
Journal of Financial Economics 10 (1982) 3-27. North-Holland Publishing Company 

MULTIVARIATE TESTS OF FINANCIAL MODELS 

A New Approach* 

Michael R. Gibbons 

Stanford University, Stanford, CA 94305, USA 

Received October 1980, linal version received May 1981 

A variety of fmancial models are cast as nonlinear parameter restrictions on multivariate regression 
models, and the framework seems well suited for empirical purposes. Aside from eliminating the 
errors-in-the-variables problem which has plagued a number of past studies, the suggested 
methodology increases the precision of estimated risk premiums by as much as 76%. In addition, 
the approach leads naturally to a likelihood ratio test of the parameter restrictions as a test for 
a financial model. This testing framework has considerable power over past test statistics. With 
no additional variable beyond fi, the substantive content of the CAPM is rejected for the period 
1926-1975 with a significance level less than 0.001. 

1. Introduction 

A fundamental task for financial economists is characterizing equilibrium 
relationships between the perceived risks of a financial security and its potential 

rewards. A feature common to many theories is that the reward or expected 
return is a linear function of the risks. The risk is usually taken to be a measure of 
covariability between the asset’s return and an appropriately defined hedging 
portfolio. Thus, a wide class of financial models are of the form: 

E(Ri*)=YO+ t BijYjT i=l,...,N, 
j=l 

where 

E(&) =expected return on the ith security in period t, 

YO = risk-free rate (if it exists) or the expected return on a ‘zero-beta’ portfolio, 

*A number of people were helpful throughout this research project. Pat Hess, Terry Marsh, Rick 
Miller, Charles Plosser, Marc Reinganum, Myron Scholes, Bill Schwert, and Rob Stambaugh 
provided many valuable comments on various drafts. In addition, the members of my thesis 
committee (Eugene Fama, Jon Ingersoll, and Arnold Zellner) along with Merton Miller deserve 
special mention for their efforts. Workshops at Stanford University, University of Chicago, 
University of Rochester, and Yale University were useful forums for discussion. Naturally, I am solely 
responsible for any remaining errors. Partial financial support from the National Science Foundation 
is gratefully acknowledged. 
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Bij =a measure (as defined by a particular model) of association between 
the returns on security i and the returns on a portfolio designed to hedge 
risk j, 

Yj = premium for risk j (the nature of the risk is intentionally vague, for this is 

defined in the context of the particular financial model), 

N = number of securities, and 

K = number of risks. 

Examples of such expected return-risk relationships include the Sharpe (1964) 

- Lintner (1965b) capital asset pricing model (hereafter, CAPM), the Black 

(1972) CAPM, the arbitrage pricing theory due to Ross (1975, 1976), the Merton 
(1973) intertemporal asset pricing model, and an extended CAPM which 

incorporates the effect of dividends [Brennan (1970)]. 
The empirical investigations into these theoretical models have common 

features as well. Typically, the above class of financial models is studied through 

cross-sectional regression methods which relate realized returns on different 

financial securities to various measures of risks. Since the pij’s usually are not 
observable, such methods rely on proxies or estimates which necessarily contain 

measurement error. While cross-sectional regression methods are modified to 
account for the measurement errors,’ there have been few attempts to abandon 

the basic methodology for another. This paper begins with a development of an 
alternative conceptual framework. 

The potential payoffs from this new methodology seem large. In particular, the 
methods suggested here not only avoid the errors-in-the-variables problem, but 
the approach also increases the precision of parameter estimates for the risk 

premiums (i.e., the y’s). In addition, the framework lends itself to a likelihood 

ratio test of the parameter restrictions implied by a particular financial 
model, and the test statistic seems to have sufficient power to reject some 

models. The means by which these ends are achieved are through the 
nonlinear multivariate regression model. 

Despite the generality of the title, the bulk of this paper focuses on the CAPM 

for several reasons. First, new methodology should not only provide theoretical 
superiority relative to commonly used procedures, but its practical applications 
should be demonstrated. Second, the new techniques should be applied to an 
important model, and the CAPM has a long history of theoretical and empirical 
investigations. Finally, the development of the specific econometric tools for a 
particular application helps to illuminate the econometric theory being 

employed. 

‘The initial work on the CAPM is performed by Lintner (1965a) and Douglas (1969). In a detailed 
study Miller and &holes (1972) criticize their results due to econometric flaws. Both Black, Jensen, 
and Scholes (1972) and Fama and MacBeth (1973) contribute to the literature by correcting the 
difficulties through the grouping procedure. Black and Scholes (1974) extend the method to a financial 
model which explicitly incorporates dividends, and recently Litzenberger and Ramaswamy (1979) 
suggest an errors-in-the-variables regression model as an alternative to the grouping procedure. 
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Sections 2 and 3 focus on the CAPM by first viewing the model from a slightly 

different viewpoint and then developing the relevant econometric tools. In 
section 4 the method is applied to a large sample of stock returns, and the 

appropriateness of asymptotic statistical theory for a finite sample size is 
confirmed through simulations reported in section 5. In section 6 some additional 

thoughts on the CAPM are provided. Finally, section 7 demonstrates how the 
approach can be generalized to a wide variety of financial theories. 

2. Developing the CAPM hypothesis 

For this study the ‘market model’ is assumed to be well specified: 

R”i, = Xi + BiR”mt + hit, i=l ,..., N, t=l,..., 7; 

where 

iT, =return on asset i in period t, 
&,, =return on the market portfolio in period t, 

/Ii = cov (R,,, &,)/var (R,,), and 
fii, =a random disturbance with the following stochastic properties: 

(1) 

E(~i,~jr) = ~ij for all s = t and for all i and j, 

=o otherwise. 

Assuming asset returns are stationary with a multivariate normal distribution 
and serially uncorrelated is sufficient to justify (1) [Fama (1973)]. Evidence of the 

approximate normality of monthly returns is given by Blattberg and Gonedes 
(1974) and Fama (1976). 

Eq. (1) is a statistical statement rather than one derived from financial theory. 
Eq. (1) implies 

E(Wi,) = %(i + PiE(R,,). (4 

The Black CAPM requires the following expected return-risk relationship 
across assets: 

where 

E(RiJ = Y + PiCE(wmJ - +?I3 (3) 

y = expected return on the ‘zero-beta’ portfolio or any portfolio whose return is 
uncorrelated with the return on the market portfolio, WI. 
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In terms of (2), the Black model implies the following constraint on the intercept 
of the market model: 

ai=y(l--/Ii) for all i=l,...,N, (4) 

which is the basis of the subsequent tests of the CAPM. Thus, the formal 
hypothesis becomes 

Ho:a = l4r.N - PI, 
(5) 

where 

d=(CQ,C(~,..., CQ) (1 x N vector), 

&3(1,1,. . ., 1) (1 x N vector of ones), and 

B’-(B1,B*,..., fiN) (1 x N vector). 

The CAPM places a nonlinear restriction on a system of N regression equations. 
Relative to previous research, testing (5) represents a different and perhaps a 

more powerful check on the CAPM. Much of the past work assumes (4) is true 
and uses the relation to derive a point estimate for y. This point estimate is then 
compared with the return on the market portfolio and the risk-free rate in order 
to generate univariate tests of the CAPM. This study examines the CAPM by 
testing the restrictions across securities.’ 

In testing the CAPM Fama and Macbeth (1973) rewrite (3) so that it includes 
/If term as well as the variance of iji, (i.e., cii); that is, 

They then examine the significance of estimates of y3 and y4 as a way of verifying 
the CAPM. In the multivariate framework, the null hypothesis given in (5) is 
rejected if y3 or y4 differs from zero. For example, if y4 is not equal to zero and if 
the two securities have the same /Ii but different values for cii, then the intercepts 
differ which is inconsistent with the null hypothesis and which should result in a 
rejection. Thus, in a multivariate framework af and ~ii need not be included in (3) 
to test for the linearity in beta. 

‘The reduction of the parameter space under the null hypothesis may be viewed as the content of 
the CAPM. That is, given y and fi, one can infer a without estimating each ai individually. 
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3. Developing the econometrics for the CAPM hypothesis 

The relevant econometric analysis is presented in this section for testing the 
CAPM conditional on the statistical model given in (1). In terms of the notation 
of the previous section, 

Ri=C5$r+BiR,+ci, i=l,...,N, (6) 

where 

R =(& ) Ri2,. . .) R,,) (1 x Tvector), 

&=(l,l,...,l) (1 x T vector of ones), 

8:,=(W,,,R,,,..., w,,) (1 x T vector), 

T:=(Gil,Gi2,...,iliT) (1 x T vector), and 

iii - MVN(O; a,iZ,). 

The hypothesis is 

H&=y(l-/?J, i=l,...,N 

(i.e., CAPM is consistent with the data), 

H,:cri#y(l-fii), i=l,...,N 

(i.e., CAPM is not consistent with the data). 

Eq. (6) can be viewed as either a system of N regression equations, or it can be 
‘stacked’ into a single regression of the following form: 

_ . 
a1 

Bl 
a2 

82 + 
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or 

where 

I, =N x N identity matrix, 

0 = T x 2 matrix of zeroes. 

it+’ =(R,,W, )...) RN) (1 x NT vector), 

ij*‘=(fl;,ij;,...,ij;) (1 x NT vector), and 

@ indicates a Kronecker or direct product operator. 

I assume that 

E(rjiijl} = OJ, for all i = j, 

= CTijIy- for all i#j, 

where 

E= N x N contemporaneous covariance matrix with typical element equals aij; 
zis assumed to be positive definite symmetric, and 

P - MVN(O; E@Z,). 

The arrangement in (7) is used in a seemingly unrelated regression model due to 
Zellner (1962). Since the set of explanatory variables is identical across the 
equations, this formulation can be specialized to a multivariate regression model 
(hereafter, MVRM). With identical regressors across equations and under the 
alternative hypothesis, ordinary least squares (hereafter, OLS) on each equation 
like (6) is efficient [Zellner (1962)]. However, under the null hypothesis given in 
(5), OLS is inefficient relative to a nonlinear MVRM estimation procedure - 
thanks to the reduction of the parameter space from 2N (under the alternative 
hypothesis) to N + 1 (under the null hypothesis). 

Assuming returns have a multivariate normal distribution, the specification of 
the likelihood function is straightforward under the null hypothesis. To find the 
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maximum likelihood estimators, first- and second-order conditions for the 

maximum of the likelihood function need to be determined. Since the actual 
estimation technique employed later in this paper does not revolve around these 
conditions, the details of this exercise are not provided here.3 However, the 
intuition underlying the procedure is useful. Satisfying the first-order 

requirements can be likened to iterating back and forth between two sets of 
regressions with the following algorithm: 

(1) Use OLS equation by equation (with T observations per equation) where the 

typical equation is given by (6). This provides the initial estimates for a, and /Ii 
(i=l,...,N). 

(2) Use the residuals from these N regression equations to construct an estimate 

of the contemporaneous covariance matrix, Z. In order to avoid a singular 
covariance matrix, T must be greater than N. 

(3) Do a generalized least squares version of the Black, Jensen, and Scholes 
(1972, pp. 100-112) time series estimator using raw returns, not excess 
returns. That is, compute 

A 
B’#f’(z,-/?) 

‘=(zN-/g’L-(z.-/9)~ (8) 

where 

A, a =&PI’& 

s’ =(p^ 1,.A‘V) 

IL =(l,..., 1) 

l?, =Tml~Tcl R,,, and 

(1 x N vector), 

(1 x N vector), 

(1 x N vector of ones), 

R’ =(T-1CtRlt,T-1CtR2t,...,T-1CtRN1) (1 xN vector). 

(4) Using 4 from step 3, perform ‘market model’ regressions (N of them) with 
excess returns and without a constant term. That is, 

(Bi_9ZT)=~i(R,-9ZT)+~i, i=l , . . ., N. (9) 

(5) With this new set Of bi estimates, p, repeat steps 3 and 4. One may iterate back 
and forth between (8) and (9) until satisfactory convergence is achieved. The 
estimate of the contemporaneous covariance matrix may also be updated if 
desired using the residuals from (9). 

3The interested reader may see Gibbons (1980a). 
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The above algorithm is only suggestive; the procedure is not desirable due to 
computational considerations. The five steps demonstrate that the suggested 
approach is an extension and combination of two procedures outlined by Black, 
Jensen, and Scholes (1972). Since (8) and the least squares estimator associated 
with (9) are linear combinations ofexcess returns, a portfolio interpretation of the 
estimation scheme would also be possible by examining (8) and (9) at each stage of 
the iteration. 

The actual calculations in this paper use a one-step Gauss-Newton procedure4 
which linearizes the restriction in (4) using a Taylor series expansion about 
consistent estimators. After the linearization, the problem may be formulated as a 
general linear hypothesis for a seemingly unrelated regression model. This case is 
discussed by Theil(l971, pp. 3 12-3 17), and the appendix details the approach. A 
one-step Gauss-Newton method based on consistent estimators has the same 
asymptotic properties as the maximum likelihood estimator.5 The one-step 
approach has the further advantage of easy implementation on many computer 
software packages without additional programming. 

The statistical properties of this estimation scheme are appealing. In contrast 
to some past approaches, errors-in-the-variables is not a problem since y and fi 
are estimated simultaneously. The proposed estimator is consistent and 
asymptotically efficient with an asymptotic normal distribution. The precision of 
the estimator is improved since a full contemporaneous covariance matrix for the 
tit’s is incorporated. 

At this point two sets of estimators for a and fi exist; one set is restricted by the 
null hypothesis while the other is estimated under the alternative hypothesis. The 
object now is to test the null hypothesis. Though several test statistics are 
available, the statistic employed is a likelihood ratio test (hereafter, LRT) which 
compares the statistical ‘lit’ of the unrestricted model with that of the restricted 
model. If the ‘lit’ under the null hypothesis is ‘close’ to that under the alternate, the 
null hypothesis is not rejected. The measure of the ‘lit’ is given by the generalized 
variance. 

The appropriate LRT statistic has the form 

where 

lzl= the determinant of the contemporaneous variancecovariance matrix 
estimated from the residuals of the restricted system, and 

lgl= the determinant of the contemporaneous variance-covariance matrix 
estimated from the residuals of the unrestricted system. 

‘I am grateful to Arnold Zellner for suggesting this alternative to me. 
SThe asymptotic properties of a one-step Gauss-Newton method are discussed in detail in Gibbons 

(1980a, ch. 2). The asymptotic characteristics follow from results reported in Fuller (1976) and 
Gallant (1975). 
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It is well known that asymptotically 

-2lnA-&i. 

Eqs. (10) and (11) form the basis of tests of (5). 

(11) 

4. Empirical results 

An estimate of the expected return on the ‘zero-beta’ portfolio and an LRT are 
computed for ten different five-year subperiods using monthly returns. While the 

joint distribution of returns is not constant for the whole twentieth century 
[Fama (1961, p. 132) Gonedes (1973)], Gonedes (1973) and Officer (1972) 
could not reject the hypothesis that the parameters of (1) are stationary for 
live to ten years. A first-order Taylor series expansion of r,=r(l -pi) is 
performed about the consistent estimators; the market model equations are 

then estimated subject to the linearized restriction. The initial estimator for pi 

is unrestricted OLS while y is estimated by the approach suggested in Black, 
Jensen, and Scholes (1972). This linearization is developed in detail in the 

appendix. The estimator derived from this one-step GausssNewton 
procedure is labeled 3*. 

The estimation uses monthly stock returns as provided by the Center for 
Research in Security Prices (hereafter, CRSP). The return on the CRSP equal- 

weighted index serves as the return on the market portfolio, R,t.6 The time period 
of 192675 is divided into ten equal live-year subperiods. Any security for a 
particular subperiod meets the following criteria: 

(a) it is listed (without any missing returns) continuously for that five-year 
period, 

(b) its two-digit industry code (SEC) is available from the beginning of the 
subperiod, and this two-digit code does not change throughout the 

subperiod, and 
(c) for the last three subperiods (1961-65, 196670, 1971-75) the industry codes 

need only be available at the beginning of 1962. 

Criterion (c) is included due to an error in the CRSP data that is being 
corrected. For the last three subperiods the industry code as of 1962 is assumed 
constant for these last thirteen years. Any new listing after 1962 is assigned its first 

%ince the composition of the true market portfolio is unknown, a proxy is used. The following 
calculations actually investigate the mean-variance efficiency of the market proxy employed. 
However, using various econometric methods (including the procedure suggested in this paper), 
Stambaugh (1978) provides evidence that tests of the CAPM are not sensitive to the choice of the 
proxy. 
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code for the rest of the period. Criterion (b) is employed to decrease potential 
parameter shifts due to changes in real production activity. 

The above criteria are not stringent enough to reduce the number of assets on 
the left-hand side (hereafter, LHS) of the market model equations to manageable 

numbers. With sixty observations per equation and a full contemporaneous 

covariance matrix for the disturbances across equations, only fifty-eight 
equations (or ‘LHS assets’) are feasible; otherwise, there are more parameters 

than observations, and the covariance matrix becomes singular. Several solutions 
are available. A subset of securities may be selected, or the covariance matrix may 
be structured to reduce the number of parameters.’ The former alternative is 
selected for this research. 

The strategy is to estimate pi (using sixty months of data) for all securities 
meeting the above criteria. With these estimates forty groups, each with the same 

number of securities, are formed ranging from low to high pi values. An equally 
weighted portfolio is formed using all securities in a particular class. These forty 

portfolios are the ‘LHS assets’ within this same five-year period. Since the MVRM 
approach does not use pi as an explanatory variable in a regression model, there is 

no obvious bias’ from the selection of securities stratified by Bi estimated from the 
same subperiod in which the test is performed. Such a stratified selection has the 
advantage of increasing the dispersion of pi values and making a more powerful 

test. Of course, the MVRM technique does not require this kind of sample 
selection; the portfolios formed by Fama and Macbeth (1973) could also be used. 

Table 1 summarizes the results for the ten five-year subperiods using the forty 
portfolios. In the last two columns the LRT of the CAPM hypothesis given in (5) 

is reported; the parameter restriction implied by the CAPM is rejected at 
reasonable significance levels in five out of ten subperiods. In the remaining five 
subperiods, the test statistic is marginally insignificant for three subperiods. 
Since the sum of independent chi-square statistics is also chi-square, the 
evidence from the ten subperiods is summarized in an overall statistic 
provided in the last row of table 1. This value supplies further negative 
evidence against the restriction. 

Thus, even within a limited class of LHS assets and an unspecified alternative 
hypothesis, table 1 rejects the mean-variance efficiency of the equally weighted 

NYSE portfolio. To the extent that the CRSP equal-weighted index is an 
adequate proxy for the market portfolio, this test rejects a special case of the 
Sharpe-Lintner model (where the risk-free rate is constant), the Black model, and 
variants of the Black model which conclude that the market portfolio is mean- 
variance efficient. Furthermore, the evidence is inconsistent with some special 

cases of the Ross arbitrage pricing theory. 

‘For example, the contemporaneous covariance across market model disturbances may be set to 
zero unless two securities are in the same industry. Some evidence on the importance of the industry 
factor is provided by King (1965). 

‘This conclusion is confirmed by both simulation evidence and alternative sorting techniques; 
details of this investigation are in Gibbons (1980a). 
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Table I 

Estimates of the expected return on the zero-beta portfolio using the Black, Jensen, and Scholes 
(1972) estimator (&us) and using a one-step Gauss-Newton estimator (9*). Likelihood ratio test 
(LRT) of the parameter restriction implied by the CAPM. Each subperiod uses 40 equal- 
weighted portfolios of NYSE securities and the CRSP equal-weighted index as the market 

portfolio. 19261975. 

Time period i’BJS 
SW&) 
(uncorrected) j* 

SE(,j*)b 
(unadjusted) LRT 

p-value’ 
for LRT 

1926/‘1&1930/12 0.0004 0.00440 0.0 124 
(0.00440) 

1931/l-1935,‘12 0.0024 0.00827 0.0067 
(0.008 16) 

1936/l-1940/12 - 0.0029 0.00950 ~ 0.0082 
(0.00945) 

1941/l-1945/12 0.0085 0.00476 0.0115 
(0.00452) 

1946/l-1950/12 0.0070 0.0035 1 0.0034 
(0.0035 1) 

1951/1~1955/12 0.0121 0.00168 0.0097 
(0.00167) 

1956/1~1960,‘12 0.0129 0.002 18 0.008 1 
(0.002 16) 

1961/l-1965/12 0.0070 0.00254 0.0068 
(0.0025 I) 

1966/l-1970/12 0.0045 0.00379 0.0001 
(0.00379) 

1971/l-1975/12 0.0096 0.00608 0.0061 
(0.00606) 

Overall LRTd (390 degrees of freedom) 

0.00129 75.06 0.000 
(0.00127) 

0.00280 50.29 0.106 
(0.00275) 

0.00233 92.50 0.000 
(0.00229) 

0.00131 43.99 0.268 
(0.00129) 

0.00134 87.46 0.000 
(0.00131) 

0.00065 53.3 I 0.063 
(0.00064) 

0.00098 69.83 0.002 
(0.00096) 

0.00127 57.56 0.028 
(0.00 125) 

0.00132 47.01 0.177 
(0.00130) 

0.00243 52.56 0.072 
(0.00239) 

629.57 0.000 

“SE(*j,,,) is based upon the asymptotic distribution [derived in Gibbons (1980b)] while the 
uncorrected version is given by Black, Jensen, and &holes (1972). 

?TEPj*) is adjusted following the suggestion of Gallant (1975) based upon evidence from 
simulations. 

‘The p-value represents the probability of a realization greater than the LRT from a chi-square 
distribution with 39 degrees of freedom. 

dThe overall LRT is just a summation of the LRT for each subperiod. Since the LRT for each 
subperiod is chi-square with 39 degrees of freedom and independent across subperiods, the overall 
LRT has a chi-square distribution with 390 degrees of freedom. 

Admittedly, the LRT conveys information more from a statistical viewpoint 
than an economic focus.’ In an attempt to circumvent this criticism, fig. 1 graphs 

the departures of the data from the theoretical model while section 5 indicates the 
power of the LRT and provides some economic intuition about the power. 

‘% some preliminary work Ross (1980) transforms a special case of the above LRT (for the Sharpe- 
Lintner model) so that it measures the distance of the market proxy from the mean-variance frontier. 
Unfortunately, the extension to the more general case of the LRT is not trivial. 
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Fig. 1. Scatter plots of the coefficients from the unrestricted versus the restricted market model for ten 
non-overlapping subperiods from 192661975 with 40 portfolios in each subperiod. The slope of the 
solid straight line in each plot is given by the one-step Gauss-Newton estimate of the expected return 
from the zero-beta portfolio (NOT the ordinary least squares tit of the points), and all points 
should fall on this line if the CAPM is true. The 40 points on each scatter plot represent the least 
squares estimates of the market model coefficients when the CAPM restriction is not imposed upon 
the data. The vertical axis (labeled s() is the intercept and the horizontal axis (labeled 1-p) is one 
minus the slope coeflicient in the market model regression given by l?,, = ai + /I,&,, + ri,, (Note that the 

scale varies across the scatter plots.) 

A scatter plot of unrestricted market model coefficients [i.e., Bi and pi from (l)] 

against restricted market model coefficients [i.e., pi and fli from (1) subject to (4)] is 
provided in fig. 1 for each subperiod. These plots require a cautious 

interpretation, for unrestricted market model coefficients that are apparent 

‘outliers’ from the restricted estimates may not represent important deviations 

from a generalized least squares viewpoint. For example, the appropriate scatter 
plot for 1931-35 in fig. 1 suggests that the high beta stock (see upper left corner of 

the plot) is an important deviation from the CAPM hypothesis. However, since 
the disturbance term of a high beta stock in a market model regression typically 
has a large variance, this security is not weighted as heavily in the LRT as a low 
beta stock.” 

Fig. 1 does point to a potential explanation for the departure from the CAPM. 
There is some curvature in the scatter plots in that high beta stocks tend to fall 

“‘Using a multiple comparisons approach, Gibbons (1980a) formally confirms that this high beta 
stock does not drive the LRT for this subperiod. 



M.R. Gibbons. Multivariate tests offinancial models 15 

-095 -062 -029 005 036 071 

1-B 

1956-1960 
0105 

0062 

0059 - 

-0033 

-0056 - 

-1.22 -0.8, -0.39 002 044 0.65 

1-P 

1966 - 1970 

0054 - 

0042 - 0 
0031 - 

/ : 

I' oozo- 0006- 

0 o 

p zwoo :osooo 

0 
Q-0003 _'-----------m--- 
-0014- 0 00 

-0026,; 
z 

-0037 - I0 
-0048- 00 oo, 

0 -0060 I, 

-096 -0 63 -029 006 040 074 

1-P 

-1 12 -074 -035 004 042 0.91 

1-B 

1961- 1965 
0072 - 

0057 - 

0043 - 

0029 - 

(I 0014- 

-0014 - 

-I 04 -067 -030 007 044 0.81 

1-P 

1971-1975 
0066 0 

0 
0055 - 

0045 - 

0035 - 

0024 - 

0 -0038 O'C I 

-0 42 -023 -005 014 033 0.51 

1-P 

Fig. 1 (continued) 

below the straight line while the reverse is true for low beta stocks. This pattern 
appears for 1946-50,1951-55,1956-60, and 1966-70. This curvature may be an 
artifact of the distinctive pattern in the covariance matrix of the least squares 
estimators for the market model coefficients (i.e., the correlation between the 
market model disturbances for high and low beta securities is negative while it is 
positive for securities with similar beta values). Another interpretation would be 
that prices of securities reflect risks other than the ‘beta-risk’, and these other risks 
are related to the level of beta. Future research needs to explore this latter 
interpretation. 

The plots for 1926-30 and 1971-75 indicate that the CAPM tended to misprice 
all securities. The average returns for these two subperiods are too high according 
to the financial model. 
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Table 1 is also interesting since other econometric methods for financial 
models may be compared with the MVRM approach. One estimator for y is given 
by Black, Jensen, and Scholes (1972). This estimator is labeled &,s, and an explicit 
expression is 

The second column of table 1 reports &us for each subperiod while its standard 
error is in the third column. The uncorrected standard error for &s is calculated 
following the suggestion of Black, Jensen, and &holes (1972). Basing the standard 
error on the asymptotic distribution of 9 aJs [derived in Gibbons (1980b)l results 
in a slightly higher value which is also reported in the third column. 

Using the MVRM along with a one-step Gauss-Newton algorithm, the fourth 
and fifth columns of table 1 indicate point estimates of “J (labeled ‘/^*) and the 
associated standard errors. Not only are the asymptotic standard errors reported 
(see numbers in the parentheses in the fifth column), but some adjustments for 
linite sample sizes are also provided in the fifth column based on the simulation 
evidence reported by Gallant (1975)” and in section 5. 

In all cases the standard errors for $* are smaller than those for &,s. The 
reduction achieved by the MVRM ranges from 50 to 76 percent. If an investigator 
accepts the restrictions of the CAPM, then the MVRM technology provides an 
efficient estimator of the expected return on the zero-beta portfolio. 

The MVRM may be used with either portfolios or individual securities. 
Computational considerations limit the number of assets, and portfolio 
formation provides one way (but not the only way) to decrease the 
dimensionality of the problem. However, given the strong rejection of the 
CAPM in table 1, the fears for the portfolio-based tests [Roll (1976, pp. 62-65) 
Ross (1978, p. 897)] appear groundless.12 

Some researchers in financial economics may be surprised that the CAPM fits 
the data so poorly. Their surprise may stem either from a strong faith in the 
theory associated with the CAPM or, more likely, from a lack of faith in the 
power of previous empirical tests of the CAPM. Both Roll (1977, p. 155) and Ross 
(1978, p. 892) for example, express concern that the existing econometric tests of 

“Gallant (1975, p. 43) suggests resealing the variance of $* by the factor T/(T+2) where T is the 
number of observations per equation and 2 reflects the number of coefftcients estimated in each 
equation. Gallant also suggests the use of Student’s t distribution with T- 2 degrees offreedom rather 
than a normal approximation. While Gallant’s estimation technique is not a one-step Gauss-Newton 
procedure, simulation evidence reported in section 5 confirms the usefulness of Gallant’s suggestion 
for this estimation technique as well. 

“Gibbons (1980a, ch. 4) repeats the MVRM methodology over the ten subperiods reported in 
table 1 using 20 individual securities. The overall x2 for this sample also rejects the CAPM restriction. 
If anything, the sample of individual securities is more supportive of the CAPM than portfolio-based 
tests - counter to the intuition of the critics of grouping. 
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the CAPM have little power to reject the model. The proposed methodology, 
however, seems to have sufficient power. 

Furthermore, the statistical assumptions underlying the LRT are reasonable. 
According to conventional wisdom among empiricists in finance, the market 
model equation given by (1) is well specified for at least a five-year period, and 
monthly data does conform reasonably well to a normal distribution. In addition, 

most empiricists regard a market model using a portfolio return as the dependent 
variable as an even better specification. Nevertheless, various diagnostic tests are 
performed on (1) for all the regressions used in table 1; these results are reported in 

Gibbons (1980a). This diagnostic examination searched for non-stationarity of 
regression coefficients, autocorrelated and/or heteroscedastic disturbances, and 
non-normal returns. Since the diagnostic fail to uncover any apparent problems, 

the details of this exercise are not reported here. 

5. Simulation evidence 

Since the statistical properties of the suggested methodology are only 
determined for large samples, a question naturally arises as to the appropriate 
interpretation of the above results based on a finite sample size. An extensive 
simulation study is used to investigate this issue, and a detailed report of the 

results is provided in Gibbons (1980a, app. A). What follows is a condensed 
version of that appendix. The focus is on the small sample distributions of the 

one-step Gauss-Newton estimator (i.e., 3* ) and the corresponding likelihood 

ratio statistic. 

The Monte Carlo experiments are based on equation system (6) subject to (4) 
using live equations (i.e., N = 5). Relying on historical evidence from common 

stock returns to fix the parameters, table 2 reports the values for the six 
experiments. Each experiment involves 250 replicationsi The 
contemporaneous covariance matrix for the market model disturbances is given 
in table 3. While the numbers in table 3 are arbitrary, other experiments reported 
in Gibbons (1980a) indicate the results are not sensitive to the actual values 

selected. The parameter values in tables 2 and 3 along with the normal random 
number generator from the International Math and Statistical Library provide 
the data for the simulation. 

Table 4 characterizes the small sample distribution of $*. The second column 
(labeled y”” + 102) of table 4 provides the mean of $* across all replications for a 
particular experiment. This estimator of y is not biased, for the average value off* 
does not systematically deviate from the true value of y given in parentheses in the 
second column of table 4. The third column [i.e., a2(f*) x 102] compares the 
variance of the asymptotic distribution with the sample variance of y^* across all 

“For each experiment only one time series for R,, is generated; the replications create new market 
model disturbances conditional on the R,, values. 
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replications for a particular experiment. The former quantity is provided in 
parentheses in the third column, and it is an average (through all replications) of 
the estimates of the asymptotic variance. While reliance on the asymptotic 
variance overstates the precision of $*, the problem is not serious. The worst 
approximation occurs for experiment 5 which uses only thirty observations. 
Given this apparent overstatement of the precision, a sensible and conservative 
strategy is to adjust the asymptotic standard errors following the suggestion of 
Gallant (1975, p. 43); this procedure is discussed in section 4. The last two 
columns in table 4 help to summarize the results. While there may be some 
deviations from the asymptotic normal distribution, in no instance are these 
departures sufficient to make the studentized range test or the chi-square 
goodness-of-fit test statistically significant. 

Table 3 

Contemporaneous covariance input for market model disturbances used in all 
simulation experiments. 

Equation 
number 

1 o.OQ150 
2 0.00070 0.00203 
3 0.00042 0.00086 0.00300 
4 0.00147 0.0007 1 0.00139 0.00403 
5 0.00082 0.00080 0.00039 0.00000 0.00500 

Table 4 

Means, variances and normality tests for the sampling distribution of the estimator of the 
expected return on the zero-beta portfolio (B*) using a one-step Gauss-Newton procedure. 

Each experiment involves 250 replications. 

y^XlOO &‘(f*) X 100 Studentized x2 statistic 
Experiment (theoretical) (theoretical range test for normality 
number value) value) for normality (p-value) 

1 0.700 0.00144 5.71 9.01 
(0.61) (0.0013) (0.11) 

2 0.364 0.00131 6.55 3.18 
(0.39) (0.0013) (0.67) 

3 0.860 0.00132 5.71 2.35 
(0.87) (0.0010) (0.80) 

4 0.642 0.00139 5.37 4.66 
(0.60) (0.0014) (0.46) 

5 0.616 0.00364 5.57 3.31 
(0.61) (0.0029) (0.65) 

6 0.605 o.WO74 5.20 3.82 
(0.61) (0.0007) (0.58) 

“These theoretical values are actually for a slightly different estimator whose behavior 
was almost identical with that of the one-step Gauss-Newton procedure. 
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In table 5 the small sample distribution of the LRT is characterized under the 
null hypothesis; theoretically, it has an asymptotic distribution of a chi-square 

with four degrees of freedom. Except for the last two columns, the format of table 
5 is analogous to that of table 4. The test statistic is biased upward relative to its 

asymptotic mean, and it has greater dispersion than suggested by the theoretical 
distribution. The chi-square test for goodness-of-fit to a chi-square distribution is 
significant at the five percent level in two cases, but in one of these two cases, the p- 
value is close to 0.05. The main conclusion to draw from table 5 is that the test 
statistic is inadequate with only thirty observations (experiment 5). 

Table 5 

Means, variances and the goodness-of-fit tests for the sampling distribution of the 
likelihood ratio test (LRT) of the CAPM restriction under the null hypothesis. Each 

experiment involves 250 replications. 

Experiment 
number 

1 

2 

3 

4 

5 

6 

LRT S2(LRT) x2 statistic for a 
(theoretical (theoretical chi-square distribution 
value) value) (p-value) 

4.49 10.15 14.90 

(4.00) (8.00) (0.04) 

4.14 8.87 10.80 

(4.00) (8.00) (0.15) 

4.33 10.12 5.42 

(4.00) (8.00) (0.61) 

4.41 9.12 7.66 
(4.00) (8.00) (0.36) 

5.04 14.58 28.14 

(4.00) (8.00) (0.00) 

4.18 8.87 6.19 

(4.00) (8.00) (0.52) 

Table 6 provides the small sample power of the LRT. To conveniently 
parameterize the deviations from the null hypothesis, the model to generate the 

data under the alternate hypothesis has the form: 

‘Ai = y( 1 - Bi) + Ei, i=l 5, >. . ., 

where 

Ei - N(0, a;). 

The hope is that the power of the test increases as CT~ increases. 
This formulation of the alternative hypothesis is interesting, for it seems close 

to one which Ross (1978, p. 892) has in mind when discussing the power of current 
tests. This alternative also resembles a variety of models that are competitors with 
the CAPM. For example, the Merton (1973) intertemporal model with one state 
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Table 6 

The simulated probability of failing to reject the CAPM restriction using the likelihood 
ratio test for different deviations from the null hypothesis. Theoretical significance level 
at 5%. Each experiment involves 250 replications. i?,, = a,+/l&, + ij,,, Vi= I,. ., 5 
and Vt=l,...,7: H,:a,=y(l-fi,), Vi=l,...,5, and H,:a,=;~(l-~J+E, where 

E, - NID(0, fJ;,. 

Deviation of Experiment number 
data from null 
hypothesis (a,) I 2 3 4 5 6 

0.0000 0.92 0.96 0.92 0.94 0.88 0.93 
0.0025 0.92 0.92 0.83 0.86 0.90 0.87 
0.0050 0.80 0.70 0.74 0.79 0.83 0.57 
0.0075 0.56 0.52 0.56 0.66 0.72 0.39 
0.0100 0.37 0.46 0.43 0.44 0.60 0.23 
0.0125 0.34 0.28 0.27 0.34 0.44 0.13 
0.0150 0.18 0.20 0.23 0.17 0.38 0.06 
0.0175 0.15 0.12 0.1 I 0.16 0.32 0.07 
0.0200 0.08 0.09 0.12 0.10 0.26 0.02 
0.0225 0.08 0.04 0.07 0.09 0.17 0.02 

21 

variable implies 

E(Rit) = Y + BiCE(Emt) - Yl + xiCE(RHJ - Yl7 

where 

E(R,,) Eexpectcd return on the portfolio used to hedge the risk of the state 

variable. 

For simplicity R,,,, and iT,, are assumed orthogonal so that pi is the simple 

regression coefficient. Combining the above equation with (2) implies 

ai= -Bi)+71iCE(RHt)-Yl, i=l , . . ., N. 

Thus, ci can represent the deviation from the Black (1972) version of the CAPM 
when the Merton asset pricing relationship is the appropriate model of 
equilibrium. Further, since there are a variety of alternative models similar in 
form to that of Merton’s, ci can be viewed as a convenient and rather general 

way to capture the ability of the LRT to discriminate between the CAPM and 
various alternative theories. Assuming a particular distribution for ei 
is like characterizing the distribution of the excluded risk premiums (e.g., 

“iCECRHJ - Yl). 
Several conclusions can be drawn using the evidence in table 6. The LRT has 

the ability to reject the restriction, and this ability increases as gE increases. 
Comparing the dispersion of /II~[E(R,,)-~] across i with oc may suggest the 
economic size of aE needed to reject the null hypothesis. If pi has a standard 
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deviation of 0.5 across i, and if E(a,,)- y -0.006 [from overall results of Fama 

and Macbeth (1973)], then a dispersion of 0.003 for aE is ‘large’ as long as the 
dispersion of excluded risk premiums is less than the dispersion of the risk 

premiums for Bi. By this criterion table 6 suggests the LRT has little chance to 
detect deviations from the CAPM. Thus, despite the apparently low power of the 

LRT, the evidence in section 4 still rejects the CAPM - suggesting this financial 

model may be inadequate in economic as well as statistical terms.14 
The first row of table 6 (where gE=O) suggests that the theoretical size (five 

percent) of the test corresponds closely to the size implied by the simulations. The 

asymptotic approximation seems inadequate for experiment 5 which is based on 
thirty observations. 

The general impression from the simulation study is that the use of asymptotic 
theory provides an adequate approximation for inferences based on finite sample 

sizes. Furthermore, the LRT has some power to reject the null hypothesis when 
departures from the CAPM hypothesis become sufficiently large. 

6. Some final reflections on the CAPM restriction 

This paper has presented a multivariate statistical framework for estimating 

the expected return on the ‘zero-beta portfolio’ and for testing a multivariate 
restriction implied by the CAPM. The multivariate estimation scheme appears 
promising, for the resulting estimates avoid the errors-in-the-variables 
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multivariate hypothesis provides a strong test of the underlying theory, for a very 

stringent relation must hold among the parameters of a large number of market 

model equations. 
Of course, there are some philosophical issues as to what it means to reject (or 

even accept) the CAPM restriction if ‘it takes a model to beat a model’. The 

CAPM restriction given in (5) has been rejected in favor not of another model but 
of an unspecified alternative hypothesis. The test really asks whether the data are 
better described with a normal distribution assumption with or without the 
cross-sectional implication of the CAPM theory. Since the test is not 
constructive, alternative financial models that are superior to the CAPM are not 

indicated. The rejection of (5) is at least warning to those using the CAPM for 
other objectives (e.g., tests of market efficiency). Strict adherence to the CAPM 

would lead to a structure which is inconsistent with the data, and such 
misspecitication may yield incorrect inferences about a hypothesis not directly 

related to the CAPM. The use of a statistical model with a more general 
parameterization would be a sensible precaution. This suggestion complements 
the advice given by Brown and Warner (1980). 

One final point is in order. The multivariate scheme does not require the use of 

a vague alternative hypothesis. Several financial models may be ‘nested’ so that 
rejection of the null hypothesis supports a particular alternative theory. This type 
of constructive test is provided in Gibbons (1980, app. G) where the CAPM is 

nested as a special case of the Merton (1973) intertemporal model. The tentative 
results suggest that the Merton restriction is more consistent with the data than 
the CAPM. The following section suggests a generalization of the MVRM 
technology to a wider class of financial models. 

7. A generalization of the methodology and topics for future research 

The general class of financial models that are considered in this section are 

E(Wit)=YO+ f PijYj, i=l , . . ., N. 
j=l 

(12) 

The notation is defined in the first section. To permit inferences concerning a 
particular financial theory, statistical assumptions must be made. The following 
relation is assumed to be well specified: 

i=l,..., N, t=l,...,17: (13) 
j=l 

The above equation can be viewed as a single time series regression with T 

observations in a pooled system of N equations. The explanatory variable, gjt, is 
intentionally undefined, for it is the random variable which equates Bij in eq. (12) 
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with aij in eq. (13). In many financial applications the following structure for the 
error term seems reasonable: 

E(Gir) = O, i=l N, 3. . ‘> t=l,...,7; (14) 

E(iji,ijjt) = dij, i, j = 1, . . ., N, s = t, 

=o, i,j= 1 ,..., N, sit. 

IfR,and lj, (j= 1,. . ., K) have a stationary multivariate normal distribution with 

serial independence, the above structure follows by implication.15 
Eqs. (13) and (14) are combined and restated in a form similar to (12). The 

unconditional expectation of (13) is 

E(~i,) = BiO + ~ BijE(.~i~). (15) 
j= 1 

Since the left-hand sides of (12) and (15) are equal, the right-hand sides of both 
may be equated: 

Pi0 = YO + j$l PijYj* 
where $ E yj - ~(2~~). 

Eq. (16) is the key result, for it is an implication of the financial theory conditional 
upon the specification given by (13) and (14). The content of the financial model 

reduces the parameter space to K(N + 1) + 1 regression coefficients from N(K f 1) 
parameters of the unrestricted statistical model. 

Eq. (16) may be used in two ways. First, the relation permits efficient estimation 
of the yj’s (i.e., the risk premiums) by restricting the MVRM given in (13). Second, 
(16) provides a null hypothesis for testing the substantive content of a particular 
financial model. The test in its most general form becomes 

HO:PiO =YO + f PijYT, i=l N, , . ., 
j=l 

(17) 

H,4:BiO#YO+ i PijYr3 i = 1,. . ., N. 
j= 1 

The alternative hypothesis need not take such a general form. The statistical lit of 
different variants of (12) may be compared by examining the statistical 
significance of estimates of yi* for a particular j. 

ISThe multivariate normal distribution assumption is only a sullicient condition, for other 
distributional assumptions (e.g., multivariate Student t) imply (13) and (14). Alternatively, (13) 
and (14) may be postulated, and then diagnostic tests may be performed to confirm the 
specification. 
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The primary extensions of this work involve two distinct topics. First, further 

work on the Merton (1973) asset pricing model is promising. This type of research 
seems to be important given the rejection of the CAPM and the paucity of any 
statistical work on intertemporal asset pricing models. Second, through the use of 
dummy variables, the MVRM approach seems well suited for powerful tests of 
market efficiency [see Gibbons (1980a, app. H)]. Given the long-standing interest 

in this subject, such a methodological contribution seems worthy of an actual 
application. 

Appendix: Development of the MVRM with a linearized restriction for the CAPM 

By the linearization of the nonlinear restriction, linear estimation theory 
applies to the problem. The nonlinearity in each equation arises due to the 
multiplication of 7 and fii. That is, for any equation i, 

ii=ril,.+pili,+iii subject to ~~=;(l -/3,), i=l N, 3.. ., 

Ri=y-y~ilr+&Rm+iji. (A.11 

Using a Taylor series expansion about some estimates of 1’ (e.g., &,s) and /Ii (e.g., 
unrestricted OLS), 

Thus, by substitution of (A.2) into (A.l), 

With the above relationship ?/ and /Ii (i = 1,. . ., N) may be estimated with a 
seemingly unrelated regression model (hereafter, SURM) using a general linear 
hypothesis across equations. This SURM has the form 
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The restricted SURM estimator for 6 condition upon Z= 2 is 
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