is provided in Kandel and
Stambaugh (1986). In section 2, we illustrate graphically the properties of this
set that are useful in deriving the sensitivity analysis and the tests in sections 3
and 4.

Section 3 expands the analysis to include finite-sample inference. We
analyze the sensitivity of inferences based on the likelihood ratio test of
tangency in the presence of a riskless asset. As Ross (1983) demonstrates, this
test has a known finite-sample distribution and, conveniently for our purposes,
can be constructed easily from parameters of the sample efficient set. The
latter feature allows us to extend the analytical results in section 2 and to
compute the highest sample correlation between the proxy and a portfolio
that, in the same sample, reverses the inference about the proxy’s tangency.
Using stock and bond returns data, we compute that correlation for various
proxies and sets of assets. In many cases, the correlation is quite high. In other
cases, there are no portfolios that would reverse inferences, whatever the
correlation. The latter cases occur when, for that sample, there is no rejection
region for the likelihood ratio test for standard test sizes.

Section 4 presents a new test of the hypothesis that a given proxy is
correlated ex ante at least p, with the ex ante tangent portfolio. The null
hypothesis is, in fact, a joint hypothesis that some portfolio whose exact return
is unobservable, e.g., the market portfolio, is both (i) the ex ante tangent
portfolio of the global universe of all assets and (ii) correlated ex ante at least
po with the given observable proxy. The null hypothesis is rejected if the proxy
itself is inferred non-tangent for the econometrician’s observed asset universe
by Ross’s test and if the highest sample correlation between the proxy and a
portfolio that is inferred tangent is too low. The latter sample statistic is
derived in section 3, and it is used there for sensitivity analysis within the same
sample. In section 4 the same statistic is used in a formal test whose
significance level is bounded from above.
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In a recent paper, Shanken (1987) suggests an approach for testing the
hypothesis that the correlation between an observable proxy and the ex ante
tangent portfolio of the econometrician’s observed asset universe exceeds a
given level. His approach gives a test statistic whose distribution depends on
an unknown parameter. Given that parameter, which can be estimated, the
approach provides exact significance levels for a test of this hypothesis. The
second part of section 4 generalizes Shanken’s approach slightly to consider
instead the ex ante tangent portfolio of the global asset universe, and we
obtain a test whose significance level is bounded from above, conditional on
the unknown parameter. We then apply this test and obtain inferences similar
to those produced by the first approach. Both approaches indicate that the
above hypothesis is typically rejected at conventional significance levels for p,
equal to 0.9, and often for p, equal to 0.8 or 0.7, when the market proxy is
either the equally weighted or value-weighted portfolio of New York and
American Stock Exchange stocks.

Section 5 reviews the paper’s conclusions.

2. Correlations between a given portfolio and alternative portfolios

This section explores the relations that govern the correlation between the
returns on a given proxy portfolio and the returns on (i) the Sharpe-Lintner
tangent portfolio, (ii) other portfolios on the minimum variance boundary, and
(iii) arbitrary feasible portfolios, given only the locations of the laiter in
mean-variance space. We also note that these relations give a simple implica-
tion about the relevant benchmark portfolio of a subset of assets. The relations
in this section are stated in terms of ex ante values, but they hold (and are
subsequently used) for both ex ante and sample values.

2.1. The correlation between the proxy and the tangent portfolio

Given a universe of n risky assets and a riskless asset, define

#(p) = mean return on portfolio p,

o(p) =standard deviation of the return on portfolio p,
p( P, q) = correlation between returns on portfolios p and g,
r = niskless return.

The Sharpe measure of a portfolio is the ratio of its mean excess return to
its standard deviation of return. That is, the Sharpe measure of p is given by

s(p)=“—(;’z)—p;—'. ®
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The Sharpe-Lintner rangent portfolio is the portfolio of the n risky assets
with the maximum Sharpe measure.’

The term ‘minimum-variance portfolio’ will be used throughout the paper to
denote a portfolio on the minimum-variance boundary of the risky assets. A
circumflex will denote a sample value. The following notation is used to
denote various portfolios of the n risky assets in the universe:

a = proxy portfolio,

vy = ex ante tangent portfolio,

¥ = sample tangent portfolio,

P, = minimum-variance portfolio whose return is uncorrelated with the mini-
mum-variance portfolio p, i.e., p, is a ‘zero-beta’ portfolio with respect
to p,

p*= minimum-variance portfolio with the same mean return as portfolio p.

z

As established in the following proposition, Sharpe measures provide a
convenient way to compute the correlation between the proxy and the tangent
portfolio.

Proposition 1.3
p(a,y)=5S(a)/S(y). (2)
Proof. The linear mean-beta relation implied by the tangency of y gives

cov(a,y) of{a)

P(a)—’=w[ﬂ(7)—’]=mp(aﬁ)[#(¥)"r]- (3)

Solving (3) for p(a, v) gives

[u(@) =rl/o(a)
p(“vY) - [[J.('Y)"f]/d(Y) _S(a)/S(Y) a (4)

In his critique of tests of the CAPM, Roll (1977) constructs efficient sets
from sample parameters and then computes the correlation between a market
proxy and the sample tangent portfolio. In Roll’s examples, the correlations
are high, 0.9 or more, which leads Roll to suggest that rejections of the CAPM
can be reversed easily with an alternative proxy that is highly correlated with
the original. Proposition 1 is useful in analyzing such examples. As we

2We assume throughout that such a portfolio exists for both the population and the sample,
which is equivalent to assuming that the riskless return is less than the mean return on the
portfolio of risky assets having the smallest variance.

3See also Jensen (1969) and Long (1977) for related results.
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demonstrate, the correlation between the proxy and the sample tangent
portfolio is sensitive to how one constructs the efficient set. .

We construct several sample minimum-variance boundaries using monthly
returns on various assets for the overall period January 1926 through Novem-
ber 1978 and for two subperiods. All returns are in excess of the one-month
Treasury Bill rate [from Ibbotson and Sinquefield (1982)]. Our market proxy is
the equally weighted New York Stock Exchange (NYSE) index. following
Black, Jensen and Scholes (1972), one of the studies from which Roll (1977)
generates his examples. The first column of table 1 displays the correlation
between the equally weighted NYSE and the tangent portfolio’ for three
minimum-variance boundaries. (The tangent emanates from the origin, since
we use excess returns.) The first minimum-variance boundary is essentially the
same one constructed by Roll. That is, we form a zero-beta portfolio in the
manner of Black, Jensen and Scholes and compute a series of monthly returns
on that portfolio. The boundary is then generated as all possible combinations
of the NYSE and the zero-beta portfolio, using the return series to estimate
the necessary parameters. Consistent with Roll’s finding, the correlations
between the NYSE proxy and the sample tangent portfolio are 0.9 or more in
this case.

The other two boundaries constructed here, unlike the first, are not assumed
to include the equally weighted NYSE. Rather, that portfolio now lies some-
where inside the sample boundary. We construct the first of these alternative
boundaries from a universe containing the equally weighted NYSE plus ten
equally weighted common stock portfolios formed by ranking firms into
deciles of market value of equity at the end of the previous vear.* The
correlations between the sample tangent portfolio of this boundary and the
NYSE proxy are considerably lower than in the original example - 0.60 for
the overall period.

The decline in the correlation from the first boundary to the second is easily
understood given the following corollary:

Corollary 1. For a given proxy a, p(a,y) cannot increase as risky assets are
added to the universe (and y changes).

Proof. Use Proposition 1 and the fact that S(y) cannot decrease as the
universe expands. O

This corollary is illustrated further with the third boundary. which is
constructed by adding the value-weighted NYSE and four bond portfolios to

*The ten size-ranked portfolios exclude firms for which market values cannot be computed at
the end of the previous calendar year. Thus the equally weighted NYSE index, which includes all
stocks on the Exchange in any moanth, is not a redundant asset here.
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Table 1

Sample correlations between the equally weighted NYSE (EW) and portfolios on the minimum-
variance boundary.

Assets used to construct

o g Correlation between EW  Maximum correlation
the minimum-variance boundary

and the Sharpe-Lintner between EW and a
Number Description tangent portfolio portfolio on the boundary

1/1926-11/1978

2 EW plus the BIS 0.9%4 1.000
zero-beta portfolio®
i1 EW plus ten size-ranked 0.5%96 0.783
portfolios of common stocks®
16 EW, the size-ranked portfolios, 0.484 0.484
the value-weighted NYSE,

and four bond portfolios®
1/1926-12 /1952

2 EW plus the BJS 0.920 1.000
zero-beta portfolio
11 EW plus ten size-ranked 0.440 0.650
portfolios of common stocks
16 EW, the size-ranked portfolios, 0.269 0.328

the value-weighted NYSE,
and four bond portfolios

1/1953-11 /1978

2 EW plus the BJS 0.902 1.000
zero-beta portfolio
11 EW plus ten size-ranked 0.528 0.883
portfolios of common stocks
16 EW, the size-ranked portfolios, 0.438 0.550

the value-weighted NYSE,
and four bond portfolios

2 The zero-beta portfolio is formed in essentially the same manner as Black, Jensen and Scholes
(1972).

®All firms on the NYSE are assigned to deciles based on the market value of equity at the end of
the previous year. Portfolios are equally weighted.

“The four bond portfolios consist of long-term U.S. Government bonds, long-term high-grage
corporate bonds, BAA-rated corporate bonds, and below-BAA-rated corporate bonds.

the previous universe of eleven stock portfolios. The bond portfolios consist of
long-term U.S. Government bonds, long-term high-grade corporate bonds,
BAA-rated corporate bonds, and below-BAA-rated corporate bonds.® The
correlations between the sample tangent portfolio and the NYSE proxy are, as
they must be, lower than in the previous case - 0.48 for the overall period.
Adding more assets can only decrease the correlation still further.

$The first two series are from Ibbotson and Sinquefield (1982); the latter two are from Ibbotson
(1979).
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2.2. The correlation between the proxy and portfolios on the minimum-variance
boundary

When a riskless asset exists, the above examples illustrate the difference, in
terms of correlation, between the proxy and the portfolio that, ex post,
supports the Sharpe-Lintner pricing theory. When no riskless asset exists, a
similar analysis is possible. In the latter case, however, there is no longer a
unique boundary portfolio of the risky assets. Rather, many portfolios on the
positively sloped minimum-variance boundary could in principle support the
more general Black (1972) version of the two-parameter model.®

The following propositions are useful in understanding the correlation
between the proxy and portfolios on the minimum variance boundary.

Proposition 2. For any minimum-variance portfolio p,

_ [w(a) = p(p.)]/0(e)
[e(p)—n(p))/o(p)’

p(a, p)

Proof. Replace r with p( p,) in the proof of Proposition 1. O

Proposition 3. The minimum-variance portfolio having the highest correlation
with a is a*, the minimum-variance portfolio having the same mean return as a.
The maximum correlation is

p(a,a®) =o(a*)/o(a). (6)

Proof. Consider an arbitrary minimum-variance portfolio p. Let (u,, 0,) be
the point in mean-standard-deviation space on the line tangent to the mini-
mum-standard-deviation boundary at p with g, = p(a). Then

R CORIICA) G

[1(p)—r(p.)]/o(p)

[1(e) —p(p.)]/0(e) _ o,
(k.= nr(p.)] /0, o(a)’

(Proposition 2)

Since, for all choices of p, 0,<o(a*), p(a, p) is maximized at o, =oc(a™),
which is accomplished by choosing p = a*.” O

6We say ‘many’ rather than ‘any’ because, as Ehrbar (1984) notes, portfolios on the positively
sloped boundary but below the point of tangency of a ray emanating from —100% are inefficient
for investors not constrained to invest all their money.

"We are grateful to John Long for suggesting this method of proof.
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If the question of primary interest is the sensitivity of inferences to choosing
alternative proxies, then an important boundary portfolio is the one having the
highest correlation with the original proxy. That portfolio is, in a sense, the
one that most easily reverses a violation of the pricing theory. From Proposi-
tion 3, that boundary portfolio is the one with the same mean return as the
original proxy.

The second column of table 1 displays the maximum sample correlation
between the equally weighted NYSE and portfolios on the sample minimum
variance boundaries described earlier. For the first boundary, the maximum
correlation equals one, since the proxy lies on the boundary by construction.
The maximum correlations for the other boundaries are, as in the previous
examples, considerably lower. In fact, for the overall period and for the most
inclusive boundary, the boundary portfolio having maximum correlation with
the proxy happens to be the sample tangent portfolio. In other words, the
sample tangent portfolio in that case has the same mean return as the NYSE
proxy (by Proposition 3).

As in the previous exampies, the decline in correlations as assets are added
to the universe is easily understood given the following corollary:

Corollary 2. For a given proxy a, the maximum correlation between o and a
portfolio on the minimum-variance boundary cannot increase as risky assets are
added to the universe.

Proof. Use Proposition 3 and the fact that o(a*) cannot increase as the
opportunity set expands. O

2.3. The correlation between the proxy and an arbitrary portfolio

We have examined the correlation between a proxy portfolio and portfolios
on the minimum-variance boundary, but a more complete characterization is
possible. Where, in mean-variance space, are the portfolios correlated at least
po with the proxy? Kandel and Stambaugh (1986) provide a complete analyti-
cal characterization, in mean-variance space, of the set of portfolios having
correlation of at least p, with a given proxy. Here we illustrate graphically the
properties of this set that are useful in developing the sensitivity analysis in
section 3.

We restrict attention to a universe of risky assets having a non-singular
variance-covariance matrix, and we assume that the proxy does not lie on the
minimum-variance boundary. Consider the set of portfolios whose correlation
with the proxy is at least p,. For p; =1, the set contains only the proxy itself.
The set expands as p, declines. For sufficiently low values of p,, the set
contains portfolios at all levels of mean return. Roll (1980) shows, for
example, that portfolios uncorrelated with an inefficient proxy exist at all
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levels of mean return. For intermediate values of p,, the set contains portfolios
only at certain levels of mean return.

Just as the set of portfolios correlated at least p, with the proxy expands as
po declines, the region of mean--variance space that this set of portfolios can
occupy also expands as p, declines. Fig. 1 displays some examples of these
regions for various values of p,. We plot the regions in mean-standard-devia-
tion space, given that most readers are probably more familiar with graphs in
those dimensions. The minimum-standard-deviation boundary is constructed
from the sixteen stock and bond portfolios used in the earlier examples, where
parameters are estimated over the 1926-1978 period. We again use the equally
weighted NYSE as the proxy. Thus, the graphs represent the same proxy and
asset universe used to compute the third row of table 1. The parameter values
are annualized, and the returns are stated in excess of the T-Bill rate.

All portfolios having a correlation of at least p, with the proxy lie in 2
convex region in mean-standard-deviation space, although that region can
also contain portfolios whose correlation with the proxy is less than p,. The
region may or may not be bounded in various directions, depending on p,.
The four cases displayed in fig. 1 illustrate some of the possibilities. For a
sufficiently high p,, as in the first case where p, = 0.999, the region is bounded
in all directions. When p,=0.9, portfolios having the required minimum
correlation exist at all mean returns greater than a critical level, but for a given
mean, the variance of such portfolios is bounded. When p, = 0.7, the portfolios
exist at all mean returns, and the variance has no upper bound. The same is
true when p, = 0.45, except the region of portfolios then extends to include
points on the minimum-standard-deviation boundary. Given the earlier discus-
sion surrounding table 1, recall that when p, = 0.48, the region touches the
boundary at one point — the point with the same mean return as the proxy.

2.4. Benchmark portfolios for subsets

Investigations of asset pricing models must use subsets of the global
universe of assets. The above relations also provide a relevant benchmark
portfolio formed from a subset of assets. Let » denote the benchmark
portfolio of the global universe, which is identified by the pricing theory, and
let p’ be the portfolio from the subset of assets that is most highly correlated
with b. The following corollaries, easily shown given Propositions 1 and 2,
establish p’ as a relevant benchmark for testing the pricing theory with the
subset of assets.

Corollary 3. If b is the Sharpe—Lintner tangent portfolio for the global universe
of assets, and p’ is the portfolio from a subset of assets that is most highly
correlated with b, then p’ is the tangent portfolio for the subset of assets.
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Fig. 1. Regions containing the portfolios having correlation with the proxy (a) greater than or
equal to the value given.
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Fig. 1. (continued)
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Proof. For any portfolio p of the subset, Proposition 1 gives p(b, p) =
S(p)/S(b). Since this correlation is maximized for p=p’, S(p’) is the
maximum Sharpe measure for any portfolio of the subset, and thus p’ is the
tangent portfolio for the subset. O

Corollary 4. If b is on the minimum-variance boundary of all assets, and p’ is
the portfolio from a subset of assets that is most highly correlated with b, then p’
is on the minimum-variance boundary of the subset of assets.

Proof. l1dentical to Corollary 3 except that, using Proposition 2, Sharpe
measures are defined with respect to u(5,) instead of r. O

Corollary 3 implies, for example, that if the tangency of p’ is rejected on a
subset of assets, then the tangency of b for the global universe is also rejected.
It is important to note that the exact construction of p’ is not likely to be
known by the researcher. In the discussions that follow, however, it is
sufficient to view the observable portfolio a as a proxy for the unobservable

p’.

3. The sensitivity of finite-sample inferences

The previous section addresses the question of how similar, in terms of
correlation, is the proxy portfolio to a sample efficient portfolio that supports
the pricing theory exactly. In a finite sample, however, there will also be
sample inefficient portfolios for which the hypothesis of ex ante efficiency
cannot be rejected. Those portfolios are not sufficiently ‘far’ from sample
efficiency to rule out parameter estimation error as the cause of their sample
inefficiency. The correlations in table 1 essentially provide information about
inference sensitivity in infinite samples. We address in this section the issue of
inference sensitivity in finite samples. ‘

We coninue to pose the question raised originaily by Roll (1977) and
pursued in the previous section: how highly correlated with the original proxy
can an alternative proxy be and still provide a different inference about
ex ante mean-variance efficiency? In an infinite sample, this question is
interesting only if the original proxy is inefficient — if the proxy happens to be
efficient, there are clearly inefficient portfolios ‘close by’ whose correlations
with the proxy are arbitrarily close to unity. In a finite sample, however, the
question of inference reversal becomes interesting whether or not the proxy is
inferred to be inefficient, since a sample inefficient portfolio is not necessarily
inferred to be ex ante inefficient.
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3.1. The statistical framework

The sensitivity of finite-sample inferences obviously depends, inter alia, on
the type of test performed. We investigate here the sensitivity of the likelihood
ratio test of whether a given portfolio is the Sharpe-Lintner tangent portfolio.
A transformation of the test statistic has a finite-sample F distribution, as
shown by Ross (1983). Another convenient feature of the test for our purposes
is that it can be characterized completely in terms of the sample mean-stan-
dard-deviation space. A portfolio’s tangency is accepted or rejected by com-
paring its estimated Sharpe measure to that of the sample tangent portfolio. If
the difference in squared Sharpe measures is large enough, tangency is
rejected. Specifically,

T-n|3(3)'-3(p)
n=1] 1+3(p)

(7)

has an F distribution with n —1 and T — n degrees of freedom if p is the
ex ante tangent portfolio, where n is the number of assets and T (> n) is the
number of time series observations [Ross (1983)].%

Our objective is to describe, in terms of sample correlation with the original
proxy «a, the portfolios that are inferred (i) tangent if « is inferred non-tangent
or (ii) non-tangent if « is inferred tangent. The first step is to observe that, in
some cases, no such reversal of inferences is possible for any correlation. For a
given sample of assets, F has a maximum of

T—n.

F= S(9)° (8)

n—1

which is attained when S( p) = 0. Note that F could still be less than £, the
critical F value for significance level 4. In such a case, which is more likely to
occur in samples where n is large relative to 7, there are no feasible portfolios
whose tangency is rejected at significance level 6.

When F in (8) exceeds Fy, then the ex post rejection region is non-empty
and can be characterized in terms of critical Sharpe measures. In such a case,

the likelihood ratio test rejects tangency of p if [S(p)| < Sepyr, Where

S(?)z‘”Fa 2
Serir = TR | 9

and v=(n—1)/(T—n). [Set F=F, in (7) and solve for S(p).] Tangency is

8See also Gibbons, Ross and Shanken (1985) and MacKinlay (1985).
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accepted for portfolios with sample Sharpe measures that are either high
enough (> Scgyr) or low enough (< — Scg7). Given the symmetric treatment
of positive and negative Sharpe measures, the test’s power clearly is greatest
against a zero Sharpe measure and diminishes as the Sharpe measure moves
either up or down. The test ignores the restriction that the mean excess return
of the tangent portfolio is strictly positive.

Combined with our earlier analysis in section 2.3, the critical Sharpe
measures provide a simple way to address the issue of inference sensitivity.
For a given p, first construct the region, denoted @, in sample mean-
standard-deviation space containing portfolios having sample correlation of at
least p, with the proxy a. (Recall that examples of such a region are displayed
in fig. 1.) Next construct the lines representing the critical Sharpe measures,
Scrir and ~ Scgyr- If either line passes through @, then whatever the inference
about a’s tangency, some portfolio having a sample correlation of at least p,
with a gives a different inference.

As described earlier, the region @ expands as p, decreases. Fig. 2 illustrates
two cases, where the universe contains the same sixteen risky assets used in the
previous section, parameters are estimated for the 1926-1952 subperiod, and
the proxy a is the equally weighted NYSE. The critical Sharpe measure
(Scryp) reflects a 0.05 significance level, and « lies in the rejection region. In
fig. 2A, @ is constructed with p,=0.95, and no points in ¢ lie in the
acceptance region. When p, is lowered to 0.70 in fig. 2B, @ then crosses Scg i,
so some portfolios in @ then lie in the acceptance region. We compute the
highest p, for which the region @ is tangent to one of the critical Sharpe
measures, that is, the highest p, for which a reversal of inferences is possible.

Proposition 4. Assume F> F, (non-empty rejection region). The maximum
correlation between « and a portfolio that is inferred (i) tangent if « is inferred
non-tangent or (ii) non-tangent if a is inferred tangent at significance level 8, is
given by

Scarr- 18(a)| + c(a)
$(3)°

Py(u) = : (10)

where

e(a@) = {[$()? - SEaur] [3(3)* - ()]}

Proof. By Proposition 6 in Kandel and Stambaugh (1986), the maximum
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Fig. 2. Portfolios that plot above the dashed line whose slope is Scgyr are inferred to be the

ex ante tangent portfolio at a significance level of 0.05. Tangency is rejected for the original proxy

as well as for all portfolios correlated at least 0.95 with the proxy (part A). Some portfolios
correlated at least 0.70 with the proxy are inferred to be the ex ante tangent portfolio (part B).
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sample correlation between a and a portfolio with sample Sharpe measure S is

p(5) = 5—5%—(—1 (an

with c¢(a«) defined as above except that S replaces Scgyr- It is easily verified
that p’(S) <0 (> 0) if S(a) < S (> S), which implies that a portfolio satisfy-
ing the conditions of the proposition will lie on a critical Sharpe measure. (A
portfolio beyond the boundary of the critical region cannot produce a higher
correlation.) Therefore S can be either Scg;r or ~Scgyr, whichever produces
the higher correlation. From (11), the higher correlation occurs for § = SCRIT
when S(a)>0 and for §= —Scrir When S(a)<0, and this choice is
accomplished in (10). O

We note here that the alternative portfolios considered in Proposition 4
consist of different combinations of the original n assets used in the test. We
do not investigate empirically the sensitivity of inferences when assets are
added (n increases). With an infinite number of time-series observations, such
sensitivity can be discussed easily. In that case, the only portfolio that will
reverse an inference of non-tangency is the tangent portfolio itself. As dis-
cussed in section 2, the correlation between the original proxy a and the
tangent portfolio cannot increase as more assets are added to the universe (and
to the tangent portfolio). With a finite number of time-series observations,
however, the problem of inference sensitivity when the number of assets is
increased becomes less straightforward. In fact, it is difficult to pose a question
in a way that could elicit an interesting answer.

The major problem in finite samples stems from how one handles the
number of time-series observations (7). Holding T fixed presents one prob-
lem, but letting T increase presents another. For example, if T is held fixed as
assets are added, the size of the rejection region can decrease. Unless S(¥), the
maximum sample Sharpe measure, increases sufficiently, Scg,r in (9) will
decrease as the number of assets (n) increases. In fact, the ex post rejection
region can disappear if F in (8) falls below the critical F value, F,. Therefore,
an inference of non-tangency of the original proxy a could be reversed by a
portfolio highly correlated with a, after adding enough assets to sufficiently
reduce the rejection region of the test. On the other hand, if time-series
observations are added in order to overcome the above problem, then a
reversal of inferences could again occur for a portfolio highly correlated with
the original proxy a, but the reversal could arise solely from the additional
time-series observations. Indeed, one could in principle reverse the original
inference by testing the same proxy using the longer time series. For these
reasons, we confine our attention to alternative portfolios of the original n
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Table 2

Sensitivity of the F test of Sharpe-Lintner tangency using monthly returns.?

Maximum correlation
between the proxy and a
portfolio that gives the

Sample Sample correlation P-value of te inf

Sharpe of the proxy with the test of opposite In erencelat
Market measure the sample tangent tangency of significance leve
proxy® of proxy portfolio the proxy 0.10 0.05 0.01

1/1926-11,/1978 (T = 635, $(5) = 0.262)°

EW 0.127 0.483 0.008 0972 098  0.999
VW 0.109 0.416 0.004 0952 0970  0.995
1/1926-12/1952 (T = 324, §(3) = 0.487)

EW 0.131 0.269 0.000 0.791 0817  0.863
VW 0.110 0226 0.000 0764 0791 0.840
1/1953-11/1978 (T = 311, §($) = 0.320)

EW 0.140 0.438 0.089 0999 0999  noned

VW 0.120 0372 0.059 0992 0999  none

*The set of risky assets consists of sixteen portfolios: ten portfolios of common stocks of the
New York Stock Exchange, the equally weighted and the value-weighted NYSE portfolios, and
four bond portfolios. The ten stock portfolios are based on market value deciles at the end of the
previous year and they are equally weighted portfolios.

PEW: equally weighted NYSE; VW: value-weighted NYSE.

¢S(y) is the sample’s maximum Sharpe measure.

9None' indicates that there is no rejection region ex post.

assets. Given the preceding discussion of benchmarks for subsets of assets
(section 2.4), such an investigation is relevant for testing asset pricing theories.

3.2. Results with the monthly data

Table 2 displays values of pyz(a), the maximum sample correlation that
allows reversal of inferences about tangency, in tests using the monthly returns
data. The proxies are the equally weighted NYSE (EW) and the value-weighted
NYSE (VW), and tangency is tested with respect to the sixteen risky assets
examined earlier. In addition to the sample Sharpe measure [§(q)] of the
proxy, ps(a) depends on the maximum sample Sharpe measure [S($)], the
number of assets (n), the number of observations (7°), and the significance
level of the test (§). Thus, table 2 provides only a few examples of the analyses
that could be conducted for various proxies and collections of assets. Nev-
ertheless, some interesting observations emerge.

When reversals of inferences are possible, the correlations with alternative
portfolios that allow such reversals are often higher than table 1 might lead
one to suspect. For example, the equally weighted NYSE is correlated only
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0.48 with the sample tangent portfolio in the overall period (table 1), but there
exists a portfolio correlated as high as 0.99 with that proxy that would reverse
the inference of ex ante non-tangency at the 0.05 significance level. In this
case, the proxy lies very close to the critical Sharpe measure. Although such a
result need not always occur, this example illustrates the often dramatic effect
of allowing for finite-sample variability. A similar comparison can be made in
the first subperiod, except that each of the correlations is lower than in the
overall period (0.48 becomes 0.27; 0.99 becomes 0.82).

A rather different phenomenon occurs in the second subperiod. No portfolios
would have been inferred to be non-tangent at significance levels of 0.01 or
less. This illustrates the possibility discussed earlier, where the maximum of
the test statistics [F in (8)] is less than the critical F value. Here again,
however, observe the contrast between infinite and finite samples. In an
infinite sample, all portfolios would be inferred non-tangent except one — the
tangency. In the finite sample, no portfolios would be inferred non-tangent.
Thus, any other portfolio would reverse an original inference of tangency in an
infinite sample, whereas no portfolio could reverse such an inference in this
finite sample.

3.3. Results with weekly data

Although the above discussion illustrates well a range of outcomes that can
occur when investigating the sensitivity of inferences, the implied stationarity
assumptions are fairly strong. The overall period of 53 years and the subperi-
ods of 27 and 26 years are long by usual standards. Shorter subperiods, while
relaxing the assumed stationarity, result in fairly small numbers of time-series
observations when using monthly data, and the power of the test is thereby
reduced (the rejection region is often empty ex post in such cases). In order to
illustrate the above sensitivity analysis without imposing such strong stationar-
ity assumptions, we conduct additional tests using weekly data.

Weekly returns are computed for ten value-weighted portfolios formed by
ranking all firms on the New York and American Exchanges by market value
at the end of the previous year. We use as two market proxies both the equally
weighted and value-weighted portfolios of stocks on the NYSE-AMEX. The
riskless rate is the return on a U.S. Treasury Bill with one week to maturity.’
We test the tangency of each proxy with respect to a universe of twelve risky
assets consisting of the ten size portfolios and both market proxies. Table 3
reports the results of the same sensitivity analysis conducted in table 2, except
that now the analysis is performed on three periods, each about six years (324
weeks) in length. Thus, the number of time-series observations (7°) is the same
as in the first subperiod in table 2, but the period is only one fourth as long.

®We thank Richard Rogalski for providing the Treasury Bill data.
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Table 3
Sensitivity of the F test of Sharpe-Lintner tangency using weekly returns.?

Maximum correlation
between the proxy and
a portfolio that gives

Sample Sample correlation P-value of the opposite inference
Sharpe of the proxy with the test of at significance level
Market measure the sample tangency tangency of
proxy® of proxy portfolio the proxy 0.10 0.05 0.01

1/2/63-6/25/69 (T = 324, §(7) = 0.445)°

EW 0.200 0.449 0.000 0876 0897 0934
VW 0.097 0.218 0.000 0733 0763 0819
7/2/69-10/1/75 (T = 324, §(§) = 0.681)

EW 0.018 0.026 0.000 0433 0459  0.510
VW 0.034 0.051 0.000 0455 0481  0.531
10/8,/75-12/23 /81 (T = 324, 5(7) = 0.608)

EW 0.178 0.292 0.000 068 0709  0.753
VW 0.047 0.077 0.000 0511 03539 0591

*The set of risky assets consists of twelve portfolios: ten portfolios of stocks of the New York
and American Exchanges and their value-weighted and equally weighted portfolios. The ten
portfolios are based on market value deciles at the end of the previous year and they are
value-weighted portfolios.

"EW: equally weighted NYSE-AMEX; VW: value-weighted NYSE~AMEX.

°S(¥) is the sample’s maximum Sharpe measure.

Tangency of both proxies is rejected strongly in all three subperiods. At a 0.05
significance level, the maximum sample correlation between the proxy and a
portfolio inferred to be tangent, g;(«), ranges from 0.76 to 0.48 for the
value-weighted NYSE-AMEX and from 0.90 to 0.46 for the equally weighted
index.

If py(a) is high, as occurs for some cases in tables 2 and 3, then the
researcher knows there exists a portfolio highly correlated (in his sample) with
the original proxy that will give a different inference about the pricing theory.
This does not mean that any highly correlated portfolio will reverse inferences.
For example, Stambaugh (1982) obtains the same inferences from several
highly correlated market proxies. Rather, a high p,(#) means that without
specifying additional characteristics of reasonable alternative proxies, the
researcher is unable to conclude that his inferences cannot be easily reversed
by another portfolio. Additional characteristics could include, for example, the
condition that the alternative proxies resemble portfolios of aggregate wealth
or the condition that all asset weights be positive. Such conditions are not
imposed in computing py(a) in tables 2 and 3.
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4. Testing the efficiency of an unobservable portfolio using partial information

The approach outlined in the previous section allows the researcher to
investigate the ex post sensitivity of inferences to alternative specifications of
the proxy portfolio. This approach is potentiaily useful if, for example, the
researcher believes that the returns on an observable proxy have a sample
correlation of at least p, with the unobservable portfolio of interest. Such
partial information about the unobservable portfolio can also be included in
the test itself, in the form of the ex ante correlation between the proxy and the
unobservable portfolio.

Other studies discuss the value of partial information in evaluating the
efficiency of an unobservable portfolio. Examples of such partial information
include the non-negativity of market portfolio weights [Roll (1977) and Green
(1986)] and upper bounds on the relative value and return variance of a
missing asset [Kandel (1984b) and Shanken (1986)]. Shanken (1984) derives an
inequality relation that contains the (multiple) correlation between the unob-
servable portfolio and a set of observable instruments, and he suggests that
this relation could be useful in formulating tests of asset pricing theories.

We assume that the researcher summarizes his partial information about the
unobservable portfolio by specifying a lower bound on the ex ante correlation
between that portfolio and an observable proxy a. We also distinguish
between the global universe of all assets and the observed universe consisting
of the subset of n assets used by the econometrician. The unobservable
portfolio can contain any assets in the global universe. Let y* denote the
ex ante tangent portfolio of the global universe (as distinct from vy, the ex ante
tangent portfolio for the observed universe of n assets). The null hypothesis is
a joint hypothesis that the unobservable portfolio is (i) the ex ante tangent
portfolio of the global universe and (ii) ex ante correlated at least p, with the
proxy. In other words,

Hy: p(a,v*) 2 pp. (12)

Special cases of H,, include those where the global universe is identical to the
observed universe and where p,=1. Thus, H, is a generalization of the
hypothesis tested in previous investigations of the CAPM, wherein the tangency
of a given proxy was tested.

In this section we discuss two alternative approaches to testing H,. Both
approaches, in general, give tests whose significance levels can be bounded
above. We first develop in section 4.1 an approach that uses the preceding
sensitivity analysis. We then examine in section 4.2 an alternative approach,
similar to that of Shanken (1987), which uses the distribution of the statistic in
(7) under non-tangency of the tested portfolio ( p). The latter distribution
includes an unknown nuisance parameter, but, given that parameter, the
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approach gives an exact significance level when the global universe is identical
to the observed universe.

4.1. A test based on the sensitivity analysis

Before proceeding to the formal development of the test, we first provide a
brief informal description. Consider two sets of portfolios consisting of assets
in the observed universe: (i) the portfolios inferred, at significance level 8, to
be vy, the ex ante tangent portfolio of the observed universe, and (ii) the
portfolios inferred, at significance level i, to have a correlation of at least p,
with the proxy a. Note that both of these sets of portfolios can be observed by
the researcher. The probability that y lies outside the first set is 4, and, if H,
is true, the probability that y lies outside the second set is at most ' [since H,,
implies that p(a, y) = p,, by Corollary 1]. If H, is true, then the probability
that the two sets are disjoint is at most 6 + v, and this provides us with the
test developed below.

Let Scgir(8) be the critical Sharpe measure [in (9)] for testing the tangency
of a given portfolio at significance level 8. The portfolio « is inferred
non-tangent if |S(a)| < Scrir(8). In the previous section we derived p,(a),
the maximum sample correlation between a and any portfolio that is inferred
tangent at significance level § when a is inferred non-tangent. Using the
distribution of the sample correlation of bivariate normal random variables, 3,
given the true population value, p, define the critical value p,(p,, ) such that

Pr[p < pi(po, W)l =po] =¥. (13)

Reject Hy if (i) |S(a)| < Scarr(0) and (id) 5y(a) < p,(po, ¥). In other words,
reject H, if the tangency of a is rejected at significance level # and the
maximum correlation between « and a portfolio inferred tangent is less than
p1(pg, ¥). As proved in the following proposition, the significance level (size)
of this test is at most 8 + .

Proposition 5.
Pr([S(a) | < Scrir(8) and 5y(a) < py(po, ¥)|Ho) <O+9.  (14)

Proof. Consider the sample correlation between the proxy a and the ex ante
tangent portfolio of the observed universe y, denoted p(a, v). The weights in
v, and therefore the returns on y, are not observed by the researcher, so
p(a, v) cannot be computed. Nevertheless, this hypothetical sample correla-
tion is useful in proving the proposition.
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Define the events

(A [8(a)] < Scarr(8),
(Az)  pela) <py(pg, ¥),
(B)  pla.y) 2 pi(po. %),
(€)  bla,v) 2 py(a),
(D) 18(¥)1 < Scarr(8).
First observe that [A, N B] = C by transitivity. Next observe that [A, N C] =
D, since the tangency of a is rejected (by A,) and y gives the same inference
(by C). [Note that S(y) is the hypothetical sample Sharpe measure of the
ex ante tangent portfolio of the observed universe.] Therefore

Pr[A; N A,NB|H,] < Pr[A, N C|H,]

< Pr[D|H,] =Pr[D] =46. (15)

Next observe that

Pr[A, N A,N(~B)H,] < Pr[~ B|H,]

<Pr[~Blo(a.v) = p,] <¥. (16)

The second inequality follows from Corollary 1 and the implication that H,
implies p(a, ¥) = pg. The third inequality follows from (13) and the fact that,
for a fixed p,(p,, ¥), the probability on the left-hand side of (13) is decreasing
in p. The probability in (14), Pr{A; N A,|H,], can be written as

Pr[A, N A,|H,] =Pr[A,; N A,NB|H,] + Pr[A, N A,N (~ B)|H,],
and combining this with (15) and (16) gives the desired result. O

The choice of § and ¢ in the above test is arbitrary. Together both
parameters determine the maximum significance level of the test, but we do
not know which combination of 8 and y gives the highest power. In order to
give a simple illustration of the test, we specify § = . In addition, the exact
sampling distribution of the correlation coefficient is rather complicated, so in
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computing p,(pg, ¥) we use Fisher’s z transformation, in which

~

1+5

— ()

Vi

z=1log

is distributed approximately Normal [see Kendall and Stewart (1977, eq.
16.77) for the moments of the distribution].

In table 4. we apply the test to the same weekly return data analyzed in
table 3. Consider the first row of table 4, where the above hypothesis is tested
in the first subperiod with p, equal to 0.9, a maximum significance level of
0.10 (=8 + ¢ ), and the value-weighted NYSE-AMEX as the proxy. The test
proceeds as follows. First, the tangency of the proxy itself is rejected at a
significance level of 0.05 (= §). The maximum sample correlation between the
proxy and a portfolio inferred tangent, p,(«a), equals 0.763 (column 3). Up to
this point, we have simply repeated the procedure in table 3. Next compute
p(pg, ) for p;=0.9 and ¢ = 0.05, and this value is 0.881 (column 4). Since
this value exceeds p,y(a), we reject H,. The same procedure is repeated in table
4 for maximum significance levels 0.05 and 0.01, for p, equal to 0.8 and 0.7,
and with the equally weighted NYSE-AMEX as an alternative proxy.

For the value-weighted index, H; is rejected in the last two subperiods for
po = 0.7 at a significance level of at most 0.01. In the first subperiod, H,, is
rejected at the 0.01 level with p, = 0.9 and at the 0.10 level for p, = 0.8, but H,
is not rejected for p,=0.7 in that subperiod. The results for the equally
weighted index are similar, the primary exceptions being that H, with py = 0.7
is rejected only in the second subperiod and H, is not rejected at all in the
first subperiod. In general, these results suggest that if the correlation between
either of these proxies and the market portfolio exceeds 0.9, or even a lower
value, then the CAPM is rejected.

4.2. A test based on the power function of Ross’s statistic

As described in section 3, Ross’s test statistic is distributed central F when
the tested portfolio is the ex ante tangent portfolio of the observed universe.
When the tested portfolio is not the tangent portfolio, the same test statistic is
distributed, conditional on S‘( a), as non-central F, with non-centrality param-
eter

A= ——[S(1)* - 5(e)] (18)
" TS b

as shown by Gibbons, Ross and Shanken (1985) [see also MacKinlay (1985)].
This result is useful for understanding the power function of Ross’s test of
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tangency against various alternatives, but, as Shanken (1987) demonstrates in
a slightly different fashion, the same result can be used to test the hypothesis

p{a, Y) 2 po-
Using Proposition 1, we can rewrite (18) as

)\———T———S( 1 -p? ] 19
abpa el AT (19)

In addition to T and § (), which are known to the researcher, the non-central-

Table 5
Test of Hy: p(a, ¥v*) > py, conditional on the maximum Sharpe measure { S(y)).?

Upper bounds on the p-values for the test of H,
Proxy (a): VW?® Proxy (a): EW®
S(y) pp =09 py =08 p =07 pp=0.9 pp=028 po =07

1/2/63-6/25/69 (T = 324, §(7) = 0.445)°

0.3 0.000 0.001 0.004 0.001 0.006 0.022
0.4 0.001 0.011 0.056 0.005 0.053 0.181
0.5 0.004 0.087 0.328 0.026 0.246 0.586
0.6 0.025 0.345 0.763 0.099 0.604 0914
0.7 0.100 0.719 0.970 0.272 0.850 0.994
0.8 0.281 0.941 0.999 0.533 0.986 0.999
7/2/69-10/1,/75 (T = 324, §() = 0.681)
0.3 0.000 0.000 0.000 0.000 0.000 0.000
0.4 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000
0.6 0.000 0.000 0.000 0.000 0.000 0.000
0.7 0.000 0.000 0.014 0.000 0.000 0.014
0.8 0.000 0.006 0.143 0.000 0.006 0.140
10/8/75-12/23 /81 (T = 324, $(3) = 0.608)
0.3 0.000 0.000 0.000 0.000 0.000 0.000
0.4 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.002
0.6 0.000 0.001 0.015 0.000 0.002 0.041
0.7 0.000 0.011 0.151 0.000 0.031 0272
0.8 0.000 0.088 0.546 0.001 0.178 0.703

#The null hypothesis (H,) states that the proxy portfolio (a) has an ex ante correlation of at
least p, with the Sharpe-Lintner tangent portfoljo of the global universe (y*). S(y) is the
maximum ex ante Sharpe measure of the observed universe of assets. The tests are based on
weekly returns. The set of twelve risky assets consists of ten value-weighted portfolios based on
market-value deciles at the end of the previous year, the value-weighted NYSE-AMEX portfolio,
and the equally weighted NYSE-AMEX portfolio.

EVW: value-wexghted NYSE-AMEX; EW: equally weighted NYSE-AMEX.
<§(%) is the sample s maximum Sharpe measure.
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ity parameter depends on the unknown parameters p(a,y) and S(y) (the
maximum ex ante Sharpe measure of the observed universe). Given a value of
S(v), however, a test of H, is straightforward. Note that the non-centrality
parameter A is decreasing in p(a, y), so that a test of the hypothesis p(a, y) >
po can be based on the non-central F distribution with A evaluated at
p(a, v) = py- The (exact) significance level of this test gives an upper bound
for the significance level of a test of H,, since H, implies that p(ea, y) = pg,
given Corollary 1. The significance levels for both tests are identical if the
global and observed universes coincide (y* = v).

Table 5 displays results of the above test for values of p, equal to 0.9, 0.8
and 0.7, using the same subperiods and weekly return data as in tables 3 and
4. We show results for values of the maximum Sharpe measure of the observed
umiverse, S(y), ranging from 0.3 to 0.8. The ex post values of 5(?), also
shown, range from 0.445 to 0.681. The non-centrality parameter A, and thus
the p-value as well, increases with S(y), and the increases in the p-values can
be large in table 5 as S(y) increases to 0.7 and 0.8. Such apparent sensitivity
to the larger values of S(y) suggests caution in interpreting the results.
Nevertheless, for values of S(y) near or slightly larger than the ex post values,
the inferences provided by this method are similar to those obtained in table 4.

5. Summary and conclusions

This paper presents a framework for investigating the mean-variance
efficiency of an unobservable portfolio based on its correlation with an
observable proxy portfolio. We first analyze some useful mean-variance
relations based on the correlation between a given proxy portfolio and other
portfolios in both the observed and global universes. We then develop a
sensitivity analysis that provides the highest sample correlation between the
proxy and a portfolio that reverses the inference of a test of Sharpe-Lintner
tangency. Extending that analysis, we formally test whether an observable
proxy is ex ante highly correlated with the ex ante tangent portfolio.

We conclude that the correlation between the tangent portfolio and the
market proxy is sensitive to how one constructs the efficient set, both ex ante
and in the sample. In his critique of tests of the CAPM, Roll (1977) shows that
the sample inefficient market proxy used by Black, Jensen and Scholes (1972)
is correlated 0.9 with the estimated Sharpe-Lintner tangent portfolio. He
concludes that inferences about the CAPM can be reversed easily with an
alternative market proxy whose return is highly correlated with the return on
the original proxy. Starting with the same minimum-variance boundary con-
structed by Roll, we show that the correlation between the sample tangent
portfolio and the proxy of Black, Jensen and Scholes decreases as additional
assets are added to the observed universe. For example, the correlation drops
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to 0.48 when the universe consists of sixteen portfolios of stocks and bonds.
The decline in correlation is easily understood when one realizes that the
correlation between the proxy and the tangent portfolio is the ratio of the
Sharpe measures of the two portfolios.

The relation between correlations and Sharpe measures also implies that the
mean-variance efficiency of a ‘true’ benchmark portfolio, possibly containing
all assets, is rejected if one rejects efficiency of a particular alternative
benchmark portfolio in an observed universe consisting of a subset of assets.
The relevant alternative benchmark in the observed universe is the portfolio
from the observed universe that is most highly correlated with the true
benchmark.

In a finite sample we analyze the sensitivity of inferences using a likelihood
ratio test of Sharpe-Lintner tangency. Ross (1983) demonstrates that the test
statistic has a known finite-sample distribution, and he derives a representa-
tion of the test statistic in mean-variance space. Combining Ross’s geometric
representation with the mean-variance analysis described in section 2 [and
derived in Kandel and Stambaugh (1986)], we obtain the highest sample
correlation between the proxy and a portfolio that reverses the inference about
the proxy’s tangency.

When monthly data of long periods (2632 years) are used to test the
tangency of the equally weighted or value-weighted NYSE, there are some
cases where no rejection region exists at standard test sizes and other cases
where the correlation that reverses the inference about the tangency of the
NYSE portfolio is quite high. When weekly data of shorter periods (about 6
years) are used, the tangency of both the equally weighted and value-weighted
NYSE-AMEX portfolios is rejected. The maximum sample correlation be-
tween the NYSE-AMEX proxy and a portfolio inferred to be tangent at the
0.05 level ranges from 0.76 to 0.48 for the value-weighted portfolio and from
0.90 to 0.46 for the equally weighted portfolio.

We extend the preceding sensitivity analysis to test whether a given observa-
ble proxy portfolio is correlated at least p, with the ex ante tangent portfolio
of the global universe. We apply the test to weekly returns data for common
stocks, with both the equally weighted and the value-weighted NYSE-AMEX
indexes as the observable proxies. The null hypothesis is in fact a joint
hypothesis that the unobservable benchmark portfolio is (i) the ex ante
tangent portfolio and (ii) highly correlated (at least p,) with the NYSE-AMEX
index. This hypothesis is almost always rejected for p, equal to 0.9 and is often
rejected for p, equal to 0.8 and even 0.7.
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