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ABSTRACT

In this paper we investigate the properties of the standard two-pass methodology
of testing beta pricing models with misspecified factors. In a setting where a factor
is useless, defined as being independent of all the asset returns, we provide theo-
retical results and simulation evidence that the second-pass cross-sectional regres-
sion tends to find the beta risk of the useless factor priced more often than it
should. More surprisingly, this misspecification bias exacerbates when the number
of time series observations increases. Possible ways of detecting useless factors are
also examined.

WHEN TESTING ASSET PRICING MODELS relating risk premiums on assets to their
betas, the primary question of interest is whether the beta risk of a partic-
ular factor is priced ~i.e., whether the estimated risk premium associated
with a given factor is significantly different from zero!. Black, Jensen, and
Scholes ~1972! and Fama and MacBeth ~1973! develop a two-pass method-
ology in which the beta of each asset with respect to a factor is estimated in
a first-pass time series regression, and estimated betas are then used in
second-pass cross-sectional regressions ~CSRs! to estimate the risk premium
of the factor. This two-pass methodology is very intuitive and has been widely
used in the literature. The properties of the test statistics and goodness-of-
fit measures under the two-pass methodology are usually developed under
the assumptions that the asset pricing model is correctly specified and that
the factors are correctly identified. Shanken ~1992! provides an excellent
discussion of this two-pass methodology, especially the large sample proper-

* Kan is at the University of Toronto, Zhang is at the Hong Kong University of Science and
Technology and the University of Alberta. We thank K. C. Chan, Sean Cleary, Jin-Chuan Duan,
Wayne Ferson, René Garcia, Mark Huson, Vijay Jog, Youngsoo Kim, George Kirikos, Peter
Klein, Bob Korkie, Anthony Lynch, Vikas Mehrotra, Angelo Melino, Randall Morck, Sergei Sarkis-
sian, Ken Shah, Tim Simin, Robert Stambaugh, René Stulz ~the editor!, Mike Vetsuypens,
Zhenyu Wang, John Wei, Min-Teh Yu, Guofu Zhou, Xiaodong Zhu, seminar participants at the
Hong Kong University of Science and Technology, National Central University ~Taiwan!, Queen’s
University, Southern Methodist University, University of Alberta, University of California at
Irvine, University of Toronto, participants at the 1996 Northern Finance Meetings in Quebec
City and the 1997 Western Finance Meetings in San Diego, and particularly Naifu Chen and
Ravi Jagannathan for their helpful comments and discussions. We would also like to thank
Ravi Jagannathan and Zhenyu Wang for sharing their data set with us, and Teresa Chan and
Martin Forest for their research assistance. All remaining errors are ours.

THE JOURNAL OF FINANCE • VOL. LIV, NO. 1 • FEBRUARY 1999

203



ties of the two-pass CSR for the correctly specified model under the assump-
tion that returns are conditionally homoskedastic. Jagannathan and Wang
~1998! generalize Shanken’s large sample results to the case of conditionally
heteroskedastic returns. However, little is known about how these test sta-
tistics and goodness-of-fit measures behave if the model is misspecified.

In this paper, we study the properties of the two-pass CSR when the asset
pricing model is misspecified. Misspecification of an asset pricing model can
take various forms; here we focus on the extreme case in which the proposed
factor is independent of all the asset returns used in the test. We call such
a factor a useless factor. One might expect that when a useless factor is used
in testing an asset pricing model, the hypothesis that its risk premium is
zero would only be rejected with a low probability as indicated by the size of
the test. We show that this view cannot be justified. Analytical and simula-
tion results indicate that in a finite sample, the beta risk associated with a
useless factor is found to be priced more often than the size of the test. A
more surprising result is its large sample property. Since the problem arises
because the betas are unobservable and estimated with errors, one might
expect that as the number of the time series observations increases, the
estimates of the betas will become more accurate and the above-mentioned
problem will diminish. We show that this is not the case. In fact, as the
number of time series observations goes to infinity, the probability of reject-
ing the null hypothesis that the risk premium of a useless factor equals zero
goes to one.

The reason this problem arises is that the true betas of the assets with
respect to the useless factor are all zeros, so the “true” risk premium with
respect to the useless factor is in fact undefined. Therefore, as the estimated
betas approach zero, the absolute value of the estimated risk premium needs
to go to infinity, instead of zero, in order to “explain” the cross-sectional
difference in the expected returns.

Although the misspecification bias in the case of a useless factor is due to
the estimation errors of betas in the first-pass time series regression, tra-
ditional errors-in-variables ~EIV! adjustments as suggested by Shanken ~1992!
and Kim ~1995! cannot be used to correct for this bias. This is because such
adjustments are derived under the assumption that the model tested is the
correct one, and, therefore, they are not applicable to the case of misspeci-
fied models. We show that even with the EIV adjustments of Shanken ~1992!,
the asymptotic probability of rejecting the null hypothesis that the risk pre-
mium of a useless factor equals zero is still much greater than the size of the
test. Since the “true” risk premium of a useless factor is undefined, it is not
possible to come up with an EIV adjustment that is appropriate for a useless
factor, as well as for the true factor.

Our results present a significant complication regarding the interpreta-
tion of many empirical tests of asset pricing models. This investigation has
particular relevance to the models of the Arbitrage Pricing Theory ~APT! of
Ross ~1976! and the Intertemporal Capital Asset Pricing Model of Merton
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~1973!, in which factors and state variables are unidentified. These factors
or state variables are chosen for empirical analysis based on economic intu-
ition. We have no way of determining ex ante whether an asset pricing model
to be tested is correct and whether the factors used are the correct ones.
There is always a possibility that some proposed factors are in fact useless.
Even for the well-known Capital Asset Pricing Model ~CAPM! of Sharpe
~1964!, Lintner ~1965!, and Black ~1972!, in which the market portfolio is the
sole factor, the problem still exists because the true market portfolio is un-
observable ~Roll ~1977!!.

Given the importance of the two-pass methodology in testing asset pricing
models and the potential problem of misspecifying factors, a relevant ques-
tion is how we can detect useless factors in the two-pass methodology. We
suggest several tests that can serve as diagnostic tools and we also provide
simulation results about their effectiveness.

The rest of the paper is organized as follows. Section I discusses the prop-
erties of the test statistics in the two-pass methodology under both correct
specification and incorrect specifications. Section II provides simulation ev-
idence that illustrates the magnitude of the bias caused by misspecification.
The final section provides our conclusions and the Appendix contains proofs
of all propositions.

I. Analytic Results on the Misspecification Bias

A. The Two-pass Regression under Correct Specification

For illustrative purposes the raw returns on N assets at time t, Rt , are
assumed to be independently drawn across t from N~m,V ! where m is its
unconditional mean and V is its unconditional variance-covariance matrix.
We also assume Rt are generated from the following one-factor model:1

Rt 5 m 1 bft 1 «t , t 5 1, . . . ,T, ~1!

where ft is the realization of the common factor at time t, and b 5 Cov@Rt , ft#0
Var@ ft# is a vector of the betas of the N assets with respect to the common
factor ft which is assumed to be constant over time. The term factor is used
in a weak sense, so conditioned on f 5 @ f1, f2, . . . , fT # we assume the error
term «t to have mean zero but it can be a cross-sectionally correlated random
vector ~see Chamberlain and Rothschild ~1983!!.

Under an exact static one-factor beta pricing model, for some constants g0
and g1,

m 5 g01N 1 g1 b, ~2!

1 We thank Naifu Chen for suggesting this simple example to illustrate the problem. How-
ever, the subsequent results do not depend on the structure of one-factor models.
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where 1N is the N-vector of ones. When testing equation ~2!, the main in-
terest is focused on the hypothesis H0 : g1 5 0. If a researcher can observe b,
then an Ordinary Least Squares ~OLS! CSR of Rt on b can be run for each
period. By letting X 5 @1N , b# and g 5 @g0, g1# ', the OLS estimate of g at
time t is

[gt
OLS 5 F [g0t

OLS

[g1t
OLSG5 ~X 'X !21~X 'Rt !. ~3!

Since m 5 Xg, under the assumption that returns are independently and
identically distributed ~i.i.d.! N~m,V !, it is easy to verify that

[gt
OLS ; N~g,~X 'X !21~X 'VX !~X 'X !21 !. ~4!

In particular,

[g1t
OLS ; NSg1,

b 'MVMb

~b 'Mb!2 D, ~5!

where M 5 IN 2 ~1N 1N
' !0~1N

' 1N ! and $ [g1t
OLS % is a sequence of i.i.d. unbiased

estimators of g1. We can test H0 : g1 5 0 using a t-test on the time series of
[g1t
OLS . The test statistic is given by

tOLS 5
N[g1
OLS

s~ [g1
OLS !0%T

, ~6!

where N[g1
OLS and s~ [g1

OLS ! are the sample average and standard deviation of
[g1t
OLS , respectively.
Under the null hypothesis, tOLS has a central t-distribution with T 2 1

degrees of freedom. But when g1 Þ 0, tOLS has a noncentral t-distribution
with the square of its noncentrality parameter given by2

dOLS
2 ~b! 5

T ~b 'Mm!2

~b 'MVM b!
5

T ~m 'Mm!2

~m 'MVMm!
5 dOLS

2 ~m!. ~7!

It is well known that if a random variable td has a noncentral t-distribution
with noncentrality parameter d, then P @6td6. d # for d . 0 is an increasing func-
tion of d2. Therefore, if m is not constant across assets, then dOLS~b! Þ 0 and
the probability of rejecting the null hypothesis using a two-tailed t-test will be

2 See, for example, Johnson, Kotz, and Balakrishnan ~1995, Chap. 31!. The square of the
noncentrality parameter is invariant to rescaling of the factor, or rescaling of b, hence, it only
depends on m but not on g1.
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higher than the size of the test obtained from a central t-distribution. In the
parlance of asset pricing theory, one is likely to find b priced when using the
t-test if g1 Þ 0.

The CSR can also be run by generalized least squares ~GLS!. The GLS
estimate of g at time t is

[gt
GLS 5 F [g0t

GLS

[g1t
GLSG5 ~X 'V 21X !21~X 'V 21Rt !. ~8!

It is easy to verify that

[gt
GLS ; N~g,~X 'V 21X !21 !, ~9!

and in particular, we have

[g1t
GLS ; NSg1,

1

Db ' GM DbD, ~10!

where GM 5 IN 2 ~ D1N D1N
' !0~ D1N

' D1N !, D1N 5 V 21021N and Db 5 V 2102b. Therefore,
$ [g1t

GLS % is also a sequence of i.i.d. unbiased estimators of g1 and similarly we
can test H0 : g1 5 0 using the t-test given by

tGLS 5
N[g1
GLS

s~ [g1
GLS !0%T

, ~11!

where N[g1
GLS and s~ [g1

GLS ! are the sample average and standard deviation
of [g1t

GLS , respectively. Under the null hypothesis, tGLS has a central
t-distribution with T 2 1 degrees of freedom. But when g1 Þ 0, tGLS has a
noncentral t-distribution with the square of its noncentrality parameter
given by

dGLS
2 ~b! 5

T ~ Db ' GM Im!2

~ Db ' GM Db!
5 T ~ Im ' GM Im! 5 dGLS

2 ~m!, ~12!

where Im 5 V 2102m. It is well known that dGLS
2 ~b! $ dOLS

2 ~b!. Therefore, if b
and V are observable, GLS CSR is more powerful than OLS CSR under the
correct model.3

3 Due to this inequality, Amihud, Christensen, and Mendelson ~1992! suggest the CSR should
be run using GLS instead of OLS.
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In practice, betas are not observable and have to be estimated. The pop-
ular two-pass CSR methodology involves first estimating betas in a first-
pass time series OLS regression of Rt on ft . The estimated betas, Zb, are then
used to run the CSR of equations ~3! or ~8! by replacing X with ZX 5 @1N , Zb# .
When estimated betas instead of true betas are used in the second-pass
CSR, the estimators N[gOLS and N[gGLS are biased but as the estimation period
is lengthened, the estimation errors of Zb diminish and N[gOLS and N[gGLS are
still consistent. Nevertheless, as discussed in Shanken ~1992! and Jagan-
nathan and Wang ~1998!, EIV adjustments are still required to obtain as-
ymptotically correct standard errors of N[gOLS and N[gGLS, where g1 Þ 0. For the
case g1 5 0, such an EIV adjustment is not required and the t-tests of equa-
tions ~6! and ~11! are valid asymptotically.

When the same estimated betas, Zb, are used to run CSR every period,
the estimated risk premium ~ N[g1

OLS or N[g1
GLS ! described above is numerically

equivalent to that in the single CSR of OR on Zb, where OR is the time series
average of Rt . However, it is important to distinguish the conventional
t-ratio of the slope coefficient in this single CSR from the t-ratio in the
two-pass CSR. As recognized by Black et al. ~1972! and Miller and Scholes
~1972!, error terms in this single CSR are heteroskedastic and cross-
sectionally ~positively! correlated and hence the conventional t-ratio in this
single OLS CSR tends to overstate the actual significance of the estimated
risk premium. Therefore, researchers do not use this conventional t-ratio
in the single OLS CSR to test H0 : g1 5 0.

From the single CSR of OR on estimated b, R2s are often reported as a
measure of the goodness-of-fit of the model. For OLS CSR, the sample ROLS

2

is given by

ROLS
2 ~ Zb! 5

~ OR 'M Zb!2

~ OR 'M OR!~ Zb 'M Zb!
. ~13!

For GLS CSR, the sample RGLS
2 is given by

RGLS
2 ~ Zb! 5

~ E OR ' GM EZb!2

~ E OR ' GM E OR!~ EZb ' GM EZb!
, ~14!

where EZb 5 V 2102 Zb, and E OR 5 V 2102 OR. Under the correct specification, as T r`,
Zb r b, and OR r m. Therefore, both the sample ROLS

2 and RGLS
2 tend to one as

T tends to infinity. However, for us to use ROLS
2 and RGLS

2 as measures of
goodness-of-fit, we need to understand their properties under incorrect spec-
ifications. It turns out that when the average returns are cross-sectionally cor-
related, the sample ROLS

2 in the single CSR, as an increasing function of the
square of the conventional OLS t-ratio, also tends to overstate the goodness-
of-fit.

208 The Journal of Finance



B. Misspecification Bias under Incorrect Specifications

Although misspecification may take various forms, we consider the ex-
treme case where the chosen factor, gt , is a useless factor in the sense that
$R1, R2, . . . , RT % are conditionally independent of g 5 $g1, g2, . . . , gT % . Without
knowing g is useless, the researcher estimates the betas of the N assets with
respect to the useless factor in the first-pass time series regression. Condi-
tioned on g and under the assumption that Rt ; N~m,V !, the estimated
betas of the N assets, b, have a distribution given by

b ; N~0,V0sgg!, ~15!

where sgg 5 (t51
T ~gt 2 Sg!2 and Sg 5 (t51

T gt 0T. Since the distributions of the
t-ratio and sample R2 do not depend on sgg, the unconditional distributions
of the t-ratio and R2 are identical to the ones conditioned on g. Therefore, we
do not need to place any restrictions on the joint distribution of g. gt could be
correlated over time and it could even have time-varying distributions. With-
out knowing that b is the estimated betas with respect to a useless factor,
the risk premium g1 is estimated in the second-pass CSR of Rt on b for each
period and the hypothesis H0 : g1 5 0 is tested using the t-test described in
the last subsection. Although the mean of b is zero for all assets, realizations
are nonzero and may provide some explanatory power for expected returns.
In this subsection, we address the following questions for a fixed number of
time series observations, T:

1. For a given realization of b, what is the probability of rejecting
H0 : g1 5 0 using the t-test? And what is the probability of rejecting
H0 : g1 5 0, unconditioned on the realization of b, using the t-test to test
if a useless factor is priced?

2. How do the goodness-of-fit measures, ROLS
2 ~b! and RGLS

2 ~b!, of the CSR
of OR on b behave? Will the R2s be inf lated?

Running the CSR of Rt on @1N , b# using OLS and GLS, we obtain the OLS
and GLS estimates of g1 for each period as

[g1t
OLS~b! 5

b 'MRt

b 'Mb
, ~16!

[g1t
GLS~b! 5

Db ' GM ERt

Db ' GM Db
, ~17!

where ERt 5 V 2102Rt and Db 5 V 2102b, and we can compute the OLS and
GLS t-ratios in equations ~6! and ~11! to test H0 : g1 5 0. Researchers often
treat [g1t

OLS~b! and [g1t
GLS~b! as i.i.d. normal conditioned on b, and compute

the p-values of the OLS and GLS t-ratios based on a central t-distribution
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with T 2 1 degrees of freedom. However, when we use the same period to
estimate b as well as to run the OLS CSR, then [g1t

OLS~b! and [g1t
GLS~b! are no

longer i.i.d. conditioned on b. We are able to derive the exact distribution
of the t-ratios but due to its length and complexity, we choose to present
the approximate distribution of the t-ratios by ignoring the dependence of
[g1t
OLS~b! and [g1t

GLS~b! for simplicity.4

PROPOSITION 1: If m Þ k1N for any scalar k, then, conditioned on b, the OLS
and GLS t-ratios of testing H0 : g1 5 0 have an approximate noncentral
t-distribution with noncentrality parameters

dOLS ~b! 5
%T ~b 'Mm!

~b 'MVMb!102 , ~18!

dGLS ~b! 5
%T ~ Db ' GM Im!

~ Db ' GM Db!102 , ~19!

and T 2 1 degrees of freedom. Except for a set of b with a zero measure,
dOLS~b! Þ 0 and dGLS~b! Þ 0. Unconditioned on b, the expected value and the
variance of the OLS and GLS t-ratios are given by

E @tOLS ~b!# 5 0, ~20!

Var@tOLS ~b!# 5 ST 2 1

T 2 3D 1 ST 2 1

T 2 3DE @dOLS
2 ~b!# , ~21!

E @tGLS ~b!# 5 0, ~22!

Var@tGLS ~b!# 5 ST 2 1

T 2 3D 1 ST 2 1

T 2 3DE @dGLS
2 ~b!# . ~23!

Therefore, conditioned on b, the probability of rejecting the null hypoth-
esis using a two-tailed t-test will be higher than the size of the test obtained
from a central t-distribution. In other words, one is likely to find b priced
when using the t-test. Although conditioned on almost every b, the t-ratio
does not have a mean equal to zero, the unconditional mean of the t-ratio is
equal to zero and therefore we do not expect the estimated risk premium to
take a particular sign. However, the unconditional variance of the t-ratio is
higher than the variance of a central t-distribution, so we expect the two-
tailed t-test to overreject the null hypothesis unconditionally. It should be
emphasized that the results in Proposition 1 are just approximations. The

4 The derivation of the exact distribution of the t-ratio is available upon request. The ap-
proximate distribution is very close to the exact distribution when T is reasonably large.
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results based on the exact distribution of the t-ratios suggest it is possible
that we can underreject the null hypothesis unconditionally when the factor
is useless. This could happen when T is small or when m is close to k1N .

We now have the answer to the first question: In most of the cases, the
null hypothesis H0 : g1 5 0 will be rejected with a higher probability than the
size of the test, due to the misspecification bias in the t-test. This indicates
the serious problem in using this t-test to determine whether a beta risk is
priced under incorrect specifications.

Note that since b is a random variable, both dOLS
2 ~b! and dGLS

2 ~b! are
random variables. Though the misspecification bias applies to both the
OLS and GLS t-tests, it is desirable to compare E @dOLS

2 ~b!# and E @dGLS
2 ~b!#

because they reveal whether the OLS t-test or the GLS t-test is more
susceptible to misspecification bias when T is finite. However, whether
E @dOLS

2 ~b! 2 dGLS
2 ~b!# is positive or negative depends on both m and V, so

one cannot make a general statement about relative superiority of OLS or
GLS in detecting useless factors. The following proposition gives an ana-
lytical expression for E @dOLS

2 ~b!# and E @dGLS
2 ~b!# . By eigenvalue decomposi-

tion, we have V 102MV 102 5 HLH ', where H is an N 3 ~N 2 1! orthonormal
matrix and L 5 Diag~l1, . . . ,lN21! where 0 , l1 # {{{ # lN21 are the
N 2 1 nonzero eigenvalues of V 102MV 102.

PROPOSITION 2

E @dOLS
2 ~b!# 5 EFT ~Z 'Lh!2

Z 'L2 Z G # dOLS
2 ~b!, ~24!

E @dGLS
2 ~b!# 5

dGLS
2 ~b!

N 2 1
5

T ~ Im ' GM Im!

N 2 1
, ~25!

where h 5 H 'V 2102m and Z ; N~0, IN21!. The exact analytical expression of
E @dOLS

2 ~b!# is given in the Appendix.

Proposition 2 suggests that for the GLS t-test when b is the estimated beta
with respect to a useless factor, the unconditional expectation of the square
of the noncentrality parameter is 10~N 2 1! of that for the true beta. For the
OLS t-test, even though b is the estimated beta with respect to a useless
factor, the unconditional expectation of the square of the noncentrality pa-
rameter can be as high as that for the true beta. The equality can be at-
tained when the returns have an exact one-factor structure without noise.5

This is because when returns follow an exact one-factor structure without
noise, we have

Rt 5 m 1 bft , ~26!

5 We thank Naifu Chen for pointing this out to us.
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and the estimated betas of the returns with respect to a useless factor gt are
given by

b 5
(
t51

T

Rt ~gt 2 Sg!

(
t51

T

~gt 2 Sg!2

5
(
t51

T

bft ~gt 2 Sg!

(
t51

T

~gt 2 Sg!2

5 cfg b, ~27!

where Sg 5 (t51
T gt 0T and cfg is the slope coefficient of regressing ft on gt .

Although E @cfg# 5 0, its realization is not equal to zero with probability 1.
Therefore, b is always a linear function of b and it is virtually impossible to
distinguish betas estimated with respect to a useless factor from the betas
with respect to a true factor.

Proposition 2 also suggests that, generally, the misspecification bias does
not necessarily diminish as N r `. For example, when V 5 IN ~i.e., when
there is no difference between OLS and GLS!, we have

E @dGLS
2 ~b!# 5 E @dOLS

2 ~b!# 5
T ~m 'Mm!

N 2 1
5 TF(

i51

N

~mi 2 Sm!2

N 2 1
G, ~28!

where Sm 5 ~m '1N!0N. The term in the last brackets is the cross-sectional
variance of the expected returns of the N assets. To the extent that test
assets are randomly drawn from a universe of firms, the cross-sectional vari-
ance does not decrease as the number of assets increases. Therefore, using
more test assets may not reduce the misspecification bias.

For two independent random variables, it is well known that if one of
these two variables has a spherical distribution, then the sample R2 in
the OLS regression of one variable on the other is distributed as a
Beta~ 1

2
_ ,~N 2 2!02! where N is the number of observations, and the sample

OLS R2 has an expected value of 10~N 2 1!. However, in the OLS CSR of
OR on b, the distribution of ROLS

2 is difficult to derive because the N obser-
vations of b are correlated and the N observations of OR are correlated and
have different means. Although, under the normality assumption, OR is in-
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dependent of b, the OLS CSR R2 does not have a Beta distribution except
in some special cases, and its expected value is equal to ~proof available
upon request!

E @ROLS
2 ~b!# 5 (

i51

N21

E 3
liYi

2

S (
j51

N21

lj Yj
2D 4E 3

li Zi
2

S (
j51

N21

lj Zj
2D 4 , ~29!

where Y ; N~%Th, IN21! and Z ; N~0, IN21! with h and li as defined in
Proposition 2. From this expression, we can see that when lN21 is very large
compared with l1 to lN22 ~for example, when returns are close to having an
exact one-factor structure!, E @ROLS

2 ~b!# ' 1 even if b is estimated with re-
spect to a useless factor.

PROPOSITION 3: In the cross-sectional regression of OR on b, RGLS
2 (b) is distrib-

uted as Beta~ 1
2
_ ,~N 2 2!02!. ROLS

2 ~b! will be distributed as Beta~ 1
2
_ ,~N 2 2!02!

if MVM 5 cM for some constant c . 0.

Therefore, a partial answer to the second question is that RGLS
2 ~b! of the

CSR behaves like that of two independent variables with i.i.d. observations.
Since its distribution is known and independent of T, RGLS

2 can be easily
used to test whether the proposed factor is useless. However, since returns
are cross-sectionally correlated, ROLS

2 ~b! of the CSR will typically not behave
like the one between two independent variables with i.i.d. observations. Even
though the factor is useless, the expected value of ROLS

2 ~b! can be much
higher than 10~N 2 1!. This result should not be confused with those in Roll
and Ross ~1994!, Grauer ~1994!, and Kandel and Stambaugh ~1995!. Their
studies suggest that when betas are computed based on an inefficient port-
folio, ROLS

2 and the risk premium could assume almost any value, having no
relationship as to how close the inefficient portfolio is to the efficient fron-
tier. Our results differ from theirs in two ways. First, we do not require the
factor to be a portfolio of the N assets. Second, we deal with issues of sam-
pling distribution, whereas they deal mainly with issues of population mo-
ments. If we can observe the population moments of useless factors and the
returns of the assets ~whose betas are all zero!, we would not have any
misspecification bias because the population R2 should always be equal to
zero. Although the problem we discuss here is related to theirs ~i.e., mis-
specification!, the results we obtain cannot be easily foreshadowed from their
studies, which do not study the sampling distribution of R2 or t-ratio.

C. Large Sample Properties

In this subsection, we discuss the properties of t-tests and R2s when the
number of time series observations, T, increases, assuming the first-pass
time series regression and the second-pass CSR are performed using returns
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of the same period.6 Since the bias problem with a useless factor arises from
the errors of the estimated betas, and the variances of such estimated betas
go down with T, one might expect that the misspecification bias in the t-test
will diminish as T increases, and the t-test will work at least asymptotically.
Unfortunately, this is not the case. In fact, the following proposition sug-
gests that when T increases, the bias is even larger for the t-tests.

PROPOSITION 4: Suppose m Þ k1N for any scalar k. As T r `, 6tOLS~b!6 r `
and 6tGLS~b!6 r ` with probability one. As a result, the probability of reject-
ing the null hypothesis, H0 : g1 5 0, tends to one.

This proposition illustrates the seriousness of misspecification bias in the
two-pass methodology. The bias problem cannot be alleviated by increasing
the number of time series observations. Intuitively, the reason for this result
is that although the estimated betas become more accurate and tend to zero
stochastically, the estimate of g1 does not. Since the expected returns, m, are
not constant across assets, the intercept term of the CSR cannot fully ex-
plain the variation in m and it leaves something for the estimated betas to
explain. As the estimates b tend to zero, the calculated OLS slope coefficient
needs to go to infinity to explain the variation in m,7 so the numerator of the
OLS t-ratio tends to infinity. However, the time series estimate of the stan-
dard error remains finite. That is, the denominator of the OLS t-ratio re-
mains finite. As a result, when T r `, tOLS~b! explodes. The same is true for
tGLS~b!.

One might suspect that this result comes from multicollinearity because,
in the limit, the regressors of the CSR are an N-vector of ones and an N-vector
of zeros. That this is not true can be shown in two ways. First, if one runs a
CSR using excess returns without the intercept term, there will not be multi-
collinearity, but it can be easily shown that the problem remains. Second,
suppose it is true that m 5 k1N for some scalar k. Then the multicollinearity
is present, but it can be shown that the t-ratio has an asymptotic standard
normal distribution and it will not explode. These two points make it clear
that the problem comes from misspecification, rather than multicollinearity.

The following proposition describes the limit of ROLS
2 and RGLS

2 as T in-
creases.

PROPOSITION 5: Suppose m Þ k1N for any scalar k. Let Z ; N~0, IN21!. Denote

h 5
~Z 'Lh!2

Z 'LZ
, ~30!

6 It is easy to show that Proposition 4 holds as long as the number of time series observa-
tions in performing the CSR goes to infinity. Therefore, the asymptotic results of Proposition 4
hold even when the betas of the useless factor are estimated using a different period from the
one in which the CSR is performed.

7 From the expression, N[g1
OLS~b! 5 b 'M OR0b 'Mb, it is easy to see that 6 N[g1

OLS~b!6 r ` as b r 0,
because M OR r Mm Þ 0 if m Þ k1N for any k, so the denominator tends to zero at a faster rate
than the numerator.
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where h and L are defined in Proposition 2. As T r `,

ROLS
2 D

&&
h

m 'Mm
, ~31!

RGLS
2 D

&& BetaS1

2
,

N 2 1

2 D. ~32!

This proposition says that both ROLS
2 and RGLS

2 converge in distribution
to some random variables. They do not converge to zero, even though the
betas of a useless factor all converge to zeros. The result for RGLS

2 is an-
ticipated from Proposition 3, which states that the distribution of RGLS

2 is
Beta~ 1

2
_ ,~N 2 2!02! and does not depend on T.

Since the t-tests are not reliable, and from Proposition 4 even more unreli-
able for larger T, the fact that RGLS

2 has a Beta distribution for the case of use-
less factors provides us with a diagnostic test to detect useless factors. In theory,
one can also use ROLS

2 to detect useless factors if one knows the distribution of
sample ROLS

2 . However, the distribution of sample ROLS
2 for the useless factor

case depends on T, m, and V. Since information on m and V is generally not avail-
able to the researcher, it is difficult to assess the distribution of sample ROLS

2

even through simulations. Although sample RGLS
2 is superior to sample ROLS

2

in testing whether the factor is useless, one should not interpret our results as
suggesting that RGLS

2 is superior to ROLS
2 in every situation. If R2 is not used

for detecting useless factors but is meant to provide a measure of goodness-
of-fit to compare models, then to the extent that the test assets are economi-
cally meaningful, Jagannathan and Wang ~1996! argue that ROLS

2 could be a
better metric than RGLS

2 .

D. EIV Adjustment

Since the misspecification bias is partly due to the fact that we estimate
betas with errors in the first-pass time series regression, one may think that
we can correct the problem using the EIV adjustment proposed by Shanken
~1992!. Instead of computing OLS and GLS t-ratios as in equations ~6! and
~11!, Shanken ~1992! suggests that when the betas are estimated with er-
rors, we should compute the EIV-adjusted OLS and GLS t-ratios as:

tOLS
* 5

N[g1
OLS

F s2~ [g1
OLS !

T
1 S N[g1

OLS

[sg
D2S s2~ [g1

OLS !

T
2
[sg

2

T DG102 , ~33!

tGLS
* 5

N[g1
GLS

F s2~ [g1
GLS !

T
1 S N[g1

GLS

[sg
D2S s2~ [g1

GLS !

T
2
[sg

2

T DG 102 , ~34!
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where [sg
2 5 sgg0T. The second term in the denominator is designed to take

into account the measurement errors in the estimated betas. Shanken ~1992!
states that such an adjustment is not needed when testing H0 : g1 5 0. But
this is true only if the model is correctly specified under the null hypothesis,
i.e., m 5 g01N and expected returns are constant across assets. Here, we are
interested in the properties of adjusted t-tests in the case of useless factors.

Since s2~ [g1
OLS ! . [sg

2 and s2~ [g1
GLS ! . [sg

2 , we have 6tOLS
* 6 , 6tOLS 6 and

6tGLS
* 6 , 6tGLS 6 in any sample, so the rejection rate of the null hypothesis

using the adjusted t-ratio will always be lower than the rejection rate of
using the unadjusted t-ratio. Therefore, the adjusted t-ratio can help to
reduce the misspecification bias even though it is incorrect for the case of
useless factor.

Unlike the unadjusted t-ratios, the limits of adjusted t-ratios as the sam-
ple size T goes to infinity are finite ~though unbounded! random variables.
The properties of the asymptotic distributions are given in the following
proposition. For convenience, they are stated in terms of tOLS

*2 and tGLS
*2 . Let

Flim tOLS
*2 ~u! be the limiting distribution function of tOLS

*2 and let Fxk
2 ~u! be the

distribution function of a xk
2 variable.

PROPOSITION 6: As T goes to infinity,

tOLS
*2 D

&&
~Z 'LZ!2

Z 'L2Z
~35!

tGLS
*2 D

&& xN21
2 , ~36!

where Z ; N~0, IN21! and L is defined in Proposition 2, and

Fx1
2 ~u! . Flim tOLS

*2 ~u! $ FxN21
2 ~u! for u . 0. ~37!

Under the correctly specified model, tOLS
*2 and tGLS

*2 both should have lim-
iting distribution of x1

2 , so the acceptance0rejection decision is based on the
distribution of x1

2 . However, when the factor is useless, tOLS
*2 and tGLS

*2 no
longer have limiting distribution of x1

2 . When N . 2, overrejection occurs
asymptotically if we use the EIV-adjusted GLS t-ratio. For the case of OLS,
the overrejection also occurs asymptotically, but the severity depends on the
relative magnitude of the nonzero eigenvalues of V 102MV 102. If the nonzero
eigenvalues are equal, the limiting distribution of the tOLS

*2 is xN21
2 and the

overrejection is severe. If the nonzero eigenvalues are unequal, the limiting
distribution of tOLS

*2 is closer to that of x1
2 and the overrejection is less severe.

E. Discussion

To understand why the misspecification bias occurs, we examine the null
and the alternative hypotheses of the test. When the asset pricing model is
correctly specified and the factor is correctly identified, the alternative hy-
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pothesis says that the expected returns are a linear function of the betas
with respect to the true factor, but the null says the expected returns are
constant across all assets. Such a null should be rejected in favor of the
alternative when the true beta risk is priced. However, when the asset pric-
ing model is incorrectly specified, then the alternative hypothesis, which
says that the beta risk of a useless factor is priced, and the null, which says
that the expected returns are constant across assets, are both wrong. As a
result, there will be a good chance for the null hypothesis to be rejected in
favor of the alternative. Rejection simply means that the alternative ~that
the useless factor is priced! is better than the null ~that expected returns are
constant across assets!, which is not a very interesting benchmark. As the
number of time series observations increases, the problem gets even worse,
as we explain in the previous subsection.

The two-pass methodology has its advantage when the model is correctly
specified, but our analysis indicates that the methodology is inadequate in
the case of useless factors. A natural question is how one can detect a useless
factor. We offer some suggestions.

The first suggestion is to test whether the betas of the assets with respect
to a particular factor are significantly different from zero in the first-pass
time series regression before we run the second-pass CSR.8 If we cannot
reject the hypothesis that the betas are jointly equal to zero, then we should
be concerned about whether the factor is useless. Chen, Roll, and Ross ~1986!
and Ferson and Harvey ~1993! performed such a test in their studies, but
unfortunately this procedure has been largely ignored by many researchers.

The second suggestion pertains to the use of ROLS
2 and RGLS

2 in detecting
useless factors. Since ROLS

2 can be highly inf lated for useless factors and its
distribution is in general unknown, simulations are required to find out its
distribution in order to determine whether the factor is useless. From Prop-
osition 3, RGLS

2 is not inf lated much by the misspecification and its distri-
bution for a useless factor is known. Therefore, in the CSR of the returns on
the betas with respect to a common factor, it is more convenient to use RGLS

2

to check if the factor is useless. However, as a goodness-of-fit measure to
compare models, Jagannathan and Wang ~1996! suggests that RGLS

2 is infe-
rior to ROLS

2 because the latter measure applies to the transformed returns
and betas.

The third suggestion is to use Shanken’s EIV-adjusted t-ratio for testing
the null hypothesis in the case of conditional homoskedastic returns. Such
an adjustment is far from being perfect, but it helps reduce the overrejection
rate as compared with the unadjusted t-ratio. More generally, one can use
the EIV-adjusted t-ratio of Jagannathan and Wang ~1997!, which allows for
conditional heteroskedasticity in the returns.

8 In theory, a variable could be a legitimate factor even though it has very low ~but not zero!
correlations with returns, because if we add pure measurement errors to a true factor, the betas
with respect to this new factor still explain the cross-sectional differences of expected returns
perfectly. Empirically, a very noisy factor is not very useful because there will be large errors in
the estimated betas.
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If there are two or more independent sets of samples available, it is always
beneficial to perform the test on all the samples separately and draw infer-
ence upon the joint results. But for a given sample, a fourth way to detect
useless factors is to utilize the fact that the t-ratios of a useless factor have
an unconditional mean equal to zero. The difference between a true factor
and a useless factor is that the beta estimates are stable for a true factor,
but unstable for a useless factor. Thus, we can split the whole sample period
into several subperiods, estimate betas of the assets for each subperiod, per-
form CSR for each subperiod using estimated betas from the respective sub-
period, and reject the hypothesis g1 5 0 if the hypothesis is rejected in all
subperiods in the same direction.9 One empirical question is the trade-off
between detecting useless factors and maintaining the power of the test un-
der the correct model. In the next section, we illustrate this with simulation
and report the performance of such a test.

II. Simulation Results

A. The Data

To evaluate the magnitude of the misspecification bias discussed in the
previous section, we rely on simulation evidence. We use both actual and
simulated returns. For actual returns, we choose two sets of portfolios which
are commonly used in the empirical literature. The first set is 10 size-
ranked equally weighted portfolios of the combined NYSE and AMEX stocks,
sorted by market value at the end of June in each year. The second set of
portfolios is 100 size-and-beta-ranked portfolios that are obtained by rank-
ing the stocks within each size portfolio by their value-weighted betas esti-
mated using 24 to 60 months of past return data and subdividing them into
10 beta portfolios. The portfolios are equally weighted and are rebalanced on
a monthly basis. The monthly return series for both sets covers from July
1963 to December 1990.10

While actual portfolio returns are relevant in evaluating the impact of
misspecification bias in actual empirical studies, actual returns alone are
not sufficient for us to gauge its impact. The problem is that we do not know
the data generating process of actual returns, and because we have only one
realization of actual returns, the analysis is bound to be a conditional analy-
sis and may not be generalizable to other realizations of returns. Moreover,
actual returns could be nonnormal, conditionally heteroskedastic, and seri-
ally correlated. All these features may bias the t-test, thus we cannot attribute
the overrejection of H0 : g1 5 0 for useless factors entirely to the problem we

9 That is, all the g1s are significantly positive, or all are significantly negative, with the size
appropriately adjusted. In practice, the subperiod joint test has an additional advantage when
the betas are time varying.

10 Monthly returns on the 100 size-beta portfolios are kindly provided to us by Jagannathan
and Wang. Monthly returns on the 10 size portfolios are constructed based on these 100 size-
beta portfolios.
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discuss in the previous section. For this reason, we use simulated returns to
demonstrate the magnitude of the misspecification bias due to useless fac-
tors only. To this end, we simulate i.i.d. returns from N~m,V ! where m and
V are set equal to the average and estimated variance-covariance matrix of
the actual returns. To facilitate comparison with the results of using actual
portfolio returns, we generate two sets of parameters for the simulated re-
turns. One set corresponds to the 10 size portfolios and the other corre-
sponds to the 100 size-beta portfolios. If we observe a bias of similar magnitude
in both actual returns and simulated returns, we then have more confidence
that the observed magnitude of the bias in the actual returns is not driven
by the other violations of the assumptions for the t-test and that the bias is
not unique to a particular realization of returns.

B. Simulation Results for Fixed T

In this subsection, we report simulation results with a fixed number of
time series observations: T 5 330, which corresponds to the number of time
series observations used by Fama and French ~1992! and Jagannathan and
Wang ~1996!. The purpose of the simulations is to find out the magnitude of
the misspecification bias that we can expect to observe in real world data.
The number of replications in all our simulations is 10,000.

First, we take the actual returns as given, and for each simulation a use-
less factor is generated as an independent N~0,1! variate. ~The mean and
standard deviation of the useless factor are irrelevant.11 ! Using the two-pass
procedure, the betas with respect to this useless factor are estimated in the
first-pass time series regression and g1 is estimated in the second-pass CSR.
The purpose of this exercise is to determine how often the betas of useless
factors will be found priced. Table I reports the results of this experiment.
The left half of Table I reports the simulation results of CSR using only the
betas of the useless factor. In the case of 10 size portfolios, rejection rates
are quite different between OLS and GLS t-tests. For OLS CSR, the two-
tailed t-test slightly underrejects the null hypothesis for significance levels
at 1 percent and 5 percent, but grossly overrejects the null at the 10 percent
level. For GLS CSR, the two-tailed t-test overrejects the null at all three
significance levels but the rejection rates are not as bad as OLS CSR at the
10 percent level. One possible explanation for the difference between OLS
and GLS results is that actual returns are fraught with problems of condi-
tional heteroskedasticity, nonnormality, and a time-varying factor structure
and these problems have different impacts on the OLS t-test and GLS t-test.
Whatever the reason for the overrejection, the simulation results indicate

11 If Rt is i.i.d. N~m,V !, then the distribution and time series properties of the useless factor
are irrelevant. However, when we condition on actual returns, the choice of the distribution and
time series properties of the useless factor could matter. We generate the useless factor as an
independent N~0,1! variate here just to illustrate the typical magnitude of the misspecification
bias. Conditioned on the actual data, the misspecification bias could be higher or lower than
what we report if the useless factor is not normally distributed or autocorrelated.
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Table I

Probability of Rejecting H0 : g1 = 0 and Empirical Distribution
of R2 Using Actual Returns and Estimated Betas

of a Random Factor
The table presents the probability of rejecting H0 : g1 5 0 in 10,000 simulations using the two-
tailed t-test at various significance levels. N is the number of assets. For N 5 10, the assets are
10 size portfolios and for N 5 100, the assets are 100 size-beta portfolios. In both cases, the
returns are equally weighted monthly returns constructed using the combined NYSE-AMEX
monthly file over the period July 1963 to December 1990 ~T 5 330!. In each simulation, a
useless factor of 330 observations is randomly drawn from N~0,1! and the beta with respect to
this factor, b, is estimated for each asset. Monthly returns, Rt are regressed on b with and
without bvw, where bvw is the beta of the returns with respect to the value-weighted NYSE-
AMEX market index:

Rt 5 g01N 1 g1 b 1 «t ,

Rt 5 g01N 1 g1 b 1 g2 bvw 1 «t ,

using ordinary least squares ~OLS! and generalized least squares ~GLS!. A two-tailed t-test is
performed to test H0 : g1 5 0 using the time series of the estimated slope coefficients. The table
also presents the empirical distribution of the OLS and GLS R2 between the average returns
and the fitted expected returns in the 10,000 simulations.

Without bvw With bvw

N 5 10 N 5 100 N 5 10 N 5 100

Panel A: Probability of Rejecting H0 : g1 5 0

Significance
Level OLS GLS OLS GLS OLS GLS OLS GLS

0.01 0.001 0.029 0.033 0.031 0.008 0.038 0.082 0.036
0.05 0.045 0.127 0.142 0.104 0.090 0.143 0.413 0.108
0.10 0.692 0.206 0.232 0.168 0.294 0.238 0.595 0.176

Panel B: Distribution of R2

Percentile OLS GLS OLS GLS OLS GLS OLS GLS

0.010 0.058 0.002 0.002 0.000 68.059 0.047 1.349 0.664
0.025 0.366 0.012 0.012 0.001 68.093 0.059 1.365 0.665
0.050 1.433 0.051 0.045 0.005 68.205 0.102 1.425 0.668
0.100 5.088 0.207 0.182 0.018 68.704 0.280 1.635 0.682
0.200 17.308 0.840 0.727 0.067 70.469 1.033 2.521 0.734
0.300 31.457 1.991 1.591 0.152 73.012 2.288 3.921 0.823
0.400 46.251 3.641 2.842 0.282 75.977 4.109 5.995 0.952
0.500 57.768 5.971 4.557 0.457 78.810 6.699 8.637 1.134
0.600 67.457 9.052 6.921 0.716 81.452 10.149 11.871 1.400
0.700 75.449 13.384 9.989 1.070 84.256 15.065 15.975 1.781
0.800 81.584 19.480 13.982 1.626 86.919 21.877 21.171 2.329
0.900 86.914 30.547 20.887 2.735 89.993 32.655 28.276 3.464
0.950 89.992 40.264 26.111 3.871 92.042 43.547 33.981 4.658
0.975 92.075 48.438 31.128 5.042 93.555 52.817 38.349 5.809
0.990 93.979 59.573 35.981 6.664 95.057 62.065 43.282 7.424

Average 51.547 11.178 7.813 1.002 79.080 12.259 12.119 1.698
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that the t-tests are not reliable when the model is misspecified. As for the
case of 100 size-beta portfolios, the overrejection rates are in general lower
than the 10 size portfolios case but they are still very significant.

The bias of the t-test on the risk premium of the useless factor exists
because the model is misspecified. Some may think that including more fac-
tors may help to alleviate this problem. This is not necessarily the case if the
additional factors included are also not the correct factors. To illustrate this,
we add the betas of the portfolios with respect to the value-weighted NYSE-
AMEX market index in the CSR along with the betas of the useless factor.
The betas of both the useless factor and the value-weighted NYSE-AMEX
market index are simple regression betas, so the set of value-weighted NYSE-
AMEX betas stays the same on every simulation.12 The right half of Table I
reports the simulation results. Compared with the results without the value-
weighted NYSE-AMEX betas, we find that in most cases the overrejection
rates of H0 : g1 5 0 for the useless factor are substantially increased. There-
fore, including more factors in the model does not always help to exclude
useless factors. It could even exacerbate the misspecification bias if the other
factors included in the model do not nest the true data generating process.

The sample R2s for OLS regressions of OR on b appear to be very high. The
sample RGLS

2 , by Proposition 3, should follow a Beta distribution with mean
10~N 2 1!. Although the GLS is run with an estimated V matrix, the distri-
bution of sample RGLS

2 in Table I is still quite similar to a Beta distribution.
Though the results in Table I show that the bias in the t-test is quite

severe, one could attribute the bias to many possible sources. In Table II, we
repeat the same experiment except that in every replication we simulate
both the returns from N~m,V ! and the useless factor from N~0,1!. By sim-
ulating also the returns in every replication, we can isolate the magnitude of
the misspecification bias from other sources of bias in the t-test.

For GLS CSR, we report both the true GLS ~using the actual V ! and the es-
timated GLS ~using the estimated ZV !. For the t-ratios, we can see that the re-
jection rates are mostly higher than the ones reported in Table I, indicating
that the misspecification bias is one of the main reasons causing overrejection
of H0 : g1 5 0. In the 10 assets case, we find that the estimated GLS has roughly
the same properties as the true GLS since with 330 observations, the variance-
covariance matrix of the returns on the 10 assets can be estimated quite ac-
curately. However, in the case of 100 assets, the variance-covariance matrix of
their returns cannot be estimated very accurately with only 330 observations
and it introduces another source of bias in the GLS CSR t-ratio. The effect of
this bias is to further increase the rejection rate. Therefore, although true GLS
is less likely to reject H0 : g1 5 0 for the useless factors given our choice of pa-
rameters, the estimated GLS turns out to be worse than the OLS in the case
of 100 assets because the estimation errors of the variance-covariance matrix
of the returns further contaminate the t-ratios.

12 We have also performed simulations using multiple regression betas and the results are
qualitatively similar.
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For the R2, we observe the same pattern as in Table I. The ROLS
2 is highly

inf lated, but RGLS
2 ~for both true GLS and estimated GLS! behaves quite like

a Beta distribution with a mean approximately equal to 10~N 2 1!.
In summary, our simulation experiment shows that the misspecification

bias could lead to overrejection of the null hypothesis using the central

Table II

Probability of Rejecting H0 : g1 = 0 and Empirical Distribution
of R2 Using Simulated Returns and Estimated Betas

of a Random Factor
The table presents the probability of rejecting H0 : g1 5 0 in 10,000 simulations using the two-tailed
t-test at various significance levels. In each simulation, 330 observations of a useless factor are ran-
domly drawn from N~0,1! and 330 observations of returns on N assets are independently drawn from
N~m,V !, where m and V are chosen based on the sample estimates over the period July 1963 to
December 1990. The parameters are estimated from 10 size portfolios for N 5 10, and from 100
size-beta portfolios for N 5 100. The simulated monthly returns, Rt , are regressed on their betas ~b!
estimated with respect to the useless factor:

Rt 5 g01N 1 g1 b 1 «t ,

using ordinary least squares ~OLS!, true generalized least squares ~GLS! ~using true V ! and esti-
mated GLS ~using ZV estimated from the simulated returns!. A two-tailed t-test is performed to test
H0 : g1 5 0 using the time series of the estimated slope coefficients. The table also presents the em-
pirical distribution of OLS, true GLS, and estimated GLS R2 between the average returns and the
fitted expected returns in the 10,000 simulations.

N 5 10 N 5 100

Panel A: Probability of Rejecting H0 : g1 5 0

Significance
level OLS GLS~V ! GLS~ ZV ! OLS GLS~V ! GLS~ ZV !

0.01 0.188 0.107 0.114 0.111 0.061 0.172
0.05 0.386 0.231 0.242 0.236 0.154 0.297
0.10 0.502 0.318 0.332 0.320 0.238 0.384

Panel B: Distribution of R2

Percentile OLS GLS~V ! GLS~ ZV ! OLS GLS~V ! GLS~ ZV !

0.010 0.033 0.002 0.003 0.002 0.000 0.000
0.025 0.168 0.011 0.012 0.012 0.001 0.001
0.050 0.722 0.047 0.048 0.045 0.004 0.004
0.100 2.864 0.211 0.214 0.160 0.016 0.016
0.200 10.957 0.898 0.883 0.634 0.064 0.065
0.300 22.090 2.054 1.987 1.426 0.157 0.152
0.400 34.139 3.735 3.670 2.594 0.284 0.283
0.500 44.963 6.055 6.030 4.233 0.474 0.465
0.600 56.651 9.295 9.200 6.454 0.736 0.728
0.700 66.416 13.628 13.695 9.593 1.108 1.108
0.800 75.161 20.064 19.985 13.863 1.680 1.690
0.900 83.745 30.129 30.518 21.045 2.765 2.758
0.950 88.624 39.908 40.099 28.023 3.941 3.881
0.975 91.477 48.553 48.804 33.729 5.045 5.120
0.990 93.796 58.373 58.458 39.392 6.536 6.355

Average 44.333 11.281 11.273 7.846 1.013 1.011
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t-distribution. The magnitude of this bias is significant for the typical re-
turn data used in empirical research and should not be ignored. The results
suggest that one should not jump to the conclusion that a factor is “priced”
whenever one finds its estimated risk premium has a significant t-ratio.
Furthermore, we find that the ROLS

2 is inf lated by a large amount and ren-
ders it inappropriate to detect useless factors. On the other hand, RGLS

2 is
not subject to this problem and can serve as a useful measure to detect
useless factors.

C. The Rejection Rate as T Increases

In Table III, we report simulation results for different numbers of time
series observations used in OLS and GLS CSR in the cases of 10 assets
and 100 assets. The parameters of the two sets of returns are chosen in
exactly the same way as in Table II, but we increase the length of time
series observations of the simulated returns from T 5 120 to T 5 1200 by
an increment of 120. By looking at time series of different lengths, we can
better understand the magnitude of misspecification biases for different
samples. Table III shows that the unconditional means of the computed
OLS and GLS t-ratios are very close to zero, but their variances go up
roughly linearly with T. It is obvious that they can get much higher than
that of a central t-distribution. As a result, the rejection rates using the
central t-distribution are much higher than the one suggested by the
size of the test. Even for T 5 120, we find that the rejection rates are
often more than twice the size of the test. When T 5 1200, we find that
a useless factor is priced at the 10 percent level with a probability of
more than 0.5, and can be as high as 0.892 ~for OLS CSR when N 5 10!.
This experiment shows how fast the rejection rate increases and how the
misspecification bias becomes more severe as the length of time series
increases.

In Table IV, we report the simulation results of using the EIV-adjusted
t-ratios instead of using the unadjusted t-ratios. Similar to the unadjusted
t-ratios, we find the rejection rate of the null hypothesis H0 : g1 5 0 to be an
increasing function of the length of time series observations. The uncondi-
tional means of the EIV-adjusted OLS and GLS t-ratios are very close to
zero, and their variances go up with T. However, unlike the unadjusted t-ratios,
the variances of the adjusted t-ratios do not explode but instead converge to
some limits. The rejection rates of using the EIV-adjusted t-ratios are in
general less than the numbers in Table III for the unadjusted t-ratios. How-
ever, for N 5 100, the rejection rates of using the EIV-adjusted t-ratio are
still very close to the ones using the unadjusted t-ratio. For T 5 360, the
EIV-adjusted t-ratio rejects the null hypothesis with a probability of more
than twice the size of the test. The only case where the EIV-adjusted t-ratio
does not create significant overrejection of the null hypothesis is the OLS
case for N 5 10. Therefore, although EIV-adjusted t-ratios are better be-
haved than the unadjusted ones, we still find useless factors to be priced
when T or N are large.
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Table III

Probability of Rejecting H0 : g1 = 0 and Unconditional Mean
and Variance of OLS and GLS t -ratios of the Risk Premium
Associated with the Betas of a Random Factor for Different

Lengths of Time Series
The table presents the probability of rejecting H0 : g1 5 0 in 10,000 simulations using
the two-tailed t-test at various significance levels and the mean and variance of the
t-ratios for different lengths of time series ~T !. In each simulation, T observations of
a useless factor are randomly drawn from N~0,1! and T observations of returns on N
assets are independently drawn from N~m,V !, where m and V are chosen based on
the sample estimates over the period July 1963 to December 1990. The parameters
are estimated from 10 size portfolios for N 5 10, and from 100 size-beta portfolios for
N 5 100. The simulated monthly returns, Rt , are regressed on their betas ~b! esti-
mated with respect to the useless factor:

Rt 5 g01N 1 g1b 1 «t ,

using ordinary least squares ~OLS! and estimated generalized least squares ~GLS!. A
two-tailed t-test is performed to test H0 : g1 5 0 using the time series of the estimated
slope coefficients. The table also presents the mean and the variance of the OLS and
GLS t-ratios in the 10,000 simulations.

OLS GLS

t-ratio
Prob. of Rejecting

H0 : g1 5 0 t-ratio
Prob. of Rejecting

H0 : g1 5 0

T Mean Var. 1% 5% 10% Mean Var. 1% 5% 10%

Panel A: N 5 10

120 0.031 1.998 0.055 0.166 0.258 0.003 1.686 0.044 0.128 0.202
240 20.004 3.031 0.121 0.289 0.405 20.001 2.286 0.083 0.191 0.277
360 0.004 4.047 0.202 0.405 0.525 20.003 2.799 0.126 0.247 0.336
480 20.002 5.066 0.285 0.504 0.622 0.008 3.333 0.161 0.290 0.378
600 0.021 6.142 0.374 0.600 0.707 0.007 3.993 0.204 0.343 0.427
720 0.002 7.083 0.449 0.672 0.767 0.012 4.539 0.237 0.379 0.461
840 0.015 8.041 0.516 0.729 0.810 0.018 5.077 0.270 0.402 0.484
960 0.034 9.126 0.587 0.774 0.841 0.025 5.708 0.300 0.432 0.513

1080 0.041 10.098 0.642 0.810 0.868 0.017 6.233 0.322 0.455 0.534
1200 0.031 11.165 0.696 0.841 0.892 0.021 6.842 0.343 0.482 0.559

Panel B: N 5 100

120 0.017 1.487 0.032 0.102 0.176 20.072 9.817 0.390 0.506 0.579
240 0.017 2.164 0.077 0.184 0.265 20.022 3.569 0.169 0.297 0.378
360 20.003 2.788 0.120 0.254 0.338 20.044 3.535 0.171 0.302 0.383
480 20.022 3.392 0.169 0.303 0.389 20.041 3.886 0.189 0.325 0.410
600 20.034 3.974 0.209 0.343 0.428 20.048 4.361 0.217 0.344 0.431
720 20.027 4.654 0.248 0.385 0.469 20.065 4.870 0.243 0.376 0.454
840 20.025 5.277 0.280 0.414 0.502 20.081 5.325 0.266 0.398 0.482
960 20.014 5.832 0.301 0.442 0.517 20.072 5.774 0.285 0.422 0.501

1080 20.020 6.489 0.331 0.466 0.544 20.074 6.298 0.309 0.438 0.514
1200 20.014 7.178 0.356 0.488 0.563 20.068 6.853 0.326 0.458 0.535
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Table IV

Probability of Rejecting H0 : g1 = 0 and Unconditional Mean
and Variance of OLS and GLS EIV-adjusted t-ratios of the Risk

Premium Associated with the Betas of a Random Factor
for Different Lengths of Time Series

The table presents the probability of rejecting H0 : g1 5 0 in 10,000 simulations using the two-
tailed errors-in-variables ~EIV! adjusted t-test at various significance levels and the mean and
variance of the t-ratios for different lengths of time series ~T ! as well as for the limiting dis-
tribution. In each simulation, T observations of a useless factor are randomly drawn from
N~0,1! and T observations of returns on N assets are independently drawn from N~ m,V !,
where m and V are chosen based on the sample estimates over the period July 1963 to December
1990. The parameters are estimated from 10 size portfolios for N 5 10, and from 100 size-beta
portfolios for N 5 100. The simulated monthly returns, Rt , are regressed on their betas ~b!
estimated with respect to the useless factor:

Rt 5 g01N 1 g1b 1 «t ,

using ordinary least squares ~OLS! and estimated generalized least squares ~GLS!. A two-tailed
EIV-adjusted t-test is performed to test H0 : g1 5 0 using the time series of the estimated slope
coefficients.

OLS GLS

EIV-adjusted
t-ratio

Prob. of Rejecting
H0 : g1 5 0

EIV-adjusted
t-ratio

Prob. of Rejecting
H0 : g1 5 0

T Mean Var. 1% 5% 10% Mean Var. 1% 5% 10%

Panel A: N 5 10

120 0.017 0.696 0.000 0.002 0.012 0.002 1.144 0.002 0.044 0.115
240 0.000 0.895 0.000 0.004 0.024 0.004 1.403 0.006 0.073 0.167
360 0.003 1.037 0.000 0.006 0.034 20.002 1.608 0.009 0.102 0.216
480 20.003 1.156 0.000 0.010 0.049 0.003 1.798 0.018 0.130 0.253
600 0.011 1.255 0.000 0.013 0.061 0.002 2.014 0.024 0.164 0.302
720 0.003 1.335 0.000 0.016 0.072 0.006 2.183 0.035 0.194 0.334
840 0.008 1.409 0.000 0.020 0.086 0.010 2.331 0.044 0.222 0.365
960 0.017 1.476 0.001 0.026 0.104 0.013 2.484 0.052 0.246 0.393

1080 0.015 1.514 0.001 0.031 0.108 0.010 2.604 0.060 0.264 0.415
1200 0.017 1.554 0.001 0.034 0.120 0.010 2.734 0.069 0.282 0.438

Limit 0.000 2.335 0.039 0.153 0.286 0.000 9.000 0.675 0.922 0.975

Panel B: N 5 100

120 0.014 1.140 0.005 0.050 0.116 20.069 9.309 0.388 0.506 0.578
240 0.010 1.553 0.021 0.103 0.199 20.020 3.362 0.159 0.292 0.374
360 20.003 1.894 0.036 0.157 0.268 20.043 3.289 0.160 0.295 0.378
480 20.018 2.193 0.058 0.202 0.317 20.040 3.568 0.176 0.318 0.404
600 20.023 2.455 0.081 0.235 0.353 20.046 3.945 0.202 0.337 0.425
720 20.019 2.743 0.101 0.275 0.390 20.061 4.354 0.229 0.370 0.450
840 20.015 2.989 0.121 0.304 0.423 20.077 4.710 0.252 0.390 0.476
960 20.009 3.153 0.140 0.324 0.444 20.068 5.051 0.271 0.415 0.496

1080 20.009 3.378 0.157 0.350 0.469 20.069 5.442 0.295 0.429 0.507
1200 20.008 3.576 0.178 0.370 0.488 20.066 5.840 0.310 0.449 0.529

Limit 0.000 14.029 0.881 1.000 1.000 0.000 99.000 1.000 1.000 1.000
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D. Subperiod Joint Test

As we have suggested, one way to mitigate the misspecification bias caused
by a useless factor is to run CSR for different subperiods and reject the
hypothesis H0 : g1 5 0 if and only if the t-ratios have the same sign and are
significant in all subperiods. Let a be the significance level for such a test.
Denote tn~a! as the upper 100a percentage points of the central t-distribution
with n degrees of freedom. For an entire period of T observations, let t1 and
t2 be the t-ratios for two subperiods of T02 observations. The subperiod joint
test is to reject H0 : g1 5 0 at a significance level of a if and only if

t1 . t T
2 21S!a

2
D and t2 . t T

2 21S!a

2
D ~38!

or

t1 , 2t T
2 21S!a

2
D and t2 , 2t T

2 21S!a

2
D. ~39!

Now, under the assumption that returns are uncorrelated over time, such a
test has a significance level a if the null hypothesis is correct. To see how
such a test behaves for a useless factor, we again rely on simulation with
both returns and useless factors simulated.

Table V reports the results of the rejection rates for both the true beta and
the beta of a useless factor using the t-test over the entire period and the joint
t-test over two subperiods. The true beta used in simulation is simply the vec-
tor m for generating returns. For the true beta, the rejection rates from the joint
t-test over two subperiods are still quite high as compared with the rejection
rates from the t-test over the entire period. They are only slightly smaller for
the OLS and the true GLS, indicating the small loss of the power of the joint
t-test. For estimated GLS with N 5 10, the power is even higher. This means
that the subperiod joint test still maintains relatively high power in rejecting
the null hypothesis under the correctly specified model. For the beta of a use-
less factor, although the subperiod joint test still overrejects the null hypoth-
esis, the rejection rates are substantially reduced compared to those of the full
period test. On average, the rejection rates are reduced by more than half. We
conclude that the subperiod joint test is fairly effective in detecting useless fac-
tors without sacrificing too much the ability to reject the null hypothesis un-
der the correctly specified model.

III. Concluding Remarks

In this paper, we argue that there is a problem of misspecification bias in
the two-pass methodology of testing beta pricing models when the factor is
misspecified. This problem renders the t-test inadequate. Simulation evi-
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Table V

Probability of Rejecting H0 : g1 = 0 Using the t-test over
the Entire Period and the Joint t-test over Two Subperiods

The table presents the probability of rejecting H0 : g1 5 0 in 10,000 simulations using
a two-tailed t-test over the entire period and a joint t-test over two subperiods at
various significance levels. In each simulation, 330 observations of a useless factor
are randomly drawn from N~0,1! and 330 observations of returns on N assets are
independently drawn from N~m,V !, where m and V are chosen based on the sample
estimates over the period July 1963 to December 1990. The parameters are esti-
mated from 10 size portfolios for N 5 10, and from 100 size-beta portfolios for N 5
100. The simulated monthly returns, Rt , are regressed on their betas ~b! estimated
with respect to the useless factor:

Rt 5 g01N 1 g1b 1 «t ,

using ordinary least squares ~OLS!, true generalized least squares ~GLS! ~using true
V ! and estimated GLS ~using ZV estimated from the simulated returns! with the
entire period and two subperiods. Let a be the significance level for the test. Denote
tn~a! as the upper 100a percentage points of the central t-distribution with n degrees
of freedom. Let t1 and t2 be the t-ratios of two subperiods. The hypothesis H0 : g1 5 0
is rejected by the joint t-test if and only if

t1 . t T
2 21S!a

2
D and t2 . t T

2 21S!a

2
D

or

t1 , 2t T
2 21S!a

2
D and t2 , 2t T

2 21S!a

2
D

where T is the number of time series observations.

Probability of Rejecting H0 : g1 5 0

N 5 10 N 5 100

True b Useless b True b Useless b
Significance

Level Full Joint Full Joint Full Joint Full Joint

OLS
0.01 0.256 0.206 0.188 0.074 0.949 0.873 0.111 0.038
0.05 0.487 0.414 0.386 0.165 0.988 0.957 0.236 0.103
0.10 0.615 0.531 0.502 0.234 0.996 0.975 0.320 0.162

GLS~V !
0.01 0.886 0.795 0.107 0.035 1.000 1.000 0.061 0.021
0.05 0.966 0.910 0.231 0.102 1.000 1.000 0.154 0.074
0.10 0.982 0.949 0.318 0.166 1.000 1.000 0.238 0.129

GLS~ ZV !
0.01 0.596 0.778 0.114 0.038 1.000 1.000 0.172 0.046
0.05 0.815 0.906 0.242 0.108 1.000 1.000 0.297 0.121
0.10 0.897 0.945 0.332 0.169 1.000 1.000 0.384 0.182
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dence suggests that the t-test rejects the zero risk premium for a useless
factor with a probability more than twice the size of the test for a typical
length of time series used in empirical studies. The problem is exacerbated
when the number of time series observations increases. This type of mis-
specification bias may provide misleading results.

Since the two-pass methodology does have some merits that other testing
methodologies do not possess,13 and some of the factors used in empirical
studies could be useless, the relevant question here is how one can detect the
problem. The diagnostics we suggest are as follows.

1. The hypothesis that all the betas with respect to a factor are zero should
be tested before the second-pass CSR is run.

2. In the second-pass CSR, the OLS R2 can be used as a measure of
goodness of fit, but to test whether the factor is useless, simulations
are needed to find its distribution. The GLS R2 can be used to detect
useless factors because its distribution is readily available, but GLS
R2 is inappropriate as a goodness-of-fit measure because it applies to
transformed data ~as reasoned in Jagannathan and Wang ~1996!!.

3. Shanken’s EIV adjustment can be used to reduce the overrejection rates
for useless factors when the returns are conditionally homoskedastic.
But in the presence of conditional heteroskedasticity in returns, the
EIV adjustment developed in Jagannathan and Wang ~1997! should be
used.

4. As a trade-off between detecting useless factors and maintaining the
power of the test, a subperiod joint test can be performed. A more ef-
fective way, when possible, is to use another independent sample to
examine the significance of the risk premium associated with a pro-
posed factor.

These suggested diagnostic methods are not perfect, and they should be com-
bined, contrasted, and used with care.14

As opposed to the traditional treatment, which assumes the proposed model
is the correct model, we assume the proposed factor is useless in this paper.
Both assumptions are extreme cases, and therefore both are unlikely to be
true. In practice, probably all models suffer from some sort of misspecifica-
tion and probably all proposed factors are not strictly useless. Between the

13 The methodologies developed by Gibbons ~1982! and Gibbons, Ross, and Shanken ~1989!
are one-pass regressions, but they can only be applied to the cases where only asset returns are
used as factors.

14 In an earlier version of this paper, we question whether the growth rate of labor income
used in Jagannathan and Wang ~1996! is a useless factor. Although we cannot reject the hy-
pothesis that the labor betas are jointly equal to zero, simulation evidence of various test sta-
tistics as well as evidence from Japan ~Jagannathan, Kubota, and Takehara ~1997!! suggest
that it is inappropriate to claim that the growth rate of labor income is a useless factor simply
based on the insignificance of the labor betas. Moreover, the labor beta of the value-weighted
market portfolio is negative and statistically significant, which further indicates that the growth
rate of labor income is unlikely to be a useless factor.
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true factor and useless factors, there are many misspecified models. Exist-
ing empirical asset pricing models probably all fall into this category of mis-
specified models. Testing whether these models are right or wrong is not
very interesting by itself; a more interesting and challenging question is
how we compare the performance of these models. Hansen and Jagannathan
~1997! address this question from a certain perspective, and we hope future
research will continue to address this important question.

Appendix
Proof of Proposition 1: Conditioned on b, and assuming [g1t

OLS and [g1t
GLS are

i.i.d. normal, the OLS and GLS t-ratios for testing H0 : g1 5 0 are given by

tOLS ~b! 5
N[g1
OLS~b!

s~ [g1
OLS~b!!0%T

~A1!

and

tGLS ~b! 5
N[g1
GLS~b!

s~ [g1
GLS~b!!0%T

. ~A2!

Using equations ~16! and ~17!, it is easy to verify their noncentrality param-
eters. Note that if m 5 k1N for some scalar k, then dOLS~b! 5 dGLS~b! 5 0 for
every realization of b and both the OLS and GLS t-tests are properly spec-
ified. If m Þ k1N for any scalar k, then dOLS~b! 5 0 if and only if b 'Mm 5 0
and dGLS~b! 5 0 if and only if Db ' GM Im 5 0. If b has a continuous distribution,
then both sets of b have measure zero.

Unconditionally, tOLS~b! has a compound noncentral t-distribution that de-
pends on the distribution of dOLS~b!. Its expected value and variance are
given by

E @tOLS ~b!# 5 ST 2 1

2 D102 GST 2 2

2 D
GST 2 1

2 D E @dOLS ~b!# , ~A3!

Var@tOLS ~b!# 5 ST 2 1

T 2 3D 1 3ST 2 1

T 2 3D 2 ST 2 1

2 D GST 2 2

2 D2

GST 2 1

2 D2 4E @dOLS
2 ~b!#

1 3ST 2 1

2 D GST 2 2

2 D2

GST 2 1

2 D2 4Var@dOLS ~b!# . ~A4!
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Since dOLS~b! is an odd function of b and the normal density function of b is
an even function of b, it follows that E @dOLS~b!# 5 0 and Var@dOLS~b!# 5
E @dOLS

2 ~b!# , and we have

E @tOLS ~b!# 5 0, ~A5!

Var@tOLS ~b!# 5 ST 2 1

T 2 3D 1 ST 2 1

T 2 3DE @dOLS
2 ~b!# . ~A6!

Therefore, although the t-ratio has an unconditional mean of zero, its vari-
ance is higher than that of the central t-distribution. The unconditional ex-
pected value and variance of tGLS~b! are similarly obtained by replacing dOLS~b!
by dGLS~b! in ~A3! and ~A4!. Q.E.D.

Proof of Proposition 2: For E @dOLS
2 ~b!# , define Z 5 !sggH 'V 2102b ;

N~0, IN21! and we can write

E @dOLS
2 ~b!# 5 EFT ~Z 'Lh!2

Z 'L2 Z G 5 T (
i51

N21

E 3
li

2 Zi
2

(
j51

N21

lj
2 Zj

2 4hi
2 . ~A7!

The off-diagonal elements do not matter because, by symmetry, E @Zi Zj0
~Z 'L2Z!# vanishes when i Þ j. For analytical expression of E @dOLS

2 # , we apply
the results of Sawa ~1978! and obtain

E @dOLS
2 ~b!# 5 TE

0

` 1

)
j51

N21

~1 1 2tlj
2 !102

(
i51

N21 li
2 hi

2

~1 1 2tli
2 !

dt. ~A8!

The numerical integration of this expression can be facilitated by a change
of variable with u 5 10~1 1 2tl1

2 ! and the integral can be evaluated over u
from 0 to 1.

Similarly, we can write

dOLS
2 ~b! 5

T ~m 'Mm!2

m 'MVMm
5

T ~h 'L h!2

h 'L2 h
5

TS (
i51

N21

li hi
2D2

(
i51

N21

li
2 hi

2

. ~A9!
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To prove the inequality, it suffices to show the following

1 (
i51

N21

E 3
li

2 Zi
2

(
j51

N21

lj
2 Zj

2 4hi
22S (

i51

N21

li
2 hi

2D
# S (

i51

N21

EF li
2 Zi

2

li
2 Zi

2 1 lN21
2 ZN21

2 Ghi
2DlN21S (

i51

N21

li hi
2D

5 1 (
i51

N21

lN21 E 3
Zi

2

Zi
2 1

lN21
2

li
2 ZN21

2 4hi
22S (

i51

N21

li hi
2D

5 1 (
i51

N21

3
lN21

1 1
lN21

li
4hi

22S (
i51

N21

li hi
2D

# S (
i51

N21

li hi
2D2

. ~A10!

The last equality follows because for c $ 0,

EF Zi
2

Zi
2 1 c2ZN21

2 G 5
1

1 1 c
. ~A11!

For E @dGLS
2 # , since GM is idempotent, there exists an N 3 ~N 2 1! orthonormal

matrix Q ~the columns of Q are simply the N 2 1 eigenvectors of GM associ-
ated with the N 2 1 eigenvalues of 1! such that Q 'Q 5 IN21 and QQ ' 5 GM.
Define a 5 Q ' Im and Z 5 !sggQ ' Db, then we have Z ; N~0, IN21! and

E @dGLS
2 ~b!# 5 T ~ Im ' GM Im!EF ~ Db ' GM Im!2

~ Im ' GM Im!~ Db ' GM Db!
G

5 dGLS
2 ~b!EF ~a 'Z!2

~a 'a!~Z 'Z!
G

5 dGLS
2 ~b!EF Z 'BZ

Z 'Z G ~A12!

by writing B 5 ~aa ' !0~a 'a!. It is easy to verify that B is an ~N 2 1! 3 ~N 2 1!
symmetric idempotent matrix of rank 1. Since Z has a spherical distribu-
tion, using Theorem 1.5.7 in Muirhead ~1982!, ~Z 'BZ!0~Z 'Z! is distributed
as Beta~ 1

2
_ ,~N 2 2!02! and its expected value is 10~N 2 1!. Q.E.D.
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Proof of Proposition 3: That RGLS
2 ~b! follows a Beta~ 1

2
_ ,~N 2 2!02! distribu-

tion when b ; N~0,V0sgg! follows directly from the proof of Muirhead ~1982!,
Theorem 5.1.1, which states that in order for the squared sample correlation
between two variables to follow the Beta distribution, only the observations
of one variable need to be spherical. Define U 5 Q ' E OR and Z 5 !sggQ ' Db, where
Q is defined in the proof of Proposition 2, then we have

RGLS
2 ~b! 5

~ E OR ' GM Db!2

~ E OR ' GM E OR!~ Db ' GM Db!

5
~U 'Z!2

~U 'U !~Z 'Z!
. ~A13!

Since Z ; N~0, IN21! and it has a spherical distribution, the proof of Theo-
rem 5.1.1 in Muirhead ~1982! goes through.

That ROLS
2 ~b! follows a Beta~ 1

2
_ ,~N 2 2!02! distribution when MVM 5 cM for

some constant c . 0 can be shown as follows. Define H and L as in Proposi-
tion 2, then we premultiply and postmultiply MVM 5 cM by V 102, and we have
L 5 cIN21 and V 102MV 102 5 cHH ' or H '5 ~10c!H 'V 102MV 102. Since H ' D1N 5 0,
we have GM 5 HH '. Therefore, V 2102 GMV 2102 5 V 2102HH 'V 2102 5 ~10c!M, and
hence GLS R2 and OLS R2 are the same. Q.E.D.

Proof of Proposition 4: Since the case of GLS is almost identical to the
case of OLS, we will only prove the case of OLS here. In the literature of
probability theory ~see, e.g., Amemiya ~1985! or Davidson ~1994!!, the nota-
tion zT 5 Op~T a ! for a sequence of random variables zT means that, for any
« . 0, there exists an M« such that P @6zT 0T

a 6 , M«# . 1 2 «; that is, zT is
at most of order T a. There is also a notation zT 5 op~T a ! that means plim
zT 0T

a 5 0; that is, zT is of an order less than T a. In the following we will
use zT 5 Op~T a ! in a narrower sense, that it is Op~T a ! but not op~T a !; in
other words, zT is exactly of order T a.

From large sample theory of regression analysis, b r 0 with probability
one and, according to the central limit theorem, the rate of convergence is
T 2102. That is, b 5 Op~T 2102 !.

As T r `, if m Þ k1N for any scalar k, M OR r Mm Þ 0. Hence,

N[g1
OLS 5

1

T (
t51

T

[g1t
OLS 5

1

T (
t51

T b 'MRt

b 'Mb
5

b 'M OR
b 'Mb

5 Op~T 102 !. ~A14!

That is, N[g1
OLS r ` in probability at an order %T. Let

ZV 5
1

T 2 1 (
t51

T

~Rt 2 OR!~Rt 2 OR!'. ~A15!
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Then ZV r V with probability one, and

s2~ [g1
OLS ! 5

1

T 2 1 (
t51

T

~ [g1t
OLS 2 N[g1

OLS !2 5
b 'M ZVMb

~b 'Mb!2 5 Op~T !. ~A16!

Therefore, both s2~ [g1
OLS !0T and s~ [g1

OLS !0%T are Op~1!. As a result,

tOLS ~b! 5
N[g1
OLS

s~ [g1
OLS !0%T

5 Op~T 102 !. ~A17!

By definition, for any M . 0,

P @6tOLS ~b!6 . M # r 1, as T r `. ~A18!

The probability of the hypothesis H0 : g1 5 0 to be rejected using tOLS~b!
tends to one. Q.E.D.

Proof of Proposition 5: Since H 'V 2102 OR
P
&& h and Z 5 !sggH 'V 2102b ;

N ~0, IN21!, by using the Cramer–Slutsky theorem ~see Amemiya ~1985,
p. 89! or Davidson ~1994, p. 355!!,

ROLS
2 5

~ OR 'Mb!2

~ OR 'M OR!~b 'Mb!

D
&&

h

~m 'Mm!
. ~A19!

For h 5 ~Z 'Lh!20~Z 'LZ! defined in ~30!, its distribution is bounded. To see
this, note the lowest value for h is 0 when the realization of b is orthogonal
to Mm. The highest value for h is m 'Mm, using the result ROLS

2 # 1, which
happens when the realization of b is a linear function of 1N and m. Therefore
h has a continuous distribution over @0,m 'Mm# and Var@h# . 0. The proof for
RGLS

2 follows directly from Proposition 3. Q.E.D.

Proof of Proposition 6: tOLS
*2 can be written as

tOLS
*2 5

~ N[g1
OLS !2

s2~ [g1
OLS !

T
1 S N[g1

OLS

[sg
D2F s2~ [g1

OLS !

T
2
[sg

2

T G
. ~A20!

Since s2~ [g1
OLS !0T 5 Op~1! and N[g1

OLS 5 Op~T 102 !, it follows that

tOLS
*2 2

sgg

s2~ [g1
OLS !

P
&& 0. ~A21!
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From the Cramer–Slutsky theorem, the limiting distribution of tOLS
*2 is the

same as that of

sgg

s2~ [g1
OLS !

5
sgg~b 'Mb!2

b 'M ZVMb
, ~A22!

which, in turn, has the same limiting distribution as sgg~b 'Mb!20~b 'MVMb!
since ZV r V. Define Z 5 !sggH 'V 2102b ; N~0, IN21!, where H is defined in
Proposition 2, we have

sgg~b 'Mb!2

b 'MVMb
5

~Z 'LZ!2

Z 'L2Z
5

S (
i51

N21

li Zi
2D2

(
i51

N21

li
2 Zi

2

. ~A23!

To show the first inequality, we note that

S (
i51

N21

li Zi
2D2

. lN21 ZN21
2 S(

i51

N21

li Zi
2D $ ZN21

2 S (
i51

N21

li
2 Zi

2D. ~A24!

Therefore lim tOLS
*2 . ZN21

2 , or Fx1
2 ~u! . Flim tOLS

*2 ~u!. To show the other in-
equality, note from the Cauchy–Schwarz inequality,

F (
i51

N21

~li Zi !ZiG2

# (
i51

N21

~li Zi !
2 (

i51

N21

Zi
2 . ~A25!

So that lim tOLS
*2 # (i51

N21Zi
2 , or Flim tOLS

*2 ~u! $ FxN21
2 ~u!.

For GLS, the limiting distribution of tGLS
*2 is simply sgg~ Db ' GM Db!. Define

Z 5 !sggQ ' Db, where Q is defined in the proof of Proposition 2, then we have
Z ; N~0, IN21! and

sgg~ Db ' GM Db! 5 Z 'Z, ~A26!

which is a xN21
2 random variable. Q.E.D.
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