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Implications of the Discreteness of Observed Stock
Prices

GARY GOTTLIEB and AVNER KALAY*

ABSTRACT

Stock prices on the organized exchanges are restricted to be divisible by V. Therefore,
the “true” price usually differs from the observed price. This paper examines the biases
resulting from the discreteness of observed stock prices. It is shown that the natural
estimators of the variance and all of the higher order moments of the rate of returns
are biased. An approximate set of correction factors is derived and a procedure is
outlined to show how the correction can be made. The natural estimators of the “beta”
and of the variance of the market portfolio, on the other hand, are “nearly” unbiased.

THE BEHAVIOR OF STOCK PRICES has been an issue of interest to the financial
economist for many years. This interest resulted in a growing number of empirical
studies which attempt to estimate this behavior (e.g., Blattberg and Gonedes [2],
Fama [6], Fama and Roll [7, 8], Barnea and Downes [1]). To date, stock price
behavior is estimated under the assumption that the observed trading price is
the “true” equilibrium price. However, observed stock prices and stock price
changes on the organized exchanges are restricted to multiples of ¥ of a dollar.!
Therefore, if the “true” distribution of stock prices is continuous, an observed
trading price can be different from the “true” price. This paper examines the
biases in estimating the moments of stock price changes caused by the discrete-
ness of observed stock prices. The major focus of the paper is in noting this
problem, providing a model which explains the source of these biases, and
quantifying their size.

Section I demonstrates that due to the discrete nature of observed stock prices
the natural estimators for the variance and for the higher order moments of the
rate of returns are biased upward. This bias is larger for stocks with lower prices
and smaller standard deviation. For instance, assuming that the standard devia-
tion, g, is 0.001, the stock price is one dollar, the “true” probability distribution
of stock prices is lognormal, and the observed prices are as close as possible to
the “true” prices, then the natural estimator of ¢ has expectation 0.01400; hence,
it is biased upward by 1300%. Significant biases have important implications in
option pricing.

We derive an approximate set of correction factors which can be applied to the

* Gottlieb from Graduate School of Business Administration, New York University, and Kalay
from Recanati Graduate School of Business, Tel Aviv, and Graduate School of Business Administra-
tion, New York University. We are grateful to R. Ambarish, K. Garbade, S. Kon, K. Vandezande,
and especially to the referee and an Associate Editor of this Journal for many helpful comments.
Avner Kalay acknowledges support by a New York University Summer Research Grant.

! Provided that the price of the stock is greater than one dollar.
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natural estimators to make them nearly unbiased. Using Tables I, II, and III the
biases are quantified and a procedure is outlined to show how the corrections can
be made. A further approximation good for moments of rates of returns which
are calculated on an infinitesimal interval of time is derived in Theorem 2.

Interestingly, the discreteness of observed stock prices has little effect on the
estimation of the “market model.” The observed price of a well-diversified
portfolio is an excellent proxy for its equilibrium price. Therefore, the natural
estimator of the portfolio variance is “nearly” unbiased. No significant biases
exist for the natural estimator of the portfolio measure of risk (i.e., 8) by the
above argument, as the covariance is a bilinear form.

Section II contains conclusions and implications for further research. Also, it
relates these results to previously documented empirical regularities.

I. The Discontinuity in Price Changes and the Distribution of Stock
Returns

In this section, we show that, due to the discrete nature of observed stock prices,
the natural estimators for the variance of the rate of return and for its higher
order moments are biased. These biases are shown to be very large for stocks
with a smaller standard deviation and a low price. We derive the magnitude of
this bias and use it to suggest “improved estimators.”

A. An Example

Before presenting the model, we give a simple example which highlights the
sources of the biases which are caused by ignoring the discreteness of observed
stock prices. Let {b(t)| 0 = t < 1} be a Brownian motion with unknown variance,
0% a known drift 4 = 0, and b(0) = m + %, m an integer. Let b(t) = {kif k — ¥

<b(t) =k + %}
oy (ft+ 1 t\\*
o353 (o 5) - o)

is a consistent estimator of ¢% In fact, E(S,) = ¢2 and lim,_»S, = ¢* with

probability 1. Let
2
& _ vt (p(tEL) _oft
S, =325 (b( o b 7))

On the face of it, S, is also a consistent gstimator for o2, but in fact lim, .S,
= +oo0 with probability 1. Needless to say, S, is not a consistent estimator of o2

B. The Model

We now present our model.

Let {P(t), 7o < t < 7,} be the stochastic process of a given stock price on
[70, 1] where the prices are restricted to some lattice {nd; n = 0} and d is the
discontinuity in stock price changes (d is ¥ of a dollar for stocks traded in the



The Discreteness of Observed Stock Prices 137

NYSE).2 These prices are observed at points of time in the set {r{/ = 7o + iAt;
0<i<T, v4=r}and Atis, for example, one day. We assume that the underlying
equilibrium price process {P(t), 7o < t < 71} is a lognormal diffusion, that is to
say, it satisfies the following stochastic differential equation,

dP = pPdt + oPdb. (1)

Letting u* = u — Y02, we then have

P(t) = P(0)e™®*™,

To quantify the potential biases which are induced by the discrete nature of
stock prices, we have to specify the relationship between P and P. We choose
the following:

P(@t) = {nd if nd —d/2 < P(t) < nd + d/2}. (2)

That is, the observed price at time ¢, P(t), is the closest one to the “true” price,
P(t). This relationship seems logical although we clearly cannot justify it empir-
ically, as P(t) is not observable.

We examine the sensitivity of our results to alternate relationships between
P(t) and P(¢). Specifically, we later consider models (2a) and (2b) below:

P(t) ={nd if nd < P(t) < (n+ 1)d}, (2a)
P(t) ={nd if (n—1)d <P(t) < nd}. (2b)
It is found that the size of the biases is almost identical under each of the three

relationships.

Next, we need to assume something about the distribution of P(t) — d[P(t)/
d] (where [x] is the integer part of x). One approach would be to assume that we
know P(0) (but not P(t)) exactly and then use (1). A second approach would be
to assume that P(0) has some distribution on the interval (P(0) — d/2, P0) +
d/2) where P(0) is known. Alternatively, we could assume that P(t) — d[P(t)/d]
is uniformly distributed. It turns out that for ¢ P(t) Vt> 0.3 the three assumptions
are, for numerical purposes, virtually identical, independent of the distribution
chosen in the second approach.® This is discussed further in Subsection C. In
Appendix A, we show that as t — o, P(t) — d[P(t)/d] has a limiting distribution
uniform on (—d/2, d/2] (for u* > 0), independent of the initial distribution of
P(0). We start by formally assuming that P(0) is known. This assumption runs
counter to the spirit of the paper, but we justify it by saying that because of the

2 We consider 7, — 7o small enough so as to argue time homogeneity.

P
3 We verified numerically the speed of convergence of P(t) — d[—g—)] to the uniform on [—d/2,
d/2]; we found that for aP(O)w/E > 0.3,
- P(t) -
0.05 — 10™° < Pr{ P(t) — d| 4 € (ad, (a + 0.05)d) ) < 0.05 + 10

for a = —0.5, —0.45, - - - , 0.45.
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convergence of P(t) — d[P(t)/d] to the uniform any reasonable assumption about
the starting price, P(0), would give virtually the same results.

THEOREM 1. If {P(t) = nd} and P(0) = P,, then for L = 1,
E{[P(t + At) — P(t)]*} = 22w (Jd)'I;, (3a)

where

nd+d/2 - .
I = f h(n, t, Po, x)f<1>< - 1n((” it /2)d) _m (At))
nd=d/2 o VAt x o

1 (n+j-— 1/2)d) u*(At))}
- @ 1 - dx. 3b
<avAt n< x g g (8b)

Here, ® is the standard normal distribution and h(n, t, Py, x) is the density of
P(t) given P(t) € ((n — %)d, (n + Y2)d]. We will evaluate h(n, t, Py, x) in
Lemma 1, but point out that for oPoVt > 0.3, h(n, t, Py, x) ~ 1/d.

Proof: Conditional on P(t) = x, x € ((n — %)d, (n + %)d]. Then

Pr(P(t + At) — P(t) = jd| P(t) = x)
=Pr(P(t + At) € (n + j — %)d, (n + j + %)d]| P(t) = x)

= Pr(xe”®@**8t & ((n + j — Y)d, (n + j + %)d])

_ Pr[b(At) E ( 1 1n((n +j- 1/2)d) _wray

VAt o VAt x o
1 ln((n +j+ 1/2)d> _ u*(At))]
o VAt x g
1 (n+j+ 1/2)d) p*(At))
= 1 -
<a\/ﬂ n( x o
1 (n+j- l/z)d) p*(At))
- 1 -
<a¢§ “( x o
as
5AD) _ py.
VAt

Then I; = Pr(P(t + At) — P(t) = jd| P(t) € ((n — Y%)d, (n + %)d)) satisfies
(3b). By integrating over x the theorem follows.
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LEMMA 1.
h(n9 t7 PO: x)

w3 -
— @ —In|=) -
dx \, P,
B 1 (n + %)d *ﬁt : 1 U ( o)d *Vt @
RERNCEE R RN e
<a\/z ln< Py ) . ? oVt § Po g
Proof: For x € ((n — )d, (n + ¥)d),
Pr(P(t) € ((n — A)d, x]| P(t) E((n — %)d, (n + %)d])

3 Pr(P(t) € ((n — %)d, x])
" Pr(P(t) € ((n — %)d, (n + %)d])

Now

Pr(P(t) € ((n — ¥)d, x]) = Pr(Poe”®@*+" € ((n — %)d, x])

_ o (b (1 ((n—%)d) pvt 1 (i) u*«/ZD
=P~ €|(—In|—5—)-—,—1 -
r<¢z€a¢z“ P, o ovi \P) T o

R _M>_ (L <<n-1/2>d>_#*ﬂ
@(a\/zln<P0> . P i In P B (5)

Dividing (5) by Pr(P(t) € ((n — %4)d, (n + %)d]) and differentiating proves the
lemma.

Theorem 1 is inconvenient as the moments depend upon P, and t. We will
initially compute E((P(t + At) — P@)") using the uniform approximation that
h(n, t, Py, x) = d™". In the next section, we will discuss the approximation by
comparing the computations for selected values of n, Py, t, and ¢ using (3) exactly,
with the approximations found in Table I.

C. The Biases in the “Estimated” Standard Deviation

To demonstrate the biases in the estimated instantaneous standard deviation
of the rate of return of stock prices which are induced by the discreteness of
prices, formula (3a,b) (with the approximation that h(n, t, Py, x) = d!) is
evaluated numerically. The biases are shown in Table I and Figure 1.

Table I depicts the values of the measured instantaneous standard deviation
of the rate of returns of stock prices for various levels of stock price and “true”
instantaneous standard deviation. The underlying equilibrium price process is
assumed to be a lognormal diffusion with u = 0 and the discontinuity in stock
price changes to be 14 of a dollar.* The table is organized as follows. The first
row gives the various levels of the true instantaneous standard deviation, which

* The calculations were done for various levels of x and the numbers hardly changed.
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Table I

Ratios of the Natural Estimator of the Instantaneous Standard Deviation to
the “True” Instantaneous Standard Deviation of Stock Returns, 6/0, Assuming
That the Underlying Equilibrium Price Process Is a Lognormal Diffusion
with u =0

Stock ’

Price 1x10° 3x107° 5x107° 7x107° 9x10° 11x10® 13x10~® 15%x 1073
1.0 14.003 6.026 4.538 3.805 3.344 3.019 2.774 2.581

2.0 7.782 4.123 3.170 2.674 2.356 2.130 1.959 1.823
4.0 5.120 2.891 2.235 1.888 1.665 1.508 1.394 1.311
8.0 3.553 2.040 1.580 1.350 1.225 1.156 1.114 1.087
10.0 3.171 1.824 1.420 1.237 1.149 1.102 1.074 1.056
20.0 2.235 1.311 1.123 1.064 1.039 1.028 1.019 1.014
30.0 1.824 1.149 1.056 1.029 1.018 1.012 1.008 1.006
40.0 1.580 1.087 1.032 1.016 1.010 1.007 1.005 1.003
50.0 1.420 1.056 1.020 1.011 1.006 1.004 1.003 1.002
60.0 1.311 1.039 1.014 1.007 1.004 1.003 1.002 1.002
70.0 1.237 1.029 1.011 1.005 1.003 1.002 1.002 1.001
80.0 1.186 1.022 1.008 1.004 1.002 1.002 1.001 1.001
90.0 1.149 1.017 1.006 1.003 1.002 1.001 1.001 1.001
100.0 1.123 1.014 1.005 1.002 1.002 1.001 1.001 1.001

2 ¢ is the assumed standard deviation of the “true” distribution.
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Figure 1. Values of observed instantaneous standard deviation of stock returns ¢ (measured on
the y axis) as a function of the “true” instantaneous standard deviation, ¢ (measured on the x axis),
for various price levels, P’s. The underlying equilibrium price process is assumed to be a lognormal
diffusion with u = 0.
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range from 0.001 to 0.015, while the first column lists the various price levels.
The corresponding ratios of the measured instantaneous standard deviation to
“true” instantaneous standard deviation are contained in the table. For example,
if ¢ = 0.001 and P = 1 the value of the ratio, ¢/¢, has expectation 14.003. This
yields an upward bias of 1300%. For ¢ = 0.005 and P = 20, ¢/0 = 1.123; namely,
an upward bias of 12.3%.

The relationships between observed instantaneous standard deviation, &, and
the “true” instantaneous standard deviation, ¢, are described further in Figure 1.
The ratio /¢ is monotonically decreasing in the product of P and ¢. This result
is intuitively appealing since the same discontinuity in price changes results in a
bigger discontinuity in the rates of return the smaller the stock price is. Similarly,
it has a bigger effect the smaller the true variance is.

Table II is an abbreviated version of Table I and is otherwise identical to it

"except that assumption (2) is replaced with (2a) and then (2b). It is seen that
the biases in the observed instantaneous variances are only trivially different
from those reported in Table I.

The substitution of d~! for h(n, t, Py, x) typically has little effect upon the

computations. In each case where aPO\/E > 0.3, the ratio of the bias under the

Table I1
Ratios of the Natural Estimator of the

Instantaneous Standard Deviation to the “True”
Instantaneous Standard Deviation of Stock Returns,

o/, Assuming That the Underlying Equilibrium

Price Process Is a Lognormal Diffusion with u = 0
and Assumption (2) Is Replaced with (2a) and (2b),
Respectively

Panel A: The observed stock price is equal to the true stock price
rounded down (i.e., (2a)) to the nearest Vs.

o®

Stock

Price 1x1073 7x107° 15 x 1072
1.0 14.025 3.918 2.660
4.0 5.156 1.403 1.324
10.0 3.181 1.243 1.062

20.0 2.239 1.067 1.018

40.0 1.5817 1.018 1.005

Panel B: The observed stock price is equal to the true stock price
rounded up (i.e., (2b)) to the nearest Ys.

P

Stock

Price 1x107° 7% 1073 15 x 107°
1.0 13.989 3.688 2.499
4.0 5.084 1.874 1.299

10.0 3.161 1.232 1.050

20.0 2.232 1.061 1.011

40.0 1.579 1.015 1.002

® ¢ is the assumed standard deviation of the “true” distribution.
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uniform assumption to the bias without the uniform assumption but with P,
known differed from 1 by at most 0.005. For 0.1 < ¢P,vt < 0.3, this difference
was at most 0.03. For example, for ¢t = 400 all the cases presented in Table I
(except for ¢ = 0.001 and Py = 1.0, ¢ = 0.003 and Py, = 1.0, ¢ = 0.005 and P, =
1.0, and o = 0.001 and P, = 2.0) have ¢Povt > 0.1.°

Consider now the second approach where P(0) is known. The problem of
saying something about the distribution of P(0) given P(0) is identical to the
problem of saying something about the distribution of P(t) given P(¢). That is
to say it cannot be determined. However, our computational results allow us to
get around this problem. Let’s focus on the case where ondvt > 0.3.

Define

¢(x) = E{(P(t + At) — P(t))?*| P(t) = nd, P(0) = x}

We computed ¢ (x) for a range of x, where the size of the range was 4onds/2,
Le., at least 1.2. We found that ¢ (x) hardly varied as a function of x. In particular
max ¢(x)
min 6 (x) < 1.005.

Now assume that P(O) is known. Then P(0) has some distribution on (P(O)
d/2, P(0) + d/2]. Call the distribution F. F has a range of at most 0.125 <« 1.2.

So,

P(0)+1/16
EB(t + At) — P(t)| P(0) = nd) = f #(x)F(dx).
P(0)-1/16
By the above inequality,
P(0)+1/16
f ¢ (x)F (dx)
0.995 < 070 < 1.005
T #(P(0)) -

This inequality is independent of F. Further, since the range is 0.125 rather than
1.2, the inequality can probably be tightened by at least a factor of 10.

What this shows is that any of the assumptions below are, for numerical
purposes, virtually identical:

1) Given P(0) = x, then P(0) = x.
2) Given P(0) = x, then P(0) ~ F, F a distribution on (x — d/2, x + d/2].
3) Given P(t) = nd, then P(t) ~ unif(nd — d/2, nd + d/2].

The observation made in the example (see Section I. A) can be refined by
Theorem 2.

THEOREM 2. Assuming (1) and the uniform assumption, then for L even and
® It is difficult to include a detailed table as the numbers depend on t and P,. However, extensive

computations were performed (including for various levels of x) and the results are available from
the authors upon request.
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positive and {P(t) = P}, P = nd, then as At — 0,

4 . 2Pdi g
E((P(t + At) — P(t))F) ~ —— JAt.®
Vo

Proof: Given in Appendix B.

The practical import of this result is limited unless At is very small.

Table I can be used to obtain “improved estimators.” Look along the row
corresponding most closely to the price range of the security during the period
in question; find the column (using linear interpolation if necessary) whose
measured standard deviation (i.e., the ratio times the assumed o) corresponds
most closely to the observed standard deviation. The “true” standard deviation
corresponding to that column (or its interpolated value) is the “improved esti-
mator.”

No significant biases exist for the natural estimator of the variance of a well-
diversified portfolio because P(t + At) — P(t) — (P(t + At) — P(t)) is independent
over the set of securities and is averaged out when considering the price of a
well-diversified portfolio.

The above also obtains for the natural estimator of 8 (portfolio measure of
risk) by the above argument and as covariance is a bilinear form. The technical
details about these two arguments can be found in Gottlieb and Kalay [10].

D. The Normal Distribution

This section investigates the effects of discreteness of observed stock prices
when the underlying distribution of stock returns on any At is normal. In fact,
since for At small the lognormal distribution is very closely approximated by the
normal, Theorem 3 is also an analytic approximation of (3a,b).

THEOREM 3. If P(t + At) — P(t) is distributed normally with mean uP(t) At and
variance o2AtP%(t) and making the uniform assumption, then if P(t) = nd, we
have, for L = 1,

E{P@ + At) — Pt)Y) = $5w (jd)I} (6)

where
I_," = 512 {[(a,- + l)@(a, + l) - (aj - l)<I>(a, - l) - n(a, - l) + n(aj + l)]

— [(@j-r + D®(gj-1 + 1) — (@1 = D P(aj1 = 1)

= n(aj-, = 1) + nlag- + D]}
Here 7 is the standard normal density,
_ (j + %)d — nduAt

a.

! ndo VAt

= d
2n0~/—A_Z‘-

® ~ means asymptotic to.
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Proof: See Gottlieb and Kalay [10].

To demonstrate the biases in the measured standard deviation and kurtosis of
stock returns, formula (6) is evaluated numerically. The biases computed are
very similar to those documented in Table 1.

Table III depicts the relationship between the observed kurtosis of the rate of
return of stock prices, K, and the true standard deviation for various price levels.
The first row of this table details the assumed standard deviation, ¢, and the
first column lists the various price levels. The observed kurtosis, K, which under
the assumed “true” distribution N (0, ¢?) is zero, is shown to be biased upward.
For example, for P = 1.0 and ¢ = 0.001, K = 153.695. For P = 10 and ¢ = 0.003,
K =2.223.

The upward bias in the observed kurtosis is documented further in Figure 2.
This figure depicts the relationship between observed kurtosis and the “true”
standard deviation. Similar to the bias in &, the upward bias in K is shown to be
bigger for stocks with lower prices and smaller “true” standard deviation.

II. Conclusion and Implications

This paper demonstrates that the natural estimators of the variance and of the
higher order moments of the rate of return of stocks are upward biased due to
the discreteness of observed stock prices. These biases are bigger for stocks with
low prices and smaller “true” standard deviation. Alternatively, these biases are
larger the smaller the time interval in question. In particular, these biases would
be huge in studies using transaction to transaction data; they would be significant
in studies using daily data; and they would most likely be negligible in studies
using monthly data.

These results are important as they shed light on previously documented
empirical regularities. Moreover, they have important implications to a large
body of empirical research. The related studies can be classified into several
groups.

1. The density of the rates of return of stocks is found to depart from normality
when the estimation is done using daily data and to be insignificantly different
from normal when monthly data are used (e.g., Blattberg and Gonedes [2]). In
particular, a positive kurtosis is measured when the estimation utilizes daily data.
Moreover, as Barnea and Downes [1] show, when the time interval increases the
estimated kurtosis decreases. This regularity can be the result of the discreteness
of observed stock prices. As the time interval increases, the “true” standard
deviation increases and therefore the measured kurtosis decreases (see Table
I11).

2. The methodology suggested by Masulis [12] and Brown and Warner [4] for
event tests involves standardizing the excess returns by the natural estimator of
the standard deviation. Since this natural estimator is biased upward, the test is
biased toward the null hypothesis—i.e., finding no effect. This bias will differ
across stocks depending on the levels of their prices and the magnitude of their
“true” standard deviation.

3. The bias in the natural estimator of ¢ has to be considered in the implied
standard deviation studies (e.g., Latane and Rendleman [11], Chiras and Man-
aster [5], Schmalensee and Trippi [13], Brenner and Galai [3]). The implied
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Table III
Values of Measured Kurtosis of the Rate of Returns of Stock Prices Which Are
Induced by the Price Movement Discontinuity. The Underlying Distribution is
Assumed to be Normal (0, ¢2). Under These Assumptions the “True” Kurtosis
Is Zero.

o°

Stock
Price 1x107% 3x107° 5x10° 7x10° 9x107° 11x107° 13x10® 15X 1073

1.0 153.695  49.232 28339 19.385 14.410 11.245 9.053 7.446
2.0 75.347  23.116 12.669 8.192 5.705 4.122 3.026 2.223

4.0 36.173  10.058 4.834 2.596 1.348 0.619 0.210 0.022
8.0 16.587 3.529 0.941 0.095 —0.071 —0.038 —0.044 —0.016
10.0 12.669 2.223 0.041 —0.055 —0.036 —0.061 —0.022 —0.009
20.0 4.834 0.024 —0.021 0.002  —0.002 0.001 0.001 0.001
30.0 2.22 —0.034 —0.005 —0.0005  0.0009 0.001 0.001 0.002
40.0 0.960 0.027 0.004 0.002 0.007 0.004 0.005 0.002
50.0 0.422 0.018 0.018 0.004 0.006 0.007 0.004 0.004
60.0 0.022 0.013 0.008 0.006 0.005 0.005 0.005 0.004
70.0 —0.055 0.011 0.018 0.008 0.011 0.006 0.005 0.007
80.0 —0.016 0.064 0.030 0.007 0.009 0.009 0.006 0.006
90.0 0.056 0.047 0.017 0.022 0.015 0.012 0.009 0.008
100.0 0.184 0.036 0.027 0.023 0.013 0.013 0.000 0.000

® ¢ is the assumed standard deviation of the “true” distribution.

OBSERVED KURTOSIS

1 2 3 4 5 6 7 8 9 10
"TRUE’ STANDARD DEVIATION IN UNITS OF 1073

Figure 2. Values of the observed kurtosis of the rates of returns of stock (measured on the y axis)
as a function of the true standard deviation (measured on the x axis) for various price levels, P’s.
The “true distribution” is assumed to be N(0, ¢2) and price changes are assumed to be in multiples
of ¥ of a dollar.
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standard deviation is an ex ante estimate of the “true” o obtained from the
various option pricing models. The predictive ability of this estimate is frequently
compared to that of the natural estimator of o. The discreteness of stock prices
has to be considered for this comparison to be made properly.

The biases in the natural estimator of the variance are especially big when
continuous data are utilized. Thus, the obvious next step, which is the subject of
a paper in preparation, is to derive unbiased estimators using continuous data.

Appendix A

The uniform assumption is discussed. We begin for reasons of clarity by using
the normal model. Then, P(t) = ob(t) + ut + P(0). Here P(0) is the initial price,
and b(t) is standard Brownian motion. Let

Z(t) = P(t) — d[P(t)/d].
THEOREM Al. For0<a<a+ A<d, lim,_.Pr(Z(t) € (a,a + A)) = A/d.
Proof: Without loss of generality, set d = 1, and condition on P(0) = P,.
Pr(Z(t) € (a,a + A)) = $i2 « Pr(P(t) €E (a + n,a + n + A)). (A1)
Choose 0 < b < b + A < 1. We will show that
lim,_. | Pr(Z(t) € (@, a + A)) — Pr(Z(t) € (b, b+ A))| =0 (A2)

which will suffice to prove the theorem.

Pr(P(t)E(n+a,n+a+ A)) (A3)

= Pr(ob(t) + ut + PoE (n + a, n + a + A))

=Pr<b(t)e<'—l+9—1—3—°—“—t,g+2—&—”—t+é>> : (A3)
g g g g g g g g g

=Pr<ME< n a P, ,u\/i n a P, u«/i_'_ A ))

A W N N N N N

b(t
Recall that b(t) has the same distribution as b(1), that is the standard normal
t

distribution. Let ® be the normal c.d.f. and n the normal density. Let

n
aln, t) = — +—————,
oVt ot oVt g
A
a*(n, t) = a(n, t) + —,
oVt
b Py, uvt

b(n, 1) = —— 4 = =~ =

oVt oVt oWt g

b (n, t) = b, £) + -
oVt
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From (A1) and (A3),
Pr(Z(t) € (a, a + A)) = Y12 [®(a*(n, t)) — P(a(n, t))]

a*(n,t)
=¥il f n(u) du.

a(n,t)

Similarly,

b*(n,t)

Pr(Z(t) € (b, b + A)) = ,,k_mj; ) n(u) du.
(n,t

Define the functions

{1 if u€ U (an,t),a(nt)).
alt, u) = 10 otherwise.
[1 if ue U, (bn,t), b*(n, t)).
Bt u) = ]O otherwise.
Then,
Pr(Z(t) € (a, a + A)) = J: a(t, u)n(u) du,
Pr(Z(t) € (b, b + A)) = J: B(t, u)n(u) du
For6=b—a,
B(t, u) = a(t, u+ (—;(j_f) as b(n,t) =aln,t) + a—\/_
and
0
b*(n, t) =a*(n, t) + 7
So,

Pr(Z(t) € (b, b+ A)) = J: B(t, u)n(u) du

= J:w a(t, u+ —‘j—f)n(u) du

oVt

= j:w alt, u)n(u - —6—\&) du.

[
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So,
| Pr(Z(t) € (b, b + A)) — Pr(Z(t) € (a, a + A))]|

= ’j:w alt, u)n(u - a%g) du — J:w alt, u)n(u) du
< [ et n =) <
- ot

sj:m n(u—%f)—n(w

lim,_.. | Pr(Z(t) € (b, b + A)) — Pr(Z(t) € (a,a + A))]|

du

du.

< lim; e J::” n(u - ;%) —n(u)| du
= f‘” lim, 0 n<u - L) — n(u)| du
- a\/z
= 0. (A4)

(A4) proves the theorem.
For the lognormal model, we have P(t) = P(0)e”®®**". Again, let

Z(t) = P(t) — d[P(t)/d]. (A5)
THEOREM A2. If u*>0,0<a<a+ A<d,
lim,Pr(Z(t) € (a, a + A)) = A/d.

Proof: Again, without loss of generality, set d = 1, and condition on P(0) =
P,. Choose b as in the previous theorem. We will show that (A2) still holds given
definition (A5). Now, reset

In(n + a) P, w*Vt
aln,t)y =——m—m—————,

oVt oVt g
+a+ P *Jt
atn, t)zln(n a A)__o_u ’
gVt oVt g
*Vt
b(n,t)=ln(n+b)__P_0_u ’
oVt oVt o
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Arguing as in the previous theorem, we get

at(n,t)
Pr(Z(t) €E (@, a + A)) = ¥ }2 f n(u) du,

(n,t

b*(n,t)
Pr(Z(t) € (b, b+ A)) = T 12w f n(u) du.
b(n,t)

For u* > 0, lim;_,. a(n, t) = —x, lim,_, b(n, t) = —oo.
So, for arbitrary M > 0,

a*(n,t)
lim,, Pr(Z(t) € (a, a + A)) = im0 Xp=pm f n(u) du, (A6)
a(n,t)
b (n,0)
lim,,, Pr(Z(t) € (b, b + A)) = limy0o Dom=m f n(u) du. (A7)
bln,t)
Let
e(n, t) = b(n, t) — a(n, t),
e+(ny t) = b+(n, t) - a+(n) t)’
r(n, t) =e*(n, t) —e(n, t).
Now,

b¥(n,t) at(n,t)+e(n,t) a*(n,t)+e(n,t)+r(n,t)
f n(u) du = f n(u) du + f n(u) du
b a a

(n,t) (n,t)+e(n,t) *(n,t)+e(n,t)
j‘a*’(n,t) at(n,t)+e(n,t)+r(n,t)
= n(u + e(n, t)) du + f n(u) du
a(n,t) ’ at(n,t)+e(n,t) (A8)

From (A6), (A7), and (A8), we get
lim, . | Pr(Z(t) € (b, b + A)) — Pr(Z(t) € (a, a + A))|
at(n,t)
=< lim; e Y7-m f( ) [ n(uw) — n(u + e(n, t))| du (A9)
+ limt—>°° 2:=M Ir(n9 t)l *

The first term on the right-hand side of (A9) is 0 as lim,_,», e(n, t) = 0.
Foro=b—a,

ovir(n,t) =In(n +a+ 6+ A) — In(n + a + A)

—In(n+a+6)+1In(n+a)

n+a+5o n+a
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)
n+a+o n n+a n
T (n+a)n+a+d) n?
1
)

So, sVt Y% a | F(n, )| = 0(1). Hence,
limt—bw 2:=M |r(n) t)l = 0.

So, the left-hand side of (A9) is zero, proving the theorem.

Appendix B

This appendix contains the proof of Theorem 2. We need to show that
limaeo(At) V2 T2 (jd)*Pr(P(t + At) — P(t) = jd | P(t) = nd)
_ 2nd*
= "

We assume throughout that P(t) ~ uniform (nd — d/2, nd + d/2].
We first show that if the above sum is restricted to j = 2 (j = —2) the limit is
equal to zero.

Yo, jEPr(P(t + At) — P(t) = jd | P(t) = nd) (B2)
< Y2, j'Pr(P(t + At) — P(t) = jd | P(t) = nd)

(B1)

< 32, j'Pr(P(t + At) — P(t) = (j — 1)d | P(t) = (n + %)d)

n+j—1+%
n+ %

. | — Yo

. 1
= ¥ jLPI‘(Y(At) = 4(—n+—1-)'

L+2
= ¥ j* %]—— E(Y(At))F+2

) where Y(At) = eab(At)+u*At -1

by Chebychev’s inequality, L = 2, even
< KE(Y(At))**2, (B3)
Here,

K=4n+ D)2 ¥5,j <o,
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Now, using the Taylor expansion of e,

" 2 L+2
[ob(At) + w*(AD] > . (B4)

E(Y(At))!*? = E<ab(At) + u*(At) + 5

Now,

Jo if m odd.

E@®(AL)" = ‘l(m —1)(m —8) --- 1(At)™? if m even.

So, E{Y(At)}£*2 = o(At)2 Thus,

lima,o(At)™Y2 T2, (jd) Pr(P(t + At) — P(t) = jd| P(t) = nd) = 0. (B5)
Similarly,

limaro(At)™V2 ¥52_, (jd)*Pr(P(t + At) — P(t) = jd | P(t) = nd) = 0. (B6)

Now,

limarolAt) 2Pr(P(t + At) — P(t) = d| P(t) = nd)

= limaro(At) 2Pr(P(t + At) — P(t) = d| P(t) = nd) by (B5)

nd+d/2
= d Nima,_o(At) V2 f Pr(P(t + At) — P(t) = d| P(t) = x) dx

x=nd—d/2
= d_llimAt_,o(At)_l/Z

nd+d/2
f Pr(P(t + At) — P(t) = nd + d/2 — x| P(t) = x) dx
x=nd—d/2
(sety =nd + d/2 — x)
d

= d 'lim,,_o(At)™V2 f Pr(P(t + At) — P(t) = y| P(t) = nd + d/2 — y) dy

€

= dlimy,_o(At)™/2 f_o Pr(P(t + At) — P(t) =2 y| P(t) = nd + d/2 — y) dy.
(B7)

To see the validity of the last equality, note that in (B3) we can replace j by any
¢ >0, and the resulting limit is still zero. So, the range of integration in (B7) can
be restricted to [0, ¢], ¢ > 0, arbitrarily small, without changing the value of the
limit.

— J-11; -1/2 ’ ob(At)+p*At S A
d ™' lima,0(At) ~£=o Pr<e =1 nd + d/2 — y) it
o ~ € 1 y ﬂ*At
— 1 1/2 - -
dimp,o(AL) Jy;o Pr<b(At) = S ln<1 + nd + dj3 = y> - ) dy
= A1 -1/2 ‘ > B M*‘/E)
d llmAz—.O(At) L Pl‘(b(l) = UN/KZ ln<1 + nd + d/2 - y) g dy.
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Now for arbitrarily small 8 > 0, we can choose ¢ > 0, small enough so that for y
€ [0, €],
(1-8y _ wat
a(nd + d/2) o

*JA *JAt
<lin(14—2 )-“‘/—‘s Ut By _ wWAL - g
I nd +d/2 -y I a(nd + d/2)
o 1
So, letting w = o(nd + dJ2)°
1 _ ‘ w(l + By wp*VAt
d7lim,_o(At)™Y2 jy;o Pr<b(1) = a2 T . dy
< d7Nimgy,_o(At) 2
¢ 1 y ;t*VAt)
. jy;o Pr(b(l)za& 1n<1+nd+d/2—y> 5 dy
e - ’ — By
1 1/2
=< d7limy,o(At) Jy; Pr(b(l) = (At)1/2 ) dy. (B9)

Now,

ol + By u*ar)
@r T, )@

d‘llimA,_.o(At)”Wf Pr(b(l)z
y=0

= d7lima,_o(At)™2 »I;:_o on f o148)y ﬂ‘(At)"’ e™" du dy

@0

u(At)m u*At
(At) 1/2 o —u?
=d- lhmAt—>0 —u'(At)‘/z w(1+8) w(1+ﬁ) u?/2 dy du

L (ADTV f i wan™ | wAL )
=d1 *(At)* _u/2
1MAa¢—0 \/ﬂ Tt (.yAt)ﬁ w(l + B) * w(l + B)e ¢ du

(At)_1/2 (At)1/2
Vor w(l+8)

(At)™Y2  Atp* ” a2
Vo Wl + B)g Ju-zectagn € du
7r o

_“c2At/2”2

= d_llimm_,o

+ d7imy,_g

d!
V21 w1+ 8)
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As 8 > 0 was arbitrarily small, arguing from (B9) we get
-1

limaeo(AL) " V2Pr(P(t + At) — P(t) = d| P(t) = nd) = -j—__— o(nd + d/2)

2w
_a(n+ %)
==
By similar arguments,
lima,o(At)"V2Pr(P(t + At) — P(t) = —d| P(t) = nd) = aln — )
Vor

So,

2ond* _ 2¢Pd"

limamo E((P(t + At) — P(t))*| P(t) = nd)(At)™2 = =
ima, o E((P( ) ()" | P(t) = nd)(At) o o
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