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Proof of Extensions to Ito’s Lemma

Options, Futures and Other Derivatives proves Ito’s lemma for a function of a single
stochastic variable. Here we present a generalized version of Ito’s lemma for the situation
where there are several sources of uncertainty.

Suppose that a function, f , depends on the n variables x1, x2, . . . , xn and time, t.
Suppose further that xi follows an Ito process with instantaneous drift ai and instantaneous
variance b2

i (1 ≤ i ≤ n), that is,

dxi = ai dt + bi dzi (1)

where dzi is a Wiener process (1 ≤ i ≤ n). Each ai and bi may be any function of all the
xi’s and t. A Taylor series expansion of ∆f gives
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Equation (1) can be discretized as

∆xi = ai ∆t + biεi

√
∆t

where εi is a random sample from a standardized normal distribution. The correlation,
ρij , between dzi and dzj is defined as the correlation between εi and εj . In the book’s
proof of Ito’s lemma when there is only one stochastic variable it was argued that

lim
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Similarly,
lim

∆t→0
∆xi ∆xj = bibjρij dt

As ∆t → 0, the first three terms in the expansion of ∆f in equation (2) are of order ∆t.
All other terms are of higher order. Hence

df =
n∑

i=1

∂f

∂xi
dxi +

∂f

∂t
dt +

1
2

n∑
i=1

n∑
j=1

∂2f

∂xi ∂xj
bibjρij dt

This is the generalized version of Ito’s lemma. Substituting for dxi from equation (1) gives
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For an alternative generalization of Ito’s lemma suppose that f depends on a single
variable x and that the process for x involves more than one Wiener process:

dx = a dt +
m∑
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In this case
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where as before ρij is the correlation between dzi and dzj This leads to
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Finally consider the more general case where f depends on variables xi (1 ≤ i ≤ n)
and

dxi = ai dt +
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A similar analysis shows that
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