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Estimation of Stock Price Variances and Serial
Covariances from Discrete Observations

Lawrence Harris*

Abstract

Stock price discreteness adds noise to price series. The noise increases return variances
and adds negative serial correlation to return series. Standard variance and serial covari-
ance estimators therefore overestimate the variance and serial covariance of the under-
lying stock values. Discreteness-induced variance and serial covariance depend on under-
lying volatility and on the size of the bid/ask spread. Simple formulas for approximating
the effects of discreteness on variance and serial correlation are derived and presented.
The approximations, which are accurate in daily data, can be used to adjust the standard
variance and serial covariance estimators.

I. Introduction

Variances and serial covariances are ubiquitous in the theory and practice of
finance. Variance plays a central role in risk evaluation, option pricing, informa-
tion flow identification, and hypothesis testing; serial covariances arise in trans-
action cost and market efficiency analyses. It is therefore crucial that these mo-
ments be accurately estimated.

Stock price discreteness complicates the estimation of these moments be-
cause discreteness causes observed prices to differ from underlying stock values.
(Stock prices are discrete because exchange regulations require all prices to be
expressed as a multiple of some minimum tick, usually $%.) Observed price-
change variances and serial covariances may therefore poorly estimate the vari-
ances and serial covariances of underlying stock value innovations.

Accurate characterization of the underlying value process is important to
those analysts who are primarily interested in long-term fluctuations in stock
value. Phenomena associated with trading, such as discreteness, cause transitory
fluctuations in observed prices. Transitory volatility, if mistaken for long-term
volatility, will bias analyses.
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For example, consider variance measurement in an option pricing problem.
For a pure diffusion process, the accuracy of the standard variance estimator can
always be improved by more frequent sampling. This suggests that variance
should be measured from lots of short interval data. But if the data are obtained
through a discrete filter, accuracy will not always be improved by more frequent
sampling. Since discreteness causes an upward bias in the standard variance esti-
mator, more frequent sampling can actually decrease the reliability of the pricing
study.

This paper considers estimation problems related to price discreteness. The
analysis is based on the assumption that observed prices are obtained by rounding
underlying values to the nearest eighth. Gottlieb and Kalay (1985) first used this
assumption to show that discreteness increases observed price change variance
relative to the underlying value innovation variance. Below, it is also shown that
rounding induces negative serial covariance into the price-change series. The
standard second-moment variance estimator therefore overstates the underlying
value innovation variance, and serial covariance bid-ask spread estimators, such
as Roll’s (1984), overstate the actual spread.!

Discreteness-induced estimator biases can significantly affect statistical
inference. Consider, for example, the effects of these biases for a $10 stock
whose underlying values follow a random walk with innovations that have a
daily standard deviation of 2 percent. Discreteness causes the ratio of a five-day
observed price-change variance (expressed in daily units) to a one-day observed
price-change variance to have an expected value of 0.951 for this stock even
though the same ratio is one for the underlying process. Discreteness also causes
the first order serial correlation coefficient of observed price-changes to have
an expected value of —0.031 where zero would otherwise be expected. These
biases can be readily detected in daily data. They are most serious for low-priced
stocks (often small firms) and for frequently sampled price series (transaction
data). In both cases, underlying value innovation variance is small relative to the
minimum tick.

This analysis generalizes Gottlieb and Kalay’s model to take into account
the bid/ask spread. The resulting model is also a generalization of Roll’s model
to take into account discreteness. The new model yields quantitative implications
for the biases in the standard variance and in the serial covariance estimators.
Both biases depend on the underlying value innovation variance and on the bid/
ask spread.

A likelihood method for estimating the new model is presented. Estimation
is difficult because underlying stock value and the bid-ask classification of prices
are both unobserved in most price series. The observability problem can be
solved by integrating the unobserved variables out of the likelihood, using
diffuse prior distributions. The parameters can then be estimated (at significant
cost) using maximum likelihood methods.

Fortunately, simple additive adjustments can be made to the standard vari-
ance and serial covariance estimators to remove the discreteness biases. The ad-

! Roll’s serial covariance spread estimator is 2, — SCov, where SCov is the serial covariance of
price changes. Negative bias in the price change serial covariance due to discreteness causes Roll’s
estimator to be upward biased.
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justments depend on limiting results that are quite accurate in daily data. These
limiting results also show that discreteness-induced bias in the French and Roll
(1984) estimator of true variance (sample variance plus two times the serial co-
variance) approaches zero in daily data.

Several perspectives should be noted before proceeding. The analysis is
based on an ad hoc model of discreteness, not a behavioral model. Discrete
prices are simply assumed to be obtained by rounding underlying values to the
nearest %. The actual price formation process probably is more complex. Marsh
and Rosenfeld (1986) analyze discreteness under an alternative ad hoc assump-
tion that prices are observed only when underlying value is equal to an acceptable
discrete price level. Under this assumption, discreteness does not increase vari-
ance or affect serial correlation. If the price formation process were modeled as
the outcome of negotiation among rational agents, both ad hoc assumptions
would probably characterize the results to some extent.

This analysis considers the effect of discreteness on estimated serial covari-
ances using a simple model of the bid-ask spread. This simple model assumes
that the spread is composed only of a transaction cost component, and not also of
an adverse selection component as suggested by Bagehot (1971), Copeland and
Galai (1983), and Glosten and Milgrom (1985). A generalization that includes
the adverse selection component, modeled as a positive function of trading vol-
ume (as suggested by Easley and O’Hara (1985)), is presented in Glosten and
Harris (1988). That analysis, however, does not focus on the effects of discrete-
ness on serial covariances.

This analysis does not consider the clustering of stock prices, which is re-
lated to price discreteness. Niederhoffer (1965), (1966) shows that stock prices
are observed most often on integers, then on halves, on quarters, and least often
on eighths. It is, however, less pronounced for low-priced than for high-priced
stocks, as Ball, Torous, and Tschoegl (1985) predict. This suggests that the de
facto minimum price change is greater than % for high-priced stocks. Discrete-
ness, therefore, may be a more important phenomenon than it otherwise would
appear to be.

The remainder of this paper is organized into three sections and two appen-
dices. Section II introduces the discrete bid-ask model, describes its implica-
tions, and suggests simple estimators that adjust for discreteness-induced vola-
tility and serial covariance. Section III presents simulation results that rank the
relative efficiency of various estimators. The final section offers a short summary
of the results. Appendix A describes some unique problems encountered when
using maximum likelihood to estimate the discrete model, while Appendix B
presents derivations of mathematical results used in Section II.

Il. A Discrete Price Model

The discrete model assumes that unobserved dividend-adjusted stock values
follow a random walk with drift. Observed prices are obtained by adding (for an
ask price) or subtracting (for a bid price) one-half of the bid-ask spread to the
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underlying stock value and then rounding the result to the nearest eighth. The
model is formally stated as

(lay V., =V, -D +n+e¢ (Underlying value process),
(1b) Pto = R(Vt+ cQ, ,d) (Observed price process), and
(lc) {e t} ~ iidN (0,0‘2) (Underlying value innovations),

where V, and P? are the underlying value and observed prices at time ¢, D, is the
dividend paid at ¢, p is a drift term, R(.,.) is the rounding function that rounds V,
to the nearest tick d (usually $%), o2 is the value innovation variance, c is one-
half of the bid-ask spread, and Q, is a generally unobserved { — 1,1} indicator for
whether the observed price is a bid or ask price. The probability of a bid is as-
sumed equal to that of an ask, and the series {Q,} is assumed to be serially inde-
pendent and independent of the other variables. A maximum likelihood method
for estimating this model is described in Appendix A.

Gottlieb and Kalay’s model and Roll’s model are special cases of the above
model. When c is equal to zero (no bid-ask spread), a discrete-time analog of
Gottlieb and Kalay’s continuous time model is obtained. When d is zero (no
rounding) and the normality assumption in (Ic) is not specified, Roll’s model is
obtained.

Implications of the model for observed price-change variances and serial
covariances are apparent when it is restated for the dividend-adjusted price-
change

APO _PO _[)tO+D’

(2a) t+1 1+1

=Bkt C(Qr+1_Q1> T oMt Es
where
(2b) n, =V, +cQ - R(V,+cQ)

is the rounding error. The discrete rounding error process increases the observed
price-change variance and contributes negative serial covariance to the price se-
ries beyond that caused by the bid-ask spread process.

The implied variance of observed prices is

3) E(APIO—p.)2 = 02+202+E(nt+1—nt>2.

The three terms in (3) are due to value innovations, bid-ask bounce, and round-
ing errors. Cross-products of the square do not appear in (3) because {Q,} and {€}
are independent and because cross-products involving m, are equal to zero
when ¢ is large. The latter result, proven in Lemmas 3 and 3.A of Appendix B,
occurs because the rounding errors depend with equal weight on all past values of
e,and Q,.
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¢ A formula for numerically evaluating the rounding variance component is
derived and presented in Lemmas 5 and 6 of Appendix B. The formula displays
two symmetries in 2c: the rounding variance component evaluated at 2c is equal
to the rounding variance component evaluated at 2¢ plus or minus any integer
multiple of the minimum price variation, d; and the rounding variance compo-
nent evaluated at 2c = iXd+k is equal to the rounding variance component
evaluated at 2c = i Xd—k, where i is any integer and k is any number. When c is
zero, this formula is analogous to one derived by Gottlieb and Kalay ((1985),
p. 143) who assume a continuous log-normal diffusion process for underlying
value. The two results are numerically indistinguishable to five and more deci-
mals for variances typically encountered in finance.

A tabulation of the general result for d = $% (first column of Table 1)
shows that for all bid-ask spreads ¢, the rounding variance component ap-
proaches a limit of 26.04 (cents)? when the value innovation standard deviation
is large (generally greater than 5 cents). Lemma 7 of Appendix B shows that this
limit is ¢?/6. Since all but the lowest priced stocks have daily value standard
deviations of greater than 5 cents, this simple expression can be used to adjust the
standard variance estimator to produce a more accurate estimator. The results
also show that discreteness-induced variation is at a minimum when the underly-
ing bid-ask spread is equal to zero (or to any multiple of the minimum price
variation, d.)

The implied first order serial covariance of observed price-changes is

4 0 2
(4a) E( t+1—u>(APt—p,) = - +E<T]t+l_nt)<nt_nt—l)’
and the implied higher order serial covariances are

(4b) E(APtoer_u)(APIO_“‘):E<nt+r_nt+r~1)(nr_nt~1)’ for r > 1.

The higher order serial covariances are not equal to zero because the rounding
errors are not independently distributed. Formulas for evaluating the rounding
error expectations are derived in Lemmas 5 and 6 of Appendix B. Tabulations
(Table 1) show that the serial covariances are negative for all lags. For all bid-ask
spreads, the first order serial covariance approaches a limit of — 13.02 (cents)?2
when the value innovation standard deviation is large (again generally greater
than 5 cents). The higher order serial covariances, which are uniformly small,
approach a limit of zero when the value innovation standard deviation is large, or
when the number of lags is large (Lemmas 5 and 7). Lemma 7 shows that the
limit of the first serial covariance is —d?/12, and confirms that the limit for the
higher order serial covariances is zero. The tabulation shows that first order
rounding serial covariances are greatest when the underlying bid-ask spread is
equal to d/2 (or d/2 plus some integer multiples of d), and that the higher order
serial covariances are greatest when the underlying bid-ask spread is equal to
zero (or some multiple of d).

Roll’s serial covariance spread estimator, 2, — SCov, where SCov is the se-
rial covariance of price changes, is upward biased by discreteness-induced nega-
tive serial covariation. The absolute bias is greatest for low-priced stocks because
they have the smallest underlying return standard deviations. For example, the
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TABLE 1

Rounding Error First Difference Variance and Serial Covariances by Underlying Value
Innovation Standard Deviation, o, and Total Spread, 2¢

E(m+r‘ Netr- 1)(M—m;_4), in cents?

Lagr
o (cents) 0 (variance) 1 2 3 4 5
2c=1i8,i=1,23,...
01 0.99 -0.29 -005 -0.02 -0.02 -0.01
02 1.95 -058 -0.10 -005 —-0.03 -002
0.5 4.74 —-1.46 -0.24 -0.12 -008 —-0.06
1 8.97 —-2.92 -048 -0.25 -0.16 -0.11
2 15.95 -5.84 -096 -0.48 -028 -017
5 25.37 -12 36 -0.31 -001 -0.00 -0.00
x 26.04 -13.02 -000 -0.00 -0.00 —-0.00
2c=1/8+1/64,i=1,2,3,. .
01 9.03 —4.42 -0.02 -001 —0.01 -0.01
0.2 9.50 —4.56 -0.05 -002 -002 —-0.01
05 10.79 -4.98 -0.08 -004 -0.02 -0.02
1 12.85 —-5.45 -0.20 -014 -0.10 —-0.08
2 17.62 -7.08 -0.74 -040 —-0.24 -0.14
5 25.47 —-12.46 -026 -0.01 -0.00 -0.00
kS 26.04 -13.02 -0.00 -000 —-0.00 —-0.00
2c=1i8+1/32,i=1,2,3,...
01 15.14 —-7.47 -002 —-0.01 —-0.01 —-0.01
02 15.61 -762 —-0.05 -0.02 -0.02 -001
0.5 16.89 -8 05 -0.12 -0.06 —-0.04 —-0.02
1 18.64 -8.75 -017 -0.07 -0.05 -0.04
2 21.26 -968 -0.38 -0.23 -0.14 —-0.08
5 25.71 -12.69 -0.15 -0.01 -000 -000
x 26.04 -13.02 -0.00 -0.00 -0.00 -000
2c=1i8+3/64,i=1,23,...
01 18.80 -9.30 -0.02 -001 ~0.01 ~0.01
02 19.27 -9.45 -0.05 -0.02 -002 ~0.01
0.5 20.55 -9.89 -0.12 —0.06 -0.04 -0.03
1 22.30 —10.61 -0.23 -0.11 -0.06 -0.03
2 24.36 -11.78 -0.22 -0.08 -0.04 -0.02
5 25.94 -12.92 -0.05 -0.00 -0.00 —-0.00
© 26.04 -13.02 —-0.00 —0.00 -0.00 -000
2c=i8+1/16,i=1,2,3,. .
0.1 20.02 -9.91 -0.02 -0.01 -0.01 -0.01
0.2 20 49 -10.06 -0.05 -0.02 -0.02 -0.01
0.5 21.77 -10.50 -012 -0.06 -0.04 -0.03
1 23.52 -11.23 -0.24 -0.12 -0.07 -0.04
2 25.52 -12.53 -0.20 -0.03 -0.00 —-0.00
5 26 04 -13.02 —-0.00 —-0.00 —-0.00 —-0.00
o 26.04 -13.02 —0.00 —0.00 —0.00 —0.00

Note: The expectations are evaluated using Lemmas 5 and 6 of Appendix B assuming that
the minimum tick, d, is equal to $1 and the underlying value innovation mean, ¢, is equal to
zero The results display two symmetries in 2¢: the expectations evaluated at 2c are equal to
the expectations evaluated at 2c¢ plus or minus any integer multiple of the minimum price
variation, d, and, the expectations evaluated at 2c = ix d+ k are equal to the expectatiohs
evaluated at 2c = ix d—k, where iis any integer and k is any number.
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bias can be shown (using results from Table 1) to be 15 percent of the true abso-
lute spread for a $3 stock with an underlying return standard deviation of 2 per-
cent and a $4 total spread. For a $30 stock with the same return standard devia-
tion and $/% spread, the bias is only 4 percent. Since small firm stocks tend to be
low-priced, the negative cross-sectional correlation between estimated bid-ask
spreads and firm size that Roll observes may be at least partly spurious.

The French and Roll (1984) method-of-moments estimator of variance is
equal to the sample variance plus two times the sample first order serial covari-
ance. The expectation of this estimator can be obtained by manipulating (3) and
(4a). Itis

E(Var(AP,) + 2SCOV(AP,)) = o’ - E(TI,H—TI,)Z

‘ZE('“HI_T‘t)(nI_nr—I) :

Substituting limiting values for the expectations causes the last two terms to can-
cel. In addition to removing variation due to the bid-ask spread, the French and
Roll estimator also removes variation due to price discreteness when o is large.
When o is small, discreteness-induced error in this estimator is still small be-
cause the two expectations tend to cancel.

®)

lll. Estimator Efficiency

A simple simulation study demonstrates that the volatility and bid-ask
spread estimators that take discreteness into account are more accurate than those
that do not. Four price volatility estimators and three bid-ask spread estimators
are examined. The volatility estimators include the sample standard deviation of
observed price-changes, the adjusted sample standard deviation obtained by sub-
tracting d2/6 from the sample variance, the French and Roll estimator, and the
maximum likelihood estimator described in Appendix A. The bid-ask spread es-
timators include Roll’s estimator, an adjusted serial covariance estimator com-
puted by subtracting ~d?/12 from the sample serial covariance before applying
Roll’s formula, and the maximum likelihood estimator.

The simulated sample consists of 168 price series of 252 observations each
(one year of trading days) generated using the discrete model (la —c). The pa-
rameters used to create the simulated series are maximum likelihood estimates of
o and c obtained from actual daily stock price time series for 1983. Each simu-
lated series was initialized at the first stock price for the corresponding stock in
the actual sample.

A stock qualified for inclusion in the actual sample if it was continuously
listed on the NYSE or AMEX in 1983, if it traded every market day in 1983, if it
only traded on eighths, and if shareholders received no distributions other than
normal taxable cash dividends. Approximately 1694 stocks meet these criteria.
Due to the high computational cost of the maximum likelihood analyses, only a
subsample of these qualifying stocks was further considered for inclusion in the
actual sample. This subsample consists of all 208 securities for which the pre-
dicted bias in the sample standard deviation estimator of the underlying value
innovation standard deviation is greater than 1 percent. In addition, 46 other ran-
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domly chosen qualifying securities are included so that estimation properties
might be explored for securities for which the predicted bias is inconsequential.2
The final sample of 168 actual stocks is obtained by eliminating all subsample
stocks for which the sample serial covariance estimate is not positive.3 The data
are obtained from the CRSP Daily Stock Master File.

The various estimators are ranked by cross-sectional mean-squared error
after dividing by price level to control heteroskedasticity (Table 2). The maxi-
mum likelihood estimators are the best performing estimators in their respective
classes. They have lower mean-squared errors and smaller mean biases than all
of the other estimators. Their good performance is probably due to their greater
use of prior information about the discreteness and the bid-ask spread processes.

Among the variance estimators, the method-of-moments estimator is next
most efficient, followed by the adjusted estimator and finally by the sample vari-
ance. Since the latter two estimators do not take into account the bid-ask spread,
they overestimate underlying value innovation standard deviations. The adjusted
variance is less biased than the sample variance because it adjusts for discrete-
ness.

Among the spread estimators, the adjusted-Roll estimator performs better
than the unadjusted estimator, as expected. The latter is significantly upward
biased by discreteness-induced negative serial correlation.

TABLE 2
Estimator Efficiency in Simulated Data

Root Mean- Mean-Adjusted
Squared Root Mean-

Estimator Error Bias t:Bias =0  Squared Error
Underlying Value Innovation Variance Estimators of o
Maximum Likelihood 0.185% —0.025% -1.75 0.184%
French-Roll 0.257 —0.054 -2.78 0.251
Adjusted Sample Variance 0.369 0.153 5.88 0.336
Sample Variance 0.513 0.266 7.83 0.439
Bid-Ask Spread Estimators of ¢
Maximum Likelihood 0.358% 0.011% 0.43 0.358%
Adjusted Serial Covariance 0406 0.039 1.25 0.404
Roll Serial Covariance 0.520 0.211 5.73 0.475

Note: The simulated data consist of 168 price series of 252 observations each generated by
the discrete model of Section Il, with parameters given by maximum likelihood estimates
obtained from 168 actual low-priced daily price series. The volatility estimates are
expressed as standard deviations as a percentage of price. The spread estimates are
expressed as a percentage of price.

IV. Summary

The discreteness of stock prices increases price-change variances and adds

2 The number 46 is a consequence of the process used to choose the additional securities. Every
twentieth security in the set of qualifying securities is included, regardless of the predicted variance
bias. ;

3 The maximum likelihood estimate of ¢ is zero for 24 of the 168 actual price series with nega-
tive serial covariances. As pointed out in Section II, discreteness causes negative serial covariance in
observed price series even when c is zero.
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negative serial covariance to price-change series. This paper shows how these
effects are related to the variance of underlying value changes and to the bid-ask
spread. Simple limiting expressions for the discreteness-induced variance and
serial covariance are derived. They are equal to d%/6 and —d?/12, respectively,
where d is the minimum discrete price change. These limits, which are generally
attained in daily data, can be used to adjust standard variance and serial covari-
ance estimators to produce more accurate estimators.

The seriousness of the discreteness problem should be kept in perspective.
Observed price variance due to the rounding process (ignoring stock price clus-
tering) is small compared to underlying value innovation variance and bid-ask
bounce in daily data for all but the lowest price and lowest variance stocks. For
most purposes, discreteness in these data can be ignored, although researchers
should always be aware of its possible influence. However, when data are mea-
sured at short intervals (such as transaction intervals), when studies are done of
stocks that happen by design or by accident to be low-priced stocks (such as
small firm studies), when sample sizes are large so that small variance and serial
covariance components can be readily identified (such as pre/post split volatility
studies and variance ratio studies), discreteness must be considered as a source of
variation and serial covariation.

Appendix A: Maximum Likelihood Estimation

Estimation of the discrete bid-ask model is difficult because underlying
stock values are not observed and because most data sets do not classify observed
prices as bids and asks. The estimation procedure described here solves the unob-
served variables problem by integrating them out of the conditional likelihood
function. The resulting unconditional likelihood is then maximized to obtain
point estimates of w, 2, and c. The integration is carried out over independent
uniform priors for the roundoff errors, {n,},4 and over the independent Bernoulli
distributions assumed for the bid-ask indicators, {Q,}. These priors make the inte-
grated likelihood function an equal weighted average of the conditional likeli-
hood function evaluated over all stock value paths and bid-ask classifications that
map (via the rounding function) into the observed price path.

Since the time-series model is stationary and ergodic, the maximum
likelihood estimator will be consistent and asymptotically normally distributed.
(Gordin (1969) provides a proof of the central limit theory for stationary ergodic
processes with dependent observations.) Ergodicity means that the dependence
between two observations declines to zero as the interval between them in-
creases. When a process is ergodic, the information in a sample about the process
parameters increases without bound when the sample size increases. Ergodicity
for this process is verified by noting that its autocorrelations approach zero as the
lag gets large (Lemmas 5 and 7).

4 The uniform prior is a useful way of characterizing prior ignorance. (See Zellner (1971) or
Jeffreys (1966).) Gottlieb and Kalay also show that, given any initial distribution for the rounding
error at time 0, the distribution of the error at time 7 approaches the uniform distribution as z becomes
large.
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Exact analytic computation of the integrated likelihood function is impossi-
ble because it involves a T+ 1-fold summation over a T+ 1-fold integral. The
summation is over the 7+ 1 bid-ask indicators {Q,}, which take discrete (—1,1)
values with equal probability. The integral is over the T+ 1 roundoff errors, {n},
which take continuous values over [ —d/2,d/2] with uniform density 1/d. The
function is

%Rzl...%(l/z)”‘gf J j(l/d)”l

[)@] ®T
X Lig Ly Lyp_dngdn,...dng,

where R, is the discrete range of Q,, H, is the continuous range of ,, and <, ,,
is the normal probability density of AP?, |, given n,, |, m,, Q,;, and Q,, which
is implied by (2a) and (lc). Numeric evaluation of the multiple integral can be
achieved by approximating @, by a discrete subset of its continuous range. This
study uses a lattice of m equally spaced points: {d/m(k—(m+1)im) | k = 1,
2,..., m}. This approximation reduces the likelihood function to a T+ 1-fold
summation over the prior distributions of the T+ 1 state variable vectors (n,,0,),
each of which appears in the state-conditional likelihoods of two adjacent obser-
vations. The summation can be evaluated recursively using a formula derived in
the next paragraph. In practice, the model is accurately estimated for m greater
than 5. This study uses 15 points.>

A recursion for evaluating the likelihood function is apparent when the
T+ 1-fold summation is reordered. The unconditional likelihood function, reex-
pressed in a simplified notation, is

& = EO:Z"'Zpopl""’rgl,ogz,x"'gr,r—l ,

where the summations are understood to be over all possible values of the state
variables, m, and Q,, and where the prior probability density function of the state
variable vector is represented by P,. This can be reordered as

& = ZPT{;PT‘IQT*T”(W
[ZPZ%Z [Zﬁ sz,l(;pogm)”“} .

This expression can be evaluated recursively by computing summation O over all
values of the state variables at ¢+ = 0 for each value of the state variables att = 1,
then summation 1 (which depends on the results of summation 1) over all values
of the state variables at ¢ = 1 for each value of the state variables at + = 2 and so
on, until summation 7 is computed over all values of the state variables at¢ = T.
5 Parameter estimates change considerably from m = 1 (discreteness ignored) to m = 2, an;d

fromm = 2tom = 3. After m = 4, they quickly converge. The estimates form = 5and m = 15 are
equal to greater than four significant decimals.
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The recursion is best expressed in matrix notation. To do so, let the kX k
square matrix L, have rows that correspond to each of the k possible values of the
current state vector, columns that correspond to each of the & possible values of
the lagged state vector, and (i, /) elements that are equal to the conditional likeli-
hood function at time ¢ evaluated at the ith current state value and jth lagged state
value. Likewise, let D, be a diagonal matrix whose diagonal is given by the vec-
tor of probabilities associated with each possible state vector. The recursion can
then be written as

R
I

S}
>

~

t—1=1r-1

>
(=) -~
([

I~ I~ e
o 1S
(I

where v is k X 1 the unit vector.

Appendix B: Mathematical Results

This appendix derives the mathematical results used in the text. For con-
venience, the discrete bid-ask model is restated as

AP’ =P’ -P’+D, (Observed price change) ,

t+1 t+1

Mo+ C<Qr+l_Qt) TNy TN, TE

m =V +cQ - R<Vt+cQt) (Rounding error process) ,

€, ~ ildN (0,0'2) (Underlying value innovations), and
1 with probability 1/2 (Bid-ask indicator) ,

2 —1 with probability 1/2

where D, is the dividend paid in period ¢, ¢ is one-half of the bid-ask spread, w is
a drift parameter, and R(.,.) is the rounding function that rounds its argument to
the nearest tick, d (usually d is %). The bid-ask indicator, Q,, is assumed to be
independent of the other variables and serially independent.

Lemma 1. A recursion for r,.

mo="M_t CQt_ CQt—l TRteE

_R(T‘t_n+CQFCQ,_1+”+€;_1) .
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Proof.
M, =V, +cQ ~ R(V,+cQ,)
Vi, +twmn+e_ | +cQ — R(‘/t-1+”“+€z-1+CQt>

t

= Vt—l tTRte |+ CQ, + CQt—l - CQt—l - R(Vt—1+cQt—1)

- R(V,_1+”‘+‘-t_1+CQ1+CQt_1—R(Vt_1+CQ,_1>>
since R(x+R(y)) = R(x) + R(y) for all x,y

= nt—l+CQt - CQt—l TRtE

—R(wr]t_1 +cQ,—cQ, +p~+e'_1> .
Corollary 1.A. An extended recursion for m,.

t—1
M =m,+cQ —cO + (-)p + Zei
i=

)

t—1
_R(ns+cQ,—cQs+(t—s)pL+Zei ,

=5

forallz > s.
Proof. Repeated application of Lemma 1.
Lemma 2. A useful expectation.

E(k—R(m+k)) =0,

where m is a random variable uniformly distributed on [ —d/2,d/2], and k is a
constant.
Proof. Letx = k—R(k).
E(k—R(n+k) = E(x—R(n+x))
=x— ER(m+x) .

d ifn+x > d2
Forx > O,R(m+x) = [o otherwise

dl2 di2 —x
so that E(R(n+x)lx > 0) = Jl/dd dn + fl/d Odn = x.
di2 —x —drR

Likewise, E(R(n+x)Ix < 0) = x,
so that ER(m+x) = x
and E(x—R(n+x)) = x — x

I
o

Lemma 3. Cross product expectations.

Eem, = Oforall sandz.
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Proof. The proof for s = ¢ is trivial since the series {e,} is serially independent.

For s <'t, at least two different proofs can be made. The first proof assumes
that in the distant history of the process, some 1), is uniformly distributed on its
range [ —d/2,d/2]. (This is the Gottlieb and Kalay uniform assumption.) Apply
the law of iterated expectations to get

Eem, = EQEeEn()(esnt) = EQE€<eSEn0<nt | {eo...es}, {Qo...Qt})) ,

where E; is the expectation operator over the joint distribution of {Q,, ... O/}, E,
is the expectation operator over the joint distribution of {¢,, . .. €.}, and E, isthe
expectation operator over the uniform distribution of m,. Expanding m, using Co-
rollary 1.A yields

Ee,m, EQEE<esEno(no+G—R(no+G))) ,

where G

t—1
cQ, —cQ, + (t—to)u + Zei .
I=[a

The proof is completed by applying Lemma 2 to the innermost expectation and
by noting that Em, = 0.

A second proof of this proposition can be made without assuming that m, is
uniformly distributed. Since a similar proof can be found in Gottlieb and Kalay,
only a quick description of the method is presented here.

Let H = G—¢,+m,, where G is given above and let / = G—R(G). The
limiting distribution of J is uniform on [ —d/2,d/2] as the history of the series
becomes infinitely long. Ee.m, can be expressed in terms of J. Using the law of
iterated expectations and applying Lemma 2 to J, the result is obtained.

Lemma 3.A. A similar result for Q..

EQm, = Oforall sand ¢ .

Proof. Same as for Lemma 3.
Lemma 4. Rounding error serial cross-products.

Enm, = d*/12 — E(nR(m +k,))
= d*/12 — EMR(M+K(t—9))) ,

-1
where k, = cQ, — cQ + (t—5)p + Zei, fort > s,
1=
7 is a random variable uniformly distributed on | —d/2,d/2] ,
K(t=5) = cAQ + (t—s)p + e(t—5) ,
2 with probability 1/4
AQ = 0 with probability 1/2
— 2 with probability 1/4,

and e(t—s) ~ N(0,(t—s5)0%) .
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Proof.

2
En? + Enk, — E(nR(m +k,)) by Lemma 1
di2
j (VdynZdn, — E(nR(n,+k,)) by Lemmas 3 and 3.A
~dr2
= d*/12 — EMR(M+K(t—5))) ,

En,my

il

since 7, is distributed as m, O, — Q, is distributed as AQ because {Q,} are iid, and
3.1z te; is distributed as e(t — s).
Lemma 5. Rounding error first difference variance and serial covariances.

2

E(m,,;—m,) = 2E(mR(n+K(1)))
E(m,,,—n)(n=m,_,) = —2E(R(m+K(1)))
+EMR(M+K(2)))
E(m,, =7, )(n=m_) = —2E@MR(M+K ("))
+EMRM+K(r+1)))
+EMRM+K(r—1))) forr > 1,
with all notation as defined in Lemma 4.

Proof. Expand each product and then apply Lemma 4.
Lemma 6. An expression for evaluating E(mR(m + K(r))) found in Lemma 5.

EMR(M+K(r)) =
~ jd—rp—cAQ +di2

Z% > f (ar21K (1) —jd|
Ryg  J==* jd_rp—cAQ—dn

— 12(K(r) —jd)z) X ! exp[— ezz}de ,
J2mra? 2ro
where R A0 is {—2,0,0,2}, the set of possible outcomes of AQ,
K(r) = cAQ +rp+e(r),
and e(r) ~ N(0,rc?).
Proof. First take the expectation with respect to m conditional on K(r).
EMMRM+K(r)) = En(R(K(r)) + R(M+K()—-R(K(r))))
=0+ E(mR(n+x)),
where x = K(r) — R(K(r)) since En=0.
d ifn+x>d2

Forx > 0, R(m+x) = [0 otherwise

dr2 di2 —x
so that E(nR(n+x) | x > 0) = fl/d dn dn + fl/dondn
di2 —x —dr2

=d2x—xn.
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Likewise, EmMR(m+x) | x < 0) = d/2 x — x%2,

so that EmMR(m +x)) = d/2 |x| — x%/2.
The result is obtained by taking the expectation of this expression with respect to
AQ and e(r). The expectation is taken over the distribution of AQ whose joint
density function is %. The index j counts the discrete levels that R(K(r)) may
assume. Those levels are given by jd so that x = K(r) —jd. There is one integral
for each of the discrete levels. The bounds of integration are the end points of the
discrete interval. The integral is over the normal distribution of e(r).

There are two symmetries in this formula. The expectation evaluated at 2¢ is
equal to the expectation evaluated at 2¢ plus or minus any integer multiple of the
minimum price variation, d, and the expectation evaluated at 2c = iXd+k is
equal to the expectation evaluated at 2c = i Xd—k, where i is any integer and k
is any number. These symmetries result because ¢ appears in the integral only
when AQ = —2 or 2, and because everywhere that cAQ appears in the integral,
Jjd is subtracted from it.

Lemma 7. Limiting values for E(mR(m + K(r))).

lim E(MR(m+K(r))) = d*/12,
g—®

and lim E(MR(m+K(r)) = d*/12 .

Proof. Transform the index of the integral in Lemma 6 from € to
y=¢€+rp+ cAQ — jd,

so that EmR(n + K(r))) =

v dn : 1
>y f (d21y1-¥12) 2exp[— S(y—rp—cAQ +jd)2}dy-
RAQ Jj= - _un \ 21Tr0' 2r0-

Exchange the order of the infinite summation with that of the integral and multi-
ply by d/d,
dn

> 14 f(d/zm 1) 1d i d
RAQ

_an j=—-=27ro

2

1 .
exp[— ——2(y —rp—cAQ +jd)2]dy .
2ro

The infinite summation is an expression for the numeric evaluation of the integral
of a normal density function with mean (rp+cAQ —y)/d and variance ro?/d?
over its entire range (method of rectangles). The larger o or r, the better this
numeric approximation. The limit of this summation as o or r goes to infinity is
therefore equal to one. Thus the expression reduces to

drR

S 14 f (a21y] - y12)1d dy = &2
Ryo —an
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