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Hermite Polynomials and Their Use for Integration

As explained in the chapter on credit derivatives in the text, the Gaussian copula
model requires functions to be integrated over a normal distribution between −∞ and
+∞. Gaussian quadrature approximates the integral as∫ ∞

−∞

1√
2π

e−F 2/2g(F )dF ≈
M∑

k=1

wkg(Fk) (1)

The approximation gets better as M increases. It has the property that it is exact when
g(F ) is a polynomial of order M .

The determination the wk and Fk involves Hermite polynomials. If you want to avoid
getting into the details of this, values of wk and Fk for different values of M can be
downloaded from a spread sheet on the author’s web site.

The first few Hermite polynomials are

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

A recurrence relationship for calculating higher order polynomials is

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

and an equation for the derivative with respect to x is

H ′
n(x) = 2nHn−1(x)

Define xk (1 ≤ k ≤ n) as the n roots of Hn(x) (that is, the n values of x for which
Hn(x) = 0) and

w∗
k =

2n−1n!
√

π

n2[Hn−1(xk)]2

A key result is ∫ ∞

−∞
f(x)dx ≈

n∑
k=1

w∗
kex2

kf(xk) (2)
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Setting x = F/
√

2 and

f(x) =
1√
π

e−x2
g(
√

2x)

equation (2) gives ∫ ∞

−∞

1√
2π

e−F 2/2g(F )dF ≈
n∑

k=1

1
π

w∗
kg(Fk)

or alternatively ∫ ∞

−∞

1√
2π

e−F 2/2g(F )dy ≈
n∑

k=1

wkg(Fk)

where
wk =

w∗
k√
π

Fk =
√

2xk

This is the result in equation (1), with n = M .
This leaves the problem of calculating the n roots of a Hermite polynomial. A program

for doing this is ‘gauher’ in “Numerical Recipes for C: The Art of Scientific Computing”
by Press, Flanery, Teukolsky, and Vetterling, Cambridge University Press.
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