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Estimation Bias Induced by Discrete Security
Prices

CLIFFORD A. BALL*

ABSTRACT

Commonly, equilibrium security prices are modeled by continuous-state stochastic
processes, while observed prices are rounded into discrete units. This paper models the
rounding mechanism and examines the probabilistic structure of the resultant rounded
process. We provide accurate and simple estimates of the inflation in estimated variance
and kurtosis induced by ignoring rounding. In particular, the maximum-likelihood
estimate of security price volatility using rounded prices is developed, and a simulation
analysis is performed to examine the small-sample properties of this estimator. For
many practical applications, a simple correction for rounding becomes available.

THERE IS AN EXTENSIVE literature in financial economics and statistics devoted
to the modeling of equilibrium security price behavior and related parameter
estimation. Indeed, economic theory has made much of the optimality of equilib-
rium prices. However, less insights are available on the effect institutional
arrangements exert on the actual functioning of markets. From a statistical
perspective, this article addresses one particular aspect of a market’s microstruc-
ture, viz. the rounding of prices. Reviewing the finance literature, little work has
been attempted regarding the effect of discreteness of prices on model parameter
estimates. Recent exceptions include Ball, Torous, and Tschoegl [3], Cho and
Frees [5], Gottlieb and Kalay [8], and Harris [9].

It is common to model the equilibrium security price by a continuous-time,
continuous-state stochastic process. However, observed prices are measured in
discrete time and in discrete units, usually to the nearest eighth of a dollar on
the major U.S. exchanges. This rounding of prices affects significantly, in some
cases, the estimation of a security’s expected return, variance, kurtosis, and
covariance with other securities. Gottlieb and Kalay [8] detail some of these
effects. In this paper, we investigate the probabilistic structure of the rounded
process and determine the effect rounding exerts on variance estimation for the
underlying equilibrium process. As we shall see for the range of parameter values
commonly observed in practice, very simple corrections are available. It must be
stressed, however, that, if intraday data are employed or the level of rounding is
severe, although estimates are available their precision may be very poor. Vari-
ance estimatiion is important intrinsically; moreover, there are ramifications
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upon other areas of finance such as option pricing. (For example, see Ball and
Torous [2].) The correction for variance estimation subject to rounding may be
translated directly to the option-valuation problem.

The paper is organized as follows: Section I introduces our model for the
rounding of prices and develops the structure of the rounded process. The rounded
process is no longer Markovian, but, due to the Markovian structure of the
underlying process, the transition probability of the rounded process is comput-
able. Furthermore, the limiting form of this transition probability is mathemat-
ically tractable, and this result provides the framework to investigate the limiting
behavior of the rounded process discussed in Section II. In particular, simple
formulas are developed for gauging the bias in variance and the resultant kurtosis
in returns. This is in direct contrast to the extensive numerical calculations
performed by Gottlieb and Kalay. In conjunction with Sheppard’s corrections,
we eliminate the need for complex numerical calculations and put forward simple
accurate alternatives usable in practical cases. Section III outlines some of the
ramifications of our model. Specifically, the application to option pricing is
discussed, and a range of plausible parameter values is examined. For example,
for a security priced at ten dollars per share whose price dynamics are governed
by a Geometric Brownian Motion with an annual standard deviation of o =
0.1587 and subject to rounding to the nearest eighth of a dollar, the resultant
bias in variance estimation is 26.04 percent.

Section IV examines the problem of estimating the variance of a price process
on the basis of a set of observed rounded prices. Although the rounded process is
not Markovian, we are able to develop a computable formula for the likelihood
function for a set of observations. Employing numerical procedures, we imple-
ment the maximum-likelihood estimation (MLE) of the variance. Harris [9] also
provides a variance estimator subject to rounding. To complete this study, Section
V details a careful Monte Carlo simulation experiment designed to examine the
small-sample properties of the MLE procedure and to verify the accuracy of
various approximate corrections for rounding. Section VI presents our conclu-
sions.

I. The Rounding Model

Let S(t) be the price of a given security at time t. We assume that {S(¢): ¢t € [0,
)} is a continuous-time, continuous-state Markov process. A subclass of partic-
ular interest in financial modeling is the set of stochastic processes with station-
ary independent increments or perhaps monotonic transforms of such processes.
Examples include Arithmetic and Geometric Brownian Motion and the com-
pound Poisson process as introduced in financial economics by Merton [12]. For
a discussion of such processes, see Feller [7], especially pp. 179-82. Some of our
ensuing results are specific to the Brownian Motion process.

We assume that observations on the security price are taken at equally spaced
time intervals although it is straightforward to generalize the model to account
for any deterministic method of observation. Consider n equally spaced time
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periods and define

S; = equilibrium security price at the end of the ith period,

T; = observed rounded price at the end of the ith period,

X; = S;—8Si-1, the incremental equilibrium price change through the ith period,
and

K;=T;— T;_,, the incremental observed price change through the ith period,

where i = 1, 2, - - -, n. The level of rounding is $d, and we assume that 7T is the
nearest integer multiple of $dto S;,i=1,2, ---, n. Let T: = S; + U;, so that U;
is the actual rounding at the end of the ith period. Initially, we assume that S,
= To; however, we will discuss the relaxation of this assumption in Section III.
To illustrate some of the problems induced by rounding, assume that {S(t): t €
[0, )} is a Brownian Motion process with zero drift and variance rate o2.”
Accordingly, S, = Y%, X;, where {X;} are independently and identically distrib-
uted normal random variables with mean zero and variance ¢°. The optimal
estimate of ¢? is given by 6% = % ", X?, and the sampling distribution of &2 is

well known. For the observed process, we have that T, = Y-, K. By contrast,
{K;} are not identically distributed, are not independent and, furthermore, are no
longer normally distributed. In fact, the {K;} are a set of discrete random variables.
Rounding exerts a significant perturbation to the Brownian Motion model.

In general, we may link the {X;} and {K;} processes by means of the rounding
mechanism:

K, =X, + U,
K,=-U + X; + U,,
K;=-U; + X5 + Us,
and in general for any integer n,
K,=-U,., + X, + U,.
We examine the probabilistic structure of the {T',} process via a series of lemmata.
LEMMA 1: {T,} has a computable transition probability.
Proof: See Appendix A.
Applying Lemma 1 for Brownian Motion, one can readily show that
P[T, = td| Ts-1 = sd]

d+d/2—y\ (td—d/2—y y
‘ ‘”{ o o AW

y , (D
sd+d/2
o
y=sd—d/2 (n — 1)0-2

where ®(.) is the cumulative distribution function of the standard normal
distribution and ¢ (-) is the associated standard normal-density function.
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For notational convenience, let
P,1n(sd, td) = P[T, = td| T»-1 = sd].
The limiting transition matrix of {T',} converges.
LEMMA 2: Assuming a Browning Motion process for {S(t): t € [0, ®)},
lim P, .(sd, td) = P(sd, td),

n—o

where

sd+d/2
+ — — -—
P(sd, td) =f 1 x {q,(td d/2 y) _ q)(td d/2 y)} dy. (2
ye=sd—dy2 d o o

Proof: See Appendix A.
Next consider the distribution of K,:
P[K, = kd, T,y = td] = P[T, = (k + t)d| Tn-1 = td] X P[T,-, = td].

Therefore,
P[K, = kd] = 32w P[T, = (k + t)d| Tn-y = td] X P[Tp-y = td]. (3)

This can be represented in terms of the transition-probability function of the
underlying Markov process using equation (A1). A more elegant representation
is available for the limiting distribution of K,:

lim P[K,=kd]=lim }/=« P[T,= (k+t)d| T,-1=td]

n—oo n—oo

X P[T,-1=td]
=Y lim P[T,=(k+t)d |To_r = td]

n—o

X P[T,-,=td]
=¥ . P(td,(k+t)d) X P[T,-,=td]
=P(td, (k+t)d X 3= P[Ty-1=td]
=P(td,(k+t)d).

Interchange of limits and infinite sums are legitimate here since all sums are
convergent and all terms are positive.

Let K be a discrete random variable with distribution function given by
P[K = kd] = P(td, (k + t)d). Clearly, lim,..P[K, = kd] = P[K = kd]. Under
the Brownian Motion assumption, we have the representation given by equation
(2) for the distribution of K.

LEMMA 3: Let U be a uniform random variable defined on the interval (—d/2, d/2].
Let X be a normal random variable with mean 0 and variance o*°. Define [U + X4
to be the nearest integer multiple of d to U + X. Assume that U and X are
independent. Then, under the assumption of Brownian Motion for the underlying
Markov process, we have

K= lim K, = [U + X]a.

n—o
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Proof: See Appendix A.

Consider the following Markov chain: Suppose the underlying Markov process
is a special modification of Brownian Motion. Specifically, at the end of each
period restart the Markov process not at the point where it was but, rather,
according to an independent uniform distribution centered about the rounded
observation point with range (—d/2, d/2]. Under such a specification, define Q;
to be the observed rounded price at the end of the ith period, and K¥ = Q; —
Q:-1. Clearly, the {Q:} form an independent increment process and {Q;} is a
stationary Markov chain. The sequence {K?} are independently and identically
distributed random variables, each with distribution function defined by [U +
X]Ja. Provided that the initial process is perturbed by an independent uniform on
(—d/2, d/2], the {Q:} Markov chain will remain in equilibrium. The process {Q.}
is a null recurrent, stationary Markov chain. For sufficiently large n, there is no
material probabilistic difference between the {Q;} and {T:} processes. We may
derive results for the {Q;} process and invoke them in a limiting case for the {T'}
process.

It might be useful at this point to contrast these results in terms of the previous
literature. Gottlieb and Kalay’s [8] Theorem 1 develops P[K, = kd| T = td]
under the assumption of Geometric Brownian Motion for the underlying Markov
process. The conditional distribution of K, is tractable. However, the uncondi-
tional distribution involves an infinite sum over the values of T),—;; see equation
(3). Gottlieb and Kalay use the “uniform approximation” to derive this condi-
tional probability numerically. The elegance of our results does not extend exactly
to the Geometric Brownian Motion case. As Gottlieb and Kalay point out,
however, for practical purposes we may approximate the Geometric Brownian
Motion process by a suitably chosen normal process. We shall see in later sections
how accurate these types of approximations become. We conclude this section
with a discussion of the actual rounding, U,.

LEMMA 4: Under the assumption of an underlying Brownian Motion process, as
n — o, U, converges in distribution to a uniform random variable defined on

(—d/2, d/2].
Proof: See Appendix A. This result is also discussed by Harris [9].

II. Properties of the Limiting Increment Process

For this part of the analysis, we maintain the assumption that the underlying
Markov process is Brownian Motion. Therefore, invoking equations (1) and (3),

we have that
td+d/2
t+ k)d +d/2 —
=i, U {@(‘ )d + df y) @)
y=td—d/2 g

(t+k)d—d/2—y)} < y ) ]
- @ dy|,
< g ¢ V(n — 1)o? Y

PIK, = kd]
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and, by Lemma 3,
+d/2 _
lim PIK, = k) = % | {q,(w)
Y

n—o =—d/2 ag

s

= P[[U + X]a = kd]
= P[lim K, = kd] (5)

= P[K = kd].
We now consider the moments of K,,:
E[K7] = YiZw (kd)™ X P[K, = kd],
and
lim E[K7] = 2iZ- (kd)"lim P[K, = kd]

= Y2 o (kd)™ X P[K = kd].

Approximations for the moments of K, are established in Appendix B.

Gottlieb and Kalay [8] develop similar results in their Theorem 2. They assume
a Geometric Brownian Motion process for the underlying Markov process and
establish the limiting even moments of K, conditioned on the known value of
T.,._,. However, their argument requires the length of each observation period to
converge to zero. We now demonstrate the applicability of our simple estimates
of the moments of K and contrast them directly with the extensive numerical
calculations provided by Gottlieb and Kalay in their Tables I and III. We stress
that the Gottlieb and Kalay results are strictly conditional variance estimates.
Since Gottlieb and Kalay assume a Geometric Brownian Motion process for the
underlying Markov process, we must approximate this process by a Brownian
Motion process with variance § = ¢2P?, where P is the conditioned price and o?
is the instantaneous variance. Table I of Gottlieb and Kalay provides estimates
of VE[K?]/0 for various levels of P and ¢. Of course, for all practical purposes,
the given statistic is a function of the product o X P only. In Table I below, we
list the Gottlieb and Kalay numerically calculated ratio R, with the ratio R, =

VE[K?]/6, where E[K?] = 28

for various values of § = ¢2P? and d/oP. This
27

table gives the ratio of the standard deviation of K to the true standard deviation
of the increment of the underlying process. Absent rounding, this ratio is unity.
For values of d/oP near 2.5, we do not expect an accurate alignment between R,
and R,. As d/oP increases, the ratios appear to close and then to widen, although
the mathematics of the problem suggests that for large d/sP the precision of our
approximation should improve markedly. Perhaps parts of Table I in Gottlieb
and Kalay have been misrecorded. Alternatively, perhaps for the parameter ¢
(not specified in Table I of Gottlieb and Kalay), the limiting results established
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Table I
Ratios of the Standard Deviation of K to the True
Standard Deviation of the Increment of the
Underlying Process for Large Values of d/oP?

oP R R, d/oP
0.005 4.538 4.466 25.0
0.010 3.170 3.158 12,5
0.020 2.235 2.233 6.25
0.030 1.824 1.823 4.17
0.040 1.580 1.579 3.13
0.050 1.420 1.412 2.50

* R, is the Gottlieb and Kalay numerically calculated ratio, while
R, is the simple approximation based on Appendix B.

in this paper are not attained for the very small values of ¢ selected by Gottlieb
and Kalay.

It is well known that daily security returns are leptokurtic. To what degree is
this phenomenon attributable to the rounding of prices? Employing equation
(B7) under Brownian Motion with variance ¢%, we have that

E[K?] = 2do
Vr

and
2d3q
E[K*] = ,

Jr

™

subject to an error on the order of exp(—d2/2¢?). The kurtosis v, is defined by
_ EKY _
7T ®IK)
EXi

EX): S

Absent rounding and under our Brownian Motion assumptions,

zero for all i. Under our rounding model,

2d3q (2d¢7>2
Y2 = +|l—) -3
Vr v

d\/;
T 2—3’

subject to a minor error. Gottlieb and Kalay in their Table II compute kurtosis
numerically for various values of ¢ and P under the assumption that price
changes are normally distributed with mean zero and variance o2P% Here, v, is
the Gottlieb and Kalay computed kurtosis and v, is the approximation developed
herein with variance § = ¢2P2. Table II displays these statistics for various levels
of ¢P and d/oP. We know that our approximations become very accurate as d/oP
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Table II
Comparison of the Estimated Kurtosis of K*

oP 7 Yo d/oP
0.005 28.339 28.333 25.00
0.010 12.669 12.666 12.50
0.020 4.834 4.833 6.25
0.030 2.223 2.222 4.17
0.040 0.941 0.917 3.13
0.050 0.041 0.133 2.50

2, is the Gottlieb and Kalay numerically computed kurtosis,
while +, is the simple approximation based on Appendix B.

increases. The results of Table II are consistent with our intuition. For values of
d/oP near 2.5, we do not expect our results to be precise. In fact, the kurtosis is
practically zero for such levels of d/aP. As d/sP increases, v, converges to v;. In
summary, for d/ocP = 4, our simple approximation to the kurtosis provides very

accurate results.

In this section, we have discussed the moments of K when d/sP is large. Next
we extend our analysis to consider the case where d/oP is small. As pointed out
in Lemma 3, K = [U + X],. This is exactly the framework from which to apply
Sheppard’s correction. For an extensive reference on Sheppard’s corrections, see
Kendall and Stuart [11], Sections 3.18 through 3.30. Applying the correction
under Brownian Motion with variance o2,

E[K?] = E([U + XI3) + -‘11—22 + 0(d?),

where 0(-) is the asymptotic-order symbol. However,
2
E[X?] = ¢?> and E[U?] = %,
)
d2
E[K?] = ¢ + 3 + 0(d?).

Alternatively, we may apply a bivariate Sheppard correction to K,,. Recalling our
definitions in Section I,

K, = [Sala = [Sn-1la.
Upon approximation of Section 3.30 in Kendall and Stuart [11], we find that
E[K?] = E([Sa]a — [Sn-1]4)*
= E([Sn]a)? — 2E([S:)a[Sn-11a) + E([Sn-1]a)”

2 2

d d
2 e - 2 - 2 ol 2
no® + 12 2)(n—1)6’+ (n—1)e* + 12 + 0(d?)

2
a2 + % + 0(d?).
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We will use these approximation results to extend Table I. Clearly,

E[K.] d? 9
FEa 1+602P2+0(d)
when we assume that the changes in security prices are normal with mean zero
and variance § = ¢2P2 Define R; = (1 + d?/6¢2P?)"2 Table III, which is an
extension of Table I, gives the ratios R; and R; for various values of § = ¢?P?
and d/oP. For values of d/sP below 2.5, the Sheppard correction provides a
precise estimate of the bias in estimating variance subject to rounding. As d/sP
increases, the relative accuracy of the approximation diminishes. However, for
values of d/oP above 2.5, we may use the correction R,. For practical purposes,
no complicated numerical tables are required to quantify the bias induced by
rounding.

The same Sheppard correction when applied to the kurtosis estimates is of
order d*. Therefore, for small levels of d, the approximate kurtosis is zero.
Fortunately, Table II gives accurate predictions of the bias in estimating kurtosis
due to rounding for reasonable levels of kurtosis.

In summary, we have documented the limiting distribution of K,,. Expansions
involving infinite sums are available for the moments of K. For large values of
d/oP, the infinite sum may be truncated after one term to yield simple and
accurate moment estimates. When truncation after one term becomes inaccurate,
we may invoke Sheppard’s correction to provide very accurate moment estimates
for small values of d/cP. In fact, for all values, simple accurate estimates of the
moments are available. For all practical purposes, under Geometric Brownian
Motion or Brownian Motion, the effects of rounding on the limiting distribution
of K, are correctable simply. It is also worthy to point out that Sheppard’s
corrections are free of distribution assumptions. Therefore, for small levels of d,

whatever the underlying Markov process that drives security prices, a simple
2

correction of ) is appropriate for estimating the variance of K,,.

Table III

Ratios of the Standard Deviation of K to the True
Standard Deviation of the Increment of the
Underlying Process for Small Values of d/cP*

P R, Rs d/cP
0.050 1.420 1.429 2.50
0.070 1.237 1.238 1.79
0.080 1.186 1.186 1.56
0.090 1.149 1.150 1.39
0.110 1.102 1.102 1.14
0.130 1.074 1.074 0.96
0.150 1.056 1.056 0.83
0.220 1.028 1.027 0.57
0.360 1.010 1.010 0.35

2 R, is the Gottlieb and Kalay numerically calculated ratio, while
R; is the ratio based on Sheppard’s correction.
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III. Ramifications of the Model

In this section, we restrict our attention to Geometric Brownian Motion or
Brownian Motion as underlying models. Since the development of the Center for
Research in Security Prices (CRSP) data tapes, most empirical research into
stock price behavior has been based on daily data. Certainly for monthly returns
the problem of rounding is negligible. To concentrate our thinking in this section,
consider the problem of option valuation for common stocks.

Black and Scholes [4] developed a closed-form expression for the value of call
and put options written on common stock. Since then, the model has been
extended to value both American and European options as well as to account for
the payment of dividends by the underlying stock. The only parameters of the
option model that are not directly measurable are the risk-free rate and the
volatility. The risk-free rate is accurately estimated by the interest rate on the
U.S. Treasury Bill maturing at option expiry. Therefore, for practical purposes,
the only unknown parameter is the volatility, . Cox and Rubinstein [6], in their
Appendix 6B, provide a table of all U.S. common stocks with exchange-traded
options. The table lists volatility estimates for all these stocks, based on daily
data from January 1, 1980 to January 1, 1984. On an annual basis, a low range
for ¢ is 0.15 to 0.20, with a median range of around o = 0.30. To enjoy option
trading on the Chicago Board Option Exchange (CBOE), the underlying security
must be priced at at least ten dollars per share. Special rules go into effect after
a stock split. The greatest effects due to rounding occur when ¢P is small relative
to d. On the major U.S. stock exchanges, prices are quoted to the nearest eighth
of a dollar. It is not clear, however, that rounding is taking place to the nearest
eighth of a dollar. Ball, Torous, and Tschoegl [3] consider the fixing prices of
gold in U.S. dollars per ounce at the London market. The maximum precision of
pricing in the London gold market is to the nearest twentieth of a dollar. They
provide clear evidence that the level of rounding is actually much higher and
further may depend upon the price level and the amount of information available
to the market. Clearly, on the major U.S. stock exchanges, an eighth of a dollar
is merely a lower bound for the value of d.

To assess the effect of rounding in estimating option prices, we shall consider
four sets of parameter values, as described in Table IV. We assume 252 trading
days per year to convert daily rates to annual rates. Setting d = $1/8 and taking
the plausible parameter values given in Table IV, we see that effects due to
rounding fall in the range where Sheppard’s correction gives very accurate results.
For example, when considering parameter set 1, the true value of P is 0.1.
However, the standard deviation of lim,_,. K, is given by ¥(0.1)* + d*/6 =0.1123,
resulting in a bias of 12.3 percent in the standard deviation or 26.04 percent in
the variance. These significant biases are translated directly to the option-
valuation problem. Fortunately, the correction needed is very simple. Unless
intraday data are used, for all plausible parameter values the Sheppard correction
will eliminate the bias induced in option pricing due to rounding of prices. An
alternative model might integrate the bid/ask spread as a special form of rounding
and so further refine the appropriate variance estimate to be inserted into the
Black-Scholes formula. For an approach along these lines, see Harris [9].
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Table IV
Parameter Values for the Simulation Analysis
Daily Annual
Parameter  Security Daily Standard  Standard

Set Price Variance Deviation Deviation d/oP oP

1 $10 0.0001 0.0100 0.1587 1.250 0.100
2 $20 0.0001 0.0100 0.1587 0.625 0.200
3 $10 0.0002 0.0141 0.2245 0.884 0.141
4 $20 0.0002 0.0141 0.2245 0.442 0.281

If one is dealing with very low-priced stocks with very low volatility and
perhaps is making intraday observations, then the biases may be similar to those
in Table I. Gottlieb and Kalay claim that the initial location of the true process
within the interval (—d/2, d/2] is not crucial, although they actually express this
in terms of different forms of rounding. For relatively large values of ¢P, the
exact location of the initial-equilibrium security price process will not be impor-
tant. However, for small values of ¢P, the initial location becomes increasingly
relevant. Initially, suppose that S(0) = nd. We will examine how long it takes on
average before the observed price changes. According to Karlin and Taylor [10],
Theorem 5.1, let {S(t): t € [0, )} be a Brownian Motion process with variance
rate o2, mean zero, and S(0) = nd. Let a, b with a < nd < b be given, and let T
be the first time the process reaches a or b. Then

E[T|S(0) = nd] = b - nd()rgnd — a) |

In order for the price to change, we require S(t) to reach nd * d/2. Taking a =
nd = d/2 and b = nd + d/2, we have
E[T] = d?/46°.

For Geometric Brownian Motion, In S(t) = ¢B(t). Therefore, given S(0) = nd,
we will see a price change whenever S(t) = nd = d/2 or, equivalently, whenever
oB(t) = In(nd + d/2). By similar arguments we have

E[T] = (In(nd + d/2) — In(nd)) ><2(ln(nd) — In(nd — d/2)) .

[

However,

1n(£’lq+wd/—2—)> = d/2nd,

nd
ln((nd —d/2)> =~ d/2nd, for n large,

SO

E[T] = d?/4c*P? where P = nd.
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To illustrate, under Geometric Brownian Motion when ¢ = 0.001 and P = $10,
E[T] = 39.06 days. More dramatically, when ¢ = 0.001 and P = $1, E[T] = 3,906
days, or 10.7 years. In this case, Gottlieb and Kalay calculate a bias of 1,300
percent. Under such extreme circumstances, the exact location of the initial value
of the underlying Markov process is critical.

Under severe rounding, practically all variability is due to the rounding mech-
anism. The initial location of the underlying Markov process determines the
expected length of time before the process changes states. In terms of estimating
variance, we are in a particularly difficult situation. If our observation period
covers the oscillating price shifts due to rounding, then we grossly overestimate
o2 Alternatively, if our observation period covers a time of no price change, we
estimate o2 to be zero. In summary, for very small values of o* the estimation
problem is practically hopeless. Fortunately, based on our earlier discussion for
daily data, the biases are not extreme.

So far we have concentrated on the distribution of K,. An important and
practical question involves the estimation of ¢” based on a time series of observed
K;s. As alluded to earlier, for very small o2 the initial security price position is
critical, but, for the levels of ¢ and P observed in practice, the exact location is
not significant.

IV. Variance Estimation

Absent rounding, the variance-estimation problem for Brownian Motion or
Geometric Brownian Motion with observations in discrete time is well known
and straightforward. We shall assume that S(0) is known and estimate the
volatility o2 = 6 on the basis of the time series of observations {Ki, K;, - - -, K,}.
We begin by assuming that the underlying process is Brownian Motion and later
discuss the required modification for the Geometric Brownian Motion process.

Consider n time points t = (74, 72, - - -, 7,) and assume that, at time point 7;,
our observation reveals that S(7;) € A;, where A; is an arbitrary interval of the
real line, for each i. The joint probability of these observations or, equivalently,
the likelihood function is given by

P[UL, {S(r;) € Ai}] = L(t, 0).

A recursive formula is available for the computation of this probability. Define

Fnim) = %ﬂ PIUTS! {S(r:) € Ad), S(r) < xn].

By employing the Markov structure of S(-), we have

fm(xm) = I < fm—l(xm—l)p(xm—ly xm) dxm—l, (6)

where p(x,,—1, X») is the transition density of the S(-) process at time point 7,,—;

to 7., from states x,,_, through x,,. We begin the process with f, (x;) = ¢ a2l and
g

iterate to f,(x,). Finally,
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P[UL 1{S(n)eA}]—f fr(x,) dx,.

x, €A,

The iteration process involves a string of double integrals. Suppose we had
modeled the security price by some monotonic transform of Brownian Motion;
then we would need only to transform the intervals A, A,, - - -, A,.. For example,
for the Geometric Brownian Motion process, A; = [In(T; — d/2), In(T; + d/2)].
On a practical level, missing data can be handled easily by allowing a general
sequence of observation points. At the transaction level, there is no reason to
expect equally spaced time intervals between observations. As long as the time
point and the rounded price are recorded, our methodology remains usable. For
illustration purposes, we will consider equally spaced daily observations and
constant level of rounding d.

We employ the method of maximum-likelihood estimation using the recursive
formula (6) and an m-point Simpson’s rule to generate the numerical integrals.
The first and second derivatives of In L(t, §) were computed numerically, and a
series of experiments was performed to select the optimal grid size to form
differences as estimates for the derivatives. Finally, we solved the likelihood
equation:

dIn L(t, 0)

9 0 (7)

by a simple Newton-Raphson procedure. For all values of 6 below the maximum-

2
likelihood estimate (MLE), 6, we found that "’—‘“—fagiﬂ

tive. With prudent starting values, the Newton-Raphson procedure converged
with six-figure accuracy in less then ten iterations. In computing the first and
second differences to estimate the first and segond derivatives, increments in 6
of 0.01 percent provided stable estimates. Let 6,, be the solution of (7) when the
likelihood function is computed using the m-point Simpson’s rule. Obviously,
lim,,—..0,, = @ is the maximum-likelihood estimate of 6 = ¢* . Selecting m = 1 is

was consistently nega-

. . . . 1 .
equivalent to ignoring rounding. In other words, 6, = - ., k2. Simpson’s three-

point rule showed a dramatic improvement over the one-point rule. Experiments
were performed at various levels of m. For the sets of parameter values in Table
IV, a selection of m = 11 yielded estimates accurate to six s1gn1ﬁcant figures. To
save computer time, 6, was used as a starting value for estimating fs. The estimate
05 then became the starting value to compute 6, by Newton-Raphson. For values
of d/s larger than those given in Table IV, correspondingly larger values of m
will be required for accurate estimation.

In addition to estimating 6, for large sample sizes we can invoke asymptotic
maximum-likelihood theory to approximate the variance of § given by

[_ 9’In L(t, 6) ]‘1

36
Next we review to determine whether simple alternative estimates are available.
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Recall that in Section I we were concerned with the asymptotic distribution of
K, as n — o. We now consider the joint distribution of {K;, K;, -- -, K,}. For
large values of d/o, the convergence of K, to K is slow. Essentially, the rate of
convergence is inversely related to d/os. There seems to be no simple method-of-
moments approach for d/¢ significantly greater than 2.5. Of course, the MLE
will still provide the optimal estimates, whatever the value of d/o. However, the
precision of the estimates decreases dramatically for large d/o. Fortunately, for
most applications d/o is less than 2.5. Furthermore, recall that Sheppard’s
corrections are distribution free. In Section II, we established that

E[KZ] = o + d2/6 + 0(d?).

As a candidate for an approximation for 6, consider the estimator:

5= (1 K?) — d?/e.
n

Clearly, E[1] = ¢ + 0(d?). It would be useful to estimate the variance of 7 also.
Unfortunately, the K;s are not independent. However, for large n, they are
approximately independent. As an approximation, suppose that K; = [U; + X;]a,
where the {U;} are a sequence of independent uniforms and {X;} are independent,
normal, random variables each with mean 0 and variance o°. For small values of
d/s, this approximation may be reasonable even for K,. Using Sheppard’s
corrections (see Kendall and Stuart [11], Section 3.18), we find

E[K?] = o + d%/6 + 0(d?),
E[K!] = 30* + ¢%d? + 0(d?).

Therefore,
var(K}) = E[K}] — (E[K])%
= 2¢* + 2/35%d% + 0(d?).
Of course,
E[X?]=¢’, E[X]= 30"
and so

var(X?) = 2¢*.
The relative inefficiency is given by

var(K f)
var(X?)

Making the independence approximation,

=1+ d?*3e¢* + 0(d?).

var(n)
var(é)

=1+ d?%3¢%+ 0(d?), (€))
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where

the maximum-likelihood estimate of ¢* given observations on the underlying
equilibrium process. For illustrative purposes, consider parameter-set 1 values
from Table IV. Recall that the percentage bias correction for

n =1+ d?6e% + 0(d?). (9)

We have a percentage bias correction of 26.04 percent, and the variance of 7 is
52.08 percent bigger than the variance of 6. It appears that, for plausible
parameter values, the loss in efficiency due to rounding may be severe.

For moderately small values of d/g, very simple and accurate approximations
to both the maximum-likelihood estimator and its asymptotic variance are
available. Since under general conditions the method of maximum likelihood is
asymptotically efficient, this further suggests that the simple corrections give
approximately optimal results in that we provide unbiased minimum-variance
estimates of volatility. The next section explores, by means of a Monte Carlo
simulation study, the validity of these approximations and corrections across a
plausible range of parameter values.

V. Monte Carlo Simulation Analysis

Section IV provided approximations to the maximum-likelihood estimate of
volatility under rounding for plausible ranges of o, P, and d. To measure the
success of these approximations and to develop the small-sample properties of
the MLE, a Monte Carlo simulation study is performed. We model the underlying
Markov process for security prices by a Geometric Brownian Motion process.
The parameter-set values are those of Table IV. That is, we consider two initial
stock prices of ten dollars and twenty dollars and permit two different instanta-
neous variances, viz. 1.0 X 107 and 2.0 X 10™* measured on a daily basis. At time
n,

S(n) = S(0)exp(s L1 Zi),

where S(0) is the initial price, ¢° is the instantaneous variance, and {Z;, Z,, - - -,
Z,} are a sequence of independent, standard, normal, random variables. The
FORTRAN subroutine RANDOM (see Wichman and Hill [13] for details)
generated independent, pseudo random numbers, with a uniform distribution on
the interval [0, 1]. We employed the Box-Muller transform to generate the
independent normals from these numbers. The level of rounding was fixed at an
eighth of a dollar, and the {T',} process is generated straightforwardly. For each
of the four parameter sets, sample sizes of n = 10, 20, and 30 were used to
generate the simulated data. Using the techniques described in Section IV, the
maximum-likelihood estimate of o2 was calculated for each of the twelve experi-
ments (four parameter sets and three sample sizes). Each experiment was
repeated 250 times, and summary information on various statistics is provided
in Table V.
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Table V
Summary Statistics on the Simulation Analysis®
Standard Relative Percentage
Minimum Maximum Mean Deviation Inefficiency Bias

Vo = 1.0, S(0) = $10, d = $0.125.

Sample Size = 10

Vi 0.128 2.744 0.987 0.440

\A 0.305 3.043 1.240 0.546 53.8% 25.6%

\A 0.077 2.807 0.985 0.527 43.3% -2.0%

Sample Size = 20

Vi 0.334 2.026 1.015 0.326

\A 0.392 2.488 1.283 0.409 55.6% 26.4%

Vs 0.154 2.217 1.031 0.398 47.1% 1.6%

Sample Size = 30

Vi 0.489 1.785 1.009 0.266

Ve 0.665 2.458 1.273 0.318 43.6% 26.2%

Vs 0.348 1.914 1.004 0.303 29.8% -0.5%
Vo= 1.0, S(0) = $20, d = $0.125.

Sample Size = 10

Vi 0.103 2.215 0.980 0.400

Ve 0.193 2.411 1.043 0.417 8.6% 6.4%

Vs 0.157 2.364 0.984 0.417 8.5% -0.4%

Sample Size = 20

Vi 0.337 2.177 0.986 0.318

Ve 0.270 2.234 1.047 0.339 13.5% 6.2%

Vs 0.263 2.168 0.984 0.337 12.0% -0.2%

Sample Size = 30

A 0.407 2.123 1.011 0.283

V., 0.490 2.335 1.068 0.299 11.9% 5.6%

Vs 0.411 2.245 1.004 0.297 10.2% -0.7%
Vo = 2.0, S(0) = $10, d = $0.125.

Sample Size = 10

Vi 0.334 5.478 2.093 1.012

Ve 0.451 6.087 2.315 1.111 20.5% 10.61%

Vs 0.260 5.805 2.055 1.084 14.6% -1.8%

Sample Size = 20

Vi 0.637 4.732 2.028 0.683

Ve 0.608 4.578 2.227 0.728 13.4% 9.8%

Vs 0.467 4.507 1.986 0.727 13.2% -2.1%

Sample Size = 30

Vi 0.757 3.517 1.999 0.517

Ve 0.922 4.049 2.255 0.585 28.3% 12.8%

Vs 0.775 3.814 1.999 0.581 26.4% 0.0%
Vo= 2.0, S(0) = $20, d = $0.125.

Sample Size = 10

Vi 0.400 5.937 2.018 0913

V. 0.434 6.331 2.115 0.945 7.2% 4.8%

Vs 0.346 6.295 2.052 0.943 6.9% 1.6%

Sample Size = 20

Vi 0.714 3.661 1.962 0.573

Ve 0.718 3.821 2.033 0.598 8.8% 3.6%

Vs 0.659 3.721 1.965 0.598 7.6% 0.2%
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Table V—Continued

Standard Relative Percentage
Minimum Maximum Mean Deviation Inefficiency Bias

Vo= 2.0, S(0) = $20, d = $0.125.
Sample Size = 30

i 0.939 3.349 2.033 0.472
Ve 1.078 3.360 2.107 0.489 7.3% 3.6%
Vs 0.988 3.294 2.043 0.490 7.5% 0.5%

* Vi is the (nonobservable in practice) variance estimate when the market is not
subject to rounding. The statistic V, is the variance estimate ignoring rounding,
while V; is the maximum-likelihood estimate of variance using rounded prices but
accounting for the rounding mechanism. For ease of reading, all V-statistics are
multiplied by 10*.

The Monte Carlo simulation is a very useful tool here. We know the true
variance V, for each experiment. Three variance estimates were generated:

1
Vi=-— ELIZ?XV07
n

1
V,== 2?=1 k?,
n

and

V5 = the maximum-likelihood estimate.

Here, V; corresponds to the optimal estimate of variance when the market is not
subject to rounding. Of course, in a practical situation V, is not observable.
However, in a simulation analysis it provides a benchmark to assess the impact
of rounding. The statistic V; is the commonly used estimate of variance ignoring
rounding. Finally, V; is the maximum-likelihood estimate. The table provides
summary information on V;, V,, and V; for each experiment across the 250
replications. In addition, two other useful statistics are computed for V, and V.
The relative inefficiency of V; is the ratio of the sample variance of V; to the
sample variance of V, for i = 2, 3, represented as excess percentage over 100.
Similarly, the bias of V;, i = 2, 3, is the ratio of the sample mean of V; to the
sample mean of V,. Of course, we know the population mean and population
variance of V;, but, for comparison purposes, we feel it is more appropriate to
compare the sampling differences.

For all practical purposes and even for the sample sizes as small as n = 10, the
MLE, V3, is an unbiased estimator of ¢% Adjusting equations (8) and (9) for
Geometric Brownian Motion, we should expect for V,

relative inefficiency = 100 X d?2/3¢2P?%,
percentage bias = 100 X d?/66%P?%,

where P is the initial security price. Table VI computes the theoretical value of
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Table VI

Anticipated Values of Relative Inefficiency and Bias for V., the
Variance Estimator Ignoring Rounding®

Relative Percentage
Vo S(0) d Inefficiency Bias
1.0 x 10™ $10 $0.125 52.08% 26.04%
1.0 x10™ $20 $0.125 13.02% 6.51%
2.0 X 10™* $10 $0.125 26.04% 13.02%
2.0x10™* $20 $0.125 6.51% 3.26%

* These figures are computed using equations (8) and (9) for the parameter values
given in Table IV.

these statistics for the four selected parameter sets used in the simulation. These
theoretical results match very closely with the simulated results and fall well
within the limits of sampling error. Across almost all experiments, the relative
inefficiency of V; is much smaller than that of V,. We conclude that the
maximum-likelihood estimator of variance is in all cases smaller than the
variance of V, or 7, the adjusted version of V.

In summary, 7, the adjusted-for-bias method of moments estimator, and the
MLE are both essentially unbiased estimators of variance. There is an advantage
to using the MLE in the sense that it has slightly less variability. However, for
the levels of parameters commonly seen in practice, 7 is a simple and highly
recommended estimate. The theoretical adjustments for bias seem appropriate,
and, further, the loss in efficiency due to rounding can be accurately predicted.
This has particular importance in applications such as option pricing, where it
may be necessary to provide precise confidence intervals on option price esti-
mates. There is evidence that the MLE dominates, and it seems clear that, as
the level of rounding becomes more severe, the gains to using the MLE will
increase. However, as we have pointed out earlier, the actual loss in efficiency
can become so large as to render any type of estimation practically worthless.

VI. Conclusions

Empirical research in finance has, for the most part, ignored the institutional
detail of trading at rounded prices. However, several theoretical frameworks, for
example the option-pricing model, rely on continuous-time and continuous-state
space models for equilibrium financial-security prices. This paper has concen-
trated on the statistical effects that discrete prices induce when attempting to
estimate the parameters of a modeled process for security prices. A key result in
Section I establishes the transition probabilities of the rounded price process.
These transition probabilities may be computed by numerical methods. The stage
is set for a thorough examination of the instantaneous volatility and the devel-
opment of the limiting rounding process.

A main theme of the paper is the effect that rounding exerts on variance
estimation. For severe levels of rounding, the underlying volatility is completely
dominated by the rounding mechanism. Fortunately, for most practical cases,
the level of rounding is not too severe. However, we do document cases of biases
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of a twenty-five percent and up to a fifty percent loss in efficiency. Keying on
the Markovian structure of the underlying process, we are able to compute the
likelihood of a given set of observed rounded prices. The recursive technique
employed also allows the numerical implementation of a maximum-likelihood
procedure to estimate volatility. Furthermore, very simple and accurate approx-
imations to the MLE are available. A detailed simulation study establishes the
validity of these approximations. For a wide range of applications, rounding
exerts a simple and removable effect on variance estimation. We advocate
strongly the use of these corrections or the implementation of the full maximum-
likelihood procedure developed herein.

Appendix A

LEMMA 1: {T,} has computable transition probability.

Proof : Without loss in generality, assume that S(0) = 0. Let P(y, t;; t,, A) =
P[S(t) € A|S(t:) = y] be the transition-probability function of the Markov
process {S(t): t € [0, »)}. Here, t, > t, = 0, and A is an interval of the real line.
In words, P(y, t1;ts, A) is the probability that, at time t,, the security price falls
in the interval A given that, at time ¢;, the security price is y. Set A = (¢d — d/2,
td + d/2]. Clearly, P[T, =td| S(n—1) =y]= P(y,n—1; n, A). Upon integration,

P[T.=td, T,-, = sd]
sd+d/2
= f P(y,n—1n,A)p(0,0;n —1,y) dy, (Al)
y=sd—d/2
where p(-) is the density function associated with P(-). However,
sd+d/2
P[T,-, = sd] = f p(0,0; n — 1, y) dy.

y=sd—d/2
Therefore, the transition probability for {T',} is given by
$Ed%2 P(y,n—1;,n,A)p(0,0;n—1,y) dy

[358%2p(0,0;n—1,y) dy ’

P[T,=td| Tn_1=sd]=f

Q.E.D.
LEMMA 2: Assuming a Brownian Motion process for {S(t): t € [0, )},
lim P,_; ,.(sd, td) = P(sd, td),

n-—oo

where
sd+d/2
Plod. td) = f 1 {(I)(td + d/2 —y) B (P(td —d/2 - y)} dy. (A2)

=sd—d/2 d T T

Proof : Equation (1) gives P,_; ,(sd, td). Consider

— Y —
ooy = jy;B ¢(m> dy, where B = [sd — d/2, sd + d/2].
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By the Mean Value Theorem, there exists £,-; € B such that

En—l )
o1 = dp| —————).
¢<\/(n — 1)o?

Let
td+d/2 — y) <td d/2— y)} ( y )
I, = ® ® dy,
{ ( a ¢ V(n—1)¢2 i’
td+d/2— y) (td d/2— y)} ( £ns )
I 1(£,29) = P P 1) d
(£-1) = {( o V(n—1)q* Y
Let

ax { < Y ) is maximum},
(n — 1)¢?

min Yy . ..
i = {y € B: ¢<ﬁ) is mmlmum}.
Define I, (£72}) and I,—; (£759) is the same way as ], —1(£n-1). Certainly,
L(¢7") < I, = L(¢7™),
L(£ER") < (&) < I.(¢7™), for all n.
Now,

g x':mx

min
n

lim =1,

and ®(-) is a bounded function; hence,
lim (I,/J,) = lim I,(§£,)/Jd,.(&,).

n—o n—o

Therefore,
lim P,-; ,(sd, td) = P(sd, td).

n—o

Q.E.D.

LEMMA 3: Let U be a uniform random varible defined on the mterval (—d/2, d/2].
Let X be a normal random variable with mean 0 and variance o*. Define [U+ X]a
to be the nearest integer multiple of d to U + X. Assume that U and X are
independent. Then, under the assumption of Brownian Motion for the underlying
Markov process, we have

K=lim K, =[U + X],.

n—o
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Proof :

+d/2
P[[U + X])q = kd] = f__m PlIlU+ X] =kd|U =yl X f(y) dy,

where f (y) = 1/d, the density of the uniform distribution on (—d/2, d/2]. However,

PlU+ Xly=kd|U =y] = q)(kd + fi/2 —y) B Q(kd— d/2 —y>.

o
Therefore,
PlU + X]u= kd] = j:jé . {(p(Miﬂ_—y) _ ¢<kd - ai/2 —y)} ”
= P(0, kd)
= P[K = kd].
Q.E.D.

LEMMA 4: Under the assumption of an underlying Brownian Motion process, as
n — o, U, converges in distribution to a uniform random variable defined on
(—d/2, d/2].

Proof: For x € (—d/2, d/2], consider P[U, < x].

PlU, = x] = 2i=2w PlU, =< x| T = td] X P[T, = td].
Now
td-+d/2 y
PlU,=x, T,=td] = jy;td_d/z 1[td_d/2’td+ﬂ(y)¢<\/n_0’2> dy,
where
lan(y) = (1) ;fthéynis(ea °l
Therefore,

[ld . 1td—d/2,td+x](y)¢<‘/;ly_o_§> a
PlU, = x| T, = td] = |

Yy
J=ane <¢n—> at

By arguments directly similar to those in Lemma 2,

|
lim P[U,=x| T, —td]—f = X Lita—ayo,ta+x)(y) dy.
y

oo —td—d/2 d

_x—d/2
=—.
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Therefore,
lim P[U, < x]= Y=, lim P[U,<t|T,=td] X P[T,=td]

n—o n—so

== _dd/2 X $5 . P[T, = td]
== dd/ 2 for xE(—ds2,d/2]

Clearly, U, converges in distribution to the uniform on (—=d/2,d/2]. QE.D.

Appendix B

In this appendix, we develop approximations for the moments of K,. Certainly,
for each n, K, is symmetric about zero, and, therefore, all odd moments of K,, are
zero. We first consider the variance of K. By appropriate substitution from
Lemma 3 we may write

1 (k+1)d* kd *
PIK = kd] = — f P(2) dz-—f ®(z) dz ¢,
d* | Jo=rar 2=(k—1)d*

where d* = d/o. Abramowitz and Stegun [1], in equation 26.2.44, show that

d*
f ®(2) dz = 2d*— d*®(d*) + ¢ (d*) — ¢(0), (B1)
2=0

and their equation 26.2.25 demonstrates that,
1
for x>22, ®(x)=1- p o (x). (B2)

Some algebraic manipulations are required to develop equation (B1). Consider

1 2d* d*
PIK=d] = a* {Jz;d* ®(z) dz — J;:O ®(2) dz}.

Now
1 2d*
2@ == | e di=1
and
1 [* d*) — ¢(0
=) 8@ d= ﬂ—%—) +2 - B(d*).

Upon combination, we see that

$(0) — ¢(d*) +

PIK=d] = — N
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where
P(d*) —1<e=<2(P(d*) — 1).

*

However, by equation (B2) ford*>2.2,1 — &(d*) < ﬂfi_d*_) Therefore,

*

0<e< 24) fid* ) ,

SO

0

P[K=d]=¢d(*)+77 (B3)
where
(d*)
In|<£%;:—-

To continue,

1 3d * 2d *
PIK = 2d] = a* [f ®(z) dz — f ®(z) dz}
2=2d* 2z=d*

1 * _ g% *
sa;[d d*®(d*)]

=1-®(d*)

$(d*)
d*

=

for d* > 2.2. (B4)

By similar arguments,
PIK=kd]=1— ®((k— 1)d*)
_ $((k = Dd*)

= ~k-Dd* for d* > 2.2.
Consider
Y3 (kd)? X P[K = kd].
We have
o [k=1)d*
(kd)? x PIK = kd] < 2 f 22¢(2) dz, (B5)
d 2= (k—2)d*
whenever
(kd*)?

(k= 2)d*)? = m

kz
2(k — 1)(k — 2)?

or, equivalently, whenever d * = . For k = 3, the above inequality
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holds whenever d* = 9/4. By telescoping (B5) for all & = 3, we have
Yies (kd)*P[K = kd] < %‘{; ‘[:d* 2°¢(2) da.
Integration by parts reveals that
fw 26(2) dz = d*¢(d*) — [1 - 3(d*)]

d*
<=d*¢(d*) — %2
By symmetry,

E[K?] = 2 ¥ (kd)?P[K = kd].
Using (B3), (B4), and (B5), we see that

E[K?] = 2do¢(0) + error,

where
* % *
s 2 )
= 2do{7¢(d*)} for d* = 9/4.
Put differently,
2do
BIKT = =~ (B6)
Vo

subject to a maximum percentage error of 700 X exp(—d?/2¢2) whenever d/oc =
9/4. For example, when d/¢ = 5, the maximum percentage error is 0.0026 percent.
One must also stress that these are not the tightest bounds possible, so in all
likelihood the accuracy of the approximation (B6) is much better than these
bounds suggest.
The above argument may be generalized straightforwardly to show that
2m—1
Bk =27, B7)
Vor

subject to a maximum percentage error of C,, X exp(—d %/20?), where C,, is a
constant for d/s = 2.25.
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