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A framework is developed in which inferences can be made about the validity of an equilibrium 
asset pricing relation, even though the cen4 aggregate in this relation IS unobservable. A 
multivariate proxy for the true market portfolio, consisting of an equal-weighted stock index and a 
long-term government bond index, is employed in an investigation of the Sharpe-Lintner CAPM. 
The empirical evidence suggests that we can reject the Joint hypothesis that (a) CAPM is valid, 
and (b) multiple correlation between the true market portfolio and proxy assets exceeds 0.7. 
Connections to the equilibrium factor pricing Literature are also explored. 

1. Introduction 

A feature common to many models in modem financial theory is that 
expected return is linear in the covariance of an asset’s return with some 
fundamental economic aggregate; e.g., (the marginal utility of) aggregate 
wealth or consumption.’ This covariance measures the asset’s ‘systematic risk’. 
Since the theoretical aggregates are not directly observable, however, proxies 
are employed in empirical tests. Consequently, the results of such investiga- 
tions are open to various interpretations. In particular, empirical rejection of 
the implied risk-return relation may indicate a violation of the underlying 
theory; alternatively, it may simply reflect the misspecification of the proxy. 

This point has been made emphatically by Roll (1977) in the context of the 
capital asset pricing model (CAPM), where the validiti of the risk-return 
relation is equivalent to the mean-variance efficiency of the market portfolio. 
Noting that the true market portfolio may be efficient when a proxy is not 

‘Earlier versions of this paper were presented at the 1983 and 1985 AFA meetings and in 
seminars at the Universities of British Columbia, Wisconsin, and Rochester, Wharton, Columbia, 
Berkeley, UCLA, Cornell, Northwestern, Ohio State, and Oxford University. I am grateful to 
D. Breeden, S. Brown, G. Chamberlain, M. Grinblatt, S. Hodges, S. Kandel, B. Korajczyk, C. 
MacKinIay, J. OhIson, R. Roll, G. Rubio, M. Sperling, A. Tajirian, S. Titman and, especially, the 
editor John Long for helpful comments and suggestions. 

‘See, for example, Sharpe (1964), Lintner (1965). Black (1972). Rubinstein (1976) and Breeden 
(1979). 
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(and conversely), Roll concludes that ‘the theory is not testable unless the 
exact composition of the true market portfolio is known and used in the tests’. 
He argues further that ‘most reasonable proxies will be very highly correlated 
with each other and with the true market whether or not they are mean-vari- 
ance efficient’, and that ‘this high correlation will make it seem that the exact 
composition is unimportant, whereas it can cause quite different inferences’.* 

In this paper, an empirical framework is developed in which a prior belief 
about the correlation between a proxy and the true market portfolio can be 
explicitly incorporated. The usual notion of a proxy is expanded to accom- 
modate a uector of variables which, together, account for much of the 
variation in the market portfolio return. In this context, the focus is on the 
multiple correlation between the proxy and the market portfolio. Particular 
attention is given to the case in which the proxy variables are asset returns. 
Here, we find that if the statistical evidence of the proxy’s inefficiency is 
sufficiently strong, then the inefficiency of the true market may indeed be 
correctly inferred and the CAPM rejected. The strength of such an inference 
increases with the presumed correlation and, of course, is conditional on the 
correctness of this prior belief or joint hypothesis. 

The usefulness of additional information of various sorts in !t@ing 
mean-variance efficiency has been considered previously by Kandel (1984) 
and Shanken (1986a). The present paper differs from these analyses ‘in its 
emphasis on the role of correlation and the development of a multivariate 
proxy perspective. Furthermore, our results are applicable to a variety of 
equilibrium models and are not limited to investigations of the mean-variance 
theory. Some of the issues addressed in this paper are also considered in recent 
work by Kandel and Stambaugh (1987), Green (1984) and Mayers (1972). 

The pricing restrictions derived here also extend earlier work on equilibrium 
factor pricing models, with the proxy components serving as the ‘factors’. In 
particular, a bound on an individual asset’s deviation from exact multibeta 
pricing is obtained which does not require that the market portfolio is exacfly 
well-diversified [as in the Connor (1986) model] or that the factor model 
disturbances are independent [as in the models of Dybvig (1983) and Grinblatt 
and Titman (1983)]. 

The paper is organized as follows. In section 2, some general pricing 
restrictions are developed and compared to previous results in the asset pricing 
literature. Additional restrictions are derived and interpreted in section 3, for 
the case where the proxy components are portfolio returns. In section 4, 
econometric procedures for testing these relations are introduced and applied 
in an investigation of the Sharpe-Lintner CAPM. Some extensions and topics 

*Stambaugh (1982) obtains similar inferences about the CAPM using several different market 
proxies. 
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for future research are explored in section 5, and section 6 summarizes the 
main conclusions of the paper. 

2. Restrictions with a general proxy 

Let m be an unobservable scalar random variable. A K-dimensional ran- 
dom proxy, P, and an N-vector of security returns, R, are observable and the 
corresponding set of N + K components is assumed to be linearly indepen- 
dent. Before imposing any additional structure, we derive a useful lemma. 

Lemma 1. Consider the linear regression of m on P and the multivariate linear 
regression of R on P: 

m=a,+b,P+e,, (1) 

and 

R=a+BP+e. (2) 

Then 

where p is the multiple correlation between P and m and 2, is the N x N 
covariance matrix of e. Furthermore, equality holds if and only if e, is an exact 
linear function of the N components of e. 

Proof. The N-vector of coefficients from the regression of e, on e is 
2; kov( e, e,) and cov(e, e,)‘X;’ cov( e, e,) is the corresponding ‘explained 
variance’. The regression of m on P ensures that a*(e,) = a’(m)(l - p’). 
Thus, the lemma is just the statement that the explained variance in the 
regression of e, on e is bounded above by the total variance of e,; i.e., the 
r-squared in this regression is at most one. Q.E.D. 

Lemma 1 is quite general and makes no use of our intended interpretation 
of m as an economic aggregate. If, however, expected excess return is given by 
security covariance with m then cov(e, e,) may be interpreted as a vector of 
deviations from an exact multibeta expected return relation. In this case, the 
lemma provides an upper bound on a weighted sum of squared deviations 
from the relation. The formal statement is given in: 

Proposition 1. Assume 

E(R) =rl,+cov(R,m) 

l.F E.-D 

(4) 
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for some r. Then there exists a K-vector, y, of proxy ‘prices of risk ’ that satis3e.s 

d’Z;‘d< a’(m)(l -p’), (9 

where 

d=E(R)-rl,,,-By. (6) 

In particular, y = cov( P, m) satisfies (5). 

Proof. Substituting the regression of R on P into (4) gives E(R) = rl,,, + 
B cov( P, m) + cov( e. m). By construction, cov( e, P) = 0. hence cov( e, m) = 
cov(e, e,). Lemma 1 then implies that y = cov( P, m) satisfies inequality (5). 
Q.E.D. 

A case of particular interest is that in which m is proportional to the return, 
R,, on a portfolio that is efficient with respect to a set of security returns 
which includes R. With the constant of proportionality equal to [E( R,,) - r] 

/a 2( R,), the risk-return relation (4) holds and u(m) equals the portfolio’s 
‘Sharpe measure of performance’, defined as3 

Henceforth, we refer to this simply as the ‘efficient portfolio case’. 
Proposition 1 takes on positive economic significance only when an asset 

pricing theory is postulated which specifies the identity of m. If p = 1, it 
follows that d = 0; i.e., E(R) is exactly linear in the columns of B. the N X K 

matrix of multivariate regression coefficients. In particular, if M is propor- 
tional to the return on the value-weighted market portfolio of all assets, then 
we have a ‘multibeta interpretation of the CAPM’, as in earlier papers by 
Rosenberg and Guy (1976), Ross (1976), and Sharpe (1977). Connor (1984) 
derives a similar exact result which does not assume mean-variance prefer- 
ences but does require perfect 
the true market retum.4 

When p is merely ‘close’ to 
deviation may be of interest. If 
1 yields 

(multiple) correlation between the proxy and 

one, a bound on an individual asset’s pricing 
security i is an element of R, then Proposition 

IE(R,)-r-b,r[-<o(ei)u(m)(l-pp”)1’2. (7) 

3This term is usually reserved for the case in which r is a risk-free rate. 

“Connor’s assumption that the market portfolio is ‘well-diversified’ is identical to this condi- 
tion. 
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Here, b, is a row vector of slope coefficients from the regression of R, on P. In 
addition to the multiple correlation, p, the bound depends on the aggregate 
parameter, a(m), and i’s residual risk. ’ It approaches zero as either p 
approaches one or a(e,) approaches zero. Related bounds are derived by 
Dybvig (1983) and Grinblatt-Titman (1983) in the context of a strict factor 
model (with independent residuals). A potential advantage of (7) is that a few 
well chosen factors may suffice to ensure that p = 1, while the empirical 
evidence of Dhrymes, Friend and Gultekin (1984) and others indicates that a 
rather large number of factors is needed to satisfy the strict factor model 
assumption. 

3. Restrictions with a proxy return vector 

In this section we assume that the proxy P is a vector of portfolio returns 
that satisfy the underlying pricing relation; i.e., 

E(P) = rl,+ cov( P, m). (8) 

As we shall see below, this entails additional restrictions that greatly simplify 
the task of testing the pricing theory. In situations where non-return factors 
are of interest, it may be feasible to form portfolios which roughly ‘mimic’ the 
factors6 Thus, the limitations imposed by the portfolio assumption may not 
be very great. 

A few definitions are needed before we state our next result. Let 2, be the 
K X K non-singular covariance matrix of P. For a given r, Jobson and Korkie 
(1983) show that the maximum Shaee performance measure over all portfolios 
of the components of P is (I,, where 

BP’= [E(P) -rl&-‘[E(P) - rl,]. 

This parameter plays a fundamental role in: 

Proposition 2. If E(P) = rl, + cov( P, m) then 

p2= e;/c+>. 

In this case, the conclusion of Proposition I reduces to 

(11) 

‘Recall that cr( m) equals 0, in the efficient portfolio case. To prove (7). define a ‘new’ R which 
consists of security i alone and apply Proposition 1, with N = 1. 

6!See footnote 7 of Breeden (1979) for a related observation. 
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where 

d= [E(R)-+] -@E(P)-&] 

Proof. Consider the regression of m on P and a constant. The K-vector of 
slope coefficients is 

IC,‘cov( P, m). 

Since cov( P, m) = E(P) - rl, by assumption, the explained variance in this 
regression is 

which equals dp’. Hence, the r-squared of the regression is 

as in (10). (11) follows easily. Q.E.D. 

The significance of Proposition 2 lies in the fact that the zero-beta rate r 

and the multiple correlation p are the only parameters in the deviation 
restriction that cannot be estimated directly from observable data on (P, R). 
In particular, if r is an observable riskless rate of return, then only p need be 
specified as a joint hypothesis. The elimination of u(m) is especially important 
since, in general, this parameter may be a complicated function of aggregate 
marginal utilities which are difficult to assess. A corollary of Proposition 2 
yields an interesting interpretation of our restriction in terms of the familiar 
mean-variance portfolio geometry.’ 

Corollary I. Let P be a K-vector of returns and t the tangency portfolio 

determined by (r, P, R); then 

d’E;‘d=6,‘(p,-*-1), (12) 

where pr, the multiple correlation between P and t, equals e,/e,.” 

‘From now on, we assume that BP and p are both positive. 

‘Kandel and Stambaugb (1987) independently show that p, = e/3, when K= 1. They also 
consider procedures for testing hypotheses about p,. 
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Proof. The conclusions in Proposition 2 must hold for any m which satisfies 
the assumed pricing relations for P and R. In particular, these pricing 
relations must hold in the efficient portfolio case where m is proportional to 
the return on the tangency portfolio t; hence, 

d’Z,‘d I e,z( p;* - 1). 

The conclusion (12) follows by noting that the condition for equality in 
Lemma 1 is satisfied, as rn is a linear combination of the components of P and 
R. Finally, recall that a(m) = #, in the efficient portfolio case. Thus, 0,/O, = 
8,/o(m), which equals p, by Proposition 2. Q.E.D. 

It follows immediately from Corollary 1 that the deviation restriction in 
Proposition 2 holds if and only if the multiple correlation between P and the 
tangency portfolio, f, exceeds p. As a ratio of Sharpe measures, pI is naturally 
interpreted as a measure of the relative potential efficiency of P when r is a 
riskless rate of return. Thus, our equilibrium restriction amounts to a lower 
bound on the relative efficiency of the proxy, in this case. In particular, if the 
proxy is perfectly correlated with the relevant economic aggregate, then 
equilibrium requires that 0,/e, = 1 or BP = 0,; i.e., some portfolio of the proxy 
components must equal the tangency portfolio. 

4. Empirical analysis with a riskless asset and a proxy return vector 

In this section we assume that the components of P are portfolio returns 
and r is an observable riskless rate. Several econometric difficulties are thereby 
avoided, although some remain. The test we propose makes use of the 
observation that the deviation vector, d, in Proposition 2, is the N-vector of 
intercepts in the multivariate linear regression of R - rl, on P - rlK. 

Assume the regression parameters d, B, and Z, are constant over T periods* 
and the conditional distribution of R, given P, is multivariate normal. Let d 
and 2, be the usual unbiased estimators of the intercept vector and residual 
covariance matrix, respectively, obtained from N separate OLS excess return 
time-series regressions. Likewise, let I!!~ be the maximum likelihood estimator 
of the proxy performance measure, computed from the sample mean and 
covariance matrix of P - rl,. 

Gibbons, Ross and Shanken (1985) show that the conditional distribution of 
[N-‘(T- N- K)/(T- K- l)]Q, gi ven P, is non-central F with degrees of 
freedom N and T - N - K and non-centrality parameter’ 

X = Td’Z;‘d/(l + e;t), (13) 

‘Also, see Madinlay (1987). 
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where 

By Proposition 2, a necessary condition for the underlying pricing theory to 
hold is that 

d’q’dr e,z( p-2 - 1); 

equivalently, 

H,: h< Tt?;(p-*- l)/(l +B,‘). (15) 

Thus, our pricing restriction may be viewed as a constraint on the magnitude 
of the non-centrality parameter in the distribution of Q.” We exploit this 
observation below. 

4.1. A test of the CAPM with a stock index proxy 

As an initial exploration of this framework, we consider a test of the 
Sharpe-Lintner CAPM with the return on the CRSP equal-weighted stock 
index as P. This proxy is used in the early CAPM tests criticized by Roll 
(1977) and in many recent empirical investigations. The tests are carried out 
over five subperiods of equal length from February 1953 through November 
1983. January returns have been deleted from the tests in light of much 
puzzling evidence which indicates that the return generating process may differ 
in January from that in the rest of the year.” As a result, each test period 
contains T = 68 months of data. Securities with complete data on the CRSP 
monthly return file, for a given subperiod, are stratified into N = 20 equal- 
weighted portfolios based on the market value of equity at the beginning of 
each subperiod. Returns on these portfolios constitute the vector R. Excess 
returns are computed using the monthly T-bill return series constructed by 
Ibbotson and Sinquefield. 

Suppose the CRSP index is a perfect proxy (p = 1) for the true market 
portfolio. In this case the non-centrality parameter, X, equals zero by (15), and 
our test statistic has a central F distribution; the null hypothesis requires that 
the index be the tangency portfolio. The five subperiod statistics and associ- 
ated p-values are reported in table 1. An aggregate p-value of 0.02 for the 
overall period is obtained using a procedure suggested in Shanken (1985a).‘* 

“The potential usefulness of noncentral distributions in testing approximate asset pricing 
relations was first noted in Shanken (1982a). 

“Sre Keim (1983). 

“For each subperiod, the standard normal z corresponding to the given p-value is determined. 

These z’s are added and divided by 6 to obtain another standard normal variate from which the 
aggregate p-value is determined. 
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Table I 

Tests of the hypothesis that the CRSP equal-weighted stock index is equal to the tangency 
portfolio determined by the one-month T-bill rate, the index. and twenty equal-weighted portfolios 
stratified by firm size at the beginning of each subperiod. Tests are conducted over five subperiods 

from February 1953 through November 1983. January returns are deleted. 

Subpexiod F-statistics” p-valueb 

2/53 - 3/59 2.09 0.02 
4/59 - 5/65 1.78 0.05 
6/65 - l/71 1.57 0.10 
8/71 - 9/77 0.84 0.65 

10/77 - 11/83 1.01 0.41 

aAIl F-statistics have degrees of freedom 20 in the numerator and 47 in the denominator. 
bAn aggregate p-value for the overall period is 0.02. This is obtained by applying the inverse 

normal transformation to each of the subperiod p-values and aggregating the resulting five 
independent standard normal variates. 

Thus, if the CAPM is true, we can infer that the CRSP index is not a perfect 
proxy.13 

Now consider a test of the hypothesis that p exceeds, say, 0.7. Unfor- 
tunately, in order to evaluate the implied bound on X, we need the true value 
of 0;. Estimates of this ‘nuisance parameter’ are presented in table 2, under 
the assumption that excess returns on the CRSP index are independent and 
indentically normally distributed over each subperiod. Since the maximum 
likelihood estimates are biased upwards, unbiased estimates are also computed 
as in Jobson and Korkie (1980). The average of these rather volatile estimates 
is 0.023. The corresponding annualized value of 8, is 0.52, implying a risk 
premium of 10.4% on a standard deviation of 20%. 

If the true (monthly) value of 13: were known to be 0.023, we would proceed 
as follows. From table 2, b: equals 0.121 in the first subperiod. With p = 0.7, 
the inequality in (15) is 

X < 68(0.023)(0.7-* - 1)/1.121= 1.45. 

The test statistic for the first subperiod in table 1 is 2.09. The corresponding 
p-value, based on a non-central F distribution with degrees of freedom (20,47) 
and non-centrality parameter 1.45, is 0.03; p-values for the other subperiods 
are computed similarly and aggregated as before. 

The results of this experiment, for various values of p, are reported in the 
second column of table 3. The inferences are fairly strong; in particular, the 
hypothesis that p exceeds 0.7 is rejected at the 0.05 level. This implies that 
the CRSP index accounts for less than half (0.7* = 0.49) of the variation in the 

l3 When January returns are included, the aggregate p-value is 0.07. 
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Table 2 

Maximum likelihood (MLE) and unbiased estimates of 0,’ and corresponding annualized values 
of tip (in parentheses) for the CRSP equal-weighted stock index, over five subperiods from 
February 1953 through November 1983. Each subperiod contains 68 monthly observations. 
January returns are deleted. tJp is the ratio of mean excess return to standard deviation of return 

for the index. Annualized 0, in parentheses equals (12 x monthly Q~)t/2. 

Subperiod 

Estimator 
2/53- 4/59- 6/65- 8/71- 10/77- 
3/59 S/65 l/71 9/17 11/83 

MLE 0.121 0.017 0.003 0.010 0.045 
(1.20) (0.45) (0.19) (0.35) (0.73) 

Unbiased 0.101 0.002 - 0.012 - 0.005 0.028 
(1.10) (0.15) (--) (-) (0.58) 

Table 3 

Aggregate p-values for tests of the hypothesis that the correlation betwen the CRSP equal-weighted 
index and the tangency portfolio exceeds p.= The tangency portfolio is that determined by the 
one-month T-bill rate, the index, and twenty equal-weighted portfolios stratified by firm size at the 
beginning of each subperiod. Tests are conducted over five subperiods from February 1953 

through November 1983. January returns are deleted. 

Correlation 

P SD = 0.52 

Assumption about the value of BP” 

e, = 1.0 PosteriorC Bound* 

1.0 0.02 0.02 0.02 0.02 
0.9 0.02 0.04 0.02 0.03 
0.8 0.03 0.11 0.04 0.04 
0.1 0.05 0.28 0.06 0.06 
0.6 0.09 0.62 0.12 0.13 
0.5 0.19 0.94 0.24 0.29 

“Aggregate p-values are obtained by applying the inverse normal transformation to each of the 
subperiod p-values and aggregating the resulting five independent normal variates. 

“BP is the ratio of mean excess return to standard deviation of return for the CRSP equal-weighted 
index. BP values above are annualized. 

‘True value of monthly BP2 is assumed to be randomly drawn from the posterior distribution in 
table 4. 

*Upper bound on p-value for any posterior with first two moments equal to those of the 
posterior in table 4. 

true market return, if the CAPM is true. Note that the p-values increase as p 
decreases and the corresponding non-centrality parameter increases. 

If the true value of Bp is greater (less) than 0.023, the inferences above are 
biased toward rejection (acceptance) of the null hypothesis.t4 A more con- 
servative approach would be to specify a value of tip which is greater than any 

141f the value of 0; is too small, so is the non-centrality parameter, ,I: hence, the p-value is too 
small. 



conceivable true value. The value used, as an example, in the third column of 
table 3 corresponds to an annualized 19~ of one - an ex ante risk premium of 
20% on a standard deviation of 20%. Interestingly, the hypothesis that p 
exceeds 0.9 is still rejected at the 0.05 level. The p-values rise sharply as p 
decreases, however. 

Presumably, few individuals would assign much subjective probability to the 
notion that the annualized 19, is as high as one. A more satisfactory pragmatic 
approach is to consider a range of possible values for 0; and compute 
conditional aggregate p-values for each one. A weighted average (uncondi- 
tional) p-value can then be computed, with weights that vary according to the 
relative ‘likelihood’ of the different values of 0;. The question, then, is how to 
devise this weighting scheme. 

Bayesian analysis provides a useful starting point. Suppose the subperiod 
estimates of 8; were independent and identically normally distributed with 
known variance. Given a ‘non-informative prior’ distribution on the true value 
of BP’, the posterior distribution would be normal with mean equal to the 
sample mean estimate and variance equal to the variance of the mean.” In 
fact, the unbiased estimator of 0; is not normally distributed, nor is its 
variance known exactly. Nonetheless, this theorem suggests a reasonable 
heuristic, if not an ‘objectively correct’ procedure, for assigning weights to the 
possible values of B;.r6 

Using results from Jobson and Korkie (1980), and assuming that 0; is 
constant over our five subperiods, we arrive at 0.019 as an estimate of the 
standard deviation of the sample mean value, 0.023, used earlier.” Motivated 
by the Bayesian theorem above, a simple discrete posterior distribution with 
the required mean and standard deviation has been constructed. The distribu- 
tion, displayed in table 4, assigns mass to the mean, as well as values of 0; one 
standard deviation below or two standard deviations above the mean. The 
fourth column of table 3 contains results derived using this posterior distribu- 
tion. The p-values lie between those obtained by our previous ‘ best guess’ and 
‘worst case’ methods, but are much closer to the former. 

An example should clarify the nature of the posterior approach. Consider 
the case p = 0.7. First, conditional aggregate p-values are computed for each 
of the three possible values of 0; in table 4. The p-values are 0.02, 0.05, and 

‘%ee DeGroot (1970). 

16A few colleagues have expressed horror at the notion that the inferences derived in this 
manner are Bayesian inferences. No such claim is made here. The posterior analysis is simply a 
pragmatic approach to the nuisance parameter problem. See Shanken (1986~) for a truly Bayestan 
approach to testing portfolio efficiency hypotheses. 

“The variance of the unbiased estimator of 0: depends on the true value of 8,‘. We replace this 
parameter by the sample mean estimate to get an estimate of the variance. The result is divided by 
five to obtain an estimate of the variance of the sample mean. 



Table 1 

Three-point posterior distribution for the ratio of mean excess return to standard deviation of 
return. B Parameters are based on data for the CRSP equal-weighted stock index over the period 
from Fe&mry 1953 through November 1983. Januan returns are deleted. Annualized BP equals 

(12 x monthly e,')F 

Possible values .Mean 0 

Monthlv 8 a 
Annualtte~ 

0.003 0.023 0.062 
e, 0.20 0.52 0.86 0.023 0.47 0.019 0.23 

Probability l/3 l/2 l/6 - - 

0.18, for 0; = 0.003, 0.023, and 0.062, respectively.‘” The final weighted-aver- 
age p-value is just 

0.06 = (l/3)(0.02) + (l/2)(0.05) + (l/6)(0.18). 

Suppose we had considered some other posterior with the same mean and 
variance as the one in table 4. Is it possible that materially different conclu- 
sions would be reached? As demonstrated in the appendix, an uper bound on 

the aggregate p-value, over all possible posteriors with the given mean and 
variance, can easily be computed. The bounds reported in the last column of 
table 3 are, for p 2 0.6, almost identical to the p-values obtained using the 
simple three-point posterior. Therefore, the particular form of the distribution 

is not an issue. 
Table 5 presents the results of one final ‘sensitivity analysis’. Increases of 25 

percent in the mean and/or standard deviation of the posterior distribution 

for ap’ are considered. The p-values barely change for p = 0.8 and p = 0.9, and 
we continue to reject p = 0.7 at the 10 percent significance level. Thus, our 
rejection of the joint hypothesis that (a) the CAPM is valid, and (b) p exceeds 
0.7, appears to be quite robust.” 

4.2. A test of the CAPM with a stock index - bond index proxy 

The extent to which we interpret our previous empirical analysis as a 
rejection of the CAPM depends on our belief about the magnitude of the 
variation in the true market return left unexplained by the CRSP index. It 

tsNote that the p-value corresponding to 6’; = 0.023 is (necessarily) the same as that in column 
2 of table 3. for p = 0.7. 

lYWhile we use the CAPM as a ‘concrete’ example. we could just as well refer to many other 
equilibria for which the joint hypothesis about p seems reasonable. In essence, we are testing a 
class of equilibrium models and our approach does not permit us to distinguish between models in 
this class. 
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Table 5 

Aggregate p-values indicating sensitivity of tests of the relative efficiency of the CRSP equal- 
weighted stock index to increases of 25 percent in the mean, p. and/or standard deviation, o, of 
the posterior distribution for 6,‘. BP is the ratio of mean excess return to standard deviation of 

return for the index. AJJ p-values are upper bounds (see appendix). 

Correlation 
P Bound= 

Parameter(s) increased 25% 

P 0 (P. 0) 

1.0 0.02 0.02 0.02 0.02 
0.9 0.03 0.03 0.03 0.03 
0.8 0.04 0.04 0.04 0.04 
0.7 0.06 0.08 0.07 0.08 
0.6 0.13 0.16 0.15 0.18 
0.5 0.29 0.37 0.34 0.43 

aUpper bound on p-value for any posterior with first two moments equal to those of the 
posterior in table 4. Source, last column of table 3. 

TabIe 6 

Maximum likelihood (MLE) and unbiased estimates of 6* and corresponding annualized values 
of BP (in parentheses) for the proxy consisting of the CL&P equal-weighted stock index and the 
Ibbotson-Sinquefield long-term U.S. government bond index. Five subperiods from February 
1953 through November 1983 are considered, each containing 68 monthly observations. January 
returns are deleted. 6; is the maximum squared ratio of mean excess return to standard deviation 
of return over all portfolios of the stock and bond indexes. Annualized $, in parentheses equals 

(12 x monthly e; )1/2. 

Subperiod 

Estimator 2/53- 4/59- 6/65- 8/71- 10/77- 
3/59 5/65 7/71 9/71 11/83 

MLE 0.121 0.031 0.036 0.036 0.068 
(1.20) (0.61) (0.66) (0.66) (0.90) 

Unbiased 0.084 0.000 0.004 0.004 0.035 
(LOO) (0.00) (0.22) (0.22) (0.65) 

seems reasonable to suppose that this variation is somewhat related to 
movements in interest rates. Therefore, we now extend our proxy to include 
the Ibbotson-Sinquefield long-term U.S. government bond index as well as 
the CRSP stock index.*’ Of course, including the bond index can only increase 
the multiple correlation between the proxy and the market. Hence, for any 
given value of p, our confidence in the validity of the joint hypothesis should 
increase as well. 

In the present context, f$ is the maximum Sharpe measure over all portfolios 
of the stock and bond indexes. Estimates of 0; for each of our five subperiods 

*‘Che*, RolJ and Ross (1984) also use this bond index to capture term-structure effects 
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Table 7 

Tests of the hypothesis that some portfolio of the CRSP equal-weighted stock index and the 
Ibbotson-Sinquefield long-term U.S. government bond index is equal to the tangency portfolio 
determined by the one-month T-bill rate, the indexes, and twenty equal-weighted portfolios 
stratified by firm size at the beginning of each subperiod. Tests are conducted over five subperiods 

from February 1953 through November 1983. January returns are deleted. 

Subperiod F-statistic” p-valueb 

2/53 - 3/59 2.50 0.01 
4/59 - 5/65 1.72 0.06 
6/65 - 7/71 1.52 0.12 
8/71- 9/77 0.85 0.65 

lo/77 -11/83 0.91 0.57 

“All F-statistics have degrees of freedom 20 in the numerator and 46 in the denominator. 
bAn aggregate p-value for the overall period is 0.02. This is obtained by applying the inverse 

normal transformation to each of the subpetiod p-values and aggregating the resulting tive 
independent standard normal variates. 

Table 8 

Aggregate p-values for tests of the hypothesis that the multiple correlation between the tangency 
portfolio and the proxy exceeds p. The proxy consists of the CRSP equal-weighted stock index 
and the Ibbotson-Sinquefield long-term U.S. government bond index. The tangency portfolio is 
that determined by the one-month T-bill rate, the indexes and twenty equal-weighted portfolios 
stratified by firm size at the beginning of each subperiod. The initial posterior parameters, used in 
column 2, are p = 0.026 and u = 0.023. Increases of 25 percent in the mean, p, and/or standard 
deviation, e, of the posterior distribution for 8; are considered. 0, is the maximum ratio of mean 
excess return to standard deviation of return over all portfolios of the stock and bond indexes. 
Symbol(s) over a given column indicates which parameter(s) has been increased. All p-values are 

Correlation 

P 

upper bounds (see appendix). 

Initial Parameters increased 25% 

posterior p 0 (,K? e) 

1.0 0.02 0.02 0.02 0.02 

0.9 0.02 0.03 0.02 0.03 
0.8 0.04 0.04 0.04 0.05 

0.7 0.07 0.08 0.08 0.09 

0.6 0.14 0.18 0.17 0.20 

0.5 0.34 0.43 0.41 0.50 

are presented in table 6. The mean unbiased value, 0.026, and the standard 
deviation of the mean, 0.023, are both a bit higher than the values obtained 
earlier with the stock index proxy.” 

Tests of the hypothesis that our two-dimensional proxy captures all of the 
variation in the true market return are reported in table 7. The restriction, in 

2tNote that, unlike the maximum likelihood estimates, some of the unbiased estimates in table 6 
are lower than the corresponding estimates in table 2. This is due to the degrees of freedom 
correction in the unbiased estimator. 
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this case, is that some portfolio of the stock and bond indexes is equal to the 
tangency portfolio. The subperiod results are similar to those for the stock 
index alone, and the aggregate p-value is the same - 0.02. Thus, we conclude 
that p is less than one, provided the CAPM is true. 

We proceed, therefore, to test whether some portfolio of the two indexes is 
‘near’ the tangency portfolio. By Corollary 1 of section 3, the performance 
ratio, 0,/e,, must exceed p if the CAPM holds. Recall that 0( is the Sharpe 
measure of the tangency portfolio, t, while the performance ratio equals the 
multiple correlation between the proxy and t. The empirical results in table 8 
differ very little from those reported in table 5 for the stock index proxy. The 
hypothesis that 6,/e, exceeds 0.7 is rejected at the 10 percent significance 
level; either the CAPM is false or our proxy captures a relatively small portion 
of the movement in aggregate wealth.****’ 

5. Extensions 

In this section two additional results are presented which may be useful in 
extending the empirical methodology developed earlier. The first issue we 
address is that of an unknown zero-beta rate. This is not a problem when 
p = 1, since r can then be consistently estimated using the usual cross-sectional 
regression or maximum likelihood methods. When p is less than one, however, 
it would appear that r is not statistically identifiable. The following proposi- 
tion suggests a way of dealing with this situation. 

Proposition 3. Assume P is a portfolio return (K = 1). Let expected excess 
return on P and R be given by covariance with m. Consider all portfolios of 
(P, R) that have the same expected return as P and let P * be the member of this 
class with the smallest variance of return. If p* is the multiple correlation 
between P and P*, then p* = u( P *)/a( P) and p* 2 p. 

Proof. Chamberlain and Rothschild (1983) show that P * equals the orthogo- 
nal projection (regression) of P on the minimum-variance frontier for (P, R), 
which is spanned by any two minimum-variance portfolios. Let r be the 
(unknown) zero-beta rate for m, and t the corresponding tangency portfolio 

220f course, a third alternative is that neither of these conclusions is true and we are simply 
observing a ’ rare’ event. 

23For simplicity, we have assumed that BP’ is constant across subperiods in constructing our 
posterior distribution. Alternatively, we can think of the posterior as the distribution of the 
maximum value of 0: over the five subperiods; the p-values computed are upper bounds in this 
interpretation. Since non-trivial increases in the parameters of the posterior distribution do not 
alter our basic conclusions, there is room for 8; to wander around a bit. In work not reported 
here, a ‘new true value of $ is permitted to be independently drawn each subperiod. The results 
obtained under this scenano are slightly stronger (p-values smaller) than those discussed in the 
paper. 
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for (r, P, R). By the general properties of multiple regression, P * must be the 
minimum-variance portfolio that is maximally correlated with P.14 Thus, p* 
cannot be less than the correlation, pI, between P and t. Furthermore, as 
discussed below Corollary 1 of section 3, p, L p, under our assumptions; hence 
p* 2 p. Since E(P) = E( P * ) and P * is minimum-variance, the beta of P on 
P* must be one; therefore, cov(P,P*)=a’(P*) and p*=a(P*)/a(P). 

Q.E.D. 

Proposition 4 tells us that the correlation between P and P * cannot be less 
than the correlation between P and m; thus, a joint hypothesis bounding p 
below translates directly into a hypothesis about p*. The empirical advantage 

of shifting the focus from m to P * is that the zero-beta rate for P* is a 

function of E(P) and the ‘efficient set parameters’ for (P, R); therefore, it can 
be consistently estimated. 25 With this rate statistically identified. we are one 
step closer to the empirical framework of section 4, where the zero-beta rate is 
known. Error in estimating this parameter is an added complication. however, 
which will have to be addressed in future work.‘6 

Before concluding, we consider one other issue. The pricing restriction that 
has served as the focus of this paper involves Z;‘, the inverse of the residual 
covariance matrix from the multivariate regression of R on P. This is 
somewhat limiting, in that estimation of 2;’ requires that the dimension of R 
be less than the time-series length T. The following simple consequence of 

Proposition 1 does not involve 2; t, and may eventually provide the basis for 
a more powerful empirical test in which N is permitted to be very large. 

Corollary 2. Under the conditions o/ Proposition I, 

d’dI ?a’(m)(l -P’), 

where 

d=E(R)-rl,-By, 

and C is the maximum eigenvalue of the residual covariance matrix, Zr.” 

“‘When Kz 1. P* may be defined as the minimum-variance portfolio that is maximally 
correlated with some portfolio of the components of P. This is an example of the statistical 
problem of canonical correlations. 

‘jAs noted earlier, this is not the case for r, the zero-beta rate associated with m. 

z6Shanken (1986) derives an upper bound on the power function of the likelihood ratio test of 
portfolio efficiency when the unknown zero-beta rate is constrained to a given interval. This result 
may be useful in the context above. 

“A similar sum of squared deviations appears in the original Ross (1976) arbitrage pricing 
theory (the prices of risk which define his deviation vector may differ from those defined in 
Proposition 1 of this paper, however). Ross establishes the existence of a finite bound that holds as 
N, the dimension of d, approaches infinity. Our general restriction, which involves S; ‘, should be 
compared to Ingersoll’s (1984) general APT result. See Shanken (1982b. 1985b) and Dybvig and 
Ross (1985) for analyses of the testability of the APT. 
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Proof. The proof is based on an observation in Chamberlain and Rothschild 
(1983). Since C is the maximum eigenvalue of Z,, C-i is the minimum 
eigenvalue of 2;’ and 2;’ - Z-if, is positive semidefinite. Therefore, 
d ‘[Z;’ - E-‘l,]d 2 0 and the desired conclusion follows directly from Pro- 
position 1. Q.E.D. 

The usefulness of Corollary 2 will depend on the behavior of the eigenvalues 
of the residual covariance matrix as N increases. The scenario we have in 
mind is one in which the eigenvalues remain bounded (and ‘small’) - essen- 
tially the approximate factor structure assumption of Chamberlain and 
Rothschild (1983). This might be a reasonable assumption for some proxies 
but not for others. 

It deserves emphasis that, even if the eigenvalues are ‘well-behaved’, the 
correlation between the proxy and the economic aggregate need not be close to 
one. Thus, it would be inappropriate to presume that an exact multibeta 
pricing relation necessarily provides a good approximation in this case. For 
example, suppose an important economic factor, orthogonal to P, affects the 
returns on a relatively small number of assets in the empiricist’s subset. 
Omission of this factor implies that p is less than one, yet the components of 
P might well serve as the factors in an approximate factor model for the 
subset. Corollary 2 demonstrates that while the individual pricing deviations 
may not all be negligible, the sum of squared deviations must be appropriately 
bounded in equilibrium.28 

6. Conclusions 

Empirical evidence has been presented which suggests that either the 
Sharpe-Lintner CAPM is invalid or our proxies account for at most two-thirds 
(rejected at the 0.05 level), or perhaps only one-half (rejected at the 0.10 level), 
of the variation in the true market return. The results are essentially the same 
whether we use the CRSP equal-weighted stock index alone, or together with 
the Ibbotson-Sinquefield long-term U.S. government bond index, in a multi- 
variate proxy. While an unambiguous inference about the validity of the 
CAPM is probably unattainable, our analysis demonstrates that it is possible 
to test the theory conditional on a prior belief about the proxy-true market 
correlation. 

There is an important sense in which the results obtained here are stronger 
than has been suggested thus far. Consider a hypothetical regression of the 
true market portfolio return on the asset and proxy returns employed in our 

‘“Connor and Korajcyrk (1986) develop an exact pricing model which combines an approxi- 
mate factor structure with the assumption that the multiple correlation betwen the factors and the 
market portfolio is one. 
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test of the CAPM. This regression yields a decomposition of the market return 
into a ‘maximally correlated portfolio’ (MCP) and an orthogonal component 
that is uncorrelated with the test retumsz9 In general, the orthogonal compo- 
nent may be substantial, perhaps reflecting a portion of the return on 
non-traded or international assets. It is easily shown, however, that under the 
assumption that the CAPM is true, the linear relation between expected return 
and ‘beta’ must hold with respect to the MCP as well as the market portfolio. 
Thus, our entire analysis could have been presented in terms of this portfolio 
rather than the market. For example, we can reject (at the 0.10 level) the joint 
hypothesis that (a) the CAPM is valid, and (b) the multiple correlation 
between our stock-bond indexes and the MCP exceeds 0.7. 

The MCP perspective has important implications for the subjective evalua- 
tion of the adequacy of a given proxy and the associated interpretation of the 

rejection of our joint hypothesis. A good proxy need not ‘capture’ the 

orthogonal component of the market return and thus need not be very highly 
correlated with the market portfolio; it suffices that the proxy be highly 
correlated with the MCP. The main concern, therefore, should be with the 
extent to which a proxy fails to capture variation in the market return that is 
correlated with the assets used in the test. 

It is instructive to consider the case in which the market portfolio’s residual 
variation, i.e., the variation ‘not explained’ by the proxy, is unrelated to the 
given asset returns. Under this assumption, the multiple correlation between 
the proxy and the IMCP is one. Thus, the proxy is ‘perfect’ and a test for exact 
(multibeta) pricing with respect to the proxy may be viewed as a test of the 
CAPM. A strong assumption of this sort is implicit in most of the existing 
asset pricing empirical literature. In this paper, a more fle.xible framework has 
been developed to accomodate the likely imperfection of commonly used 
proxies or factors. While our discussion has focused on the Sharpe-Lintner 
model, similar principles clearly apply in the testing of other equilibrium 
models such as the consumption CAPM and variants thereof. 

Appendix 

In this section an upper bound on the p-value for testing the relative 
efficiency of the stock index is derived. The same procedure, with different 

inputs, was used in the stock index-bond index proxy tests. The resulting 
bound relates the p-value to the mean and variance of the posterior distribu- 
tion for Bp’. 

Recall that the p-value of interest is actually an expected value of the 
conditional aggregate p-value, where the expectation is taken with respect to 

29See Breeden (1979) or Breedeo, Gibbons and Litzenberger (1986) for a discussion in the 
context of the consumption CAPM. 
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the posterior distribution. By (15), the conditional aggregate p-value, which we 
call y, is uniquely determined by the subperiod test statistics and estimates of 
e;, as weU as the value of 

x = TV,‘< p-2 - 1). (A.1) 

Holding all else constant, y is a function of x. 
Consider a cubic approximation to this functional relation: 

y=a0+u,x+o,x2+a,X3+e(X), (A.2) 

where e(x) is the approximation error for each value of x. Taking expected 
values, we have 

E(y) = a,,+ a,E(x) + a2E(x2) + a,E(x’) + E(e(x)). (A.3) 

Since an upper bound on E(y) is desired, it is helpful to bound e(x) above. 
Through a series of ad hoc numerical curve fitting (regression) experiments, it 
was found that with 

(a,, al, a2, a3) = (0.0203,0.0202,0.0242, - 0.0003), 

e(x) is bounded above by 0.0006. 3o By Jensen’s inequality, E( x3) 2 [E( x>13, 
for x L 0; thus, 

E(y)_<ao+u,E(x)+a2E(x2)+~3[E(x)]3+0.0006. (A-4) 

This bound only depends on the first two moments of the distribution of x. 
For given values of T and p, these moments are just constant multiples of the 
corresponding moments of f?:, as is clear for (A.l). 

3o For very large values of x, e(x) is negative and decreasing. Thus, this bound ; ppears to be a 
global maximum. 
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