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Mean-Variance Spanning
GUR HUBERMAN and SHMUEL KANDEL*

ABSTRACT

The authors propose a likelihood-ratio test of the hypothesis that the minimum-variance
frontier of a set of K assets coincides with the frontier of this set and another set of N
assets. They study the relation between this hypothesis, exact arbitrage pricing, and
mutual fund separation. The exact distribution of the test statistic is available. The
authors test the hypothesis that the frontier spanned by three size-sorted stock portfolios
is the same as the frontier spanned by thirty-three size-sorted stock portfolios.

INVESTORS’ CHOICES OF PORTFOLIOS of assets and the implications of these
choices for assets’ prices are major topics in financial economics. Students of the
first topic—portfolio theory—often strive to derive separation results, i.e., seek
conditions under which each investor allocates all of his or her savings among a
small number of separating funds. These separating funds are the same across
investors.

The second topic entails a study of the aggregate behavior of security market
participants. Students of the pricing issues derive equilibrium restrictions on
security prices.

We focus on the relations among mean-variance efficiency, mutual fund
separation, and two prominent security-pricing models in finance: the CAPM
and the APT.

The investment universe under consideration includes K + N risky assets with
returns that have a nonsingular covariance matrix. In addition, it may include a
risk-free asset. We are particularly interested in forming K portfolios of the N +
K original assets and then studying the relation between the minimum-variance
frontier spanned by the K derived assets and the frontier of the original N + K
assets. The returns on the derived K assets are denoted by the K X 1 vector R,
and the returns on the other N assets are denoted by the N X 1 vector r. (The
investment opportunity set of the derived K assets and the other N assets is
equal to the investment opportunity set of the original N + K assets.) The
following linear model is assumed:

r=a¢+BR +e, (1)

* Huberman is from the University of Chicago and Tel Aviv University; Kandel is from the
University of Chicago. An earlier version of this paper was titled “Likelihood Ratio Tests of Asset
Pricing and Mutual Fund Separation”. We are grateful to Eugene Fama, Wayne Ferson, Jon Ingersoll,
Steve Ross, Robert Stambaugh, an anonymous referee, and especially Nai-fu Chen for useful
conversations and comments and to the University of Chicago’s Center for Research in Security
Prices for financial support.
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where r, @, and e are N X 1 vectors, R is a K X 1 vector, and B is an N X K

matrix. The vectors r, B, and e are random. The random vector ¢ is uncorrelated

with the random vector R, and the expected value of each element of e is 0.
Consider the following statements:

1. The minimum-variance frontier of R intersects the minimum-variance
frontier of R and r.

2. The minimum-variance frontier of R intersects the minimum-variance
frontier of R, r, and the risk-free asset.

3. The minimum-variance frontier of R is the same as the minimum-variance

frontier of R and r.

The first and second statements are closely related to exact arbitrage pricing,
and the third implies (under (1)) K-fund separation. These relations are discussed
in Sections I and II, respectively.

In Section I (in Proposition 1), we show that, under (1), the first statement
above is equivalent to the existence of a constant w, such that

a = wolin — Bix], (2)

where ; is the vector with elements all equal to 1. The dimensionality of these
vectors varies with the context. For instance, ix is the K X 1 vector with elements
all equal to 1.

The second statement above implies that the scalar w, is the return on the
risk-free asset. In this case, (2) is a set of linear constraints.

In Section II (in Proposition 3), we show that, under (1), the third statement
above (spanning) is equivalent to

a=0 (3a)

and
Bik = in, (3b)

where 0 is the vector with elements all equal to 0.

In Section III, we review multivariate tests of the first two statements and
propose a multivariate test of the third statement. The exact small-sample
distributions of the test statistics are available for the test of (3) and for tests
that assume the presence of a risk-free asset.

In Section IV, the likelihood-ratio test of spanning is illustrated by applying it
to the hypothesis that the monthly returns on three size-based indices of NYSE
stocks span the minimum-variance frontier of the monthly returns on thirty-
three size-sorted portfolios. We test this hypothesis because the size-based indices
can potentially proxy for factors in the context of the APT. This factor-proxying
property is suggested by the work of Huberman, Kandel, and Karolyi [17], who
observe that returns on stocks of firms of a similar size are more correlated with
each other than with returns on stocks of firms of different sizes and that the
returns on three size-based stock indices capture most of that cross-correlation.

Concluding remarks are offered in Section V.
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I. Asset Pricing and Mean-Variance Intersection

The main result of the Capital Asset Pricing Model (CAPM), as developed by
Sharpe [32], Lintner [22], and Black [3], is that a capital asset’s expected return
is linearly related to the covariance of the asset’s return with the return on the
market portfolio. This linear relation holds for all assets if and only if the market
portfolio is on the minimum-variance frontier. (Fama [10], Roll [24], and Ross
[27] make this observation.) Therefore, a test of the CAPM may be interpreted
as an examination of the distance (in mean-variance space) between a given
market index and the minimum-variance frontier of a given set of assets.

The Arbitrage Pricing Theory (APT) of Ross [26, 28] is a one-period model in
which the N X 1 vector r of returns on capital assets satisfies the generating
model

r=E+Bf +e, ()

where f is a K X 1 vector of random factors, B is an N X K matrix of factor

loading-s, and e is an N X 1 vector of residuals. With no loss of generality,
normalize (4) to obtain E{f} = E{e} = 0 and E{ff"} = I, where E{.} denotes

expectation and I is the identity matrix, so that E is the vector of mean returns.
Assume further that the matrix B is of rank K. Restrictions on the diagonality
of the covariance matrix E{ee’} and on the relation between the eigenvalues of
that covariance matrix and those of BB’ (as N becomes large) are required for
proofs of the APT. (Huberman [16] reviews the APT literature.)

Exact arbitrage pricing obtains if an exact linear pricing of r (and the risk-free
asset if such an asset exists) holds with respect to the factors f, i.e.,

E =ir, + Bu, (5)

where ry is the return on a riskless asset if that asset exists and u is a K X 1
vector of risk premiums. Chamberlain [6], Chen and Ingersoll [8], and Connor
[9] provide conditions under which (5) holds. Exact arbitrage pricing is the tested
form of the APT, e.g., by Roll and Ross [25], Chen [7], and Lehmann and Modest
[21].

Empirical investigations of the APT often involve the formation of investment
positions with payoffs that are intended to mimic the realizations of the K
factors, i.e., to be used in place of the factors for pricing the subset’s assets (e.g.,
Lehmann and Modest [21]). Huberman, Kandel, and Stambaugh [18] define and
characterize the sets of mimicking positions and discuss their properties.

Grinblatt and Titman [15] and Jobson and Korkie [19] derive results that
imply that exact arbitrage pricing is equivalent to the mean-variance efficiency
of a portfolio of the mimicking portfolios. Thereby, they show that Chamberlain’s
[6] result for an infinite economy holds also for a finite set of assets.

The equivalence between the pricing equation (5) and the parameter restriction
(2) on the returns-generating model is known for the case K = 1 (CAPM,
consumption CAPM), as well as for K > 1 (intertemporal CAPM, APT). See, for
example, Black, Jensen, and Scholes [4], Breeden, Gibbons, and Litzenberger
[5], and Shanken [30].
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Proposition 1 combines the above results and summarizes the relations among
mean-variance intersection, exact linear pricing, and the restrictions on the
regression model. To keep the paper self-contained, we provide a simple proof of
the proposition.

PROPOSITION 1: Suppose the linear structure (1) holds. The following statements
are equivalent. ’
1. There exists a portfolio of the vector of asset returns R that is on the minimum-
variance frontier of (R, r) but is not the global minimum-variance portfolio.
2. Exact linear pricing of r holds with respect to R.
3. There exists a scalar woy such that

a = wolin — Bix]. (6)

The scalar wo is the expected return on any portfolio of (R, r) with a return
that is uncorrelated with the portfolio of R that is on the minimum-variance

frontier of (R, r).

Proof: The following notation is used in the proof. Let x and y be n X 1 and

m X 1 vectors of random variables. The (i, j) element of the n X m matrix
cov(x, 3_/) is the covariance between x; and y;.

It is well known that the following two statements are equivalent.

i) There exists a portfolio p of R (p'L = 1), with return y = p’R, on the mean-
variance frontier of (R, r), but y is not the global minimum-variance portfolio.
ii) There exist scalars w, and w # 0 that satisfy

E{R} = iwo + cov(B, y)w (7)
and
Efr} = iwo + cov(r, y)w. (8)

This characterization of the mean-variance frontier can be proved by considering
the first-order conditions of the optimization problem that seeks a variance-
minimizing portfolio with a specified mean.

Since, for every random vector ¥, cov(x, y) = cov(x, p’R) = cov(x, B)p,

equations (7) and (8) can be rewritten as
E{R} = iwo + cov(R, B)pw 9)

and
Efr} = iwo + cov(z, B)pw. (10)
Equation (9) implies that
pw = cov(R, B)7'[E{R} — iwo]. (11)

Substituting (11) into (10) gives
E{r} = iwo + cov(r, R)cov(R, R)'[E{R} — iwo]. (12)
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The linear structure (1) implies that
B = cov(r, R)cov(R, R)™ (13)
and
E{r} = ¢ + BE{R}. (14)

Combine (12) and (13) to infer that the existence of a portfolio of R on the
frontier of (R, r) is equivalent to exact linear pricing of r with respect to R.
Combine (12) to (14) to conclude that the existence of a portfolio of R on the
frontier is equivalent to the existence of a scalar w, that satisfies (6). Equation
(8) implies that wy is the expected return on any portfolio with a return that is
uncorrelated with the intersecting portfolio. Q.E.D.

II. Mutual Fund Separation and Mean-Variance Spanning

The vector of assets R is separating relative to the investment universe that
consists of the vector (R, r) if, for every portfolio of (R, r) with a return y, there
exists a portfolio of R with a return z, such that EU(z) = EU(y) for every
concave monotone utility function U. In other words, under K-fund separation,
the optimal investment portfolio of each risk-averse individual can be described
as a portfolio of the K separating funds. Ross [29] characterizes the class of
random variables for which a weaker form of this separation holds.

Mutual fund separation is a stronger property than exact arbitrage pricing
relative to the separating funds. Relations between the Arbitrage Pricing Theory
and mutual fund separation are pointed out by Chamberlain [6] and Ross [29].
They show that augmentation of the assumptions underlying the APT gives rise
to a mutual fund separation.

In this section, we study the relation between mean-variance spanning and K-
fund separation, assuming that the multivariate-regression model (1) holds.

PROPOSITION 2: Suppose that (1) and (3) hold and the vector of conditional
expectations E{e | R} = 0. Then R is a separating vector relative to the investment
universe that consists of the vector (R, r).

Proof : Let y = prR + p/r, where prix + p/iny = 1. The return y is a return
on a portfolio of (R, r). Let p” = pz + p/B. Equation (3b) implies that p'ik=1,
s0 z =p’R is a return on a portfolio of R. Moreover, z = E{y|z2},y — z = pre
and E{ p,e | 2} = 0. Apply Jensen’s inequality to conclude that EU(z) = EU( y)

for every monotone concave utility function U, which completes the
proof. Q.E.D.

An interpretation of (3) in the context of minimum-variance set geometry is
provided in Proposition 3.

PROPOSITION 3: Suppose that (1) holds and the minimum-variance frontier of R
contains at least two points with different expected returns. Every minimum-
variance portfolio of (R, r) is a portfolio of R if and only if (3) holds, i.e.,a = 0 and
Bix = in.
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Proof : Since every minimum-variance frontier of risky assets is spanned by
two portfolios, it is sufficient to show that (3) holds if and only if at least two
distinct portfolios of R are on the minimum-variance frontier of (R, r).

Equations (3) hold if and only if (6) holds with any value of w,. Apply
Proposition 1 to conclude that (3) holds if and only if, for each wy, there is a
minimum-variance portfolio of R with a return that is uncorrelated with the
assets that have expected returns equal to wy. Therefore, (3) is equivalent to the
existence of more than one minimum-variance portfolio of B. Q.E.D.

III. Multivariate Tests of Mean-Variance Intersection and Spanning

We apply Propositions 1 and 3 to review multivariate tests of mean-variance
intersection and propose a multivariate test of mean-variance spanning.

The following hypotheses are considered for the two vectors of asset returns,
E= (er ""RK) andl'= (rly ) rN)'

Hi: R spans (R, r).
H,: R intersects (R, r).
Hj: R does not intersect (R, r).

If there exists a risk-free asset with a rate of return that is known and equal
to ry and if r; is not equal to the expected return on the global minimum-variance
portfolio of risky assets, then the minimum-variance frontier of all assets is
spanned by the risk-free asset and a portfolio of the risky assets. Propositions 1
and 3 can be used to show that the following are equivalent:

1. The mean-variance frontier of R and the risk-free asset is equal to the
frontier of R, r, and the risk-free asset.

2. The mean-variance frontier of R intersects the mean-variance frontier of R,
r, and the risk-free asset.

3. Equation (2) holds with wy = ry in the regression of r on the vector R.

4. Equation (3a) holds in the regression of the vector of excess returns r — rel
on the vector R — rsi.

For the case where a risk-free asset with a known return exists, we consider
also H, and Hs:

H,: R intersects (R, r, rf).
Hs: R does not intersect (R, r, ry).

It is noteworthy that no assumption about normality or about the correlations
of the disturbance terms (the e’s) is necessary in (1) in order to derive Proposi-
tions 1 and 3. However, in order to conduct tests suggested by H; to Hs, one has
to specify the distribution of the vector of disturbance terms e, conditioned on
the vector R. We assume that it is multivariate normal with mean zero and an
unknown N X N covariance matrix V.

Let L; be the maximized value of the likelihood function under the hypothesis
H;, and let V; be the associated maximum-likelihood estimator of the covariance
matrix V. Let

Vi=1V;l/I Vil (15)
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The maximized log-likelihood values, the L;’s, satisfy 2[L; — L,] = T log(V ).
These log-likelihood ratios are asymptotically distributed as chi-square under H,,
the null hypothesis against H;. This chi-square statistic has 2N degrees of
freedom when H, is tested against Hs; it has N + 1 degrees of freedom when H;
is tested against Hy; and it has N — 1 degrees of freedom when H, is tested
against Hj. If the return on a risk-free asset is known, then set ro = wo in (2),
and the chi-square statistic has N — 2 degrees of freedom when H, is tested
against Hs.

Proposition 4 provides the small-sample distribution of a monotone transfor-
mation of the likelihood-ratio statistic for the case where a risk-free asset with a
known return is assumed to exist. It is also in Gibbons, Ross, and Shanken [14]
and Jobson and Korkie [19]. The proposition can be proven by applying results
from Anderson [1] (Section 8.4).

PROPOSITION 4: Suppose that there exists a risk-free asset with a known return.
Consider testing Ho: Hy against Hy: Hs. The statistic [1/V* — 1|(T — K — N)/
N is a monotone transformation of the likelihood-ratio test statistic, which, under
H,, has an F distribution with N — 1 and T — K — (N — 1) degrees of freedom.

When a risk-free asset does not exist, the restriction (2) is nonlinear. For the
test of Hy: H, against Hy: Hs, the zero-beta rate has to be estimated and the
exact small-sample distribution of the test statistic is unknown. Gibbons [12]
performs such a test in the case K = 1. He resorts to a one-step Gauss-Newton
procedure in order to compute the restricted-regression coefficient estimates and
thereby calculate the likelihood-ratio test statistic. Kandel [20] also considers
this case and obtains an exact maximum-likelihood estimator of the zero-beta
rate and closed-form solution for the test statistic. Shanken [30, 31] introduces
a multivariate cross-sectional regression test for this case and derives an approx-
imate small-sample distribution for the test statistic. He also obtains bounds on
the exact distribution function of the test statistics for this test and for the
likelihood-ratio test and an exact maximum-likelihood estimator of the zero-beta
rate for the case K > 1.

We propose a test of mean-variance spanning. It is an alternative to tests of
mean-variance intersection in the case without a risk-free asset. The test involves
only linear restrictions on the regression coefficients, and the exact distribution
of the test statistic under the null hypothesis is known. The spanning test is a
test of a more stringent hypothesis than mean-variance intersection.

PROPOSITION 5: Suppose that there is no risk-free asset. Consider testing
Ho: H, against Ha: Hs. The statistic [1/V** — 1)(T — K — N)/N is a monotone
transformation of the likelihood-ratio test statistic, which, under H,, has an F
distribution with 2N and 2(T — K — N) degrees of freedom.

Proof: Apply Theorem 8.4.6 in Anderson [1]. Q.E.D.

IV. A Size-Based Example

In this section, the likelihood-ratio test of spanning is illustrated by applying it
to the hypothesis that the monthly returns on three size-based indices of NYSE
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stocks span the minimum-variance frontier of the monthly returns on thirty-
three size-sorted portfolios. Huberman, Kandel, and Karolyi [17] observe that
the contemporaneous correlations of the disturbance terms in the market model
depend on the difference in the size of the firms with stock returns that are used
as independent variables. The more similar the firms are in size, the higher the
correlation. A linear structure of stock returns (1) in which similarity of firm size
implies similarity of slope coefficients could give rise to this pattern.

We estimate the linear structure (1) with the returns on K = 3 size-sorted
indices as the explanatory variables and the returns on N = 30 size-sorted
portfolios as the dependent variables. We then inquire whether the three size-
based indices span the minimum-variance frontier of the larger set of size-sorted
portfolios. We describe the data in Subsection A, discuss temporal variations of
the regression coefficients in Subsection B, present the results in Subsection C,
and relate them to the size effect in Subsection D.

A. The Data

The raw data consist of monthly returns on all stocks that traded on the New
York Stock Exchange (NYSE) from January 1964 until December 1983. At the
beginning of each year, we rank the stocks on the NYSE according to the market
value of their equity in December of the previous year and construct thirty-three
size-sorted sets of stocks. The returns on the equally weighted portfolios of these
size-sorted sets are denoted ry, - - -, rss. (r1(t) indicates the time-¢ returns on the
portfolio of the smallest stocks.)

The return on the small-stock index is the equally weighted average of r;,
-+ +, r11. Similarly, the returns on the medium- and large-stock indices are the
equally weighted averages of ri, ---, rop and res, ---, rss. The returns on the
three indices are denoted by the 3 X 1 vector R(t) = (Ry(t), R:(¢), Rs(t))’.

We consider the multivariate regression (1) with the vector R as the vector of
explanatory variables. As Proposition 5 requires that the contemporaneous
covariance matrix of the residuals V be nonsingular, we use only thirty of the
thirty-three returns. The vector of independent variables in the example is

rt) = (ri(t), - -, rs(t), ra(t), - - -, rie(t), ris(t), - -, rez(t), roo(t), - - -, ras(t)).

B. A Test of Temporal Constancy of Regression Coefficients

The estimation of the regression model (1) entails the assumption that g and
B are constant over the estimation period. We study the temporal constancy of
a and B with a multivariate Chow test. We break the overall period into two
subperiods and estimate the following regression:

rr=a+ (_llDt + (B + BlDt)Bt + e, (16)

where D, is a dummy variable set equal to one in the first subperiod and to zero
in the second subperiod. The vector a' and the matrix B! are of the same

dimensions as the vector a and the matrix B.
Constancy of the coefficients implies that

a' = 0 (the N X 1 zero vector) (17a)
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and
B! = 0 (the N X K zero matrix). (17b)

The likelihood-ratio test of (17) is similar to the test discussed in Proposition
5. The test statistic is

U= |Vol/|Val, (18)

where | V, | and | V4 | denote the determinants of the covariance matrices of the
residuals under the restricted system (i.e., (16) and (17)) and under the unre-
stricted system (i.e., (16) alone).

Unfortunately, the small-sample distribution of the test statistic (under (16)
and (17)) is unavailable. Asymptotically, the test statistic

U'=—(T- 215U

has a chi-square distribution with 120 degrees of freedom, where T is the number
of observations.

Rao’s small-sample approximation (Anderson [1], Section 8.5.4) uses the
statistics

U? = [1/U* — 1)((T — 21.5)s — q)/120,

where s = 3.975 and ¢ = 59. Under (16) and (17), the distribution of U? is
approximately F, with 120 and (T — 21.5)s — ¢ degrees of freedom. Test results
for different periods, ranging from the whole twenty-year period to four non-
overlapping five-year periods, are reported in Table I. It seems that the coeffi-
cients in (1) do change over time.

C. A Test of Mean-Variance Spanning

Temporal instability of regression coefficients is well known in finance. It led
researchers to choose fairly short time periods for tests of asset pricing (e.g.,
Fama and MacBeth [11], Gibbons [12], and Roll and Ross [25]). The justification
for this approach is that, although the coefficients vary, their short-run variation
is negligible to the extent that the tested pricing relation is unlikely to be rejected

Table I
Multivariate Chow Tests of the Coefficients in Equation (1)
Years U, p-Value U, D.F. p-Value
64-83 168 .003 1.44 825 .003
64-73 157 .013 1.36 348 .016
74-83 146 .056 1.25 348 .063
64-68 133 .200 1.09 110 315
69-73 168 .003 1.55 110 .010
74-178 150 .035 1.35 110 .079
79-83 180 .000 1.75 110 .002

® Restrictions (17) are imposed on (16) for different test periods. The tests use
monthly returns over different test periods. The statistic U; is distributed asymp-
totically as chi-square, with 120 degrees of freedom. The statistic U, is distributed
approximately as F, with 120 and D.F. degrees of freedom.
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due to the temporal variation of the coefficients. We follow this approach in this
example.

In Parts A and B of Table II, we report the regression estimates for the ten-
year periods 1964 to 1973 and 1974 to 1983. The F-test statistics mentioned in
Proposition 5 have 60 and 174 degrees of freedom. They are 1.08 and 0.97 for the
first and second ten-year periods. Their p-values are 0.34 and 0.55, so restrictions
(3) are not rejected for either period at the conventional significance levels. The
point estimates of the slope coefficients display an interesting pattern, discussed
by Huberman, Kandel, and Karolyi [17]: the coefficients of R, decrease as we go
down the table; the coefficients of R; increase as we go down the table; and the
coefficients of R, reach their higher values in the middle of the table.

We also calculate the F-statistics testing restrictions (3) of (1) for the twenty-
year period 1964 to 1983 and for the four nonoverlapping five-year subperiods of
these twenty years. These F-statistics are 1.6, 0.68, 0.86, 0.59, and 0.91. Their
corresponding p-values are 0.0046, 0.93, 0.72, 0.98, and 0.65. The subperiod
results can be aggregated. Following Gibbons and Shanken [13], our aggregate
test statistic is minus two times the sum of the natural logarithms of the p-values
of the nonoverlapping subperiods. This statistic has a chi-square distribution,
with twice as many degrees of freedom as the number of time-series observations.
Our results for the two ten-year subperiods give rise to the chi-square statistic of
2.88. Under the null hypothesis, the probability of having this value or higher is
greater than fifty percent. This chi-square statistic for the four five-year subper-
iods is 0.95. Under the null hypothesis, the probability of having this value or
higher is greater than 99.5 percent.

When ten or five years are used to construct the test statistic (or when the
subperiod results are aggregated), the data seem to support the null hypothesis.
When twenty years of data are considered, the data do not support the spanning
hypothesis. It is possible, however, that the spanning hypothesis is correct but
that temporal instability of the coefficients of the underlying returns-generating
model, as discussed in Subsection B, accounts for the high values of the test
statistic when twenty years of data are used.

D. Mean-Variance Spanning of Size Portfolios and the Size Effect

Banz [2] and Reinganum [23] show that mean returns on small-firm stocks
are higher than those on large-firm stocks even after controlling for covariation
with the market (beta) as usually measured. Using a multivariate test, Shanken
[30] concludes that the CAPM is rejected when size is used to form portfolios.
Put differently, the market portfolio is not on the minimum-variance frontier of
size-sorted portfolios, contrary to the prediction of the CAPM.

The pattern of covariation of returns on size-sorted portfolios, documented by
Huberman, Kandel, and Karolyi [17], leads us to inquire whether the frontier of
the size-sorted portfolios is spanned by the three indices. If one accepts that
restrictions (3) hold in our size-based example and if one accepts the size-based
indices as mimicking portfolios in the context of the APT, then exact arbitrage
pricing holds and the size effect is not a mispricing phenomenon. The evidence
presented here, however, does not explain the size-related covariation pattern
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reported by Huberman, Kandel, and Karolyi [17], and it remains for future
research to study it closely.

V. Conclusion

This paper puts together results about mean-variance efficiency, exact arbitrage
pricing, and K-fund separation. These results imply restrictions on an underlying
return-generating process. When the restrictions are linear, the small-sample
distributions of some multivariate tests are available.

Most of the empirical research on asset pricing has consisted of tests of mean-
variance efficiency. In the absence of a risk-free asset, the restrictions are not
linear and the small-sample distribution of the test statistic can only be approx-
imated. The mean-variance spanning test proposed here is a test of a stronger
hypothesis than exact pricing, but its statistic is easily computed and the
statistic’s small-sample distribution is available.

The multivariate test of spanning is applied to the hypothesis that the monthly
returns on three size-based indices of NYSE stocks span the minimum-variance
frontier of the monthly returns on thirty-three size-sorted portfolios. When
twenty years of data are considered, the data do not support the spanning
hypothesis. It is possible, however, that the spanning hypothesis is correct but
that temporal instability of the coefficients of the underlying return-generating
model accounts for the high values of the test statistic when twenty years of data
are used. When ten or five years are used to construct the test statistic or when
subperiod results are aggregated, the data seem to support the hypothesis.
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