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Estimating the Volatility of Discrete Stock Prices

D. CHINHYUNG CHO and EDWARD W. FREES*

ABSTRACT

This paper introduces an estimator of stock price volatility that eliminates, at least
asymptotically, the biases that are caused by the discreteness of observed stock prices.
Assuming that the observed stock prices are continuously monitored, an estimator is
constructed using the notion of how quickly the price changes rather than how much
the price changes. It is shown that this estimator has desirable asymptotic properties,
including consistency and asymptotic normality. Also, through a simulation study, the
authors show that it outperforms natural estimators for the low- and middle-priced
stocks. Furthermore, the simulation study demonstrates that the proposed estimator is
robust to certain misspecifications in measuring the time between price changes.

THE VOLATILITY OF STOCK returns plays an important role in many areas of
finance. The most common way of estimating the volatility is to calculate the
standard deviation of the changes in stock price observed over fixed time
intervals. The estimator is often called a “natural” estimator.! It is well known
that, if the stock price used in the natural estimator is the “true” equilibrium
price, then the natural estimator will be nearly unbiased? and efficient.
However, the organized exchanges restrict the stock price quotations to be a
multiple of some constant, e.g., one eighth of a dollar.? Also, the observed stock
price is not the true equilibrium price but either a bid price or an ask price.
Recently, several researchers noted that these frictions in the market cause the
natural estimator to be severely biased. Gottlieb and Kalay [12] demonstrate
that the discreteness of the observed stock prices causes the natural estimator to
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nia-Riverside, University of Illinois, University of Southern California, University of Wisconsin-
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! Christie [5] proposes an estimator that relates to the firm’s characteristics. Parkinson [20],
Garman and Klass [9], and Beckers [2] show that the efficiency of the natural estimator can be
improved by using not only the opening and closing prices but also the high and low prices. Latane
and Rendleman [16] introduced the so-called implied variance based on the option-pricing formula.
However, these estimators are still prone to the biases that we address in this paper.

2Even though the sample variance is an unbiased estimator of the true variance, the sample
standard deviation is not an unbiased estimator of the true standard deviation. In fact, by using
Jensen’s inequality, one can show that the sample standard deviation underestimates the true
standard deviation.

® This is provided that the stock price is greater than one for U.S. domiciled stocks.
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overestimate the true volatility of the stock returns.* French and Roll [7] argue
that the natural estimator overestimates the true volatility of the stock returns
in the presence of bid-ask spreads.

The purpose of this study is to construct an estimator that will eliminate the
biases, at least asymptotically, that are caused by the discreteness in the observed
stock prices. In this study, we do not directly address the biases that are caused
by bid-ask spreads. The intuition behind our estimator is simple and appealing.
Unlike the natural estimator, we partition the level of the price process into
several intervals of a unit length, say, one eighth of a dollar. Then we examine
the time required for the prices to move beyond a given unit price interval using
the notion of the so-called “first-passage time.” In short, the natural estimator
focuses on how much the price changes, whereas our “temporal” estimator focuses
on how quickly the price changes. Conceptually, the more volatile stock should
move more quickly, and, hence, the first-passage time should be shorter than for
the less volatile stock.

Based on this notion of the first-passage time, and by assuming that the true
stock prices are lognormally distributed and that the observed stock prices are
continuously monitored, we are able to construct a consistent estimator along
with its asymptotic sampling distribution. This estimator will eliminate the
biases that are caused by the discreteness in stock prices, at least asymptotically.
Furthermore, since this temporal estimator is based on the time between price
changes rather than the magnitude of price changes, the biases caused by bid-
ask spreads may be relatively small.

As noted by Niederhoffer and Osborne [18], Roll [22], and Blume and Stam-
baugh [3], bid-ask spreads produce negative first-order autocovariances in ob-
served price changes. The reason is as follows. Assume that the market is
informationally efficient and that the probability distribution of price changes is
stationary. Then, according to Roll, in the absence of new information, if the
transaction is at the bid price, then the next price change cannot be negative,
while, if the transaction is at the ask price, then the next price change cannot be
positive. Hence, the distribution of the magnitude of price changes depends on
whether the last transaction price is at the bid or ask, and this induces negative
serial dependence in the magnitudes of successive price changes and biases the
natural estimator.

In other words, the bias in the natural estimator is produced mainly because
of its focus on the magnitude of price changes.® On the contrary, it is unlikely

4 Marsh and Rosenfeld [17] claim that there should be no biases in the natural estimator that are
caused by the discreteness. They argue that the discreteness problem can be treated as the nontrading
problem. The fact that the observed closing price is discrete implies that the true price must have
been equal to the observed closing price at some time before the closing. Hence, they argue that,
according to Scholes and Williams [23], the bias in the natural estimator should be proportional to
the logarithmic mean return, but in practice the daily mean return is very small compared with daily
volatility of stock returns. However, our simulation study shows that the natural estimator overesti-
mates the true volatility in most cases. .

5 As Marsh and Rosenfeld [17] and Glosten [10] point out, there are two components of bid-ask
spreads; one is due to liquidity trading, and the other is due to information trading. The liquidity-
trading component of bid-ask spreads would induce an upward bias in the natural estimator. On the
other hand, the information-trading component of bid-ask spreads would induce downward bias
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that the bid-ask spreads would have a systematic impact on the time between
price changes. For example, there is no strong reason to suspect that, if the
transaction is at the bid price, the next price change should occur sooner than if
the transaction were at the ask price, or vice versa. Hence, the temporal estimator
may be less biased than the natural estimator even in the presence of bid-ask
spreads.®

The rest of this paper is organized as follows. Section I describes the stock
price process assumed in this paper. Section II presents a consistent estimator
of the return variance. Section III compares this estimator with natural esti-
mators through a simulation study. The simulation is done using discrete-time
measurement intervals rather than continuous time. It turns out that, even in
this situation, which is a violation of the continuous-monitoring assumption
made in Section I, the temporal estimator is preferable to the natural estimator
for the low- and middle-priced stocks. Finally, concluding remarks are made in
Section IV.

I. Model Description

We assume that the true stock price is P(¢t) = P(0)exp(¢B(t) + ut),” where t =
0. Here, P(0) is a known constant, u and ¢ are unknown parameters, and {B(t);
t = 0} is a standard Brownian motion over [0, ©). We assume that the observed
stock price is

P(t) = [P(t)/d]d, (1)

where [-] is the greatest integer function and d is a known constant.® For
example, d = Y& on the New York Stock Exchange. Alternatively, we could use
the observed return process

R(t) = P(t)/P(0)
= [exp(sB(¢) + ut)/(d/P(0))]d/P(0)
= [exp(eB(t) + ut)/d*]d*, (2

where d* = d/P(0). Note that the observed return process is discrete in jumps of
d/P(0). We will henceforth take P(0) = 1 without loss of generality and use d =
d*. With this convention, we also have P(t) = R(t).

The purpose of this paper is to discuss estimation of ¢ > 0 from the observed
process P(t). If one can observe the true pricing process, P(t), estimation of o is
straightforward by using the logarithmic returns. For example, letting At be some

according to Marsh and Rosenfeld and no bias according to Glosten. The bias mentioned here is
mainly the one due to the liquidity-trading component of bid-ask spreads.

¢ The possibility of systematic impacts of bid-ask spreads on the time between the price changes
is left for future research. Recently, Harris [14] introduced a maximum-likelihood estimator that is
supposed to take care of discreteness and bid-ask spread problems. See also Ball [1].

"This implies that the instantaneous expected rate of return is equal to u + ¢%/2.

8 Alternatively, we could have assumed the observed stock price to be P(t) = kd if kd — d/2 < P(t)
< kd + d/2 or P(t) = kd if (k — 1)d < P(t) < kd. However, as pointed out by Gottlieb and Kalay
[12], the size of bias would be almost identical and our discussion in this paper would not be affected.
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fixed increment of time, say, one day, the logarithmic returns X; = log(P((i +
1)At)/P(iAt)) are independent and identically distributed (i.i.d.) normal random
variables with mean pAt and variance o?At. However, this is not true when one
replaces P with P in the definition of X;. This was pointed out by Gottlieb and
Kalay [12], who also examined the magnitude of biases when ¢ was estimated
from the observed pricing process P(iAt), i =0, 1, 2, - - -, for some fixed At.

In this paper, we also assume that the discrete stock price, P(t), is continuously
monitored. This assumption implies that we know when the true price becomes
a multiple of d. Hence, there is little measurement error that is caused by the
discreteness of observed stock prices if one uses the time rather than the
magnitude of the observed price changes; that is what makes our temporal
estimators unbiased in the limit.

To make the connection between variability of the process and average time
between price changes more precise, we use some ideas of stopping-time random
variables and basic probability calculations for a Brownian motion. As an
important example of a stopping time, we usually look at random variables of
the form Z = {first time ¢ > 0 such that B(t) + 6t & (b, a)}, where a, b, and 0 are
constants such that —o <b < 0 < a < . The random variable Z is the so-called
first-passage time during which the process reached b or a for the first time.®
Distributional properties of Z based on Brownian-motion probability calculations
are well known. See Cox and Miller [6, chapter 5].

II. Temporal Volatility Estimator

We now construct an estimator that is based on the first time at which a stock
price moves either up or down by a given unit price level. We remark that we
can also construct an estimator based on the information provided by only
upward movements of stock price. This latter estimator may be useful in situa-
tions where stock price changes are generated primarily by bid-ask movements.
However, our earlier analysis shows that, in general, the temporal estimator
based on both upward and downward movements of stock price outperforms the
one using only upward movements. Hence, for brevity, we provide only the
temporal estimator that uses both upward and downward movements of stock
price.'°

9 Some good references are Cox and Miller [6] and Siegmund [24]. Siegmund provides some nice
heuristic examples in his applications to sequential analysis. Cox and Miller supply the details of
some well-known results that are used implicitly in the paper. In this paper, we use the “first-time”
convention in a stopping-time distribution in lieu of the more precise infinum notation, i.e., Z = inf{t
> 0: B(t) + 0t & (b, a)}.

10 An estimator based on times to the next price advance can be constructed as follows. Recursively
define

77 = {first time ¢t >0 such that P(t)/P(v-;) =1+d},

where 7§ = 0. With the incremental time to the next price advance Ar] = 7] — 77, define the
sample moments 7, = n™' Y%, A7 = v /nand 82 = n~' 3%, (A7])? — (7}?). Cho and Frees [4]
developed the alternative temporal estimator ¢5 = 6282/(7). Advantages of ¢4 are that it can be
easily interpreted as the sample variance of stopping times, S?, times a scaling factor, and its
distribution can be obtained in a straightforward fashion. This alternative temporal estimator may
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We define a sequence of stopping-time random variables {r,}5-; by
7, = {first time t > 7,_, such that P(¢)/P(7,—1) € (1 +d)7, (1+d))}, 3)

where 7o = 0. This is the first time at which a stock price increases or decreases
by the multiple of (1 + d) since the last price change. Because of the strong
Markov property of the Brownian-motion process, a useful feature of the stop-
ping-time sequence is that increments of time to change, A7, = 7, — 7,1, are
i.i.d. From (3), we can write

7 =1, = {first time ¢ > 0 such that ¢B(t) + ut & (-4, )}, (4)

where 6 = log(1 + d).
The following lemma provides some important relationships between the

parameters of interest, u and ¢, and the expected time between price changes,
Er.

LEMMA 1: Consider the stopping time defined in (4) and assume that P(0) = 1. If
u = 0, then the probability of the true price reaching the multiple of 1 + d before
1+d)1is

Pr(P(r)=1+d)=p=1, (5)

and the expected first time at which the true price reaches the multiple of 1 + d or
1+d)tis

Er=07%% (6)
More generally, if u # 0, then
Pr(P(r)=1+d)=p={l1+(1+d)2/)" (7)
and
Er=p718{21+ (1+d)™ /) -1}
=u'é(2p—1). (€))

The proof of Lemma 1 is an immediate application of, for example, Theorem
3.6 of Siegmund [24, p. 36]. Note that, for a given u > 0, p increases and Er
decreases as ¢ increases and vice versa. That is, the more-volatile stock is more
likely to increase and take less time for the price to change than the less-volatile
stock. Also, it can be easily shown that (7) and (8) approach (5) and (6),
respectively, as u approaches zero.

Lemma 1 immediately suggests several estimators of ¢. For example, by the
strong law of large numbers, we have that, with probability one,

lim,_.7,=E7,

where 7, = 7,/n. Thus, in the special case of u = 0, 62/7, is a consistant estimator

be useful in periods of advancing periods for stocks with large bid-ask spreads. Heuristically, by
measuring times between advances, we essentially measure times between ask prices. By restricting
ourselves to ask prices, we increase the homogeneity of our observations and produce more reliable
estimates.
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of ¢2%; i.e., with probability one,
lim,_,6%/7,= o>
Similarly, from (8), we have
o?=2ud/(log(s + uE7) —log(s — wE7)). 9)
Hence, we define the temporal estimator by
6% =245/(log(d + jitn) —log(s — 7)), (10)

where i = 7, log(P(7,)) and 7, = 7,/n. Note that 4 is the sample estimate of the
price drift and 7, is the sample average of first-passage times.

We have the following asymptotic properties, the proofs of which are given in
Cho and Frees [4].

LEMMA 2: Consider the sequence {r,} defined in (3). Then, i is a consistent
estimator of u.

THEOREM 1: Assume that u # 0. Then, ¢ is a consistent estimator of o. Further-
more,

n'?(G—a)—pN(0,2?), (11)
where 22 = ¢*(1 + d)*/**var 7/{645"p*} and
o? 482 1\’
Var‘r—;‘—35(2p—1)—-u—2<m) R (12)

where A = exp(—udo?) and B = exp(ud/o?).

III. Comparison of Natural versus Temporal Volatility Estimators

In order to compare the temporal estimator with the natural estimator, we now
examine the performances of the two estimators using simulated data. Since we
do not know the “true” underlying parameters of stock price processes, we cannot
compare estimators using the observed stock data. In carrying out the simulation
study, we deliberately induce a certain model-misspecification error. The error
we consider here is to assume that the price process is observed only at discrete
time intervals rather than continuously.’’ We feel that this type of “error” is
important to consider explicitly since it typically will be encountered by even the
most careful stock analysts.

We use the following recursive relationship to generate the true prices at

11 Ag suggested by an anonymous referee, an alternative viewpoint is to think of the actual price
as observed only when a trade occurs. This could be modeled by assuming that the inter-arrival times
between trades are distributed according to some exogenous stochastic process not necessarily related
to the pricing process. However, by assuming that the parent geometric Brownian-motion process
governs price, we implicitly assume that times to trades are i.i.d. random variables. It may be
important to investigate whether the data follow this model or, if not, fit more general models than
the ones introduced in this paper.
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discrete time intervals:
P(t)=P(t—1)exp(cB(At) + uAt), t=1,...,T. (13)

We simulate 1000 price series, each of which contains T' = 1000 observations.
We use the initial prices P(0) of $1, $25, and $100 to represent the low,
intermediate and high stock prices, respectively. The daily mean returns u of
0.03 percent, 0.08 percent, and 0.13 percent and the daily standard deviations &
of 0.8 percent, 1.2 percent, and 1.6 percent are used. These numbers correspond
to the annual returns of 7.5 percent, 20.0 percent, and 32.5 percent and the
annual standard deviations of 12.6 percent, 19.0 percent, and 25.3 percent,
respectively, if 250 trading days are assumed in a year. We use d = % as our
discretizing constant. Hence, after standardization, the constant is d* =
0.125/P(0). Different values of At are used depending on the initial prices P(0).
The expected time to price change, E7, depends on the parameters P(0), x, and
o. For example, in the case of u = 0.03 percent and ¢ = 0.8 percent, the $1 stock
takes more than twenty times longer to change by the amount of one eighth of a
dollar than the $25 stock. Hence, for the $1 stock, we do not have to generate as
many prices as for the $25 stock if we want to observe a similar number of price
changes. Thus, in order to reduce the computational costs, we let At be one day
for the $1 stock, 0.02 days for the $25 stock, and 0.002 days for the $100 stock.
These true prices are then discretized according to (1) to generate observed
prices, and these observed prices are used to calculate various estimators. Results
are summarized in Tables I through III for the $1, $25, and $100 stocks,
respectively. Each of these tables contains the average point estimates of i and
o, along with their root mean squares, for three different types of estimators.
These estimators are the natural estimators based on the true and observed
prices, respectively, and the temporal estimator (denoted as True, Nat, and Temp,
respectively). Tables II and III contain additional natural estimators based on

Table I
Comparison of Estimators on Simulated Data: $1 (Days = 1000, At = 1)*
d=08% c=12% oc=16%

w(%) & RMS; & RMS, ;i RMS; ; RMS;, ;i RMS; ; RMS;

True 0.03 0.030 0.025 0.800 0.018 0.030 0.037 1.200 0.026 0.031 0.050 1.600 0.035
Nat 0.03 0.025 0.027 2.840 2.0801 0.025 0.040 3.470 2.330f 0.025 0.053 4.050 2.550t
Temp 0.03 0.038 0.038 0.805 0.270* 0.038 0.050 1.180 0.276* 0.036 0.059 1.500 0.355*

True 0.08 0.080 0.025 0.800 0.018 0.080 0.037 1.200 0.026 0.081 0.050 1.600 0.035
Nat 0.08 0.077 0.026 2.520 1.750% 0.077 0.039 3.070 1.910%f 0.077 0.052 3.570 2.040t
Temp 0.08 0.088 0.028 1.140 0.421* 0.092 0.044 1.410 0.365* 0.091 0.057 1.740 0.400*

True 0.13 0.130 0.025 0.800 0.018 0.130 0.037 1.200 0.026 0.131 0.050 1.600 0.035
Nat 0.13 0.129 0.025 2.270 1.490f 0.129 0.038 2.770 1.610f 0.129 0.051 3.200 1.660t
Temp 0.13 0.135 0.026 1.660 0.914* 0.140 0.040 1.800 0.729* 0.142 0.054 2.080 0.705*

® True, natural estimator based on true prices; Nat, natural estimator based on observed prices;
Temp, temporal estimator; u, o, (daily) mean and standard deviations of true price process (%); i, &,
estimates of mean and standard deviations (%)—average of 1000 simulation results; RM.S, root mean
squares of estimates (%).

t Largest root mean square for a given u and o except “True”.

* Smallest root mean square for a given u and ¢ except “True”.
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observed prices that use a different number of observations per day.'? As noted
by Gottlieb and Kalay [12], with observed prices the natural estimator should
get worse as one uses more observations per day, unlike the case of true prices.
This is so because the bias due to discreteness should pile up with more
observations of observed prices. Hence, it is of interest to examine how the
performance of natural estimators on the observed prices behaves as a function
of the number of observations.

In estimating the stopping times for the temporal estimator, we have to make
some adjustments to (3). The stopping times defined in (3) are based on the true
prices that cannot be observed. Note that (3) can be expressed as

{first time ¢ > 7,-; such that P(t) — P(7,-1) QE( d

P("'n—l)y dP(Tn—l))}
Since the differences between two observed prices must be multiples of d, we
must adjust the price interval in the above equation. Also, recall that we assume
the observed price to be the largest multiple of d that is less than or equal to the
true price. That is, P(t) = kd if kd < P(t) < (k + 1)d for some integer k. This
implies that, if the true price has just crossed kd in an upward direction, then
the observed price at the moment after is kd, whereas, if the true price crossed
kd in a downward direction, then the observed price at the moment after would
be (k — 1)d.
Hence, we use the following approximation of the stopping time 7,:

= {first time ¢t > 7,_; such that

d . A
T3 g E 1), dIP('rn—l))},

P(t) = P(74-1) GE(-Z
with 7, = 0 and P(7,) = P(fn_1) + dIP(7n—y) or P(7,) = P(7,-1) — dIP(7,-1),
depending on whether the price moves up or down, respectlvely 2 IP(.) is the
nearest integer of P(.). The intuition is as follows. At time 7,_,, b(+,_,) is a
multlple of d for each n. As before, if the true price goes up, then the first-passage
time 7, (after 7._,) satisfies P(7,) = B(7ny) + dIP(-r,,_l) However, if the true
price goes down, then the first-passage time 7, must satisfy P(-r,. + h) =

P(F.-1) -2 -l—g—d IP(#,-,) for small h. This is due to the discretization process

assumed in Section I. See Figure 1 for a sequence of stopping times.™

12 We could have compared the high-low estimator of Garman and Klass [9], which has recently
gained some popularity due to its high relative efficiency compared with the natural estimator using
only closing prices. We did not do this because the high-low estimator assumes u to be zero.

13 Special considerations are necessary if the true price descends to a multiple of d/(1 + d) but
does not drop below the multiple. However, this happens with probability zero and can be ignored.
Also, note that d/(1 + d) =

14 Since the observed process is discrete in multiples of d, we use an approximation to the stopping
time by substituting the integer part of P(#,-1) for P(r,-,). This is effectively a Taylor-series
linearization due to the exponential scaling of the process. Indeed, in the random-walk case without
this scaling, no approximation is necessary and the observed stopping times can be measured without
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Figure 1. Stopping times of stock price changes. ¢,, time at which price is generated; 7;, estimated
stopping time of price changes; v, true prices; ——, observed prices; +, point at which true price is
generated; o, point at which true price changes to the multiple of (1 + d) or (1 + d)™!; o, point of
discontinuity.

In comparing estimators, we examine the root mean square of the point
estimate. We use the root mean square in the usual sense, which equals the
square root of the variance plus bias squared, to simultaneously discuss the
statistic’s variability and deviation from the parameter of interest. Even though
the temporal estimator is a consistent estimator, there will be some biases mainly
due to errors in measuring times between price changes in finite samples. Hence,
it is proper to compare the estimators using the root mean squares rather than
the standard errors. We note that the comparison of estimators reduces to
comparing the biases due to measurement errors in the magnitude of price
changes with the biases due to measurement errors in the time between price
changes.

In Table I, the $1 case, we see that the natural estimator using true prices
always gives the most desirable estimate. On the other hand, the natural estimator
on the observed prices performs the worst. This is not surprising because the
impact of discreteness (one eighth of a dollar) is significant for low-priced stocks.
Also, we note that the natural estimator using observed prices performs better
as u increases. This is due to the fact that there will be less measurement error
from the discreteness when the level of price increases. With the temporal
estimator, the performance gets worse as u increases. This may be due to the fact

error. Heuristically, the temporal estimator is robust to this measurement error since it relies only
on the sum of the stopping times rather than on precise measurement of each one.
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that there will be more measurement errors in the time between price changes
by not being able to detect the time properly for downward movements of stock
price. On the other hand, there is no consistent pattern with regard to ¢ for the
temporal estimator.

Table II, the $25 case, also shows that the natural estimator based on the true
prices gives the most desirable estimates, as expected, and that the natural
estimator based on the entire set of observed prices (fifty observations per day)
gives the worst estimates. Note that, as the number of observations per day
decreases, the performance of the natural estimator based on the observed prices
actually improves. In fact, the natural estimator based on five observations per
day performs the best among all estimators except the natural estimator based
on the true prices for ¢ = 1.2 percent and ¢ = 1.6 percent. For ¢ = 0.8 percent,
the temporal estimator performs the best.

This seems a little surprising. However, if one allows the natural estimator to

have different time intervals, then there can be some natural estimator that can
dominate our temporal estimator. This is so because, in this case, the natural
estimator is in fact using the information provided not only by the magnitude of
price changes but also by the time between price changes. Unfortunately, one
does not know a priori how many observations are optimal to use. Also, if we
generate more observations per day by reducing At so that we have less errors in
estimating the time between price changes, then the temporal estimator will
improve.’® Note that, from Figure 1, if we use coarse partitions of times in
generating prices, then we will not be able to continuously monotor the time at
which the observed price changes. This induces additional errors in estimating
the time between price changes. Thus, the results of the simulation study are
biased against the temporal estimator in that the simulation study uses obser-
vations taken at small time increments At, whereas we have been assuming
continuous monitoring of all the data. In practice, continuous monitoring may
not be available, but these results indicate that the temporal estimator will
perform well in situations approximating continuous monitoring.
Table III, the $100 case, again shows that the natural estimator based on the
true prices gives the most desirable estimates, the natural estimator based on the
entire set of observed prices (500 observations per day) performs the worst for ¢
= (.8 percent, and the natural estimator based on one observation performs the
worst for ¢ = 1.2 percent and ¢ = 1.6 percent. On the other hand, excluding the
natural estimator based on the true prices, the natural estimator based on twenty-
five observations performs the best for ¢ = 0.8 percent, and the natural estimator
based on fifty observations performs the best for ¢ = 1.2 percent and ¢ = 1.6
percent. This may be explained by the fact that the impact of discreteness is
minor for high-priced stocks, and so there will be smaller biases in the natural
estimators. (Recall that d = 0.125/P(0).)

15 In order to see this, we generated prices using At = 0.002 days for the $25 stock with u = 0.03
percent and ¢ = 0.12 percent. The root mean square of the temporal estimator was 0.087. The root
mean squares of natural estimators were 2.080, 0.647, 0.380, 0.127, and 0.200 for the daily observations
of 500, fifty, twenty-five, five, and one, respectively. Thus, in this case, the temporal estimator
performed the best and the natural estimator based on 500 observations performed the worst.
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Overall, our simulation study indicates that the temporal estimator is the
preferred estimator for the case of low- and middle-priced stocks. The natural
estimator with a moderate number of observations per day is the preferred
estimator for the case of high-priced stocks. Also, it demonstrates that, contrary
to common belief, the natural estimator does not become better as we add more
observations per day as long as the estimator is based on the observed discrete
stock prices.

Finally, we compare estimators by examining the actual transactions data of
Advanced Micro Devices (AMD) stock for each of three days, December 3 through
5, 1984. A graphical representation of this data set can be found in Figure 2. The
calculations are summarized in Table IV. The temporal estimator agrees with
the number of transactions and price changes and indicates that AMD was more
volatile on December 5 than on December 3. On the other hand, the natural

AMD STOCK PRICE

T T T T T T

0 0.2 0.4 0.6 0.8 1
MINUTES (THOUSANDS)
Figure 2. Transaction Stock Price of AMD (12/3/84-12/5/84).
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Table IV
Comparison of Estimators on AMD Data*
Date NT NP Nat Temp
12/3/84 102 40 1.506 1.300
12/4/84 145 57 1.761 1.451
12/5/84 159 66 1.447 2.133

¢ NT, number of transactions; NP, number of price changes; Nat,
natural estimator based on observed hourly prices (%); Temp,
temporal estimator (%).
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estimator based on hourly observations indicates that the stock was more volatile
on December 3 than on December 5. Naturally, this is a real data set, and no
general conclusions can be ascertained by studying it. However, a visual inspec-
tion of Figure 2 leads us to conclude that the temporal estimator is in greater
concordance with the data than the natural estimator. To the extent that the
volatility should reflect trading activity, the temporal estimator captures more of
this activity than the natural estimator. By fixing observation times, the natural
estimator fails to reflect trading activity between the observation times.

IV. Conclusion

In this paper, we addressed the issue of constructing a volatility estimator that
eliminates biases that are caused by the discreteness of observed stock prices.
Assuming that the stock prices are lognormally distributed and that the observed
stock prices are continuously monitored, we derived a consistent estimator using
the notion of first-passage-time random variables. Also, we identified the asymp-
totic sampling distribution of this estimator that would enable us to carry out
statistical inferences.

The major reason why the temporal estimator is unbiased (in the limit) is that,
with the assumption of continuous monitoring, we can accurately calculate the
time during which the true price process moves by the amount of the discretiza-
tion constant. On the other hand, the natural estimator is biased because the
magnitude of price changes for a fixed time interval cannot be calculated without
an error. In practice, the assumption of continuous monitoring may not be
reasonable, in which case we can measure the time between price changes only
with error. However, our simulation study shows that measurement errors in the
time between price changes induce less bias than measurement errors in the
magnitude of price changes.

We also examined the relative performance of the temporal estimator compared
with natural estimators using a simulation study. Our results show that the
temporal estimator outperforms natural estimators for the low- and middle-
priced stocks. Finally, we demonstrated that, contrary to common belief, the
natural estimator does not become better as one adds more observations per day.

We remark that the temporal estimator works even in a situation where there
is no discreteness problem. In this case, we could partition the level of price
process by any amount d. As d gets smaller, the estimator should get better. In
fact, in the limit, the estimator approaches the true volatility with probability
one.'®

16 While the temporal estimator is intuitively appealing and has desirable properties, we conjecture
that it is not optimal in some sense. For example, by examining Figure 1, we see that the estimator
does not use the information contained in each observed price movement but only in changes wherein
the underlying true price has moved by a unit d. In other words, by the sample function properties of
the Brownian-motion path, P(t) will cross 1 infinitely many times during the interval [0, At), where
At is arbitrarily small. Hence, during this time interval, P(t) will oscillate bgtween land1-d(1+d)
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Recently, transactions data have become more readily available and have been
. frequently used in many studies.!” Hence, the temporal estimator is potentially
beneficial and should be used in the event-type studies or the option-related
studies. Especially for the low- and middle-priced stocks, one should seriously
consider using the temporal estimator. Currently, we are investigating the per-
formance of the temporal estimator in relation to the implied volatilities of stocks
that have options. We hope to report this in a later paper using transactions
data.

infinitely often, and it may be possible to construct an estimator of o based on this oscillation.
However, if we defined the observed process to be

p(t) =P(Tn-1)y Th-1 SE<Ty,

instead of (1), then the temporal estimator would use the information in each jump. We intend to
explore this application in a later paper.

7For examples, there are studies by Niederhoffer and Osborne [18], Garbade and Lieber [8],
Oldfield and Rogalski [19], Wood, McInish, and Ord [25], Patell and Wolfson [21], Harris [13, 14],
Hasbrouck and Ho [15], and Glosten and Harris [11], to name a few.
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