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The Black, Derman, and Toy Model 

As explained in the text, there are two types of model of the short rate: equilibrium and no-arbitrage 

models.  In an equilibrium model the process followed by the short-term interest rate is specified. This 

totally defines the model. Zero-coupon bond prices and the term structure of interest rates are outputs 

from the model. Examples of equilibrium models are the Vasicek and Cox, Ingersoll, and Ross models. 

These models each have three parameters. The parameters can be chosen so that the models provide an 

approximate fit to the term structure of interest rates, but the fit is not usually an exact one. 

A no-arbitrage model is constructed so that it is exactly consistent with the term structure of interest rates 

that is observed in the market. This means that the term structure of interest rates is an input to the model, 

not an output from it. No-arbitrage models can be constructed in many different ways. An early no-

arbitrage model was the Black, Derman, and Toy model published in 1990.2  This model has the 

advantage that it can easily be represented in the form of a binomial tree. To correspond as closely as 

possible with the Black-Derman-Toy  paper, we assume that interest rates are compounded annually. 

The Black-Derman-Toy model  is a particular case of the more general  Black-Karasinski model. The 

short rate follows a mean-reverting lognormal process. However, the way the tree is constructed implies a 

relationship between the short rate volatility and the reversion rate. 

As in the case of the binomial tree used to value stock options, we consider steps of length t. The tree 

models the behavior of the t-period interest rate. The zero-coupon interest rates for all maturities at time 

zero are known. We denote the zero-coupon interest rate for a maturity of nt by Rn. The volatility of the 

t rate between time (n−1)t and nt is denoted by n. 

During each time step the t-period interest rate has a 50% probability of moving up and a 50% 

probability of moving down. The tree is shown in Figure 1. The initial t period rate, r, is known and 

equals R1. The value of a zero-coupon bond that pays off  $1 at time 2t is 

tR  2
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The value of this bond at node B on the tree is 

 

                                                           
1 ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, 
Futures, and Other Derivatives by John C. Hull 
2 See F. Black, E. Derman, and W. Toy, ``A one-factor model of interest rates and its application to Treasury bond 
options, Financial Analysts Journal, 46 (1), 33-39. 
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The value of the bond at node C is 
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It follows that the value of the bond at the initial node A is 
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Figure 1 The Binomial Tree 
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This is one equation that must be satisfied by ru and rd. To match the volatility, the standard deviation of 

the logarithm of the interest rate at time t must be  t1  (Recall: i is the volatility of interest rates 

during the ith time period.)  This means that3   
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Equations (1) and (2) can be solved to determine ru  and rd. 

We now move on to determine ruu, rud and rdd. To match volatility we must have   
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We must also match the price of a zero-coupon bond that pays off $1 at the end of time 3t. Rolling back 

through the tree the values of this bond at nodes D, E, and F are 
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respectively. The values at nodes B and C are 
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and 
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The value at the initial node is therefore 

                                                           
3 To see this note that the variance of the logarithm of the interest rate is  

0.5(ln ru)2 +0.5(ln rd)2−[0.5(ln ru+ln rd)]2=[0.5(ln ru−ln rd)]2 
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The interest rates r, ru and rd have already been determined. Equations (3), (4), and (5) therefore provide 

three equations for determining  ruu, rud, and  rdd .  

Continuing in this way a complete tree can be constructed.  The calculations are made considerably easier 

if as we move forward we keep  track of the value of a security that pays $1 if a particular node is reached 

and zero elsewhere. It is then only necessary to roll back one step when valuing zero-coupon bonds using 

the tree. 

Determining the i 

The determination of the i depends on the data available. Sometimes the historical volatilities of zero-

coupon bond yields are used; sometimes the volatilities of caps or swaptions are used. An iterative search 

procedure is always necessary.   

When bond yields are being matched, we assume that we have data at time zero on the volatilities of a 

bond maturing at time it. We will denote this by i. (We approximate i as the volatility of this bond 

yield between time zero and time t.) We denote yun as the yield on a bond maturing at time nt  at node 

C and ydn as the yield on a bond maturing at time nt at node B. Considering a bond that matures at time 

2t, 
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Because there is only one period left in the bond's life at the nodes at time t, yu2 = ru and yd2 = rd . As a 

result  
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Using equation (2) leads to  

1 = 2 

The interest rates ru and rd can then be determined from equations (1) and (2). 

Determining the subsequent i requires an iterative search. For example, to determine 2   
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This must be solved iteratively with equations (3), (4), and (5) for 2,  ruu, rud, and rdd. 

In general the procedure to determine i (i > 1) is  

1. Choose a trial value of i 

2. Calculate the interest rates at time it 

3. Calculate the yield volatility for a bond lasting until it from the tree. This involves calculating 

the bond yields yu and yd at nodes B and C. The bond yield volatility is 0.5ln(yu/yd) 

4. Search iteratively for the value of i  that matches the bond yield volatility 

Once the tree has been constructed it can be used to value a range of interest rate derivatives. 

Example 

As an example of the application of the model suppose that the term structure of interest rates is as shown 

in Table 1, the zero-coupon yield volatilities are as shown in Table 2, and the time step is one year. In this 

case r=0.10, t=1, 1=0.19 (the two-year yield volatility) and equations (1) and (2) give 
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Solving these two equations gives ru = 0.1432 and rd  =  0.0979. 

Table 1 

Zero-coupon Yield Curve (Annually Compounded) 

Maturity (years) Rate 

1 10.0 

2 11.0 

3 12.0 

4 12.5 

5 13.0 
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Table 2 

Yield Volatilities 

i i 

2 19.0% 

3 18.0% 

4 17.5% 

5 16.0% 

 

Equations (3), (4), and (5) give 

2ln5.0 
ud

uu

r

r
                                                          

2ln5.0 
dd

ud

r

r
 

312.1

1

1

1
5.0

1

1
5.0

1432.1

1
5.0

1.1

1

1

1
5.0

1

1
5.0

0979.1

1
5.0

1.1

1

























































uuud

uddd

rr

rr
 

We do not know 2 directly. For each trial value of 2 we solve equations (3), (4), and (5) and then 

calculate the price of a three-year bond at nodes B and C.  The price of a three-year bond at node B is 
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and the bond yield at node B is  
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Carrying out an iterative search we find that 2 = 0.172 does the trick. With this value of 2 the solutions 

to the three equations are  

ruu = 0.1942 

rud = 0.1377 

rdd = 0.0976 

These in turn give Bu = 0.7507, Bd = 0.8152, yu =  0.1542, and yd  =  0.1076. Because 0.5ln(0.1542/0.1076) 

= 0.18 the three-year yield volatility is matched.  

The complete tree of short rates is shown in Figure 2.  

 

Figure 2  The Short-Rate Tree 
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