
 

CHAPTER 18 

Futures Options and Black’s Model 
 

 

Practice Questions 

 
18.1 

In this case, 1 12u    and 0 92d   . The probability of an up movement in a risk-neutral 

world is  

 
1 0 92

0 4
1 12 0 92

 
 

  
 

From risk-neutral valuation, the value of the call is  

 
0 06 0 5(0 4 6 0 6 0) 2 33e            

 

18.2 

The American futures call option is worth more than the corresponding American option on 

the underlying asset when the futures price is greater than the spot price prior to the maturity 

of the futures contract. This is the case when the risk-free rate is greater than the income on 

the asset plus the convenience yield.  

 

18.3 

In this case, 0 19F  , 20K  , 0 12r   , 0 20   , and 0 4167T   . The value of the 

European futures put option is  

 
0 12 0 4167 0 12 0 4167

2 120 ( ) 19 ( )N d e N d e           

 

where  
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This is  

 
0 12 0 4167[20 (0 4618) 19 (0 3327)]e N N        

 

 
0 12 0 4167(20 0 6778 19 0 6303)e          

 

 1 50   

or $1.50.  

 
18.4 

An amount (1,400 – 1,380) × 100 = $2,000  is added to your margin account and you acquire 

a short futures position obligating you to sell 100 ounces of gold in October. This position is 

marked to market in the usual way until you choose to close it out.  

 

18.5 

In this case, an amount (1.35−1.30) × 40,000 = $2,000  is subtracted from your margin 



account and you acquire a short position in a live cattle futures contract to sell 40,000 pounds 

of cattle in April. This position is marked to market in the usual way until you choose to close 

it out.  

 

18.6 

Lower bound if option is European is  

 
0 1 2 12

0( ) (47 40) 6 88rTF K e e          

Lower bound if option is American is  

 0 7F K   

 

18.7 

Lower bound if option is European is  

 
0 1 4 12

0( ) (50 47) 2 90rTK F e e          

Lower bound if option is American is  

 0 3K F 
 

 

18.8 

In this case, 1618.14/13.0  eu ; 8607.0/1  ud ; and  

 
1 0 8607

0 4626
1 1618 0 8607

p
 

  
  

 

In the tree shown in Figure S18.1, the middle number at each node is the price of the 

European option and the lower number is the price of the American option. The tree shows 

that the value of the European option is 4.3155 and the value of the American option is 

4.4026. The American option should sometimes be exercised early.  

 

 
 

Figure S18.1:  Tree to evaluate European and American call options in Problem 18.8 

 

18.9 

The parameters u, d  and p  are the same as in Problem 18.8. The tree in Figure S18.2 shows 

that the prices of the European and American put options are the same as those calculated for 

call options in Problem 18.8. This illustrates a symmetry that exists for at-the-money futures 

options. The American option should sometimes be exercised early. Because 
0K F  and 

c p , the European put–call parity result holds.  

 
0

rT rTc Ke p F e     

Also, because C P , 
0

rTF e K  , and 
0

rTKe F   the result in equation (18.2) holds. (The 



first expression in equation (18.2) is negative; the middle expression is zero, and the last 

expression is positive.)  

 

 
 

Figure S18.2:  Tree to evaluate European and American put options in Problem 18.9 

 

18.10 

In this case, 0 25F  , 26K  , 0 3  , 0 1r   , 0 75T     
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0 075[25 ( 0 0211) 26 ( 0 2809)]c e N N        

 

 
0 075[25 0 4916 26 0 3894] 2 01e          

 

 

18.11 

In this case, 0 70F  , 65K  , 0 2  , 0 06r   , 0 4167T     
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0 025[65 ( 0 5095) 70 ( 0 6386)]p e N N        

 

 
0 025[65 0 3052 70 0 2615] 1 495e          

 

18.12 



In this case,  

 
0 1 12 34 32 76rTc Ke e         

 

 
0 1 1

0 2 35 33 67rTp F e e         

Put–call parity shows that we should buy one call, short one put and short a futures contract. 

This costs nothing up front. In one year, either we exercise the call or the put is exercised 

against us. In either case, we buy the asset for 34 and close out the futures position. The gain 

on the short futures position is 35 34 1  .  

 

18.13 

The put price is  

 
2 0 1[ ( ) ( )]rTe KN d F N d     

Because ( ) 1 ( )N x N x    for all x  the put price can also be written  

 
2 0 0 1[ ( ) ( )]rTe K KN d F F N d     

Because 
0F K  this is the same as the call price:  

 
0 1 2[ ( ) ( )]rTe F N d KN d   

This result also follows from put–call parity showing that it is not model dependent.  

 

18.14 

From equation (18.2), C P  must lie between  

 
0 05 3 1230 28 1 63e        

and  

 
0 05 3 1230 28 2 35e       

Because 4C   we must have 1 63 4 2 35P      or  

 1 65 2 37P     

 

18.15 

In this case, we consider:  

Portfolio A: A European call option on futures plus an amount K  invested at the risk-free 

interest rate.  

Portfolio B: An American put option on futures plus an amount 
0

rTF e  invested at the risk-

free interest rate plus a long futures contract maturing at time T.  

Following the arguments in Chapter 5, we will treat all futures contracts as forward contracts. 

Portfolio A is worth c K  while portfolio B is worth 
0

rTP F e . If the put option is 

exercised at time (0 )T   , portfolio B is worth  
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at time   where F  is the futures price at time  . Portfolio A is worth  

 
rc Ke K 

 

Hence, Portfolio A more than Portfolio B.  If both portfolios are held to maturity (time T), 

Portfolio A is worth  

 
max( 0)

max( ) ( 1)

rT

T

rT
T

F K Ke

F K K e

  

   
 

Portfolio B is worth  

 
0 0max( 0) max( )T T TK F F F F F K        



Hence, portfolio A is worth more than portfolio B.  

Because portfolio A is worth more than portfolio B in all circumstances:  

 
( )

0

r T tP F e c K     

Because c C  it follows that  

 
0

rTP F e C K    

or  

 
0

rTF e K C P     

This proves the first part of the inequality.  

 

For the second part of the inequality consider:  

Portfolio C: An American call futures option plus an amount rTKe  invested at the risk-free 

interest rate.  

Portfolio D: A European put futures option plus an amount 0F  invested at the risk-free 

interest rate plus a long futures contract. 

Portfolio C is worth rTC Ke  while portfolio D is worth 
0p F . If the call option is 

exercised at time (0 )T    portfolio C becomes:  
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   
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Hence, portfolio D is worth more than portfolio C. If both portfolios are held to maturity 

(time T ), portfolio C is worth max( )TF K  while portfolio D is worth  

 

0 0
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Hence portfolio D is worth more than portfolio C.  

Because portfolio D is worth more than portfolio C in all circumstances  

 
0

rTC Ke p F    

Because p P  it follows that  

 
0

rTC Ke P F    

or  

 
0

rTC P F Ke    

This proves the second part of the inequality. The result:  

 
0 0

rT rTF e K C P F Ke       

has therefore been proved.  

 

18.16 

This has the same value as a three-month call option on silver futures where the futures 

contract expires in three months. It can therefore be valued using equation (18.7) with 

0 12F  ,  13K  , 0 04r   , 0 25   and 0 25T   . The value is 0.244.  

 

18.17 

The rate received will be less than 6.5% when LIBOR is less than 7%. The corporation 

requires a three-month call option on a Eurodollar futures option with a strike price of 93. If 



three-month LIBOR is greater than 7% at the option maturity, the Eurodollar futures quote at 

option maturity will be less than 93 and there will be no payoff from the option. If the three-

month LIBOR is less than 7%, one Eurodollar futures options provide a payoff of $25 per 

0.01%. Each 0.01% of interest costs the corporation $125 (= 5,000,000 × 0.0001 × 0.25). A 

total of 125/25 = 5 contracts are therefore required.  

 
18.18 

In this case, 1 125u    and 0 875d   . The risk-neutral probability of an up move is  
 (1 875) (1 125 0 875) 0 5        

The value of the option is  

 
0 07 0 25[0 5 3 0 5 0] 1 474e            

 

18.19 

Put–call parity for European options gives 

6.5 + 78e-0.03×0.5 =  c + 80e-0.03×0.5 

so that c = 4.53. 

The relation for American options gives 

78 e-0.03×0.5 – 80  < C − 6.5 < 78 − 80 e-0.03×0.5 

so that 

−3.16 <  C −6.5 < −0.81 

so that  C lies between 3.34 and 5.69. 

 

 

18.20 

u =1.331, d = 0.8825, and p = 0.4688. As the tree in Figure S18.3 shows the value of the 

option is 4.59. 
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11.06

34.36

15.64  
 

Figure S18.3: Tree for Problem 18.20 

 

18.21 

There are 135 days to maturity (assuming this is not a leap year). Using DerivaGem with 

0 278 25F   , 1 1r %  , T  = 135/365, and 500 time steps gives the implied volatilities shown 

in the table below. 

  

 



 
Strike Price Call Price Put Price Call Implied Vol Put Implied Vol 

260 26.75 8.50 24.69 24.59 

270 21.25 13.50 25.40 26.14 

280 17.25 19.00 26.85 26.86 

290 14.00 25.625 28.11 27.98 

300 11.375 32.625 29.24 28.57 

 

We do not expect put–call parity to hold exactly for American options and so there is no 

reason why the implied volatility of a call should be exactly the same as the implied volatility 

of a put. Nevertheless it is reassuring that they are close.  

There is a tendency for high strike price options to have a higher implied volatility. As 

explained in Chapter 20, this is an indication that the probability distribution for corn futures 

prices in the future has a heavier right tail and less heavy left tail than the lognormal 

distribution.  

 

18.22 

In this case, 0 525F  , 525K  , 0 06r   , 0 4167T   . We wish to find the value of  for 

which 20p   where  

 
2 0 1( ) ( )rT rTp Ke N d F e N d      

This must be done by trial and error. When  = 0.2, p = 26.35. When = 0.15, p = 19.77 

When 0 155  , p = 20.43. When 0 152  , p = 20.03. These calculations show that the 

implied volatility is approximately 15.2% per annum.  

 

18.23 

The price of the option is the same as the price of a European put option on the forward price 

of the index where the forward contract has a maturity of six months. It is given by equation 

(18.8) with 0 1400F  , 1450K  , 0 05r   , 0 15  , and T = 0.5. It is 86.35.  

 


