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The potential performance of an asset set may be obtained by choosing the portfolio
proportions to maximize the Sharpe (1966) performance measure. If a portfolio has a Sharpe
measure equivalent to the potential performance of the underlymg set of assets, then 1t 1s
efficient Multivariate statistical procedures for comparing potential performance and testing
portfolio efficiency are developed and then evaluated using simulations. Two likelthood ratio
statistics are then used to compare stock and bond indices against sets of 20 and 40 portfolios
The procedures are also corﬁpared to the Gibbons (1982) methodology for testing financial
models

1. Introduction

Mean-standard deviation efficiency and the related concept of performance
evaluation has been of significant interest to financial economists since the
originating work of Markowitz (1952) and Tobin (1958). This paper extends
the available set of evaluation techniques by proposing a performance
measurement procedure with reasonable statistical properties which utilizes
the efficient set constants of Merton (1972) and Roll (1977). The procedure is
consistent with the Sharpe (1966) performance measure, is a generalization of
the work of Ross (1980), and is an extension of Jobson and Korkie (1980,
1981). It also employs the likelihood ratio methodology, first applied to
financial economics by Gibbons (1932).

The distinctive feature of the proposed evaluation is its comparison of the
maximum attainable Sharpe performance (henceforth potential performance)
of an asset set with the potential performance of an asset subset. Some
apparent uses of the technique are the quantification of the performance
contribution made by additional assets, the efficiency evaluation of a
portfolio or market index, and for tests of multifactor capital asset pricing
models. A disadvantage of the proposed technique is that it requires
knowledge of the history of returns on the individual components of the

*The authors are grateful for the helpful comments of Gipvanni Barone Ades:, Stephen
Beveridge, Steve Hindmarch and the referee, Michael Gibbons. Part of this research was
completed while J D. Jobson was a wvisiting scholar in the Department of Biostatistics, University
of North Carolina.
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portfolio. However, this may not present an encumbrance in many
appraisals.

Section 2 derives the potential performance measure from efficient set
mathematics and discusses some hypotheses germane to mean-standard
deviation efficiency and portfolio performance. Section 3 derives the test
statistics for the hypotheses and relates the procedures to other
methodologies for testing financial models. Section 4 presents the results of a
Monte Carlo investigation into the small sample behavior of the proposed
test statistics. Section 5 illustrates the performance measures by determining
the effects of bonds and stock indices on potential performance and by
testing the efficiency of selected portfolios. Section 5 also compares the new
procedures to the methodology of Gibbons (1982) using similar data. Section
6 concludes the paper.

2. Potential performance and the efficiency hypotheses

2.1. Potential performance

The efficient set of portfolios is comprised of the portfolios that minimize
portfolio variance for a given mean excess return u,, subject to the constraint
that investment proportions sum to one. In the presence of a riskless asset,
the efficient set becomes the set of linear combinations of the riskless asset
and a unique risky asset portfolio m.

Given a population of N assets with mean excess return vector py gy and
covariance matrix Xy, the vector X, ., of risky asset proportions is
obtained from minimization of the Lagrangian

L= X,mEXm - ll(le” - :up) - j'2(‘X'me - 1)9

where A, and A, are the multipliers and e 1, is the unit vector.
The first extremum conditions provide the proportions vector

X, =X 'pleXp,

which forms the familiar tangency portfolio in mean-standard deviation
space. The mean excess return on the tangency portfolio and its return
variance are therefore

Pn= X, =pE 'p/e X ' p=a/b,
and

or =X L X, =W Z 'pf€Z" g’ =afb?,
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where the efficient set constants are
a=pX 'y and b=eX 'p

The Sharpe measure of performance for any portfolio p with proportions
X, is

Shy,= X;,ﬂ/(X;,ZXP)% = HUp/Op-

The vector X, is also the value of X, which maximizes the Sharpe
performance over all portfolios is given by

Shyy= im0 =(a/D)b]/ D =1/ 4

which is illustrated in fig. 1. Note that the investment proportions of p or of
m are not directly required for the performance calculations.

In conclusion for any set of assets, the square of the reward to varnability
ratio of the efficient portfolio of risky assets is given simply by the efficient
set constant ‘a’. In the remainder of the paper, the performance measure ‘@’
or \/ a is referred to as the potential performance of a one-period buy and
hold portfolio which is constructed from the N asset population.

o/ oy
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Mean Excess Return, u,

v ———

va/b o,

Standard Deviation of Return, o,

Fig 1 Slopes of rays through the origin measuring the potential performance \/ a and Sharpe’s
performance y1,/6,, 1n a mean-standard deviation space
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2.2. The efficiency hypotheses

The distinction has been made between the Sharpe performance of an
N-asset portfolio and the potential performance of the N-asset set. This
distinction provides a useful framework for the analysis of portfolio
efficiency.

The portfolio p will have poor parametric performance, relative to its
potential, if it is not the unique buy and hold portfolio m with proportions
X,,. Thus, u,/c, is less than \/ a if the entire N-asset set is not in the portfolio
or the N assets are not held in the correct proportions X, The portfolio p
cannot have performance exceeding \/ a unless the portfolio is actively
managed in the holding period. However, active portfolio management, via
timing and selectivity, is not fruitful if the conditional mean vector and
covariance matrix are time stationary.

The cause of a portfolio’s inefficiency may be ascertained providing the
composition of the portfolio is known. Denote the N; non-zero weight assets
of the portfolio as the set I'y, which is a proper subset of the set I' of all N
assets. Similarly, denote the potential performance of the asset sets I'; and I
as ay and ‘@, respectively. The first question of interest is whether the potential
performances of "the two asset sets are identical. That is, a test of.the
comparative potential performance hypothesis,

Hy:a,=a,

is required. The hypothesis H,, determines if the cause of the inefficiency is
due to the selection of assets. If H, is accepted then we may conclude that
the N, assets are jointly efficient with respect to the complete set of N assets.
In section 3, it is demonstrated that under certain assumptions the
hypothesis H,; is related to the hypothesis tested by Gibbons (1982) with
reference to a general class of financial models. The hypothesis H,; can also
be related to a test of the arbitrage pricing theory as in Jobson (1982a).!

A second hypothesis of interest is whether the portfolio performance /o2
is equivalent to the potential performance, or

Ho,:pljoi=a.

This hypothesis determines if the inefficiency is due to an incorrect selection
of weights (including some that are zero) for the N assets. Hypothesis Hy,
may be used to determine the relative efficiency of a pseudo market index I.

'Under certamn assumptions, the test of Hy, 15 equivalent to a test of the multi-factor capital
asset pricing model. Given a set of k factors or portfolios constructed from the N assets a new
set of assets I' consisting of the k factors and a subset of (N —k) of the origmal assets can be
constructed The comparison of the performance potential of the k factors to the performance
potential of the set I' 1s a test of a multi-factor capital asset pricing model
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That 1s, I is efficient relative to the set of N assets if it is impossible to
construct a portfolio combining I and the N assets such that the resulting
potential performance \/ a exceeds the index’s performance p /o It is
demonstrated in section 3 that a test of H,, under certain assumptions is
equivalent to a test of the equivalence of the Jensen (1968) or Treynor (1965)
measures of the N assets.

There are a variety of other questions that may be answered with Hy, and
H,,. For example, depending on the test outcomes of Hy, and H,, the cause
of a portfolio’s inefficiency may be determined [see Korkie (1983)]. Also by
defining one set of assets to include bonds as well as stocks the effect of the
addition of bonds on potential performance may be tested with hypothesis
H,,. A test which compares the performance potential of a set of portfolios
to the set of portfolios plus stock and bond indices is presented in section 5.
The next section, section 3, develops test procedures for the hypotheses Hy;
and H,,.

3. Derivation of the hypothesis testing procedures

Testing the hypothesis, that an asset subset has equivalent potential
performance to the set of assets from which it was taken, is of considerable
interest. If the two tangency portfolios formed from the asset set and subset
have equivalent Sharpe performance, then the subset 1s sufficient to maximize
performance. This section develops several test statistics for testing the
hypotheses H,, and H,, discussed in section 2. The development of the tests
requires that additional notation be introduced.

The population of N assets is partitioned into two mutually exclusive and
exhaustive subsets containing N; and N, assets. The partitioned forms of the
mean vector g and covariance matrix X are

”zl:”1:| and Z:[le 212}
" 21 2
Similar partitions will be used for the sample statistics 7 and S defined
below. The null hypothesis Hy,:a,=a may now be restated as
Hoy:#iZilm=wZ 'p

By employing the well known 1dentity for the inverse of partioned matrices
[see Morrison (1967)], the expression for g2~ p may be written as

EE  n=p E A — 2, 20 V2 T — 25 2 e, (1)
where

2:22 1= [222 —22121_11212]-
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In order for H,, to hold, the positive semi-definite quadratic form
[y, — 2 2t 1 255 [y — 2,2 n,] must be zero. This implies that
[, —Z, X7, ]1=0, since X and X,,; are positive definite. The hypothesis
H,, can be seen therefore to be equivalent to the hypothesis

H01:[ﬂ2_221£1_11I‘1]=0- )]

This result is employed to develop test procedures for Hy,.

To construct test procedures for Hy,, some assumptions about the
sampling process and the multivariate distribution of excess return premiums
are required. A random sample of T excess return observations on N assets is
assumed available and given by the (N x 1) vector r,, t=1,2,..., T, where r, is
multivariate normal with mean excess return vector g and covariance X. The
maximum likelihood estimators of g, X, £~! and ‘@’ are given by 7, S, $7*
and 4, respectively, where

T
F=(1/T) Z Fi

s=(1mt§1 (r— Al — 7,

While 7 is unbiased for g, unbiased estimators for £ and X~ ! are provided
by (TAT—1)S and W " '=(T—-N-2)/T)S™"' respectively [see Anderson
(1958)]. The unbiased estimator for ‘a’ has been shown by Jobson and
Korkie (1980) to be d*=((T—N—2)/T)d—N/T. In small samples, the bias in
the maximum likelihood estimator of 4 will therefore be substantial relative
to ‘a’. Inferences about ‘@’ may be made using the statistic [(T—N)/N]14,
which follows a non-central F, . .. distribution? with v,=N and
v,=(T — N) degrees of freedom and non-centrality parameter v;=(T)(a).

Test procedures for H,, are, however, more conveniently obtained using
the alternative form of the hypothesis given by (2). The remainder of this
section outlines four alternative test statistics for Hy, and Hy,.

2Since exhaustive tables of non-cental F’ are not always available, a simple’ approximation to

F; 518 available from the central F,_ , distribution [see Johnson and Kotz (1970)]. That 1s,

ViV, V.

v
F"p"zv":

~(L+vs/v)F,, ,, where Va =+ 3l /vy +2vy)

Unpublished simulation studies by the authors have shown that, for parameters with magnitudes
representative of stock market monthly data, this particular central F approximation 1s excellent
for T=60 observations
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3.1. The Wald statistic

Let y=[p,—¥,, X p.], then an unbiased estimator of y is given by the
maximum likelihood estimator §=[F,—S,,S771], with covariance matrix®
given by

Q=[(T-2)—Ta)T=N=21(Z22:/T).

Because $ is asymptotically normal, $2'% is asymptotically y* with N,
degrees of freedom if Hy, is true. Since 27! is unknown, a, and X;;}', are
replaced by the unbiased estimators d4¥=(T—-N,—2)/T)i,—N,/T and
((T—N —2)/T)S;,} ,respectively, where S,, ; =[S,,— 5,871 S1,]. The resulting
test statistic 219 is a Wald (1943) statistic* and is asymptotically y2 if H,,
is true. The statistic may be wntten in the form

(T—N=2)(T—N—2)/[T(1+4})—21[F, — 821811711837 1[F2— 821 811'F1],
or equivalently [using the sample form of (1)] as

(T—N—-2)T—N,;—2)/[T(A+a1)—-21[FS'F—r S;/F ],
which is approximately®

¢1,1=(T—N)é—a,])/[1+4,]

The behavior of the statistic ¢, ; in small samples is studied in section 4.1.

3.2, The likelihood ratio test

An alternative approach to developing a test for H,, is the likelihood ratio
test. The likelihood ratio for testing H,; is given by (A.6) in the appendix
and can be written as

A=(1+a,)"?*/(1+a)".

Knowledge of the critical value of the A statistic requires that its
distribution under H,, be known. A general approximation for likelihood

3The expression for £2 1s obtained by observing that » and S are statistically independent and
that E(S,,87")=X,, 27 The covariance between rows 1 and j of the matrix §,,87 1s given by
(IAT~N,—2)W, 21y, where ,, 1s the yth element of X, ; See Marx and Hocking (1977)

*The Wald statistic was used previously by Gibbons (1980) and Jobson and Korkie (1981).

*By employing S.N. Roy’s (1953) union-intersection princtple, a test statistic 1dentical to ¢, ;
may be derived.
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ratio tests is that —2log, /. asymptotically follows a x> distribution with
degrees of freedom equal to the number of independent restrictions placed on
the parameter by the null hypothesis [see Silvey (1970)]. Thus. the statistic

log [{1 +a)(1 +3)] G

has an asymptotic y? distribution with N,=(N—N,) degrees of freedom, if
Hy, is true.

'A number of approximations have been developed for ‘the distribution of 4
which may be of use for performance tests. Bartlett (1938) employs the statistic

¢1,2=(T—N;—N,/2—-1)log [(1+a)/(1 +4,)],

which is asymptotically y*> with* N, degrees' of freedom under the null
hypothesis. This approximation is more precise than (3) because the term
(T—N;—N,/2—=1)is designed to remove second-order terms in the asymptotic
expansion. It is worth noting here that, if T'is small relative to N, and/or N,,
the value of ¢, , will be considerably smaller than the value given by eq. (3).
The superiority of ¢, , over (3) is dlscussed in Anderson (1958). The
importance of this difference is noted in the simulation tesulfs of section 4
and in section 5.

A second approximation for the distribution of 4 is due to Rao (1951), who
employs an F distribution. The test statistic for H, is given by

¢1,3=[T—N—1)/N,][(1-A)/A]=[(T—N—1)/N,J[(@d—a )1 +d,)],

where A=A%7 is a form of Wilks Lambda given by (A.5) of the appendix.®
Under Hy,, ¢, ; is asymptotically an F distribution with N, and T—~N—1
degrees of freedom. Both approximations ¢, , and ¢, 5 are discussed in Rao
(1973, p. 556). In a multivariate regression model the statistic ¢; 5 -follows the
F distribution exactly while the statistic ¢, , is asymptotlcally ¥2. In this
application the statistic ¢, 5 is only asymptotlcally an F distribution because
the return vector #; is not fixed. It is believed, however, that ¢, ; should be a
superior approximation in small samples. The small sample behavior of ¢, ,
and ¢, , is studied in section 4.

3.3. The score test
A test statistic for the null hypothesis H,; may also be developed from

SUnder multivaniate normality, the likelihood ratio test for the hypothesis that a subset of the
regression coefficients are zero m a multivariate regression also results 1 a form of Wilks
Lambda. Using the form of H,, given by (1), the hypothesis may be recognized as bemng
equivalent to the hypothesis of a zero intercept vector in a multrvariate regression A fmore
detailed discussion of this is given in Jobson (1982b) and Jobson and Korkie (1982).
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Rao’s (1947) score test” outlined in Rao (1973, pp. 415-420). Thus test statistic
has the same asymptotic distribution (x> with N, df) as the previously
developed test statistics ¢, ; and ¢, ,.

The score test criterion, given by (A.8) in the appendix, is [T*/(T—N)]
[d—a/(1+ad,)], which is equivalent to ¢, ; multiplied by the factors
T?/(T — N,)(T — N)). Therefore the score test statistic will always exceed ¢, ;,
and therefore is not studied in the remainder of the paper. ‘

The adjusted or modified score test statistic as given by (A.9) of the
appendix is

¢1,4=THd—a )/ +a)(1+a)].

This statistic is equivalent to ¢, ; multiplied by the factor T/[(1+ad@)(T—N)].
In large samples if 4 is large relative to d,, the magnitude of ¢, , should be
less than ¢, ;. In section 4 this modified score test statistic is studied and
compared to the other three test statistics using a Monte Carlo experiment.

34. Tests for portfolio efficiency

For the special case of H,; when N, =1, the potential performance \/ a of
the asset p and its Sharpe performance pu,/0, are identical. Thus, a test of
H,, in this case is a test of the mean-standard deviation efficiency of the
asset p.

The special case of hypothesis test H,, is the test addressed by Ross (1980)
for testing the efficiency of a portfolio. One large sample test statistic used by
Ross was the expression (3) above with N, =1 and N,=N —1. The preferred
Bartlett’s small sample approximation, as in the case of ¢, , is given by

$2,2=(T—N/2=5/2)log, [(1 +a)/(1 +73/5D)],

where 7, and s2 are the sample mean and sample variance of the portfolio of
interest. ¢, , is distributed asymptotically as a x> distribution with (N—1)
degrees of freedom under H,,. In sections 4 and 5, the advantage of ¢, ,
over the Ross test is discussed.

By replacing 7, Sy,'F; by 73/s?, the other H,, test statistics may also be
modified for a test of H,,. That is

b2, =(T—N)a—7;/s))/(1 +7/5))],

7The authors are indebted to Michael Gibbons for suggesting that the score statistic be
included as a potential test statistic. Tests based on this statistic have also been called Lagrange
Multiplier tests after Silvey (1970). The Wald statistic, the hkelihood ratio y? statistic and the
Lagrange Multipler statistic have been compared in Buse (1982). The Buse article also contains
a bibliography for comparisons of the three y* statistics for the multivariate regression model.
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which under H,, is asymptotically distributed as a x> with (N —1) degrees of
freedom,

¢2.3=[(T—N—D/N—-DI@~75/sp)/1+7;/s)],

which asymptotically follows an F distribution with (N—1) and (T—N~—1)
degrees of freedom under Hy,, and finally

¢2,4=(TLa—F/s DAL +dI[1+75/s7D),

which under H,, is asymptotically x> with (N — 1) degrees of freedom.

The behavior of these statistics in small samples is examined in section 4
using Monte Carlo simulation. The relationships of Hy, to hypotheses of
mean-variance efficiency, using Jensen or Treynor measures, is discussed riext.
The next section also relates these test procedures to the recent work of
Gibbons (1982).

3.5. Relationships to other test procedures

3.5.1. Equivalent Treynor measures
|

The hypotheses H 0; and H,y, can be related to other available test
procedures‘for mean-variance efficiency. Roll (1978) has shown ‘that a test of
the mean-variance efficiency of a portfolio p, constructed from an N asset set,
may be carried out using the security market line. In his proposition S4, he
states that a given index is mean-variance efficient if the betas of all assets
are related to their mean returns by the same linear function.

The Treynor measure ji,/p,, of any security i in p, represents the security’s
return premium contribution x;u; divided by its fractional risk contribution
x;02/0;, This marginal rate of substitution between risk and return must be
identical for all members of p, if p is efficient (i.e., maximizes return premium
per unit of total risk). Otherwise, some investment reallocation would
provide a larger return per risk unit implying that p is inefficient. Thus, all N
assets will plot on a market line derived from an efficient portfolio p. A test
of equality of the Treynor measures, Ho:ps/Br=1s/Br=1s/Br=...=ux/By is
therefore a test of mean-variance efficiency. A x? test for the equality of
Treynor measures is developed in Jobson and Korkie (1981).

As outlined at the beginning of this section, the test of the hypothesis Hg,
is equivalent to testing Ho;:p, =2, 211" p;. In the case of a single portfolio p,
with N, =1, Hy, becomes Hy,:pt, =6,p,/62 or Ho,:p, =p,B, Where o, is the
(N x 1) vector of covariances between N assets and the portfolio p and B is
the (Nx1) vector of security betas computed “with respect to p. The
hypothesis H,, is therefore equivalent to the hypothesis of equal Treynor
measures.
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3.5.2. Equivalent Jensen measures

The hypothesis H,, may also be related to the Jensen performance
measure. Ross (1977) has shown that a test of equality of the Jensen
performance measures, Hy:a,=0,=...=oy for N assets, is also a test of the
mean-variance efficiency of a portfolio p. The (N x 1) vector &, with elements
a, j=1,2,...,N, is the intercept vector for the linear model

r,=a+pr,+e, t=1,2,..., T,

where r,is an (N x 1) vector of return premiums, r, is the return premium of a
portfolio of the N assets, B is the (N x 1) vector of betas between p and the N
assets and ¢, is an error term. This regression model was applied in Black,
Jensen and Scholes (1972) to tests of the capital asset pricing model.

As suggested in footnote 6, the vector (u,—2X, X p,) from H,, is
recognized as the intercept vector in the multivariate regression of the vector
ryy (Nyx1), on the (N;x1) vector ry, t=1,2,...,T, where r,=(r,ry,) is
multivariate normal. In the special case of H,,, with N;=1, the intercept
vector becomes [y, —a,u,/6%] which 1s equivalent to a=[pu,—Bu,]. Since the
portfolio is assumed to be a linear combination of the N assets, there is no
loss of generality in letting g, refer only to N,=(N —1) assets provided that
the asset omitted from g has a non-zero weight in the portfolio p. The test of
H,, is therefore equivalent to a test of equality of the Jensen measures
provided that the index portfolio is derived from the N assets.

3.5.3. Gibbons multivariate approach

In a recent paper by Gibbons (1982), a multivariate approach to testing
the capital asset pricing model is outlined. Gibbons begins with the model
rh=o;+prk+e,t=12,..,T i=1,2,..,N, where r} denotes the return (not
the return premium) on asset i at time ¢ and r}, denotes the return on the
market portfolio at time t. Under the assumption that the N assets’ returns
are distributed as a multivariate normal, Gibbons develops a likelihood ratio
test of the null hypothesis, «;=7y,(1—8), i=1,2,...,N, where 7, is the mean
return on a zero beta portfolio orthogonal to m. Because of the nonlinearity
of the hypothesis, a Gauss-Newton approximation is employed to solve the
likelihood equations. This approximation requires preliminary estimates of Yo
and the f, i=1,2,...,N, that are consistent. The likelihood equations for the
vector B of elements f,, i=1,2,...,N, are given in Gibbons (1980) as

(¥ —70e) (r—70€)
B*=[(rn—708)(rn—700)] " : ,

(r¥—voe) (rk—7vo€)
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where r¥ and r¥, i=1,2,.., N, are (T x 1) vectors. of returns and e is a (T'x 1)
vector of unities. ‘

If yoe is replaced by a vector of risk-free rates then the maximum
likelihood estimator of B, glven by B*, is equivalent to our maximum
likelthood estlmator p given in the appendix. Our likelthood ratio test of the
efficiency of m is based on an available time series of the risk- free rate, while
Gibbons’ likelihood ratio test assumes a constant expected zero beta rate
which must be estimated from the data. Gibbons’ ¥ statistic therefore has
one less degree of freedom than ours.

In section 5, the ¢, , x*> and ¢, 5 F statistics are used to test the efficiency
of equal weight portfolios relative to sets of 20 and 40 portfolios. The test
proceduires are also compared to those of Gibbons (1982).

4. The sampling experiment

A Monte Carlo simulation was designed to investigate the small sample
behavior of the asymptotic test statistics outlined in section 3. That is, the
small sample properties of the > statistics ¢, , ¢1 ,, ¢, 4 and the F statistic
¢, 5 are examined for tests of the performance potential hypothesis Hy;. In
addition, the sampling properties of the x> and F statistics ¢, 1, $2.3, $2.4
and 432,3 are investigated for tests of the portfolio efficiency hypothesis H,.
Of particular interest are the moments and the tail areas of the small sample
distributions and their correspondence with the theoretical distributions. The
powers of the hypotheses tests are also computed for several arbitrary
hypotheses.

The simulation was parameterized with a set I' of N=50 randomly
selected NYSE stocks having 360 continuous monthly returns commencing
Janiuary, 1950. The observed mean vector and ¢ovariance matrix for the
stocks were treated as the population parameters p and X. The riskless
interest rate ' was assumed to be zero without perceived loss of generality. To
provide two mutually exclusive stock subsets, the 50 stock population was
randomly partitioned into N,=20 and N,=30 stock subpopulations,
denoted by I'; and I',, respectively. The parameters of these subsets are
denoted by py, p,, X, and X,,. The partitioned forms of g and ¥ are
therefore denoted by

”2[!‘1] and ;z=l:211212:]‘
53 25125,
The efficient set constants ‘@’, ‘b’, and ‘¢’, are given in table 1 for the three

sets of assets I'y, I',, I';. The values of ‘@’ for the three populations are
denoted by a, a; and a,, respectively. These three asset populations are
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employed in this section to evaluate the sampling properties of the four test
statistics for both hypotheses H,, and H,.

4.1. Tests of equivalent potential performance Hy,

In order to examine the behavior of the test statistics when the null
hypothesis H,, is true, two additional 50 stock populations I", and I'y were
constructed by modifying the mean vector p of I, and preserving the
covariance matrix. The mean vectors for I', and I’y are denoted by

”Az[!h :I and ”B:[ﬂm]’

Haz 1]

where pi,=X,,25, 0, and pg, =2, X ', satisfy the form of H,, given by
(1). The pair of populations I'; and I', now satisfy H,, as do the
populations I', and I'y. The respective ‘a’ values from table 1 are a,=a,
=0.096 and az=a,=0.157.

In order to examine the power of the test statistics when the null
hypothesis H, is not true, two alternatives were studied. The population I’
was compared to each of the subpopulations I'; and I',. From table 1 the
respective population ‘@’ values are a=0.191, a, =0.096 and a,=0.157.

Two hundred random samples for each sample size T=60, 120 and 240
return observations were generated from the parameters of the I', I'y and I'p
50 stock populations, the 20 stock subset I'; and the 30 stock subset I',.%
For each sample, the maximum likelihood estimates of the mean vector £,
covariance matrix S and 1its inverse ™' were computed for I', I'y, I'p, T’y
and I',.°

The ‘¢, , test statistics, for a test of . the equivalence of potential
performances of the 20 stock subset I'y and the 50 stock set I',, were
computed across all samples. Similarly the ¢, , test statistics, for equivalent
potential performance of the 30 stock.subset I', and the 50 stock set I'j,
were computed over the 200 samples. The ¢, ; statistics’ mean, variance and
right tail .areas were calculated over the 200 samples and compared to their

®Return samples wefe generated using a double precision version of the multivanate normal
random number generator from the IMSL Subroutine Package. The 200 replications seemed
sufficiently large to provide accurate imdications of the small sample distributions of the
statistics. For example, the ¢, ; small sample distributions had standard errors from 1 to 3
percent of the sampling mean All calculations in the simulation were performed in double
precision Fortran

?Checks were made m each sample to ensure that the global minmmum mean return 7, =b5/¢
exceeded the riskless rate r,=0. Samples m which r; exceeded 7, were discarded and ‘a new
sample was drawn See Merton (1972) for a discussion of the consequences-of > 7,
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Table 1

Efficient set constants a, b, and ¢ for three randomly selected N =50,

N,;=20, and N,=30 stock populations with a zero nskless rate,

where z 15 the mean premium return vector, e 1s the unit vector, and

Z~1 is the covariance matrix inverse. Parameters are formed from
360 monthly returns commencing January 1950.

Efficient set constants

Number

of stocks a=uE 'y b=eI c=eZ le
N=50 0191 0.111 0.128
N,=20, N,cN 009 0.065 0.079
N,=30, N,cN 0.157 0.103 0.112

theoretical counterparts under a true Hy,. The results are shown in tables 2
and 3.

The preceding statistics were generated under true null hypotheses
H,,:a,=a, and Hy,:ag=a,. The power of the test statistics, under a false Hy,,
were observed b computing 200 ¢, , test statistics from the I' and I'; stock
sets as well as from the I' and I', stock sets. The powers of the ¢, , test
statistics were computed by counting the number of samples, out of 200, for
which a ¢, ; statistic exceeded the a=0.05 critical value in a test of the
equivalence of the potential performances of the 50 stock set 1 and the 20
stock subset I';. The power calculation was repeated for the 50 stock set I’
versus the 30 stock subset I',. The powers are listed in table 4.

In general, the best statistic appears to be the ¢, ; F statistic. Its sampling
mean, variance and tail areas ‘closely correspond to the values of a
theoretical F distribution at all three sample sizes and for both simulated
populations presented in tables 2 and 3. For example, consider the
comparison of the 20 stock and 50 stock population contained in the first
panel of table 2, where the T=60 sampling distribution of the ¢, ,
i=1,...,4, statistics and the theoretical y* and F statistics are presented. The
mean and variance of a theoretical F distribution, with 30 and 9 degrees of
freedom, are 1.25 and 0.66 while the sampling mean and variance of the ¢, ,
statistic are 1.15 and 0.54. Similar comparison of the right tail areas shows a
very close correspondence between the theoretical F and the ¢, 5 statistic.
The ¢, 1, $1.2, and ¢, 4 * statistics do not perform as well until at least
sample size T=120. At T=120, the ¢, , statistic is superior to the other x>
statistics since there is g:loser correspondence between a theoretical y* with 30
degrees of freedom and the ¢, , statistic. As shown in table 3, the power of
the ¢, 5 statistic under a false H,, increases from 0.05 at T'= 60 to 0.57 at
T=240 for the 20 stock case and from 0.03 at T=60 to 0.24 at T=240 for the
30 stock case. Thus the ¢, 5 test statistic does not demonstrate any powerful
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Table 2

Sampling mean, variance and right tail areas of the x? statistics ¢, ;, ¢, , and'¢, , and the F

statistic ¢, 3 for tests of the equivalent performance (H,, a;=a,) of N,;=20 stocks versus

N =50 stocks, for sample sizes T=60, 120 and 240 Each experiment 1s based on 200 replications,
under a true null hypothesis

Statistic Mean Vanance Right tail areas

Sample size T=60

1 30.0 60.0 099 095 09 075 050 025 010 005 001
1,1 383 597.0 094 088 082 071 057 043 035 029 021
1,2 35.5 975 1.00 098 09 091 071 048 030 020 0.08
1.4 272 30.1 100 09 091 064 034 008 003 001 000
F 1.25 0.66 099 095 090 075 050 025 010 005 001
¢13 1.15 054 098 094 09 071 043 021 007 003 001

Sample size T=120

Ve 300 600 099 095 090 075 050 025 010 005 001
b1 317 1039 099 094 0838 071 055 034 019 012 005
by, 31.0 67.7 099 095 091 076 055 030 013 008 0.02
1.4 280 41.8 099 092 088 072 042 015 003 002 000
F 103 0.10 099 095 09 075 0350 025 010 005 Q01
b13 1.04 011 099 095 091 072 051 027 012 005 002

Sample size T=240

b 30.0 600 099 095 09 075 050 025 010 005 001
D41 30.0 69.1 098 094 08 073 049 028 0.12 007 001
1.2 298 585 098 095 090 074 049 023 009 005 002
b4 27.1 437 098 093 084 065 037 014 003 001 0.00
F 1.01 0.08 099 095 090 075 050 025 010 005 001
1.3 1.00 0.08 098 094 089 073 047 024 0.0 005 001

ability to distinguish potential performance differences between the 50 stock
population and the 20 and 30 stock subsets at T=60. It is worth
emphasizing that this lack of power stems from the natural variability of the
stock market data, rather than from departures from the assumed small
sample distribution. The x? statistics ¢, ;, and ¢; , seem to be more
powerful that the ¢, ;|F at T=60. However, this result is due to the excess
skewness of the x> statistics above the theoretical 2, as shown in tables 1
and 2. In contrast, the ¢, , statistic tends to be less skewed than a
theoretical y* distribution and as a result exhibits less power than the ¢, 5
statistic.

It is also important to note that the statistic given by (3) in section 2,
which uses the multiplier T rather than (T—N;—N,/2—1), would always be
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Table 3

Sampling mean, variance and right tail areas of the x* statistics ¢4 ;, ¢, , and ¢, , and the F

statistic ¢, 5 for tests of the equivalent performance (Hyi:a,=ag) of N,=30 stocks versus

N =50 stocks, for sample sizes T=60, 120 and 240 Fach experiment 1s based on 200 replications,
under a true null hypothesis

Statistic Mean Variande Rught tail areas

Sample size T=60

1 200 40.0 099 095 09 075 050 025 010 005 001
1.1 26.2 3616 097 089 083 070 057 044 036 028 0.18
oy, 22.7 60.5 099 097 093 083 064 041 023 011 004
b14 177 234 1.00 092 084 067 036 012 002 000 000
F 1.25 0.73 099 095 09 075 050 025 010 005 001
¢35 1.18 0.73 098 092 088 070 046 022 008 002 001

Sample size T=120

2 200 400 099 095 090 075 050 025 010 005 00L
b4 202 526 099 093 089 071 047 028 016 010 001
b1 - 198 390 099 094 091 074 046 026 011 005 000
bi4 169 243 099 091 081 057 030 010 001 000 000
F 103 014 099 095 090 075 050 025 010 005 001
b1 100 013 099 094 089 071 046 025 010 004 000

Sample size T=240

1 200 400 099 095 090 075 050 025 010 005 001
1.4 210 44.7 099 097 094 080 053 029 013 0.07 001
@42 207 38.7 099 097 094 081 053 027 011 006 001
b4 18.0 274 099 094 08 067 037 011 003 001 001
F 1.01 0.11 099 095 090 075 050 025 010 005 001

3 1.04 0.11 098 095 090 074 051 025 011 006 002

larger than ¢, ,. This would indicate that ¢, , is superior to (3) in
conforming to a y? distribution.. An examination of simulation results in
Gibbons (1982) also reflects that the statistic, given by (3), tends to have a
larger mean and variance than the theoretical x>. The excessive values of the
mean x? in. Gibbons are approximately equivalent to the excess expected
from employing T rather than the Bartlett correction in ¢ ,.

4.2. Tests of portfolio efficiency H,,

To examine the behavior of the test statistics when the null hypothesis Hy,
is true, the true proportions vectors X,,, X,,; and X,,, were determined using
the true parameters ‘of the 50, 20 and 30 stock populations I', I'; and I,
respectively. Using the same random samples generated in section 4.1, the



J.D Jobson and B. Korkie, Portfolio performance tests 449

Table 4

Powers of the test statistics ¢, ;, ¢, 5, ¢.3 and ¢, 4 in an 2=0.05 test of potential performance

differences between N=50 and N, =20 stock sets (H,, a=a,) and between N =50 and N,=30

stock sets (Hyq'a=a,) for sample sizes T=60, 120 and 240 Each experiment 1s based on 200
replications, with parameters a=0 191, a, =0096 and a,=0 157, for stock sets I', I';, and I',

Test powers

Statistic T=60 T=120 T=240

N,=30,, N,;=20,T, N,=30,I, N,=30,I, N,=20T, N,=20,T,

b1 0.30° 034 014 037 027 064
b14 016 022 0.09 027 025 0.58
b1 003 005 0.08 024 024 057
bre 001 001 002 007 008 0.36

*The probability of rejecting with ¢, ; the (false) null hypothesis, that the potential
performance ‘@’ of the N=>50 stock set I' 1s equal to the potential performance a, of the
N, =30 stock set I',, 1s 030, with T=60 observations The powers may be compared among
statistics ¢, , among sample sizes T. and between the number of stocks N,

squared Sharpe performance measures F2/s2=(X,F2/(X,SX,), Fai/si;
= (X171 [(X71811 Xm1) and 755 /505 = (X,25)* [(X142822X,,) were computed for
each sample. The ¢, , statistics for testing H,, were then computed for each
sample. The mean, variance and right tail areas of the test statistics, based on
the 200 samples, were determined and are compared to their theoretical
counterparts in tables 5, 6 and 7.

The mean, variance and tail areas of ¢, ; are very similar to the mean,
variance and tail areas of a theoretical F distribution. The good behavior of
the ¢, 5 statistic does not seem to be affected by sample size or number of
assets. With the exception of the 50 asset case with sample size T=60, the
statistic ¢, , was comparable in behavior to a theoretical x> distribution. At
T=60 for the 50 asset population, ¢, , was far more skewed than the $
distribution. The test statistic ¢, ; was in general more skewed than the
x* distribution, while the statistic ¢, , was in general less skewed than the y°
distribution. The behavior of ¢, ; and ¢, , were unaffected by sample size or
number of assets.

To evaluate the power of the ¢, , test statistics under a false Hy,, two
inefficient portfolios were formed from each of the two sets of assets I' and
I'y. The first pair of inefficient portfolios were the equal weight portfolios
- with true squared Sharpe measures (#'e)*/(e'Xe)=0.065 and (u,e)?/(€\ 2 e,)
=0.055, respectively. The second pair of inefficient portfolios were partial
equal weight portfolios with equal weights over the first 10 stocks and zero
weights over the remaining 40 and 10 stocks, respectively. The theoretical
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Table 5

Sampling mean, variance and right tail areas of the y” statistics ¢, ;, ¢, , and ¢, , and the F

statistic ¢, 5 for tests of the efficiency (H,,:a=uZ/a2) of the N =350 stock tangency portfolio m,

for sample sizes T=60, 120 and 240 Each experiment 1s based on 200.replications, under a true
null hypothesis.

Statistic Mean Variance Right tail areas

Sample size T=60

12 49.0 98.0 099 095 09 075 050 025 010 005 001
¢34 61.9 1403.6 091 082 077 070 058 043 039 035 026
92,2 60.9 191.8 1.00 099 098 094 081 064 042 034 016
P 414 24.1! 099 093 086 048 006 001 000 000 000
F 1.25 0.61 099 095 09 075 050 025 010 005 001
b33 1.14 0.46 098 094 089 071 042 020 004 002 001
Sample size T=120
a 49.0 980 099 095 09 0.75 050 025 010 0.05 001
by 4 501 1819 098 091 083 073 049 032 017 011 005
?2.2 494 102.9 099 09 090 0.76 049 027 010 006 002
Doru 407 492 097 08 070 041 013 003 000 000 0.00
F 103 008 099 095 090 075 050 025 010 005 0.0t
d23 101 007 099 094 090 073 047 022 009 005 002
Sample size T=240
x? 49.0 98.0 099 095 090 075 050 025 010 005 001
P 50.0 117.5 1.00 09 092 076 050 029 015 007 003
3. 494 903 1.00 098 094 077 049 028 011 006 001
02,4 41.7 559 098 086 073 046 018 005 001 000 000
F 101 0.03 099 095 09 075 050 025 010 0.05 001
b2 1.02 0.05 1.00 098 093 077 050 028 007 004 0.01

squared Sharpe measures for both sets was 0.041.1° Using the same 200
samples as above, the ¢, ; statistics were computed assuming H,, to be true.
The power in each case was determined by counting the number of samples
for which a ¢, , statistic value exceeded the a=0.05 critical value. The power
fractions are given in table 8.

Inspection of table 8 reveals that the power of the test statistics ¢, 5 and
¢,,, are comparable with the exception of the 50 asset case at T=60. In this
case, the extreme skewness in ¢, , results in a larger power than ¢, ;. In
general, the statistic ¢, ; displays larger powers than ¢, ; reflecting’ the
extreme skewness in the distribution of ¢, . In contrast, the statistic ¢, ,

19The squared Sharpe measure for the typical stock 1s about 0015 Thus, the equal weight
portfolios have squared Sharpe measures of approximately three to four tumes the typical stock.
In contrast, the squared potential performance 18 about two to three times as large as the equal
weight squared Sharpe performance. Thus, these equal weight portfohos represent portfolio
efficiency mn the mid-range of the typical stock and maximum potential performance
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Table 6

Sampling mean, variance and right tail areas of the x® statistics ¢, 1, ¢, , and ¢, , and the F

statistic ¢, 5 for tests of the efficiency (Hoy'a,=p2,/02,) of the N,=30 stock tangency

portfolio m2, for sample sizes T=60, 120 and 240. Each experiment 1s based on 200 replications
under a true null hypothesis.

Statistic Mean Variance Rught tail areas

Sample size T=60

12 29.0 580 099 095 0% 075 050 025 010 005 001
ds.1 30.3 1348 098 09 084 070 051 035 019 011 005
by 290 56.7 100 097 08 074 050 026 010 004 001
$24 250 252 100 093 084 061 026 004 010 001 000
F 1.07 018 099 095 0% 075 050 025 010 005 0.01
a3 101 015 099 094 08 070 045 020 007 002 00t
Sample size T=120
x2 290 580 099 095 09 075 050 025 010 005 001
02,1 29.9 809 1.00 094 08 075 051 029 015 011 004
02,2 29.1 56 60 .00 095 091 076 050 025 012 006 001
ba.4 250 322 099 092 083 058 028 007 001 001 000
F 1.03 011 099 095 09 075 050 025 010 005 001
i3 1.02 0.09 100 097 091 076 048 023 010 004 001
Sample size T=240
¥ 290 58.0 099 095 09 075 050 025 010 005 001
@51 29.2 64.1 098 095 09 074 051 025 011 006 0.02
@22 288 546 098 09 090 075 051 023 008 004 001
¢34 251 38.1 098 091 080 058 028 007 003 001 000
F 1.01 008 099 095 09% 075 050 025 010 005 001
23 1.00 0.08 098 09 090 074 051 024 009 004 001

displays much lower powers than ¢, ; reflecting the fact that ¢, , has less
skewness than the theoretical x* distribution. The power of the ¢, ; statistic
increases from 0.03 and 0.09 at T=60 to 0.67 and 0.40 at T'=240.

On the basis of the simulation results of this section, two likelihood ratio
statistics ¢, 5 and ¢, , are superior to the other y? statistics. For samples of
at least T=120, both likelihood ratio statistics perform equally well. At
T=60 the ¢, 5 F statistic is well behaved but the ¢, , y* statistic is not. In
addition, at T=60 the power of the F test against several alternatives was
found to be poor. Once again, it is worth noting that the likelihood ratio x>
statistic ¢, , is superior to the statistic given by (3) in section 3. The statistic
¢,. , therefore is superior to Ross’s likelihood ratio x>

In the next section of the paper, the two likelihood ratio test statistics x2
and F will be used to compare sets of assets including stocks, government
bonds and corporate bonds.
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Table 7

Sampling mean, variance and right tail areas of the y* statistics ¢, ;, ¢, , and ¢, 4 and the F

statistic ¢, , for tests of the efficiency (Hy, a, =p2,/0%,) of the N, =20 stock tangency portfolio

ml, for sample sizes T=60, 120 and 240 Each experiment 1s based on 200 replications, under a
true null hypothesis

Statistic Mean Vanance Right tail areas

Sample size T=60

7 19.0 38.0 099 095 090 075 050 025 010 005 001
2,1 20.6 62.1 099 093 091 077 052 034 022 014 003
32 194 36.2 100 094 092 079 051 029 011 005 001
D34 177 21.1 100 094 091 074 044 014 002 000 000
F 1.05 018 099 095 09 075 050 025 010 005 001
¢23 1.06 016 100 094 091 077 051 028 0.0 004 001
Sample size T=120
1 19.0 380 099 095 09 075 050 025 010 005 001
21 18.7 42.6 098 092 085 077 047 022 009 005 002
s, 18.2 334 099 093 08 077 045 020 007 004 001
Dsa 16.8 244 098 091 084 071032 012 004 001 000
F 102 0.13 099 095 090 075 050 025 010 005 001
$23 0.97 0.11 099 093 08 078 044 018 006 003 001
Sample size T=240
b 19.0 38.0 099 095 090 075 050 025 010 005 001 -
a1 20.0 497 100 096 094 078 057 030 013 009 003
@22 19.7 432 100 096 094 078 056 028 012 007 002
D2 181 328 099 095 090 071 045 020 006 003 001
F 101 0.12 099 095 09 075 050 025 010 005 001
2.3 1.05 014 100 096 095 078 0352 028 012 007 002

5. Some illustrative tests

Two likelihood ratio test statistics have been developed for tests of the
potential performance equivalence of different asset sets and for tests of the
efficiency of portfolios. Three interesting financial applications of the test
statistics are:

(a) the improvement in potential performance from the inclusion of bonds in
a stock portfolio,

(b) the efficiency of a portfolio, and the related issue of,

(c) the validity of the Sharpe-Lintner, Black, or multifactor versions of the
capital asset pricing model. ‘

The purpose of this section 1s to examine these issues while illustrating the
use of the test statistics.
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Table 8

Powers of the ¢, 4, ¢, 5, ¢,,2 and ¢, , test statistics in an «=005 test of the efficiency of the

equal weight (upper part) and partial equal weight (lower part) portfolios m the N=50, I’

stock set (Hy, a=p7/o}) and m the N, =20, I'y stock set (Ho,, ay = p2,/c2,). Each experiment 1s based

on 200 replications, with parameters a=0 191, a, =0.096, j2/a2=(0 065 for the equal weight case

and 0.041 for the partial equal weight case) and p2; /02, =(0.055 for the equal weight case and
0041 for the partial equal weight case)

Test powers

Statistic T=60 T=120 T=240

N=50, N,=20,I', N=50, N,=20,I; N=50, N,=20,T,

bas 042 021 0.41 018 0.74 046
b2 041 0.10 028 013 063 039
s s 0.03 0.09 025 013 0.67 040
bae 000 000 0.06 0.06 041 028
b1 043 023 0.48 027 0.82 060
b3 042 0.14 033 016 077 055
b2 0.03 0.13 031 016 078 055
bra 0.00 0.05 0.08 0.12 061 048

*The probability of rejecting with ¢, the (false) null hypothesis that the potential
performance ‘@’ of the N =50 stock set I 1s equal to the performance ,ug/aﬁ of the equal weight
portfolio of 10 stocks 1s 043 with T=60 return observations

Four time periods, each containing T = 60 months, were chosen to concide
with the last four time periods in Gibbons (1982). The subperiods are
January 1956 — December 1960, January 1961 — December 1965, January
1966 — December 1970 and January 1971 — December 1975. The monthly
returns for all securities listed on the CRSP tape, without missing returns,
were obtained for each of the four subperiods. The beta’s, estimated in a
subperiod for all stocks using the CRSP equally weighted index, were ranked
and used to group the stocks into forty equally weighted portfolios each
containing the same number of stocks. This beta grouping procedure is not
necessary or necessarily best but is used m order that our results may be
compared with those of Gibbons.!! In addition, the same stock set was used
to form twenty portfolios according to the same criterion.

1The objective, n reducing the dimensionahity of the assets, should be to choose an asset set
(N < T) which has an efficient set arbatrarily close to the global efficient set That 1s, the chosen
set of N assets should have maximum potential performance ‘@’ given the constramts of N and
T. Since ‘@’ 15 a function of both u and X, grouping assets by betas may not achieve the desired
results If the asset choice 1s by ‘a’, then 1t 1s important that the assets be selected outside the test
period to avoid biasing the test A possible approach to estimating the dominant set of assets 1s
provided by Jobson and Korkie (1982)
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The Ibbotson and Sinquefield (1979) historical monthly return series on
U.S. Treasury bills, long-term corporate and Government bonds were
obtained for each of the subperiods.!? The input data employed also
included the returns on the CRSP value weighted stock index over the four

qithanariada
dSULPLLIVUUDS

5.1. The potential performance contributions of bond and stock indices

We are concerned with whether there is any significant improvement in
potential performance in two situations: (1) the addition of a bond index to a
set consisting of stocks and a stock index and (2) the addition of a stock
index to a set consisting of stocks and a bond index. In order to answer
these questions, three asset sets were defined as:

(1) forty stock portfolios, the equally weighted index of the corporate bond
and the government bond indices, and the CRSP value weighted index;

(2) forty stock portfolios, and the CRSP value weighted index; and

(3) forty stock portfolios and the equally weighted index of corporate bond
and the government bond indices.

The monthly excess (above the Treasury bill rate) return samples were
used to estimate the potential performances d, of the three asset sets in each
of the four subperiods and are shown in table 9. Comparisons of the
estimated potential performances in any period indicate that the potential
performance increases with the addition of either the bond index or the
CRSP index. For example, in the period 1956/1-1960/12, the bond index
increases performance from 2.93 to 3.27 while the CRSP index increases
performance from 2.70 to 3.27. With the exception of the period 1961/1-
1965/12, the CRSP index generally increases performance more than the
bond index. The next question is whether these increases in potential
performance are significant at conventional type I error levels.

The likelihood x> and F statistics (¢, , and ¢, ;) for these tests were
computed and are reported in table 9, with significant statistics
indicated. No significant differences in potential performance appear until the
last two periods, when the CRSP index makes a significant (at the a=0.05
level) increase in potential performance, and the bond index makes a
significant (at the a=0.10 level) increase only in the final period.

12The Ibbotson-Sinquefield monthly return long term corporate bond series was checked for
autocorrelation by computing the sample autocorrelations over 24 lags. Returns were identified
as a serially uncorrelated series, which means that historical means and standard deviations
might be used to estimate the single month holding parameters In contrast, Treasury bill
returns are highly senally correlated suggesting homogeneous nonstationarity and therefore
excess bond and stock returns will also be theoretically nonstationary. However, because the
Treasury bill return variance 1s small relative to the return variance of the other assets, the
nonstationarity 1 the excess returns is difficult to observe
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Table 9 also presents the results for similar tests based on twenty
portfolios of stocks rather than the forty portfolio tests. The asset scts are
labelled (4), (5) and (6). The CRSP index makes a significant contribution to
performance in every subperiod, whereas the bond index makes no
significant contribution. Our resuit that the bond index adds significantly to
the potential performance of 40 portfolios but not significantly to 20
portfolios, is due to the change in the degrees of freedom for the statistical
test.

These tests seem to indicate that a small number of stock portfolios (ie.,
N £40) are insufficient representatives of the efficient set of assets, 1n that a
broadly based index of stock returns adds significantly to the performance of

Iable 9
Statistics for tests of the equivalent potential performance (Hy; a,=a) of asset sets (1) and (2),
(1) and (3), (4} and (5), and (4) and (6) in four subperiods using the x> statisic ¢, , and F
Statistic ¢, ;.

Subperiod results

1956/1~ 1961/1— 1966/1— 1971/1-

Asset set Statistic 1960/12 1965/12 1970/12 1975/12

(1) 40 portfolios
of stocks, a, 3.27 375 210 1.61
bond index,

CRSP index*

(2) 40 portfohos d, 293 347 1.87 119
of stocks, 1.2 1.45 1.06 135 3.07°
CRSP mndex ¢, 3 1.47 106 136 3.26°

(3) 40 portfolios 4, 270 3 1.39 088
of stocks, 1,2 2.51 0.15 4 55¢ 5.74¢
bond index ¢, 5 262 0.14 5.33¢ 6.60°

(4) 20 portfolios
of stocks, d, 1.61 0.85 0.50 0.58
bond ndex,

CRSP index

(5) 20 portfolios 45 1.51 0.85 0.46 052
of stocks, b1, 1.47 000 1.01 1.45
CRSP index ¢, 4 1.47 0.00 1.01 146

(6) 20 portfolios dg 1.39 0.61 0.32 031
of stocks, 1.2 3.30° 5.21° 4.79° 7.02¢
bond index ¢, ;3 3.41° 5.52¢ 505° 7.63°

*The CRSP value weight 'index and an equal weight mndex of the Ibbotson-Smquefield
corporate and Government bond ndices.

®Significant difference, at the «=0.10 level, between the potential performances of the asset set
(1) and erther asset set (2) or (3) or asset set (4) and either asset (5) or (6)

“Significant difference at the «=0.05 level.
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the portfolios. A bond index, while increasing the set’s performance, does not
consistently add significantly to performance.

The tests have investigated the mean-standard deviation dominance of one
set of assets over another set. The next section investigates whether the stock
and bond indices are efficient in an asset set based on a relatively small
number of portfolios.

5.2. The efficiency of bond and stock portfolios

The choice of a market portfolio proxy and its efficiency 1s the nexus
between financial theory and tests of the efficiency of the true market
portfolio or the validity of the capital asset pricing model (CAPM). If the
true market portfolio m, comprised of N* assets, is identical to the unique
tangency_ portfolio in mean excess return—standard deviation space, then the
CAPM is true. That is, the mean excess-returns are exactly linearly related to
their betas, as in u=u,,

The efficiency of the market portfoho and its CAPM result present two
approaches to tests of the underlying financial theory. First, one can choose
what is believed to be a proxy to the unobservable true market portfolio and
then test if an exact relationship exists between mean excess returns and
betas. Second, one can simply test if the proxy market portfolio has risk—
return parameters equal to the tangency portfolio.

Since the market portfolio is unobservable and the number of assets N * is
seemingly limitless, rejection of CAPM. for a given proxy or equivalently
rejection of the efficiency of the proxy may be caused by an inefficient true
market portfolio or a bad proxy. On the other hand, acceptance of CAPM
may be due to an efficient true market portfolio or an efficient proxy in too
small an asset subspace. Thus, a good or bad proxy can cause symmetrical
decision errors in hypothesis testing. By testing the efficiency of market
proxies in an N < N* asset space, we are testing CAPM conditionally on the
risk-free rate and the set of assets.

For the asset set comprised of forty portfolios, the CRSP value weighted
index, and an equally weighted bond index (of the corporate and government
bond indices), we are interested in the efficiency of the CRSP stock index and
the bond index. Results are also obtained with twenty portfolios replacing
the forty portfolios. Excess teturns (above the Treasury bill rates) were used
to estimate the squared Sharpe performance of the two indices in each
subperiod. Maximum likelihood estimates (4=72/s3) are displayed n table 10
(rows labelled 4) together with the potential performance of the asset set. The
x* and F statistics, ¢, , and ¢, ;, are reported in the table with significant
values («=0.05 or 0.10) noted by asterisks.
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Table 10

Statistics for tests of the efficiency (Hy, a,=a,) of the CRSP value weighted index and Ibbotson—
Sinquefield bond index m four subperiods using the x* statistic ¢, , and F statistic ¢, 5
Comparisons are made between asset sets (1) and (2), (1) and (3), (4) and (5), and (4) and (6).

Subperiod results

1956/1- 1961/1— 1966/1— 1971/1~
Asset set Statistic 1960/12 1965/12 1970/12 1975/12
(1) 40 portfolios
of stocks, dq 327 3.75 210 161
bond index,
CRSP 1ndex
d, 0.034 0.061 0000 0000
(2) CRSP index ¢, , 5318 56212 4243 3598
023 1.30 141 087 0.67
ds 0004 0001 0025 0001
(3) Bond ndex ¢, , 52.29 58 39* 41.50 35.94
N 135 153 086 067
(4) 20 portfolios
of stocks, 4, 161 085 050 0.58
bond mdex,
CRSP index
ds 0.034 0061 0.000 0.000
(5) CRSP index ¢, , 4398 2641 19.06 21.73
a3 2 69° 131 088 102
dg 0004 0.001 0.025 0.001
(6) Bond mdex ¢, , 4538® 2917 1790 21.73
a3 2.82° 149 082 1.02

*Significance at the a=0.10 level
bSignificance at the =005 level.

In the period 1956/1-1960/12, the CRSP index and bond mndex have
squared Sharpe performances of 0.034 and 0.004 compared to the potential
performance of 3.27 for the entire asset set. The CRSP index is significantly
inefficient using the y* but not using the F statistic. The bond index is not
significant. When twenty portfolios, rather than forty are used, table 10 also
shows that the CRSP and bond index are significantly inefficient. This
seemingly anomalous result is due to the change in the size of N relative to T
and its affect on the sample statistics and degrees of freedom.

No other significant inefficiencies in the CRSP or bond indices arise except
in the period 1961/1-1965/12 where the y? statistic shows mefficient CRSP
and bond indices. This conclusion holds despite the large differences in
performances between an index and the asset set.

The tests indicate that'the market proxy is not significantly inefficient in a
small asset universe (N £42), although the difference in estimated potential
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performance and an index’s measured performance is quite large. Since
potential performance increases with the number of assets’ N, significant
differences with larger asset sets might be observed. Unfortunately, this also
requires larger sample sizes T> N to preserve the full rank of the covariance
matrix. The key to better tests with small N and T seems to be a better
procedure for obtaining a small number of assets that generate an efficient
set which is comparable to the so-called true efficient set (see footnote 11).

The next section provides some comparative tests with Gibbons’ test of
CAPM.

5.3. Sharpe-Lintner and Black versions of CAPM

The preceding test of the efficiency of the CRSP value weighted index was
also a test of the Sharpe-Lintner version of CAPM, since the risk-free rate
on Treasury bills was used to compute excess returns. Gibbons provides a
test of the Black CAPM where he uses the Black, Jensen and Scholes
estimator ypys for the subperiod zero beta mean return as well as his one-step
Gauss—Newton estimator y*. We have calculated the average Treasury bill
rate for each subperiod 7, and presented it in table 11 along with Yais and ¥,
as determined by Gibbons. In general, the average T-bill rates are increasing
in time whereas the estimated zero beta rates are not increasing.

Table 11

z? statistic ¢, , from tests of the Black CAPM, using the Treasury bill return r,,, the Black,
Jensen and Scholes zero beta return Jps, the Gibbons zero beta return 7* and zero, over four
subperiods. Tests are conducted using forty portfolios of stocks and the CRSP equal weight

index.
Zero beta mean returns &4, x* statistics using
Revised®
R N ~ . Gibbons
Period 7 Vris 7* g Vos _ VF Zero x

1956/1- g9 1.29 0.81 4458 4358 4134 4728 4329
1960/12

1961/1- . . )
1ogs/1a 025 0.70 068 5173 5366  5349°  5245° 3569
1966/1-

1970712, 0% 045 001 31.54 3154 3405 3430 2915
1971/1- |

w7512 047 096 061 276 2789 2371 2344 3259

2 yalues from Gibbons (1982, table 1, p. 13) adjusted with Bartlett’s correction.
"S1gn1ﬁcant inefficiency for the CRSP mdex or rejection of the CAPM at ¢=0.10
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The subperiod excess returns on the CRSP equal weight index and on the
forty portfohos described earlier, were obtained by subtractmg zero, ry, (not
7,), 7mss OF y* from the portfolio and index returns. The ¢, , x* statistics for
tests of CRSP index efficiency were computed for each subperiod and are
presented in table 11. The Black version of CAPM is rejected only in the
second subperiod 1961/1-1965/12 at the a=0.10 level, using either y* or Pys
as the mean zero beta return. Rejection of the models in other subperiods
does not occur even when a zero value of the zero beta rate is used.

These results contrast sharply with Gibbons (1982, table 1, p. 13), where
the Black version of CAPM is rejected in three of the four subperiods at the
a=0.10 level. The excess power of the Gibbons test might be due to the non-
conformity of his y2, with a theoretical y> when N is large relative to T (see
our sections 3 and 4). We have found that the y? statistic [eq. (3)], which is
not adjusted by Bartlett’s correction factor, exhibits larger skewness than a
theoretical y2? if N is large relative to T. This is the case in Gibbons, where
N =40 and T=60, and the Black CAPM is rejected. The corrected value of
Gibbons® ¥? (using Bartlett’s correction) is shown in the last column of table
11, where no significant statistics appear.!® Thus the Black CAPM is
generally not rejected when an appropriate adjustment is made for the excess
skewness in the sample x? statistic.

6. Conclusion

The concept of potential performance of a set of assets was defined as the
maximum Sharpe measure attainable from a portfolio of the assets. The
concept provides a useful linkage to multivariate tests of the potential
performance contribution of additional assets, the efficiency of market proxy
portfolios, and the Sharpe-Lintner and Black asset pricing models.

Two likelihood ratio statistics, x> and F, were found to be well behaved in
small samples (T'=60) of monthly returns on stocks. The F statistic was
particularly well behaved and suited for multi-variate test of financial models.

The potential performance concept was illustrated by tests which showed
that the potential performance of forty portfolios of stocks was significantly
less than the potential performance of the forty portfolios and the CRSP
value weighted index combined. The portfolio efficiency test was illustrated
by tests which showed that inefficiency in the CRSP value weighted index
could not be detected. This was also a direct test of the Sharpe-Lintner
version of the CAPM. A test of the Black CAPM, using Black, Jensen and

131t 15 also interesting to note that the periods, in which Gibbons re_]ects the CAPM, seem to
have a global mmimum variance return which s either less than the y* or very close to 1t This
mmphies that the tangency pomnt is on the lower boundary of the efficient set or on the extreme
upper right boundary
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Scholes’ and Gibbons’ zero beta returns, resulted in model rejection in only
one of four subperiods. This contrasts with the results of Gibbons who
rejects the model in three of the four subperiods replicated here.

There are at least two problems that require further investigation. First,
the comparative power of Gibbons and our methodologies needs to be
examined in more detail. Our initial judgement is that the power of the
Gibbons’ procedure is overstated due to the excessive positive skewness in
his y? statistic when the number of assets is large relative to the sample size.
Second, methods of increasing the power, by_choosing portfolios that
maximize potential performance, need to be investigated.

Appendix

A.lL Derivation of the likelihood ratio test for Hyy:pt, =2, 21 py

For T independent samples from the multivariate normal #,~ N(u, ) where
u(Nx1), Z(NxN), r,(Nx1), t=1,2,...,T, the logarithm of the likelihood
function is given by

~NT

T 1z
logL= log2n——log|Z|—= ¥ (r,— )y =~ X(r,— ).
2 2 2.4

If there are no restrictions on the parameters the maximum likelihood
estimators of g and X are given by [Anderson (1958)]

_ 1z 1Z ,
F =?t; r, and § =7,t; (r,—P)(r,~7).

The logarithm of the likelihood function evaluated at 7 and S is given by
[Anderson (1958)]

log L=(—NT/2)log2n—(T/2)log|S|— (N T}2). (A1)

To test Hy:p, =X, Z7{'p, we require the maximum likelihood estimators
of p and X under this restriction. Using the conventional identity for the
inverse of a partitioned matrix and the fact that |X|=|Z,,||Z,, | we may
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write
1 _
-5 Z ("t1*!‘1)’z111(’t1_ﬂ1)
241
1z _
—ZZE [ro—ny)— 2,5, %] 11("r1 —u)]
X 22—21.1[('}2—ﬂz)—zzlzf}l("u—!‘1)1 (A.2)
where

222 1= [222—22121_11212]-

Define the matrix @=X+py’ and partition @ to conform to the
partitioning of X. We may therefore write @,,=X,, +u,4; and hence by
employing an identity,'* @;;! may be written

1_11 = 21_11 ’(2f11ﬂ1ﬂl121_11)/(1 +I‘l121_11!‘1)-
After multiplying through by @,; and @,,, obtain
O 1=20 1+ (= 2o 2 ), — 20 0+ i 211 ), (A3)

and therefore under Hyy, ©,,,=2X,,,. Defining p=6,,0], then under
H,, the log likelihood may be written as

1T
: logL=(~NT/2)10g27r-(T/2)10g|2:11’——2— Zl("t1_ﬂ1),21_11("t1—ﬂ1)
t=

1T
—(T/2)1og |@22.1l —ztz (re2 _ﬁrn)’@z_zlq("tz —B"u)-

=1

Note that logL=f{p,2)+f>(B,0,,,), where fi(u;,X,,) denotes the
marginal likelihood for r,; and f,(B,@,,,) is related to the conditional
distribution of r,, given r,;. The maximum likelihood estimators of p;, Xy,,

'*Guven a full rank matrix B (N x N) and a vector d (N x 1), then
(B+dd')"*=B~*— B 'dd'B~"/(1+d'Bd).
See Rao (1973, p 33, no 28)
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T -1
"1:"’2{“: 2 '1:"’1{] >
1 t=1

T T -1
Viaa =:=Z1 "2:"’2:“[;:1 "1:"21:] ﬁa

respectively.

and @,, , are given by

M=

r_lﬂ S11aﬁ=|:
t

and

Substituting the maximum likelihood estimators in the likelihood function
we obtain

log L=(—NT/2)log2n—(T/2)log|Sy|—(NT/2)—(T/2)log|V,; |-
The logarithm of the ratio of the likelihood functions is therefore given by
log A=log L—log L=(T/2)log|S|—(T/2)16g |S:|—(T/2)|V 2 .|
— 10 (T/2)(S22.1|V22.1):

since

|S‘ =1|S11||Sz

2al
A special case of Wilk’s Lambda is given by
A=|S22 1|/| sz 1|- (A-4)

This ratio expression of A may be simplified by exploiting the relationship
between S,, ; and ¥,, ;. Let V denote the matrix given by (1/T)>. 2 rr; and
let ¥ be partitioned to conform to that of § and X. The matrices V' and § are
therefore, related by ¥'=8+7 and V,; =S, +FF;. In the same fashion as
(A.3), V,, , may be written as

Va2 1="822 1 +{(Fa — 8218117, — 851811 1)) (L +AASTL ).
The ratio expression for A given by (A.4) may now be written as
A=(1+F S F)/(A+FS7), (A.5)

which is obtained by using the sample form of eq. (1) in section 3 and the
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identity [see Anderson (1958, ch. 8)]

(F,— 85, ST1F)([F, — S0, 8171 |
vV =\ e
221 221+ L7, 8.7
- 1 —(7'2—52151_112’1)/(1+7,1Sf11i'1)%
(Fy — 851811 F)/(1+F Sy )F 8521

=S221

(Fo—85181171) 855 1(Fo — 851 511'F1) +1
(1 +7.811'7)

The likelihood ratio 4 is therefore given by
A=(1+F ST )1 +P SR, (A.6)

This expression is employed in section 3.2 of the paper to develop a
likelihood ratio test statistic for Hy,.

A.2. Derivation of the score test for Hy:ppy =2, 5y

For a vector of parameters @, the score test statistic for H,:@=0%* is
given by D/(@*) 1 (@*) D(©@*), where D(@%) is the efficient score vector
evaluated at @=0%* and I(O*) is the information matrix evaluated at
O = 0*. The efficient score vector is the vector of first partial derivatives of the
sample log likelihood function with respect to the clements of @. The
information matrix is the negative of the expectation of the matrix of second
partial derivatives for all possible pairs of parameters in @. In the
exponential family of distributions, the inverse of the information matrix is
equivalent to the covariance matrix.

To test a hypothesis H,:0, =07 only the portion of D(@*) pertaining to
@, is used and is written as D,(@%, @,). The subvector D, may contain some
parameters, say @,, not specified by the hypothesis and hence are replaced
by their maximum likelihood estimators denoted by &,. The portion of the
inverse of the information matrix pertamning to @, is denoted by I'Y(@%,8),),
where again @, denotes the maximum likelihood estimator of parameters
not specified under the null hypothesis. The score test statistic therefore
becomes

Dy(01,6,) I''(0%1,6),) D,(61,6,).

A modification of the score test statistic, when there are nuisance parameters,
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is obtained if I'}(@%,,) is replaced by I;,'(@%,8,), where the latter matrix
represents the inverse of only the portion of the information matrix that
pertains to @,. In this case the score test statistic is given by

’1(@:{5 @2) I;ll(@;ka é"NZ) Dll(@fa @~2)
The score test statistic and modified score test statistic for testing H,; are
developed next.

From (A.2) the logarithm of the likelihood function may be written

log L=(—NT)2)log2n—(T/2)log|Z, | —(T/2)log|Z,, 4|

11X _
—Etzl (reg — w25 11(7:1 - )

1z _ 21 e
3 21 {[(’”rz—znzulrn)—(ﬂz—2212111!‘1)] I
t=

X [("zz_znzfll'”u)“(ﬂz'2212;_11!‘1)]}~

The efficient score vector for the parameter (g, —X,, X1 u;) may therefore be
written as

610gL/5[ﬂ2——22121_11ﬂ1] == T£2_211(’72 —22121_11"—1)

+ ngz{l(ﬂz_zz1zf1lﬂ1)a (A7)

which under H,, becomes —T@O;},(F,—n7,) where y=2,,Z7. The
covariance matrix for the maximum likelihood estimator [F,—S,,S7'Fi],
using Q defined in section 3.1, is given by [(T—2)+ Ta )T —N;—2)12,, 1,
which in the exponential family corresponds to the portion of the inverse of
the information matrix corresponding to the parameter [u,—X,,2'n,]. The
value of this matrix under Hgyy is [(T—2)+Ta)/T—N;—2)]0,,,. The
score statistic is therefore given by

TL(T —2)+ TAAT =N~ 217, — 1) 037101, 1035, (F, — i),
which is approximately
(T2T — N ), — 1) O35 (7, — iy )(1 + a).

Replacing the parameters # and @,,,; by their maximum likelihood
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estimators under H, yields the statistic
(T*AT =N — Vo Vi i) Vi 1= Vo Vit e )1+ 8)

=(T*T—N)N[d~4,]/[1+4,]), (A8)

where

1 I V11 V12:|
V=—1> rr=
thl o |:V21 Vi,
conforms to the partitioning of 2 and .

The adjusted ér modified score statistic is obtained by employing the
inverse of that portion of the information matrix that pertains to the
parameters specified by the null hypothesis. If the parameters not specified by
the null hypothesis were known, then the adjusted score statistic would be
equivalent to the score statistic. From eq. (A.7) the matrix of second partials
of log L with respect to the elements of [u,—%,, X ¢;] is given by TZ5,',,
which under H,, is equivalent to T@;;',. The efficient score criterion using
the modified score statistic, therefore becomes T(7,—#r;) @55 (Fy—1nry).
Replacing the parameters 5 and ' @,,, by their maximum likelihood
estimators yields the statistic

T(FZ - V21 Vl—llr_l)’ V2—21.1(r—2 - V21 V;llfl)’
which can be written as
T(é—a,/[1+al[1+d.]). (A9)

The score statistics (A.8) and (A.9) are discussed further in section 3.3.
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