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The potential performance of an asset set may be obtained by choosmg the portfoho 
proportrons to maxrmrze the Sharpe (1966) performance measure. If a portfolio has a Sharpe 
measure equivalent to the potential performance of the underlymg set of assets, then rt 1s 
et&rent Multlvarrate statrstmal procedures for comparmg potentral performance and testmg 
portfolio efficiency are developed and then evaluated using stmulatrons. Two likehhood ratro 
statistics are then used to compare stock and bond indices against sets of 20 and 40 portfolios 
The procedures are also compared to the Gibbons (1982) methodology for testing financial 
models 

1. Introduction 

Mean-standard deviation efficiency and the related concept of performance 
evaluation has been of significant interest to financial economists since the 
originating work of Markowitz (1952) and Tobin (1958). This paper extends 
the available set of evaluation techniques by proposing a performance 
measurement procedure with reasonable statistical properties which utilizes 
the efficient set constants of Merton (1972) and Roll (1977). The procedure is 
consistent with the Sharpe (1966) performance measure, is a generalization of 
the work of Ross (1980), and is an extension of Jobson and Korkie (1980, 
1981). It also employs the likelihood ratio methodology, first applied to 
financial economics by Gibbons (1982). 

The distinctive feature of the proposed evaluation is its comparison of the 
maximum attainable Sharpe performance (henceforth potential performance) 
of an asset set with the potential performance of an asset subset. Some 
apparent uses of the technique are the quantification of the performance 
contribution made by additional assets, the efficiency evaluation of a 
portfolio or market index, and for tests of multifactor capital asset pricing 
models. A disadvantage of the proposed technique is that it requires 
knowledge of the history of returns on the individual components of the 
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portfolio. However, this may not present an encumbrance in many 
appraisals. 

Section 2 derives the potential performance measure from efficient set 
mathematics and discusses some hypotheses germane to mean-standard 
deviation efficiency and portfolio performance. Section 3 derives the test 
statistics for the hypotheses and relates the procedures to other 
methodologies for testing financial models. Section 4 presents the results of a 
Monte Carlo investigation into the small sample behavior of the proposed 
test statistics. Section 5 illustrates the performance measures by determining 
the effects of bonds and stock indices on potential performance and by 
testing the efficiency of selected portfolios. Section 5 also compares the new 
procedures to the methodology of Gibbons (1982) using similar data. Section 
6 concludes the paper. 

2. Potential performance and the efficiency hypotheses 

2.1. Potential performance 

The efficient set of portfolios is comprised of the portfolios that minimize 
portfolio variance for a given mean excess return ,LQ,, subject to the constraint 
that investment proportions sum to one. In the presence of a riskless asset, 
the efficient set becomes the set of linear combinations of the riskless asset 
and a unique risky asset portfolio m. 

Given a population of N assets with mean excess return vector pcNx 1j and 
covariance matrix ZcNxNj, the vector XmcNx 1) of risky asset proportions is 
obtained from minimization of the Lagrangian 

L: = xmzxm - A,(Xm/l - pp) - n,pQ - l), 

where 1, and 1, are the multipliers and ecN x r) is the unit vector. 
The first extremum conditions provide the proportions vector 

which forms the familiar tangency portfolio in mean-standard deviation 
space. The mean excess return on the tangency portfolio and its return 
variance are therefore 

p,,, = p’X,,, = p’E_ lp/e’Zc-lp = a/b, 

and 

CJ~ = Xl,ZX,,, = $Z- ‘&?Z- lp))’ = a/b’, 
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where the efficient set constants are 

a=p’ZM1p and b=e’Zplp. 

The Sharpe measure of performance for any portfolio p with proportions 
XP is 

Sh, = Xpp/(XpZXp)” = QT,. 

The vector X,,, is also the value of X, which maximizes the Sharpe 
performance over all portfolios is given by 

Sk, = p,,,b, = (alb)(bl,/a) = da, 

which is illustrated in fig. 1. Note that the investment proportions of p or of 
m are not directly required for the performance calculations. 

In conclusion for any set of assets, the square of the reward to variability 
ratio of the efficient portfolio of risky assets is given simply by the efficient 
set constant ‘a’. In the remainder of the paper, the performance measure ‘a’ 
or da is referred to as the potential performance of a one-period buy and 
hold portfolio which is constructed from the N asset population. 

Standard Deviation of Return, (I, 

Fig 1 Slopes of rays through the ongm measurmg the potential performance Ju and Sharp& 
performance pp/up, m a mean-standard deviation space 

JFE-C 
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2.2. The efficiency hypotheses 

The distinction has been made between the Sharpe performance of an 
N-asset portfolio and the potential performance of the N-asset set. This 
distinction provides a useful framework for the analysis of portfolio 
efficiency. 

The portfolio p will have poor parametric performance, relative to its 
potential, if it is not the unique buy and hold portfolio m with proportions 
X,,,. Thus, ~~/a, is less than ,/LZ if the entire N-asset set is not in the portfolio 
or the N assets are not held in the correct proportions X,. The portfolio p 
cannot have performance exceeding Ja unless the portfolio is actively 
managed in the holding period. However, active portfolio management, via 
timing and selectivity, is not fruitful if the conditional mean vector and 
covariance matrix are time stationary. 

The cause of a portfolio’s inefficiency may be ascertained providing the 
composition of the portfolio is known. Denote the N1 non-zero weight assets 
of the portfolio as the set rl, which is a proper subset of the set r of all N 
assets. Similarly, denote the potential performance of the asset sets r1 and r 
as a, and ‘a’, respectively. The first question of interest is whether the potential 
performances of .the two asset sets are identical. That is, a test of s the 
comparative potential performance hypothesis, 

H,,:a, =a, 

is required. The hypothesis H,, determines if the cause of the inefficiency is 
due to the selection of assets. If H,, is accepted then we may conclude that 
the N1 assets are jointly efficient with respect to the complete set of N assets. 
In section 3, it is demonstrated that under certain assumptions the 
hypothesis H,, is related to the hypothesis tested by Gibbons (1982) with 
reference to a general class of financial models. The hypothesis H,, can also 
be related to a test of the arbitrage pricing theory as in Jobson (1982a).l 

A second hypothesis of interest is whether the portfolio performance &c$ 
is equivalent to the potential performance, or 

This hypothesis determines if the inefficiency is due to an incorrect selection 
of weights (including some that are zero) for the N assets. Hypothesis HOz 
may be used to determine the relative efficiency of a pseudo market index I. 

‘Under certain assumptions, the test of H,, 1s equivalent to a test of the multi-factor capital 
asset pricmg model. Given a set of k factors or portfolios constructed from the N assets a new 
set of assets r consrstmg of the k factors and a subset of (N-k) of the ortgmal assets can be 
constructed The comparison of the performance potentral of the k factors to the performance 
potential of the set r IS a test of a multi-factor capital asset pricing model 
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That is, I is efficient relative to the set of N assets if it is impossible to 
construct a portfolio combining I and the N assets such that the resulting 
potential performance JLZ exceeds the index’s performance ~~/a, It is 
demonstrated in section 3 that a test of HO, under certain assumptions is 
equivalent to a test of the equivalence of the Jensen (1968) or Treynor (1965) 
measures of the N assets. 

There are a variety of other questions that may be answered with H,, and 
H,,. For example, depending on the test outcomes of H,, and H,, the cause 
of a portfolio’s inefficiency may be determined [see Korkie (1983)]. Also by 
defining one set of assets to include bonds as well as stocks the effect of the 
addition of bonds on potential performance may be tested with hypothesis 
H,,. A test which compares the performance potential of a set of portfolios 
to the set of portfolios plus stock and bond indices is presented in section 5. 
The next section, section 3, develops test procedures for the hypotheses H,, 
and H,,. 

3. Derivation of the hypothesis testing procedures 

Testing the hypothesis, that an asset subset has equivalent potential 
performance to the set of assets from which it was taken, is of considerable 
interest. If the two tangency portfolios formed from the asset set and subset 
have equivalent Sharpe performance, then the subset is sufficient to maximize 
performance. This section develops several test statistics for testing the 
hypotheses H,, and Ho, discussed in section 2. The development of the tests 
requires that additional notation be introduced. 

The population of N assets is partitioned into two mutually exclusive and 
exhaustive subsets containing N, and N, assets. The partitioned forms of the 
mean vector I( and ,covariance matrix C are 

Similar partitions will be used for the sample statistics V and S defined 
below. The null hypothesis H,,:a, =a may now be restated as 
H,,$&$i =pY1jL 

By employing the well known identity for the inverse of partioned matrices 
[see Morrison (1967)], the expression for $Z-lp may be written as 

where 
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In order for H,, to hold, the positive semi-definite quadratic form 

[Ilcz--~~~~~~,1’~,i1lcILz-~;21~‘1;1c(~l must be zero. This implies that 
[p2-Zz1ZC;,l~,] =O, since Z and Z,, 1 are positive definite. The hypothesis 
H,, can be seen therefore to be equivalent to the hypothesis 

This result is employed to develop test procedures for H,,. 

To construct test procedures for Ho1, some assumptions about the 
sampling process and the multivariate distribution of excess return premiums 
are required. A random sample of Texcess return observations on N assets is 
assumed available and given by the (N x 1) vector rt, t = 1,2,. . ., 7; whei-e u, is 
multivariate normal with mean excess return vector p and &variance Z. The 
maximum likelihood estimitors of p, Z, EC- 1 and ‘LX’ are given by < S, S-l 
and 8, respectively, where 

F=(l/T) .$ Yt, 
f=l 

While F is u&ased for p, unbiased estimators for C and Z- ’ are provided 
by (T/( T - 1))s and W - 1 = ((T - N - 2)/T)??- ’ respectively [see Anderson 
(1958)]. The unbiased estimator for ‘u’ has been shown by Jobson and 
Korkie (1980) to be 8* = ((T-N - 2)/T) 8-- N/?Y In small samples, the bias in 
the maximum likelihood estimator of Z will therefore be substantial relative 
to ‘a’. Inferences about ‘u’ may be made using the statistic [(T- N)/N] 6, 
which follows a non-central FV,,V,, ya distribution’ with v1 = N and 
v2 = (T- N) degrees of freedom and non-centrality parameter vJ =(T)(u). 

Test procedures for H,, are, however, more conveniently obtained using 
the alternative form of the hqipothesis given by (2). The remainder of this 
section outlines four alternative test statistics for H,, and H,,. 

‘Smce exhaustive tables of non-cental F’ are not always avadable, a simple’ approxlmatlon to 

F:,.Yl’Yg 1s available from the central FVa,+ distribution [see Johnson and Kotz (1970)]. That IS, 

F:1,Y2,YI~(l+~3/v~)FYq,YZ where vq = (vl + v~)~/(v~ + 2v,) 

Unpublished sunulatlon studies by the authors have shown that, for parameters with magmtudes 
representative of stock market monthly data, tlns particular central F approxlmatlon IS excellent -. 
for T= 60 observations 
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3.1. The Wald statistic 

Let y= [a2 -Zc,lZ;~lp,], then an unbiased estimator of y is given by the 
maximum likelihood estimator p = [V; -S,,S;t’r;], with covariance matrix3 
given by 

Because f is asymptotically normal, $2-19 is asymptotically x2 wrth N, 
degrees of freedom if HoI is true. Since C2-1 is unknown, a, and C;$, are 
replaced by the unbiased estimators ST =((T- N, -2)/T)&, - N,/T and 

((T-N-‘JYT)S,-,~I, respectively, where S 22.1 = [IS,,--S,,S;,1S,,].Theresulting 
test statistic $-‘j is a Wald (1943) statistic4 and is asymptotically x2 if HO, 
is true. The statistic may be wntten in the form 

or eqmvalently [using the sample form of (l)] as 

which is approximately5 

The behavior of the statistic 41,1 in small samples is studied in section 4.1. 

3.2. The likelihood ratio test 

An alternative approach to developing a test for He, is the likelihood ratio 
test. The likelihood ratio for testing H o1 is given by (A.6) in the appendix 
and can be written as 

Knowledge of the critical value of the 1 statistic requires that its 
distribution under He, be known. A general approximation for likelihood 

sThe expressron for 32 1s obtamed by observmg that r and S are stattsttcally Independent and 
that E(&,S;,‘)=Z,,Z;,’ The covariance between rows z and j of the matrix ,S’,,S;,l IS gtven by 
(l/(T- N, -2))$,,2;:, where $I, IS the rjth element of .Z zz r See Marx and Hocking (1977) 

4The Wald stabstic was used prevrously by Grbbons (1980) and Jobson and Korkie (1981). 
‘By employing S.N. Roy’s (1953) union-intersection princrple, a test statistic ldentrcal to 4r.r 

may be denved. 
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ratio tests is that -2log, 1 asymptotically follows a x2 distribution with 
degrees of freedom equal to the number of independent restrictions placed on 
the parameter by the null hypothesis [see Silvey (1970)]. Thus, the statistic 

T lwJ_(1+4/(l+4)1 (3) 

has an asymptotic x2 distribution with N, = (N-N,) degrees of freedom, if 
H,, is true. 

‘A number of approximations have been developed for the distribution of A 
which may be of use for performance tests. Bartlett (1938) employs the statrstrc 

which is asymptotically x2 with l N, degrees’ of freedom under the null 
hypothesis. This approximation is more precise than (3) because the, term 
(T - N; - NJ2 2 1) is designed to-remove second-order terms in the asymptotic 
expansion. It is worth noting here that, if Tis small relative to N, and/or N,, 
the value of 41,2 will be considerably smaller than the value given by eq. (3). 
The superiority of 41,2 over (3) is discussed in Anderson (1958). The 
importance of’this- difference is noted in the simulation results of section 4 
and in section 5. 

A second approximation for the distribution of jl is due to Rao (1951), who 
employs an F distribution. The test statistic for H,, is given by 

where A=121T is a form of Wilks Lambda given by (AS) of the appendix.6 

Under %,, &,3 is asymptotically an F distribution with N, and T-N - 1 
degrees of freedom. Both approximations c$~, 2 and $J~, 3 are discussed in Rao 
(1973, p. 556). In a multivariate regression model the statistic $i,s.follows the 
F distribution exactly while the statistic c#I~,~ , is asymptotically x2. In this 
application the statistic c$~, 3 is only asymptotically an F distribution because 
the return vector F1 is not fixed. It is believed, however, that 41,3 should be a 
superior approximation in small samples. The small sample behavior of ~$r,~ 
and 4 1, 3 is studied in section 4. 

3.3. The score test 

A test statistic for the null hypothesis H,, may also be developed from 

%rder multwanate normality, the likelihood ratio test for the hypothesis that a subset of the 
regression coeffrcrents are zero m a multivarrate regression also results m a form of Wrlks 
Lambda. Usmg the form of H,, given by (la, the hypothesis may be recogmzed as bemg 
equivalent to the hypothesis of a zero intercept vector m a multwanate regression A more 
detarled drscussron of this is grven in Jobson (1982b) and Jobson and Korkie (1982). 
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Rao’s (1947) score test7 outlined in Rao (1973, pp. 415-420). This test statistic 
has the same asymptotic distribution (x2 with Nz d.f.) as the previously 
developed test statistics $J~,~ and &. 

The score test criterion, given by (A.8) in the appendix, is [T’/(T-N,)] 
[a-ci,/(l + a,)], which is equivalent to 41, 1 multiplied by the factors 
T’/((T-NJT-N)). Therefore the score test statistic will always exceed 4i,i, 
and therefore is not studied in the remainder of the paper. 

The adjusted or modified score test statistic as given by (A.9) of the 
appendix is 

This statistic is equivalent to 41,1 multiplied by the factor T/[(l + @(T-N)]. 
In large samples if B is large relative to &, the magnitude of 41,4 should be 
less than #1,1. In section 4 this modified score test statistic is studied and 
compared to the other three test statistics using a Monte Carlo experiment. 

3.4. Tests for portfolio efficiency 

For the special case of Ho1 when N, = 1, the potential performance da of 
the asset p and its Sharpe performance ccpl~~ are identical. Thus, a test of 
H,, in this case is a test of the mean-standard deviation efficiency of the 
asset p. 

The special case of hypothesis test H,, is the test addressed by Ross’(1980) 
for testing the efficiency of a portfolio. One large sample test statistic used by 
Ross was the expression (3) above with N, = 1 and N, = N - 1. The preferred 
Bartlett’s small sample approximation, as in the case of &2 is given by 

where YP and si are the sample mean and sample variance of the portfolio of 
interest. +,iz is distributed asymptotically as a i2 distribution with (N- 1) 
degrees of freedom under H,,. In sections 4 and 5, the advantage of 42,z 
over the Ross test is discussed. 

By replacing fllS;tV; by r_/s,“, the other H,, test statistics may also be 
modified for a test of H,,. That is 

‘The authors are indebted to Michael Gibbons for suggestmg that the score stattsttc be 
included as a potential test stattstm. Tests based on this stattsttc have also been called Lagrange 
Multtpher tests after Stlvey (1970). The Wald stattsttc, the likelihood ratto x2 statlstlc and the 
Lagrange Multipher statisttc have been compared m Buse (1982). The Buse article also contains 
a bibliography for compansons of the three x2 statisttcs for the multwanate regression model. 
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which under Hoz is asymptotically distributed as a x2 with (N - 1) degrees of 
freedom, 

which asymptotically follows an F distribution with (N - 1) and (T-N - 1) 
degrees of freedom under H,,2, and finally 

which under H,, is asymptotically x2 with (N- 1) degrees of freedom. 
The’ behavior of these statistics in small samples is examined in section 4 

using Monte Carlo simulation. The relationships of Ha, to hypotheses of 
mean-variance efficiency, using Jensen or Treynor measures, is discussed next. 
The next section also relates these test procedures to the recent work of 
Gibbons (1982). 

3.5. Relationships to other test procedures 

3.5.1. Equivalent Treyn fr measures 

The hypotheses H,j and H,, can be related to other available test 
procedures’for mean-variance efficiency. Roll (1978) has shown “that a test of 
the mean-variance efficiency of a portfolio p, constructed from an N asset set, 
may be carried out using the security market line. In his proposition S4, he 
states that a given index is mean-variance efficient if the betas of all assets 
are related to their mean returns by the same linear function. 

The Treynor measure i;Jb,, of any security i in p, represents the security’s 
return premium contribution X,/L; divided by its fractional risk contribution 
xic$/giF This marginal rate of substitution between risk and return must be 
identical for all members of p, if p is efficient (i.e., maximizes return premium 
per unit of total risk). Other+&, some investment reallocation would 
provide a larger return per risk unit’implying that p is inefficient. Thus, all N 
assets will plot on a market line derived from an efficient portfolio p. A test 
of equality of the Treynor measures, He :,ul/pl = p2/p2 =,LL~//~; =. . . = pN/PN is 
therefore a test of mean-variance efficiency. A x2 test for the equality of 
Treynor measures is developed in Jobson and Koikie (1981). 

As outlined at the beginning of this section, the test of the hypothesis H,, 
is equivalent to testing H,, :p2 = Z2r21,;1a,. In the case of a single portfoho p, 
with N, = 1, H,, becomes Ho2 :p, = IJ~~~/c$ or H,, :p2 =,LL#, where cr2 is the 
(N x 1) vector of covariances’ between N assets and the portfolio p and /J is 
the (N x 1) vector of security _ betas computed with respect to p. The 
hypothesis H,, is therefore equivalent to the hypothesis of equal Treynor 
measures. 
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3.5.21 Equivalent Jensen measures 

The hypothesis H,, may also be related to the Jensen performance 
measure. Ross (1977) has shown that a test of equality of the Jensen 
performance measures, Ho : ozl = a2 = . . . = q,, for N assets, is also a test of the 
mean-variance efficiency of a portfolio p. The (N x 1) vector d, with elements 
a,, j=1,2 ,..., N, is the intercept vector for the linear model 

Y, = a + /lrpt + E,, t=l2 ?: 3 ,.-., 

where rt is an (N x 1) vector of return premiums, rpt is the return premium of a 
portfolio of the N assets, b is the (N x 1) vector of betas between p and the N 
assets and e, is an error term. This regression model was applied in Black, 
Jensen and Scholes (1972) to tests of the capital asset pricing model. 

As suggested in footnote 6, the vector (~2-ZZ1Z;~~1) from H,, is 
recognized as the intercept vector in the multivariate regression of the vector 
rZr (N2 x l), on the (N, x 1) vector rlt, t = 1,2,. . ., ?: where r;=(&r;J is 
multivariate normal. In the special case of H,,,, with N, = 1, the intercept 
vector becomes [& --cJ~~~/o~] which-is equivalent to a = [a2 - &,]. Since the 
portfolio is assumed to be a linear combination of the N assets, there is no 
loss of generality in letting p2 refer only to N2 =(N - 1) assets provided that 
the asset omitted from I( has a non-zero weight in the portfolio p. The test of 
Ho2 is therefore equivalent to a test of equality of the Jensen measures 
provided that the index portfolio is derived from the N assets. 

3.5.3. Gibbons multivariate approach 

In a recent paper by Gibbons (1982), a multivariate approach to testing 
the capital asset pricing model is outlined. Gibbons begins with the model 
T$=Mif/jrr$+&,t, t=l,2 ,..., 7; i=1,2,..., N, where rz denotes the return (not 
the return premium) on asset i at time t and r$ denotes the return on the 
market portfolio at time t. Under the assumption that the N assets’ returns 
are distributed as a multivariate normal, Gibbons develops a likelihood ratio 
test of the null hypothesis, ai = yO(l -BE), i = 1,2,. . ., N, where y0 is the mean 
return on a zero beta portfolio orthogonal to m. Because of the nonlinearity 
of the hypothesis, a Gauss-Newton approximation is employed to solve the 
likelihood equations. This approximation requires preliminary estimates of y0 
and the /?,, i=1,2 ,..., N, that are consistent. The likelihood equations for the 
vector /? of elements /3,, i= 1,2,. . ., N, are given in Gibbons (1980) as 
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where rz and r:, i = 1,2,. . ., N, are (T x 1) vectors. of returns and e is a (T x 1) 
vector of unities. 

If y,e is replaced by a vector of risk-free rates then the maximum 
likelihoods estimator of p, given by /I*, is equivalent to our maximum 
likelihood estimator /I^ given in the appendix. Our likelihood ratio test of the 
efficiency of & is based on an available time series of the risk-free rate, while 
Gibbons’ likelihood ratio test assumes a constant expected zero beta rate 
which must be estimated from the data. Gibbons’ x2 statistic therefore has 
one less degree of freedom than ours. 

In section 5, the 41,2 x2 and 4 1, 3 F statistics are used to test the efficiency 
of equal weight portfolios relative to sets of 20 and 40 portfolios. The test 
procedures are also compared to those of Gibbons (1982). 

4. The sampling experiment 

A Monte Carlo simulation was designed to investigate the small sample 
behavior of the asymptotic test statistics outlined in section ‘3. That is, the 
small sample properties of the x2 statistics 41, 1, +1,2, 41,4 and the F statistic 

4 are examined ‘for tests of the performance potential hypothesis fi,,. In 
a&&ion, the sampling properties of the x2 and F statistics $2,1, & 2, & 4 
and &, 3 are investigated for tests of the portfolio efficiency hypothesis RI,;. 
Of particular interest are the moments and the tail areas of the small sample 
distributions and their correspondence with the theoretical distributions. The 
powers of the hypotheses tests are also computed for several arbitrary 
hypotheses. 

The simulation was parameterized with a set r of N=50 randomly 
selected NYSE stocks having 360 continuous monthly returns commencing 
January, 1950. _ The observed mean vector and Covariance matrix for the 
stocks were treated as the population parameters p and Z. The riskless 
interest rate’was assumed to be zero without ,perceived loss of generality. To 
provide t+o ‘mutually exclusive stock subsets, the 50 stock population was 
randomly partitioned into N, = 20 and N, = 30 stock subfiopulations, 
denoted by r1 and rZ, respectively. The parameters of these subsets are 
denoted by pl, p2, Z,, and ZJZ. The partitioned forms of p and Z are 
therefore denoted by 

The efficient set constants ‘a’, ‘b’, and ‘c’, are given in table 1 for the three 
sets of assets rl, TX, r3. The values of ‘a’ for the three populations are 
denoted by a, a, and a2, respectively. These three asset populations are 
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employed in this section to evaluate the sampling properties of the four test 
statistics for both hypotheses H,, and Hoz. 

4.1. Tests of equivalent potential performance HO, 

In order to examine the behavior of the test statistics when the null 
hypothesis H,, is true, two additional 50 stock populations rA and rB were 
constructed by modifying the mean vector p of r, and preserving the 
covariance matrix. The mean vectors for rA and LB are denoted by 

where paz =Z12.E2;1c(2 and psl =,Z,,Z;tal satisfy~ the form of H,, given by 
(1). The pair of populations r1 and rA now satisfy H,l as do the 
populations Tz and rB The respective ‘a’ values from table 1 are aA=al 
=0.096 and a,=a,=0.157. 

In order to examme the power of the test statistics when the null 
hypothesis H,, is not true, two alternatives were studied. The population r 
was compared to each of the subpopulations r1 and Tz. From table 1 the 
respective population ‘a’ values are a = 0.19-1, a, = 0.096 and a2 = 0.157. 

Two hundred random samples for each sample size T= 60, 120 and 240 
return observations were generated from the parameters of the r, rA and r, 
50 stock populations, the 20 stock subset r1 and the 30 stock subset Tz.’ 
For each sample, the maximum likelihood estimates of the mean vector-< 
covariance matrix S and its inverse S- ’ were computed for r, rA, rB, r1 
and Tz,’ 

The ,LL test statistics, for a test of, the equivalence of potential 
performances of the 20 stock subset, rl’ and the 50 stock set rA, were 
computed across all samples. Similarly the 41,z test statistics, for equivalent 
potential performance of, the 30 stock, subset Tz and the 50 stock set rB, 
were computed over the 200 samples. The 41,i statistics’ mean, variance and 
right tail ,areas were calculated over the 200 samples and compared to their 

‘Return samples were generated usmg a double precision version of the multrvanate normal 
random number generator from the IMSL Subroutine Package. The 200 rephcations seemed 
sufftciently large to provide accurate mdicatrons of the small sample distrrbutrons of the 
statistics. For example, the dz,s small sample distributions had standard errors from 1 to 3 
percent of the sampling mean All calculations in the slmulatron were performed m double 
precision Fortran 

pChecks were made m each sample to ensure that the global minimum mean return &=6/c 
exceeded the riskless rate rr0. Samples m whtch T, exceeded f0 were discarded and ‘a new 
sample was drawn See Merton (1972) for a drscussion of the consequences-of rr>FO 
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TabIe 1 

]Effisleqt set constants a, b, and c for three randomly selected N= 50, 
N, =20, and N,=30 stock populations with a zero nskless rate, 
where it xs the mean premium return vector, e 1s the unit vector, and 
Z’-’ is the covanance matrix inverse. Parameters are formed from 

360 monthly returns commencmg January 1950. 

Number 
of stocks 

Efficient set constants 

a=$Z-‘p b=e’X-‘p c=e’Z-le 

N=50 0 191 0.1x1 0.128 
N,=ZO, N,cN 0.096 0.065 0.079 
N,=30, N,cN 0.157 0.103 0.112 

theoretical counterparts under a trne H,,. The results are shown in tables 2 
and 3. 

The preceding statistics were generated under true null hypotheses 
H,, :a__, = a, and H,, :ag = a2. The power of the test statistics, under a false H,,; 
were observed by computing-200 +I,1 test statistics from the r and r1 stock 
sets as well as from the r and TZ stock sets. The powers of the & test 
statistics were computed by counting the number of samples, out of 200, for 
which a +l,i statistic exceeded the M = 0.05 critical value in a test of the 
equivalence of the potential performances of the 50 stock set ,r‘and the 20 
stock subset rl, The power calculation was repeated for the 50 stock set r 
versus the 30 stock subset rZ, The powers are listed in table 4. 

In general, the best statistic appears to be the #1,3 F statistic. Its sampling 
mean, variance and tail areas &osely correspond to the values of a 
theoretical F distribution at all three sample sizes and for both simulated 
populations presented in tables 2 and 3. For example, consider the 
comparison of the 20 stock and 50 stock population contained in the first 
panel of table 2,. where the 7’= 60 sampling distribution of the 41,1, 
iZ,I , . . ,, 4, statistics and the theoretical x2 and F statistics are presented. The 
mean and variance of a theoretical F distribution, with 30 and 9 degrees of 
freedom, are 1.25 and ‘0.66 while the sampling mean and variance of the (p1,3 
statistic are 1.15 and 0.54. Similar comparison of the right tail areas shows a 
very close correspondence between the theoretical F and the 41,3 statistic. 

The (PM &, and 41,4 x2 statistics do not perform as well until at least 
sample size T=120. At T=120, the tftt,2 statistic is superior to the other x2 
statistics since there is tloser CorrespondenCe between a theoretical x2 with 30 
degrees of freedom and the q& statistic, As shown in table 3, the power of 
the #1,3 statistic under a false El,, increases from 0.05 at T= 60 to 0.57 at 
T-240 for the 20 stock case and from 0.03 at TA60 to 0.24 at T=240 for the 
30 stock case. Thus the &,a test statistic does not demonstrate many powerful 
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Table 2 

Sampling mean, variance and nght tall areas of the X2 statlstlcs +1,1, &2 an&x4,,, and the P 
statistic c$~,~ for tests of the eqmvalent performance (H,, a,=a,) of N,=20 stocks versus 
N = 50 stocks, for sample sizes T= 60, 120 and 240 Each expernnent IS based on 200 replications, 

under a true null hypothesis 

Statistic Mean Variance Right tail areas 

X2 

$1: 1.4 

F 
4 I,3 

Sample sue T= 60 

30.0 60.0 0 99 0.95 0.90 0 75 0.50 0.25 0 10 0.05 001 

38.3 27.2 35.5 597.0 97.5 30.1 0.94 1.00 100 0.88 098 0.96 0.82 0.96 091 0.71 064 091 057 071 034 0.43 008 0.48 0.35 0.03 030 029 0.20 001 0.21 0.00 0.08 

1.25 0.66 0 99 0.95 0.90 0 75 0.50 0.25 0.10 005 0.01 
1.15 0 54 0.98 0.94 0.90 0.71 043 0.21 007 003 0.01 

Sample szze T= 120 

30.0 600 0.99 0.95 0.90 0.75 050 0.25 0.10 0.05 0.01 
31.7 103.9 0.99 094 0.88 0.71 0 55 0 34 0 19 0.12 005 
280 31.0 41.8 67.7 0.99 0.99 0.92 0.95 0.91 0.88 0.72 0.76 0.42 0 55 0.30 0 15 0.03 0 13 008 0.02 000 0.02 

103 0.10 0.99 095 090 0.75 050 0.25 0 10 005 001 
1.04 0.11 099 0.95 0.91 0.72 0.51 027 0.12 0 05 002 

Sample size T= 240 

30.0 600 0.99 0.95 0.90 0.75 0.50 0.25 0.10 005 001 

298 27.1 30.0 43 69.1 58 5 7 0.98 0.98 0.98 0.95 0.94 0.93 0.90 0 0 84 89 0 0.74 0.65 73 049 049 0 37 0.28 023 0 14 009 0.12 003 0.05 001 0.07 001 002 0.00 

1.01 0.08 0.99 0.95 0.90 0 75 0.50 0.25 0 10 0.05 001 
1.00 0.08 0.98 0.94 0.89 0.73 0.47 024 0.10 0.05 001 

ability to distinguish potential performance differences between the 50 stock 
population and the 20 and 30 stock subsets at T=60. It is worth 
emphasizing that this lack of power stems from the natural variability of the 
stock market data, rather than from departures from the assumed small 
sample distribution. The x2 statistics c#J~,~, and & seem to be more 
powerful that the &1,3 1 F at T=60. However, this result is due to the excess 
skewness of the x2 statistics above the theoretical x2, as shown in tables 1 
and 2. In contrast, the c$~,~ statistic tends to be less skewed than a 
theoretical x2 distribution and as a result exhibits less power than the qS1,3 
statistic. 

It is also important, to note that the statistic given by (3) in section 2, 
which uses the multiplier T rather than (T-N1 - N,/2- l), would ,always be 
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Table 3 

Sampling mean, variance and right tat1 areas of the x2 statistics $r,r, $1,2 and $1,4 and the F 
statistic +r,s for tests of the eqmvalent performance (H,,:a,=a,) of N,=30 stocks versus 
N = 50 stocks, for sample srzes T= 60, 120 and 240 Each experiment 1s based on 200 rephcatrons, 

under a true null hypothesis 

Mean Varrande Rtght tar1 areas 

Sample size T= 60 

20.0 40.0 0.99 0.95 0.90 0.75 0.50 025 0.10 0.05 0 01 
22.7 26.2 177 3616 60.5 23.4 0.99 0.97 1.00 097 0 0.89 92 093 0.84 0.83 083 0.70 0 67 064 0.57 0 36 0.41 0 044 12 0.23 036 0.02 0 0.28 0.00 11 004 000 0.18 

1.25 0.73 0.99 0.95 0.90 0.75 0.50 0.25 0.10 005 001 
1.18 0.73 098 092 088 070 046 0.22 008 002 001 

Sample size T= 120 

200 40.0 0.99 095 090 075 050 025 010 005 001 
20.2 19.8 16.9 24.3 39.0 52.6 0.99 0.99 099 094 0.91 0.93 091 0.81 0.89 0.74 0.57 0.71 046 0.30 0.47 028 0.10 0 26 0.11 001 0.16 0.05 000 0.10 0.00 000 0 01 

103 0.14 0.99 0.95 0.90 0.75 0 50 025 0.10 0.05 0.01 
1.00 0.13 099 0.94 0.89 0.71 0.46 025 0 10 004 0.00 

Sample szze T= 240 

210 20.0 44.7 400 0.99 099 095 0.97 090 094 075 0.80 050 0.53 0.29 0.25 0.13 0.10 005 0.07 001 001 

207 18.0 38.7 27.4 0.99 099 0.97 0.94 094 0 89 0.81 0 67 0 0 53 37 0.27 0.11 0 0.03 11 0.06 0.01 001 0.01 

1.01 0.11 0.99 0.95 0.90 075 0.50 0.25 0 10 0.05 001 
1.04 0.11 098 0.95 0 90 0.74 0 51 0.25 0.11 0.06 002 

larger than c&~. This would indicate that 41,2 is superior to (3) in 
conforming to a x2 distribution., An examination of simulation results in 
Gibbons (1982) also reflects that the statistic, given by (3), tends to have a 
larger mean and variance than the theoretical x2. The excessive values of the 
mean x2 in- Gibbons are approximately equivalent to the excess expected 
from employing T rather than the Bartlett correction in d1.2. 

4.2. Tests of portfolio e3fficiency HO, 

To examine the behavior of the test statistics when the null hypothesis H,, 
is true, the true proportions vectors X,, X,, and X,, were determined using 
the true parameters ‘of the 50, 20 and 30 stock populations r, rI and r2, 
respectively. Using the same random samples generated in section 4.1, the 
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Table 4 

Powers of the test statistics &I, &2, &3 and &,4 in an c1=0.05 test of potential performance 
differences between N= 50 and N, =20 stock sets (H,, a = a,) and between N = 50 and N, = 30 
stock sets (H,,‘a=a,) for sample SIXS T=60, 120 and 240 Each experiment IS based on 200 

rephcatlons, with parameters a = 0 191, a, =0 096 and a2 =0 157, for stock sets r, rI, and I’2 

Test powers 

Stat&c T= 60 T= 120 T= 240 

N, = 30, rz N, = 20, rl N, = 30,rz N, = 30, rl NZ=20,rz N,=20,r, 

2.l 1,z 0.30” 0 16 034 022 0 0.09 14 037 027 0.27 0.25 064 0.58 
4 I,3 003 005 0.08 024 024 0 57 
4 1.4 001 001 002 007 008 0.36 

“The probablhty of rejecting with 41,1 the (false) null hypothesis, that the potential 
performance ‘a’ of the N = 50 stock set r IS equal to the potential performance a2 of the 
N, =30 stock set Tz, IS 0 30, with T= 60 observations The powers may be compared among 
statistics 41,, among sample szes 7: and between the number of stocks NJ 

squared Sharpe performance measures Fi/.s; = (X,F)2/(X~SXm), Y~Js~~ 

= (X~I%)“/(xl,ISI J,J and %/L~ 2 = (Xm,F2)“/(Xl,,S,,X,) were computed for 
each sample. The & statistics for testing H,, were then computed for each 
sample. The mean, variance and right tail areas of the test statistics, based on 
the 200 samples, were determined and are compared to their theoretical 
counterparts in tables 5, 6 and 7. 

The mean, variance and tail areas of & are very similar to the mean, 
variance and tail areas of a theoretical F distribution. The good behavior of 
the 42,3 statistic does not seem to be affected by sample srze or number of 
assets. With the exception of the 50 asset case with sample size T=60, the 
statistic c$~,~ was comparable in behavior to a theoretical x2 distribution. At 
T=60 for the 50 asset population, &Z was far more skewed than the x2 
distribution. The test statistrc 42,1 was in general more skewed than the 
x2 distribution, while the statistic 42,4 was in general less skewed than the x2 
distribution. The behavior of &, 1 and 42,4 were unaffected by sample size or 
number of assets. 

To evaluate the power of the &, test statistics under a false H,,, two 
inefficient portfolios were formed from each of the two sets of assets r and 
rI. The first pair of inefficient portfolios were the equal weight portfolios 
with true squared Sharpe measures (p’e)‘/(e’Ze) = 0.065 and &e)“/(e;Z, Iel) 
=0.055, respectively. The second pair of inefficient portfolios were partial 
equal weight portfolios with equal weights over the first 10 stocks and zero 
weights over the remaining 40 and 10 stocks, respectively. The theoretical 
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Table 5 

Sampling mean, vanance and nght tall areas of the x2 statrstrcs &I, &2 and &4 and the F 
statrsttc & for tests of the effrcrency (H ,,2:a = &~a of the N = 50 stock tangency portfolio m, 
for sample sizes ?‘=60, 120 and 240 Each experiment IS based on 2OO.rephcations, under a true 

null hypothesis. 

Statistic Mean Variance Right tar1 areas 

49.0 
61.9 

$1:: 41.4 60.9 

F 1.25 
9 2.3 1.14 

L 49.0 50 1 

ti:: 49.4 407 

L.s 103 101 

$1 
2.2 

49.4 49.0 50.0 

4 2.4 41.7 

F 101 
4 2.3 1.02 

98.0 
1403.6 

191.8 
24.1 

0.61 
0.46 

Sample size T= 60 

0.99 095 090 075 050 0.25 0.10 
0.91 0.82 0.77 0 70 0 58 043 0.39 
1.00 0.99 0.98 0.94 0.81 0 64 0.42 
0.99 0.93 0.86 0.48 0.06 0.01 000 

0.99 095 0.90 0 75 0.50 0.25 0.10 
098 094 0.89 0.71 0.42 0.20 0 04 

Sample size T= 120 

980 0.99 0.95 0 90 0.75 0.50 
181.9 0.98 0.91 0.83 0.73 0.49 
102.9 0.99 096 0.90 0.76 0.49 
49.2 0.97 0 86 070 0.41 0 13 

008 099 095 0.90 075 0.50 
007 0.99 094 0.90 073 047 

Sample size T= 240 

98.0 
117.5 

903 
55.9 

0.03 
0.05 

0.99 0.95 0.90 0.75 0.50 0.25 
1.00 0.96 0.92 0.76 0.50 0.29 
1.00 0.98 0.94 0.77 049 0.28 
0.98 0.86 0 73 046 0 18 0.05 

0.99 0.95 0.90 0.75 0.50 0.25 
1.00 0.98 0.93 0.77 0.50 0.28 

025 
0.32 
0.27 
003 

025 
022 

0.10 
017 
0.10 
000 

0.10 
009 

0.10 
0.15 
0.11 
0.01 

0 10 
007 

0.05 
0 35 
0.34 
000 

005 
002 

0.05 
0.11 
0.06 
000 

005 
005 

005 
0.07 
0.06 
000 

0.05 
004 

0.01 
0.26 
0.16 
0.00 

0.01 
0.01 

0.01 
0.05 
0.02 
0.00 

0.01 
002 

0.01 
0.03 
0.01 
0.00 

0.01 
0.01 

squared Sharpe measures for both sets was 0.041.10 Using the same 200 
samples as above, the 4z,i statistics were computed assuming Hoz to be true. 
The power in each case was determined by counting the number of samples 
for which a & statistic value exceeded the a = 0.05 critical value. The power 
fractions are given in table 8. 

Inspection of table 8 reveals that the power of the test statistics &,3 and 

4 are comparable with the exception of the 50 asset case at T=60. In this 
cz?s,“, the extreme skewness in 4 2,2 results in a larger power than &. In 
general, the statistic I$~,~ displays larger powers than & reflecting’ the 
extreme skewness in the distribution of 4,,1. In contrast, the statistic (p2,4 

“The squared Sharpe measure for the typical stock IS about 0015 Thus, the equal weight 
portfolios have squared Sharpe measures of approxrmately three to four times the typical stock. 
In contrast, the squared potentral performance IS about two to three trmes as large as the equal 
werght squared Sharpe performance. Thus, these equal weight portfohos represent portfolio 
meffrcrency m the mrd-range of the typical stock and maxlmum potential performance 
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Table 6 

4.51 

Sampling mean, variance and right tall areas of the 1’ statlstlcs &, & and &, and the F 
statistic C& 3 for tests of the efficiency (H,;a, =&/&) of the N,=30 stock tangency 
portfolio m2, for sample sues T=60, 120 and 240. Each experunent IS based on 200 rephcatlons 

under a true null hypothesis. 

Statistic Mean Variance hght tad areas 

“s:,l 29.0 30.3 
$:: 250 290 

F 1.07 
+ 2,3 101 

x2 290 

$1: 2.4 29.9 29.1 25.0 

F 1.03 
4 2.3 1.02 

290 
29.2 

$I:: 28 25 8 1 

F 1.01 
9 2,3 1.00 

58 0 
1348 
56.7 
25 2 

0 18 
0 15 

58 0 
809 
56 60 
322 

011 
0.09 

58.0 099 095 0.90 075 0.50 0.25 0 10 005 
64.1 0.98 0.95 090 0 74 0.51 025 0.11 006 
546 0.98 0.96 090 075 051 0.23 0.08 0.04 
38.1 0.98 091 0.80 0 58 028 007 003 0.01 

008 0.99 0.95 090 0.75 0 50 025 0.10 005 
0.08 098 0.96 0.90 0.74 0 51 024 0.09 0.04 

Sample size T= 60 

099 0.95 090 075 0.50 
098 0.90 0 84 0.70 0 51 
100 097 089 0.74 050 
100 0.93 084 061 026 

099 0.95 0 90 0.75 0.50 
0.99 0 94 0 86 0.70 045 

Sample sue T= 120 

099 0.95 0.90 0 75 0.50 
1.00 0.94 0 89 075 0.51 
1.00 095 0.91 0.76 0.50 
099 0.92 0.83 0 58 0.28 

0.99 0 95 090 0.75 0.50 
100 0 97 0.91 0.76 0.48 

Sample sue T= 240 

025 
035 
026 
004 

025 
0.20 

025 
029 
0.25 
007 

025 
0.23 

0.10 
0 19 
0 10 
0.10 

0.10 
007 

0.10 
0.15 
0 12 
0.01 

0.10 
0.10 

005 
011 
0.04 
001 

005 
002 

0.05 
0.11 
006 
001 

0.05 
004 

0.01 
005 
001 
000 

0.01 
001 

0.01 
004 
0.01 
0.00 

001 
001 

0.01 
0.02 
001 
0.00 

0.01 
001 

displays much lower powers than C& reflecting the fact that c%Q,~ has less 
skewness than the theoretical x2 distribution. The power of the C& statistic 
increases from 0.03 and 0.09 at T = 60 to 0.67 and 0.40 at T = 240. 

On the basis of the simulation results of this section, two likelihood ratio 
statistics d2, 3 and d2,2 are superior to the other x2 statistics. For samples of 
at least T= 120, both likelihood ratio statistics perform equally well. At 
T=60 the 42.3 F statistic is well behaved but the 42,2 x2 statistic is not. In 
addition, at T=60 the power of the F test against several alternatives was 
found to be poor. Once again, it is worth noting that the likelihood ratio x2 
statistic &, 2 is superior to the statistic given by (3) in section 3. The statistic 
42,2 therefore is superior to Ross’s likelihood ratio x2. 

In the next section of the paper, the two likelihood ratio test statistics x2 
and F will be used to compare sets of assets including stocks, government 
bonds and corporate bonds. 
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Table 7 

Sainphng mean, variance and right tall areas of the x2 statlstlcs 42,1, dz,z and &,4 and the F 
statistic C& for tests of the efficiency (Ho2 ‘a, =/&/&) of the N, =20 stock tangency portfolio 
ml, for sample sizes T=60, 120 and 240 Each experiment IS based on 200 replications, under a 

true null hypothesis 

Statistic 

Ll 
2:: 
F’ 
42.3 

Mean Variance fight tall areas 

19.0 38.0 
20.6 62.1 
19.4 36.2 
177 21.1 

1.05 018 
1.06 016 

19.0 380 
18.7 42.6 
18.2 33.4 
16.8 244 

102 
0.97 

0.13 
0.11 

19.0 
20.0 
19.7 
18 1 

101 
1.05 

38.0 
497 
432 
328 

0*12 
0 14 

Sample sue T= 60 

0 99 0 95 0.90 0 75 0.50 025 0.10 
099 0.93 0.91 0.77 0 52 0 34 0.22 
100 094 092 079 051 029 0.11 
100 0.94 0 91 0.74 0 44 0 14 0.02 

099 095 090 0.75 050 025 010 
100 094 0.91 O.i7 0.51 028 0.10 

Sample sue T= 120 

0.99 0.95 090 07.5 050 025 010 
0.98 092 0.85 0 77 0.47 022 0.09 
0.99 0 93 0 86 0 77 045 0.20 0.07 
098 0.91 0.84 071 ’ 0 32 0 12 0.04 

0 99 0.95 0.90 0 7.5 0.50 0.25 0 10 
099 093 088 078 044 0.18 006 

Sample size T= 240 

099 095 090 075 0.50 025 010 
100 096 094 078 0.57 030 013 
100 0.96 094 078 0.56 028 012 
099 0.95 090 071 0.45 620 006 

0.99 0.95 090 0.75 0.50 025 0.1’0 
100 096 0.95 078 052 028 012 

0.05 
0.14 
005 
0.00 

0.05 
0.04 

0.05 
0.05 
004 
0.01 

0.05 
0.03 

005 
009 
0.07 
0.03 

005 
007 

0.01 
0.03 
001 
000 

001 
001 

001 
0.02 
001 
000 

001 
001 

001 
0.03 
0.02 
0.01 

0.01 
0.02 

5. Some illustrative tests 

Two likelihood ratio test statistics have been developed for tests of the 
potential performance equivalence of different asset sets and for tests of the 
efficiency of portfolios. Three interesting financial applications of the test 
statistics are: 

(a) the improvement in potential performance from the inclusion of bonds in 
a stock portfolio, 

(b) the efficiency of a portfolio, and the related issue of, 
(c) the validity of the Sharpe-Lintner, Black, or multifactor versions of the 

capital asset pricing model. 

The purpose of this section is 
use of the test statistics. 

to examine these issues whrle illustrating the 
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Table 8 

Powers of the &,r, &,21 C& and &,4 test statrsttcs in an a =0 05 test of the effictency of the 
equal weight (upper part) and partral equal werght (lower part) portfolios m the N =50, r 
stock set (If,, a =&/OS) and m the N, = 20, rI stock set (II,,, a, =,u,“,/&. Each experiment IS based 
on 200 rephcatrons, with parameters a = 0 191, a, = 0.096, $/c$ = (0 065 for the equal weight case 
and 0.041 for the partial equal weight case) and &/c,,- ’ -(O.OSS for the equal weight case and 

0 041 for the partial equal weight case) 

Test powers 

Statistic T= 60 T= 120 T= 240 

N=50,r N,=20,r, N=50,r N,=20,r, N=50,I- N,=20,r, 

:::: 042 0.41 0.21 0.10 028 0.41 0 018 13 0.74 063 046 039 

$::: 0.03 000 0.09 000 025 0.06 0 0.06 13 0.67 0.41 040 028 

z::: 0 0.42 43” 0.23 0.14 0.48 033 0.27 016 0.82 077 060 0 55 
:r:: 0.00 0.03 0.13 0.05 0.31 0.08 0 0.12 16 078 061 0 048 55 

“The probabrhty of reJectmg wrth &r the (false) null hypotheses that the potential 
performance ‘a’ of the N=50 stock set r IS equal to the performance ,u,“/u~ of the equal weight 
portfolio of 10 stocks IS 0 43 with T= 60 return observattons 

Four time periods, each containing T= 60 months, were chosen to coincide 
with the last four time periods in Gibbons (1982). The subperiods are 
January 1956 - December 1960, January 1961 - December 1965, January 
1966 - December 1970 and January 1971 - December 1975. The monthly 
returns for all securities listed on the CRSP tape, without missing returns, 
were obtained for each of the four subperiods. The beta’s, estimated in a 
subperiod for all stocks using the CRSP equally weighted index, were ranked 
and used to group the stocks into forty equally weighted portfolios each 
containing the same number of stocks. This beta grouping procedure is not 
necessary or necessarily best but is used m order that our results may be 
compared with those of Gibbons. l1 In addition, the same stock set was used 
to form twenty portfolios according to the same criterion. 

‘IThe obJective, m reducing the drmensionahty of the assets, should be to choose an asset set 
(N-C T) whrch has an efticrent set arbitrarily close to the global effrcrent set That IS, the chosen 
set of N assets should have maximum potential performance ‘a’ given the constraints of N and 
T Since ‘a’ IS a function of both c and Z, grouping assets by betas may not achieve the desired 
results If the asset chorce IS by ‘a’, then tt IS important that the assets be selected outside the test 
penod to avoid brasmg the test A possrble approach to estrmatmg the dommant set of assets IS 
provided by Jobson and Korkre (1982) 
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The Ibbotson and Sinquetield (1979) historical monthly return series on 
U.S. Treasury bills, long-term corporate and Government bonds were 
obtained for each of the subperiods. I2 The input data employed also 
included the returns on the CRSP value weighted stock index over the four 
subperiods. 

5.1. The potential performance contributions of bond and stock indices 

We are concerned with whether there is any significant improvement in 
potential performance in two situations: (1) the addition of a bond index to a 
set consisting of stocks and a stock index and (2) the addition of a stock 
index to a set consisting of stocks and a bond index. In order to answer 
these questions, three asset sets were defined as: 

(1) forty stock portfolios, the equally weighted index of the corporate bond 
and the government bond indices, and the CRSP value weighted index; 

(2) forty stock portfolios, and the CRSP value weighted index; and 
(3) forty stock portfolios and the equally weighted index of corporate bond 

and the government bond indices. 

The monthly excess (above the Treasury bill rate) return samples were 
used to estimate the potential performances 8, of the three asset sets in each 
of the four subperiods and are shown in table 9. Comparisons of the 
estimated potential performances in any period indicate that the potential 
performance increases with the addition of either the bond index or the 
CRSP index. For example, in the period 1956/l-1960/12, the bond index 
increases performance from 2.93 to 3.27 while the CRSP index increases 
performance from 2.70 to 3.27. With the exception of the period 1961/1- 
1965/12, the CRSP index generally increases performance more than the 
bond index. The next question is whether these increases in potential 
performance are significant at conventional type I error levels. 

The likelihood x2 and F statistics (& and &a) for these tests were 
computed and are reported in table 9, with significant statistics 
indicated. No significant differences in potential performance appear until the 
last two periods, when the CRSP index makes a significant (at the a=0.05 
level) increase in potential performance, and the bond index makes a 
significant (at the a=O.lO level) increase only in the final period. 

“The Ibbotson-Smquefield monthly return long term corporate bond series was checked for 
autocorrelatron by computmg the sample autocorrelatrons over 24 lags. Returns were rdentrtied 
as a serially uncorrelated series, whrch means that hrstorrcal means and standard deviations 
might be used to est~ate the single month holding parameters In contrast, Treasury bill 
returns are highly serially correlated suggesting homogeneous nonstatronarrty and therefore 
excess bond and stock returns wrll also be theoretrcally nonstationary. However, because the 
Treasury bill return vanance 1s small relative to the return variance of the other assets, the 
nonstatronarrty m the excess returns 1s difficult to observe 
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Table 9 also presents the results for similar tests based on twenty 
portfolios of stocks rather than the forty portfolio tests. The asset sets are 
labelled (4), (5) and (6). The CRSP index makes a significant contribution to 
performance in every subperiod, whereas the bond index makes no 
significant contribution. Our result that the bond index adds significantly to 
the potential performance of 40 portfolios but not significantly to 20 
portfolios, is due to the change in the degrees of freedom for the statistical 
test. 

These tests seem to indicate that a small number of stock portfolios (i.e., 
Ng40) are insufficient representatives of the efficient set of assets, m that a 
broadly based index of stock returns adds significantly to the performance of 

Iable 9 
Statistics for tests of the equrvalent potentral performance (H 01 al= a,) of asset sets (1) and (2), 
(1) and (3), (4) and (5), and (4) and (6) in four subperrods usmg the x2 stattsttc 4r, z and F 

statrstrc or, a. 

Subpenod results 

1956/1- 1961/1- 1966/1- 1971/1- 
Asset set Statistic 1960112 1965112 1970112 1975112 

(1) 40 p01tf0110s 
of stocks, 8, 3.27 3.75 2 10 1.61 
bond index, 
CRSP index” 

(2) 40 portfolios 6, 2.93 3.47 1.87 119 
of stocks, 

:::: 
1.45 1.06 135 3.07b 

CRSP index 1.47 106 136 3.26b 

(3) 40 portfolios B, 2.70 3.71 1.39 088 
of stocks, 2.51 0.15 4 55c 5.74” 
bond index f::: 262 0.14 5.33” 6.60 

(4) 20 portfolios 
of stocks, ci, 1.61 0.85 0.50 0.58 
bond Index, 
CRSP index 

(5) 20 portfohos 8, 1.51 0.85 0.46 052 
of stocks, 

:::: 
1.47 000 1.01 1.45 

CRSP index 1.47 0.00 1.01 146 

(6) 20 portfolios a6 1.39 0.61 0.32 031 
of stocks, 

f::: 
3.30b 5.21” 4.79” 7.02” 

bond index 3.41b 5.52” 5 05” 7.63” 

“The CRSP value weight ‘index and an equal weight index of the Ibbotson-Smquetield 
corporate and Government bond indices. 

“Srgniticant difference, at the a=O.lO level, between the potenttal performances of the asset set 
(1) and erther asset set (2) or (3) or asset set (4) and either asset (5) or (6) 

‘Srgmficant difference at the a = 0.05 level. 
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the portfolios. A bond index, while increasing the set’s performance, does not 
consistently add significantly to performance. 

The tests have investigated the mean-standard deviation dominance of one 
set of assets over another set. The next section investigates whether the stock 
and bond indices are. efficient in an asset set based on a relatively small 
number of portfolios. 

5.2. The efficiency of‘bond and stock portfolios 

The choice of a market portfolio proxy and its efficiency 1s the nexus 
between financial theory and tests of the efficiency of the true market 
portfolio or the validity of the capital asset pricing model (CAPM). If the 
true market portfolio m, comprised of N* assets, is identical to the unique 
tangency_ portfolio in mean excess return-standard deviation space, then the 
CAPM is true. That is, the mean excess returns are exactly linearly related to 
their betas, as in p=/Ip,,,. 

The efficiency of the market portfolio and_ its CAPM result present two 
approaches to tests of the underlying financial theory. First, one can choose 
what is believed to be ‘a proxy to the unobservable true market portfolio and 
then test if. an exact relationship exists between mean excess returns and 
betas. Second, one can simply test if the proxy market portfolio has risk- 
return parameters equal to the tangency portfolio. 

Since the market portfolio is unobservable and the number of assets Ni is 
seemingly limitless, rejection of CAPM~ for a given proxy or equivalently 
rejection of the efficiency of the proxy may be caused by an inefficient true 
market portfolio or a bad proxy. On the other hand, acceptance of CAPM 
may be due to an efficient true market portfolio or an efficient proxy in too 
small an asset subspace. Thus, a good or bad proxy can cause symmetrical 
decision errors in hypothesis testing. By testing the efficiency of market 
proxies in an N + N* asset space, we are testing CAPM conditionally on the 
risk-free rate and the set of assets. 

For the asset set comprised of forty portfolios, the CRSP value weighted 
index, and an equally weighted bond index (of the corporate and government 
bond indices), we are interested in the efficiency of the CRSP stock index and 
the bond index. Results are also obtained with twenty portfolios replacing 
the forty portfolios. Excess returns (above the Treasury bill rates) were used 
to estimate the squared Sharpe performance of the two indices in each 
subperiod. Maximum likelihood estimates (ti=$/$) are displayed m table 10 
(rows labelled ~3) together with the potential performance of the asset set. The 
x2 and F statistics, 42,2 and &3, are reported in the table with significant 
values (a=0.05 or 0.10) noted by asterisks. 
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Table 10 

Statrstrcs for tests of the efficrency (Ha, ‘a, = a,) of the CRSP value weighted index and Ibbotson- 
Smquefield bond mdex m four subperiods usmg the x2 statistic d2,2 and F statrstrc & 

Comparisons are made between asset sets (1) and (2) (1) and (3), (4) and (S), and (4) and (6). 

Subpenod results 

1956/1- 1961/1- 1966/l- 1971/1- 
Asset set Statistic 1960/12 1965112 1970/E 1975112 

(1) 40 portfolios 
of stocks, ci, 3 27 3.75 2 10 161 
bond index, 
CRSP index 

(2) CRSP index 2z 2 
0.034 0.061 0 000 0 000 

53 18” 5621” 42.43 35 98 
4’ 2.3 1.30 141 087 0.67 

a3 0 004 0 001 0 025 0 001 
(3) Bond index &z 52.29 58 39” 41.50 35.94 

4 2,s 13.5 153 086 067 

(4) 20 portfolios 
of stocks, 6, 161 0 85 050 0.58 
bond index, 
CRSP index 

(5) CRSP index 7z,, 
0.034 0 061 0.000 0.000 

43 98b 2641 19.06 21.73 
4 2,3 2 6gb 131 088 102 

a6 0 004 0.001 0.025 0.001 
(6) Bond index & z 45 38b 29 17 17 90 21.73 

4’ 2,3 2.82b 149 082 1.02 

“Srgmficance at the a= 0.10 level 
bSrgmticance at the CI = 0 05 level. 

In the period 1956/l-1960/12, the CRSP index and bond mdex have 
squared Sharpe performances of 0.034 and 0.004 compared to the potential 
performance of 3.27 for the entire asset set. The CRSP index is significantly 
inefficient using the x2 but not using the F statistic. The bond index is not 
significant. When twenty portfolios, rather than forty are used, table 10 also 
shows that the CRSP and bond index are significantly inefficient. This 
seemingly anomalous result is due to the change in the size of N relative to T 
and its affect on the sample statistics and degrees of freedom. 

No other significant inefficiencies in the CRSP or bond indices arise except 
‘in the period 1961/l-1965/12 where the x2 statistic shows meffrcient CRSP 
and bond indices. This conclusion holds despite the large differences in 
performances between an index and the asset set. 

The tests indicate that ~ the market proxy is not significantly inefficient in a 
small asset universe (N 5442) although the difference in estimated potential 
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performance and an index’s measured performance is quite large. Since 
potential performance increases with the number of assets’ N, significant 
differences with larger asset sets might be observed. Unfortunately, this also 
requires larger sample sizes T > N to preserve the full rank of the covariance 
matrix. The key to better tests with small N and T seems to be a better 
procedure for obtaining a small number of assets that generate an efficient 
set which is comparable to the so-called true efficient set (see footnote 11). 

The next section provides some comparative tests with Gibbons’ test of 
CAPM. 

5.3. Sharpe-Lintner and Black versions of CAPM 

The preceding test of the efficiency of the CRSP value weighted index was 
also a test of the Sharpe-Lintner version of CAPM, since the risk-free rate 
on Treasury bills was used to compute excess returns. Gibbons provides a 
test of the Black CAPM where he uses the Black, Jensen and &holes 
estimator $,, for the subperiod zero beta mean return as well as his one-step 
Gauss-Newton estimator p*. We have calculated the average Treasury bill 
rate for each subperiod Ff and presented it in table 11 along with &,s and $@, 
as determined by Gibbons. In general, the average T-bill rates are increasing 
in time whereas the estimated zero beta rates are not increasing. 

Table 11 

x2 statistic & from tests of the Black CAPM, usmg the Treasury btll_return rJt, the Black, 
Jensen and Scholes zero beta return jars, the Grbbons zero beta return f* and zero, over four 
subpenods. Tests are conducted usmg forty portfolios of stocks and the CRSP equal weight 

index. 

Zero beta mean returns &z x2 sfatistics using 
Revised” 
Gibbons 

Penod r, 
A, 
Yms ^* Y Trt y^B,, Y* Zero x2 

1956/l- 0 21 1.29 0.81 44.58 43.58 41.34 4128 43.29 
1960112 

1961/l- 1965112 o 25 0.70 068 51.73 53.66” 53.49b 52 45” 35.69 

1966/l- 1970112 o 44 0.45 0.01 31.54 31.54 34.05 34.30 29.15 

096 061 22.76 1 27.89 23.71 23.44 32.59 

‘x2 values from Gibbons (1982, table 1, p. 13) adJusted with Bartlett’s correction. 
bSrgnlficant ineffrcrency for the CRSP mdex or rejectron of the CAPM at c( = 0.10 
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The subperiod excess returns on the CRSP equal weight index and on the 
forty portfolios, described earlier, were obtained by subtracting zero, rft (not 
Ff)), &,s or p from the portfolio and index returns. The &2 x2 statistics for 
tests of CRSP index efficiency were computed for each subperiod and are 
presented in table 11. The Black version of CAPM is rejected only in the 
second subperiod 1961/l-1965/12 at the a=O.lO level, using either y* or $&rs 
as the mean zero beta return. Rejection of the models in other subperiods 
does not occur even when a zero value of the zero beta rate is used. 

These results contrast sharply with Gibbons (1982, table 1, p. 13), where 
the Black version of CAPM is rejected in three of the four subperiods at the 
a = 0.10 level. The excess power of the Gibbons test might be due to the non- 
conformity of his x2, with a theoretical x2 when N is large relative to T (see 
our sections 3 and 4). We have found that the x2 statistic [eq. (3)], which is 
not adjusted by Bartlett’s correction factor, exhibits larger skewness than a 
theoretical x2 if N is large relative to 7: This is the case in Gibbons, where 
N =40 and T= 60, and the Black CAPM is rejected. The corrected value of 
Gibbons’ x2 (using Bartlett’s correction) is shown in the ‘last column of table 
11, where no significant statistics appear.13 Thus the Black CAPM is 
generally not rejected when an appropriate adjustment is made for the excess 
skewness in the sample x2 statistic. 

6. Conclusion 

The concept of potential performance of a set of assets was defined as the 
maximum Sharpe measure attainable from a portfolio of the assets. The 
concept provides a useful linkage to multivariate tests of the potential 
performance contribution of additional assets, the efficiency of market proxy 
portfolios, and the Sharpe-Lintner and Black asset pricing models. . 

Two likelihood ratio statistics, x2 and F, were found to be well behaved in 
small samples (T& 60) of monthly returns on stocks. The F statistic was 
particularly well behaved and suited for multi-variate test of financial models. 

The potential performance concept was illustrated by tests which showed 
that the potential performance of forty portfolios of stocks was significantly 
less than the potential performance of the forty portfolios and the CRSP 
value weighted index combined. The portfolio efficiency test was illustrated 
by tests which showed that inefficiency in the CRSP value weighted index 
could not be detected. Thts was also a direct test of the Sharpe-Lintner 
version of the CAPM. A test of the Black CAPM, using Black, Jensen and 

l3It 1s also interesting to note that the periods, m which Gibbons rejects the CAPM, seem to 
have a global mmlmum variance return which IS either less than the r* or very close to It This 
implies that the tangency point is on the lower boundary of the efflclent set or on the extreme 
upper right boundary 
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Scholes’ and Gibbons’ zero beta returns, resulted in model rejection in only 
one of four subperiods. This contrasts with the results of Gibbons who 
rejects the model in three of the four subperiods replicated here. 

There are at least two problems that require further investigation. First, 
the comparative power of Gibbons and our methodologies needs to be 
examined in more detail. Our initial judgement is that the power of the 
Gibbons’, procedure is overstated due to the excessive positive skewness in 
his x2 statistic when the number of assets is large relative’ to the sample size. 
Second, methods of increasing the power, by_ choosing portfolios that 
maximize potential performance, need to be investigated. 

Appendix 

A.1. Derivatzon of the likelihood ratio test for H,,:p, =I;,,Z;:p, 

For T independent samples from the multivariate normal rr - N(p, .E) where 
p((Nxl), Z(NxN), v,(Nxl), t=1,2 )... , T, the logarithm of the likelihood 
function is given by 

logL= +Tiog2n-~og IZl -ktil (ut-&-‘(~,-p). 

If there are no restrictions on the parameters the maximum likelihood 
estimators of p and Z are given by [Anderson (1958)] 

- lT 
Y=Tt,l c rt and S=&til(~t-I)(lt-l)l. 

The logarithm of the likelihood function evaluated at f and S is given by 
[Anderson (195X)] 

logL=( -NT/2)log2z-(T/2)log ISI -(NT/2). 64.1) 

To test H,:pz =Z,,Z;>p, we require the maximum likelihood estimators 
of p and Z under this restriction. Using the conventional identity for the 
inverse of a partitioned matrix and the fact that IZ’( =IZ1,IIZ,, II we may 
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write 

64.2) 

where 

z 221=c~2242&%21. 

Define the matrix 0 = Z +pccp’ and partition 0 to conform to the 
partitioning of C. We may therefore write 011 =Z,, +pl& and hence by 
employing an identity, l4 $9;: may be written 

0;: =Gl -(&-l%1!4GV(l +rc;G54. 

After multiplying through by 02r and 012, obtain 

and therefore under HOI, 022.1 =Z,, 1. Defining ~=02,0,;1, then under 
H 01, the log likelihood may be written as 

Note that logL=fI(pl, J5,,)+f2(/?, 02, I), where fi(lcI, El,) denotes the 
marginal likelihood for vtl and f2@, O,, J is related to the conditional 
distribution of rt2 given rtl. The maximum likelihood estimators of ccl, ,Ell, jI 

14Gwen a full rank matrix B (N x N) and a vector d (Nx l), then 

(B+dd’)-‘=B-‘-B~‘dd’B-‘/(l+d’Bd). 

See Rao (1973, p 33, no 2 8) 
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and @hl are given by 

and 

respectively. 

Substituting the maximum likelihood estimators in the likelihood function 
we obtain 

The logarithm of the ratio of the likelihood functions is therefore given by 

logd=log~-logE=(T/2)log/~-(T/2)ldg~S,,/-(?;/2)~Y,‘, II 

=log(+/2)(/%.1l/I &.,I), 

since 

A.special case of Wilk’s Lambda is given by 

q&2 llip22 II. (A.4) 

This ratio expression of n may be simplified by exploiting the relationship 
between S,,., and Vi,.,. Let V denote the matrix given by (l/T) CT= 1 r,ri and 
let V be partitioned to conform to that of S and E. The matrices V and S are 
therefore, related by V= S+# and V1 r =Sll +FJ1. In the same fashion as 

(A.3) v,, 1 may be written as 

The ratio expression for A given by (A.4) may now be written as 

/1=(1 +v;s;,13,)/(1 +v’SIF), (A-5) 

which is obtained by using the sample form of eq. (1) in section 3 and the 
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identity [see Anderson (1958, ch. S)] 

= 1 I[ S 22 1 
(~2-~2,~~~~1)'~,,'1(~2-~21~~~~,)+1 

(1 +u;S;$,) 1 
The likelihood ratio L is therefore given by 

/2=(1 +r;s;,‘u,)T’2/(1 +Y’S-%))T’2. (A.66 

This expression is employed in section 3.2 of the paper to develop a 
likelihood ratio test statistic for Ho1. 

A.2. Derivation of the score test for H,,:p, =Z21.ZC;,lp, 

For a vector of parameters 0, the score test statistic for HO:@ = O* is 
given by D’(O*)Z-l(O*)D(O*), where D(O*) is the efficient score vector 
evaluated at O=O* and I(@*) is the information matrix evaluated at 
0 = O*. The efficient score vector is the vector of first partial derivatives of the 
sample log likelihood function with respect to the elements of 0. The 
information matrix is the negative of the expectation of the matrix of second 
partial derivatives for all possible pairs of parameters in 0. In the 
exponential family of distributions, the inverse of the information matrix is 
equivalent to the covariance matrix. 

To test a hypothesis HO:@, =OT only the portion of D(O*) pertaining to 
Or is used and is written as Dr(O:, 0,). The subvector D, may contain some 
parameters, say O,, not specified by the hypothesis and hence are replaced 
by their maximum likelihood estimators denoted by a2. The portion of the 
inverse of the information matrix pertaining to 0, is denoted by Z”(@T, a2), 
where again a2 denotes the maxmum likelihood estimator of parameters 
not specified under the’ null hypothesis. The score test statistic therefore 
becomes 

A modification of the score test statistic, when there are nuisance parameters, 
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is obtained if Z”(O’f, @,) is replaced by Z;f(OT, 6J, where the latter matrix 
represents the inverse of only the portion of the information matrix that 
pertains to 0,. In this case the score test statistic is given by 

The score test statistic and modified score test statistic for testing HO, are 
developed next. 

From (A.2) the logarithm of the likelihood function may be written 

The efficient score vector for the parameter (cz-ZzlZ;~~,) may therefore be 
written as 

which under HoI becomes -T~9,;l,(~~--y~~) where ~q=Z,,i;/. The 
covariance matrix for the maximum likelihood estimator [rz - S,,S;,lV;], 
using L? defined in section 3.1, is given by [((T-2)+Ta,)/(T-N,-_)]C,, 1, 
which in the exponential family corresponds-to the portion of the inverse of 
the information matrix corresponding to the parameter [p2--Z,,Z;~~,]. The 
value of this matrix under PO1 is [((T-2)+Ta)/(T-N,-2)]0,, r. The 
score statistic is therefore given by 

which is approximately 

Replacing the parameters q and O,, 1 by their maximum likelihood 
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estimators under H,, yields the statistic 

=(T2/(T--N,))(C~-~11/C1 +U), 

where 

64.8) 

IQ t 1 

conforms to the partitioning of Z and 0. 

The adjusted or modified score statistic is obtained by employing the 
inverse of that portion of the information matrix that pertains to the 
parameters specified by the null hypothesis. If the parameters not specified by 
the null hypothesis were known, then the adjusted score statistic would be 
equivalent to the score statistic. From eq. (A.7) the matrix of second partials 
of 1og.L with respect to the elements of [az--Zzl.Z;~~J is given by TZ;$l, 
which under Ho1 is equivalent to TQ&. The efficient score criterion using 
the modified score statistic, therefore becomes T(r; - qFJ@;; l(F2 - ;rtFl). 
Replacing the parameters 1 and ’ O,, 1 by their maximum likelihood 
estimators yields the statistic 

which can be written as 

T([a-s,]/[l +fi-J[l +S,]). (A.9) 

The score statistics (A.8) and (A.9) are discussed further in section 3.3. 
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