
 

CHAPTER 30 

Convexity, Timing, and Quanto Adjustments 
 

Practice Questions 
 

30.1 
Suppose first that the correlation between the underlying asset price and interest rates is 

negative and we have a long forward contract. When interest rates increase, there will be 

a tendency for the asset price to decrease. The increase in interest rates means that an 

investor would like a positive payoff to be early and a negative one to be late. The 

negative correlation means that a negative payoff is more likely.  

When interest rates decrease, there will be a tendency for the asset price to increase. The 

decrease in interest rates means that an investor would like a positive payoff to be late and 

a negative one to be early. The negative correlation means that a positive payoff is more 

likely.  

This argument shows that a negative correlation works in the investor’s favor. Similarly, 

a positive correlation works against the investor’s interests.   

 

30.2 
(a) A convexity adjustment is necessary for the swap rate.  

(b) No convexity or timing adjustments are necessary.  

 

30.3 
There are two differences. The discounting is done over a 1.0-year period instead of over 

a 1.25-year period. Also a convexity adjustment to the forward rate is necessary. From 

equation (30.2), the convexity adjustment is:  
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or about half a basis point.  

In the formula for the caplet, we set 0 07005kF    instead of 0 07 . This means that 

1 0 5642d     and 
2 0 7642d    . The caplet price becomes  

 
0 065 1 00 25 10 [0 07005 ( 0 5642) 0 08 ( 0 7642)] 0.0531e N N              

 

 

30.4 
The convexity adjustment discussed in Section 30.1 leads to the instrument being worth 

an amount slightly different from zero. Define ( )G y  as the value as seen in five years of 

a two-year bond with a coupon of 10% as a function of its yield.  
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It follows that (0 1) 1 7355G      and (0 1) 4 6582G     and the convexity adjustment that 

must be made for the two-year swap- rate is  
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We can therefore value the instrument on the assumption that the swap rate will be 

10.268% in five years. The value of the instrument is  
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or $0.167.  

 

30.5 
In this case, we have to make a timing adjustment as well as a convexity adjustment to the 

forward swap rate. For (a), equation (30.4) shows that the timing adjustment involves 

multiplying the swap rate by  
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so that it becomes 10 268 0 9856 10 120     . The value of the instrument is  
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or $0.068.  

For (b), equation (30.4) shows that the timing adjustment involves multiplying the swap 

rate by  
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so that it becomes 10 268 0 966 9 919     . The value of the instrument is now  
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or –$0.042.  

 

30.6 

(a) The process for y  is  

 
ydy y dt y dz    

The forward bond price is ( )G y . From Itô’s lemma, its process is  
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(b) Since the expected growth rate of ( )G y  is zero  
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(c)   Assuming as an approximation that y  always equals its initial value of 0y , this    



shows that the growth rate of y  is  
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The variable y  starts at 0y  and ends as 
Ty . The convexity adjustment to 0y  

when we are calculating the expected value of 
Ty  in a world that is defined by a 

numeraire equal to a zero-coupon bond maturing at time T  is approximately 
0y T  

times this or  
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This is consistent with equation (30.1).  

 

30.7 

(a) In the traditional risk-neutral world, the process followed by S  is  

 ( ) SdS r q S dt S dz    

where r  is the instantaneous risk-free rate. The market price of dz -risk is zero.  

(b) In the traditional risk-neutral world for currency B, the process is  

 ( )QS S Q SdS r q S dt S dz        

where Q  is the exchange rate (units of A per unit of B), 
Q  is the volatility of Q  

and 
QS  is the coefficient of correlation between Q  and S . The market price of dz -

risk is 
QS Q  . 

(c)  In a world that is defined by a numeraire equal to a zero-coupon bond in currency A  

maturing at time T, 

 ( )S P SdS r q S dt S dz       

       where P  is the bond price volatility. The market price of dz -risk is P   

(d) In a world that is defined by a numeraire equal to a zero-coupon bond in currency B 

maturing at time T,  

 ( )S P FS S F SdS r q S dt S dz           

where F  is the forward exchange rate, F  is the volatility of F  (units of A per unit 

of B, and FS  is the correlation between F  and S . The market price of dz -risk is 

P FS F   .  

 

30.8 
Define:  

P(t,T): Price in yen at time t  of a bond paying 1 yen at time T   

ET(.):   Expectation in world that is defined by numeraire ( )P t T   

F:         Dollar forward price of gold for a contract maturing at time T   

F0:        Value of F  at time zero  

F: Volatility of F   

G: Forward exchange rate (dollars per yen)  

G: Volatility of G   

We assume that 
TS  is lognormal. We can work in a world that is defined by numeraire 

( )P t T  to get the value of the call as  

 
1 2(0 )[ ( ) ( ) ( )]T TP T E S N d N d   



where  
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The expected gold price in a world that is defined by a numeraire equal to a zero-coupon 

dollar bond maturing at time T  is 0F . It follows from equation (30.6) that  
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Hence the option price, measured in yen, is  
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30.9 

(a) The value of the option can be calculated by setting 0 400S  , 400K  , 0 06r   , 

0 03q   , 0 2   , and 2T  . With 100 time steps, the value (in Canadian dollars) is 

52.92.  

(b) The growth rate of the index using the CDN numeraire is 0 06 0 03    or 3%. When 

we switch to the USD numeraire, we increase the growth rate of the index by 

0 4 0 2 0 06      or 0 48 % per year to 3.48%. The option can therefore be calculated 

using DerivaGem with 0 400S  , 400K  , 0 04r   , 0 04 0 0348 0 0052q       , 

0 2   , and 2T  . With 100 time steps, DerivaGem gives the value as 57.51.  

 

 

30.10 
(a) We require the expected value of the Nikkei index in a dollar risk-neutral world. In a 

yen risk-neutral world, the expected value of the index is 
(0 02 0 01) 220 000 20 404 03e        . In a dollar risk-neutral world, the analysis in Section 

30.3 shows that this becomes  

 
0 3 0 20 0 12 220 404 03 20 699 97e            

      The value of the instrument is therefore,  

 
0 04 220 699 97 19 108 48e        

 

(b) An amount SQ  yen is invested in the Nikkei. Its value in yen changes to  
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       In dollars this is worth  
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 where Q  is the increase in Q . When terms of order two and higher are ignored, the          

dollar value becomes  
 (1 )S S S Q Q     

The gain on the Nikkei position is therefore S S Q Q      

When SQ  yen are shorted the gain in dollars is  
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This equals S Q Q   when terms of order two and higher are ignored. The gain on 

the whole position is therefore S  as required. 

 

(c)  In this case, the investor invests $20,000 in the Nikkei. The investor converts the 

funds to yen and buys 100 times the index. The index rises to 20,050 so that the 

investment becomes worth 2,005,000 yen or  
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dollars. The investor therefore gains $110.33. The investor also shorts 2,000,000 yen. 

The value of the yen changes from $0.0100 to $0.01003. The investor therefore loses 

0 00003 2 000 000 60      dollars on the short position. The net gain is 50.33 dollars. 

This is close to the required gain of $50.  

 

(d) Suppose that the value of the instrument is V . When the index changes by S  yen 

the value of the instrument changes by  
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dollars. We can calculate V S   . Part (b) of this question shows how to manufacture 

an instrument that changes by S  dollars. This enables us to delta-hedge our 

exposure to the index.  

 

30.11 
To calculate the convexity adjustment for the five-year rate, define the price of a five year 

bond, as a function of its yield as  
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The convexity adjustment is  

 
2 20 5 0 08 0 25 4 5 0 004          

Similarly, for the two year rate the convexity adjustment is  

 
2 20 5 0 08 0 25 4 2 0 0016          

We can therefore value the derivative by assuming that the five year rate is 8.4% and the 

two-year rate is 8.16%. The value of the derivative is  

 
0 08 40 24 0 174e      

If the payoff occurs in five years rather than four years, it is necessary to make a timing 

adjustment. From equation (30.4) this involves multiplying the forward rate by  
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The value of the derivative is  

0.24×0.98165e-0.08×5=0.158. 
  

 

30.12 
(a) In this case, we must make a convexity adjustment to the forward swap rate. 

Define  
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so that  
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(0 08) 262 11G      and (0 08) 853 29G     so that the convexity adjustment is  
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The adjusted forward swap rate is 0 08 0 00338 0 08338      and the value of the 

derivative in millions of dollars is  
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(b) When the swap rate is applied to a yen principal, we must make a quanto 

adjustment in addition to the convexity adjustment. From Section 30.3, this 

involves multiplying the forward swap rate by 0 25 0 12 0 18 10 0 9474e         . (Note that 

the correlation is the correlation between the dollar per yen exchange rate and the 

swap rate. It is therefore 0 25   rather than 0 25  .) The value of the derivative in 

millions of yen is  
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