
1 
 

Published in Quantitative Finance Vol. 15, No. 3 (2015): 443-454 

A Generalized Procedure for Building Trees for the Short Rate and its 

Application to Determining Market Implied Volatility Functions 

 

John Hull and Alan White 

Joseph L. Rotman School of Management 

University of Toronto 

105 St George Street 

Toronto M5S 3E6 

Canada 

 

Hull: 416 978 8615 White: 416 978 3689 

hull@rotman.utoronto.ca 

corresponding author 

awhite@rotman.utoronto.ca 

 

January 2014 

This Version: June 2014 

 

 

Abstract 

One-factor no-arbitrage models of the short rate are important tools for valuing interest rate 

derivatives. Trees are often used to implement the models and fit them to the initial term 

structure. This paper generalizes existing tree building procedures so that a very wide range of 

interest rate models can be accommodated. It shows how a piecewise linear volatility function 

can be calibrated to market data and, using market data from days during the period 2004 to 

2013, finds that the best fit to cap prices is provided by a function remarkably similar to that 

estimated by Deguillaume et al (2013) from historical data.  
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A Generalized Procedure for Building Trees for the Short Rate and its 

Application to Determining Market Implied Volatility Functions 

 

1. Introduction 

One-factor models of the short rate, when fitted to the initial term structure, are widely used for 

valuing interest rate derivatives. Binomial and trinomial trees provide easy-to-use alternatives to 

finite difference methods for implementing these models.1 Once the complete term structure has 

been calculated at each node, the tree can be used to value a wide range of derivatives or as a 

tool for simulating the evolution of the term structure. The latter is useful for some applications 

such as calculating the credit value adjustment for a portfolio.  

Many authors show how trees can be built for particular short-rate models in such a way that 

they are consistent with the initial term structure of interest rates. Examples of binomial tree 

models are Ho and Lee (1986), Black et al (1990), Black and Karasinski (1991), and Kalotay et 

al (1993). Hull and White (1994, 1996) show how a trinomial tree can be constructed when the 

short rate, or some function of the short rate, is assumed to follow an Ornstein-Uhlenbeck 

process with a time-dependent reversion level.  

The most popular short-rate models for derivative pricing are Ho and Lee (1986), Hull and White 

(1990), Black et al (1990), Black and Karasinski (1991), and Kalotay et al (1993). These models 

are used largely because it is relatively simple to build a tree for them. Indeed, in some cases the 

models are described by their authors entirely in terms of the tree that can be built. However, the 

models are all unrealistic in some respects. In Hull−White and Ho−Lee, the short rate exhibits 

normal behavior for all values of the short rate while in the other three models it exhibits 

lognormal behavior for all values of the rate.2 Hull-White and Ho-Lee have the disadvantage that 

                                                           
1 Complications in the use of finite difference methods are a) determining the boundary conditions and b) adapting 

the procedure so that the initial term structure is matched. However, these problems are not insurmountable since a 

trinomial tree can be regarded as a particular implementation of the explicit finite difference method. 
2 Ho and Lee (1986) is the particular case of Hull and White (1990) where there is no mean reversion of the short 

rate. Black et al (1990) is a particular case of Black and Karasinski (1991) where there is a relation between the drift 

rate and the volatility of the short rate. Kalotay et al (1993) can be viewed as a particular case of either Black and 

Karasinski (1991), or Black et al (1990) where the reversion rate of the logarithm of the short rate is zero. 



3 
 

they allow interest rates to become negative (and unfortunately the models give quite high 

probabilities of negative rates in the low-interest-rate environments experienced in many 

countries recently.) Rates are always positive in the other three models, but these models do not 

fit observed market prices well in low interest rate environments. (A change in the short rate 

from 10% to 20% has the same probability as a change from 20 basis points to 40 basis points.) 

A number of other tree-building procedures have recently been proposed for particular short rate 

models. For example, Hainaut and MacGilchrist (2010) show how to construct an interest rate 

tree when the short rate is driven by the normal inverse Gaussian process and Beliaeva and 

Nawalkha (2012) show how to construct trees for a constant elasticity of variance model when 

there are jumps.   

The parameters of short rate models are typically chosen so that the prices of standard interest 

rate options (the “calibrating instruments”) are matched as closely as possible. If the interest rate 

derivative being valued is similar to the calibrating instruments, the calculated price (and perhaps 

even the Greek letters) may not be sensitive to the model being used. But as the derivative 

becomes “more exotic” the model being used becomes progressively more important. Choosing 

the right model is also clearly important if the model is used (after a change from the Q- to the P-

measure) to simulate the future evolution of the term structure for risk management purposes. 

In many applications it is therefore clearly less than ideal to allow a particular technology for 

building interest rate trees to determine the short-rate model that is used. The short rate model 

should be chosen so that it is able to fit market prices and is consistent with empirical research on 

the historical behavior of rates. This paper provides a way this can be done. We show how 

trinomial tree procedures proposed by Hull and White (1994, 1996) can be extended so that they 

can be used for a much wider class of short rate models than those originally considered by the 

authors. Virtually any reasonable drift and volatility function can be accommodated. We first 

implement a simple model where enough information is presented to allow the reader to replicate 

the results. We then present a more elaborate model to illustrate the convergence characteristics 

of the procedure in the low interest rate environment at the end of 2013. Finally, we calibrate the 

model to market data on interest rate caps between 2004 and 2013. Interestingly, we find that 

market prices are consistent with recent empirical research by Deguillaume et al (2013).  
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2. Review of Hull–White Trinomial Trees 

Hull and White (1994, 1996) consider models of the form  

   dzdtaxtdx   )(  (1) 

where x is some function f(r) of the short rate r, a and  are constants, and dz is a Wiener 

process.3 Hull and White (1990) is the particular case of the model in equation (1) when 

( )f r r  and Ho and Lee (1986) is the particular case of the model where ( )f r r and a = 0. 

Black and Karasinski (1991) is the particular case of the model in equation (1) 

where ( ) ln( )f r r and Kalotay et al (1993) is the particular case of the model where 

( ) ln( )f r r and a = 0. The parameter a is the reversion rate and at)(  is a time-dependent 

reversion level with )(t chosen to fit the initial term structure. The Hull–White approach 

involves constructing a trinomial tree for xwhere 

 dx ax dt dz     

Suppose that the step size is t. The tree branching and probabilities on the tree are chosen so 

that the mean and variance of the change in x in time t are ax t  and 2t, respectively. The 

vertical spacing between nodes, x , is set equal to 3 t . The normal trinomial branching 

process in Figure 1a is used for all nodes that are less than 0.184/(at) nodes from the center of 

the tree. The branching for the first node above 0.184/(at) is Figure 1b and the branching for 

the first node below −0.184/(at) is Figure 1c. 

A new variable ( )x x t   is then defined. The process followed by x is 

  dzdtaxtdx   )(  

where )()()( tatt   . This is the process in equation (1). We can therefore implement the 

model in equation (1) by searching step-by-step through the x* tree to find the function ( )t  that 

correctly matches the initial term structure. In practice, we work forward from time zero shifting 

                                                           
3 The model can be extended to allow a and  to be functions of time. This allows volatilities of caps and swaptions 

to be matched more precisely, at the expense of the model becoming highly nonstationary. See, for example,  Hull 

and White (2001). 
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all the nodes at time it by i so that a zero-coupon bond maturing at time (i+1)t is correctly 

priced. The value of r at a node is calculated from the value of x at the node as f –1(x). Arrow 

Debreu prices for all nodes are calculated as the tree is constructed.  

Arguments along the lines of those in Ames (1977) can be used to prove convergence for this 

type of tree. It is important to note that the rate on the tree is the t-period rate, expressed with 

continuous compounding. It is not the instantaneous short rate.4 This distinction proves to be 

important when models such as Ho and Lee (1986) and Hull and White (1990) are used in 

conjunction with analytic expressions for bond prices and European options.  

For f(r) other than r, the drift of r can be a strange function r. Ito’s lemma gives the process for r 

as 

   dzxhdtxhxhaxtdr )(2)()()( 2    

where h(x) = dr/dx. The shape of the volatility function, h(x), determines the drift of r. If the 

volatility function has a discontinuous first derivative the drift of r is discontinuous. In the case 

of the Black-Karasinski model the process for r is 

  dzrdtratrdr   2)ln()( 2  

The drift of r for a particular value of  is shown in Figure 2.  

It is tempting to modify the drift in equation (1) so that the drift of r has better properties. 

However, this is not possible. The Hull and White (1994, 1996) tree-building procedure works 

only when the drift of x is linear in x. The only justification for accepting the unusual drift for r is 

that a tree for x (and therefore for r) can be constructed fairly easily. In the next section we 

propose an alternative procedure for building short-rate trees that allows us to select virtually any 

one-factor model for the short rate. 

 

 

                                                           
4 Strictly speaking, the numeraire is not the money market account except in the limit as t tends to zero. Within 

each time step the numeraire is the price of a zero coupon bond maturing at the end of the time step. 
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3. A Generalization 

 

Assume that the short rate r follows the process 

  ( ) ( ) ( )dr t F r dt G r dz    (2) 

where ( )t is a function of time chosen so that the model fits the initial term structure while F(r) 

and G(r) are functions determining the drift and volatility of r.5 We require G(r) to be 

continuously differentiable. Define 

 ( )
( )

dr
x f r

G r
     

so that 

 
1

( )

dx

dr G r
   

The process followed by x is 

 ,dx H x t dt dz   

where the drift of x,  ,H x t , is  

  
   

 
   11

, and
2

t F r
H x t G r r f x

G r





    (3) 

We build a tree for x (or equivalently a tree for r) by considering points on a grid that are equally 

spaced in x and time. We denote the x-spacing by x and the time spacing by t.6 The main 

differences between the generalized procedure we describe here and the procedure in Section 2 

are 

                                                           
5 The methodology can be extended to more general models of the form 

   , ,dr F r t dt G r t dz   

where the dependence of the F function on time involves a function  (t) that is chosen to fit the term structure. 
6 For ease of exposition we assume constant time steps. In practice, the time step may not be constant because, when 

valuing a derivative, we usually wish to have nodes on each payment date. The procedure we describe can be 

adjusted as in Hull and White (2001) to accommodate varying time steps. 
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1. In the generalized procedure, we consider values for x that lie on a fixed rectangular grid 

throughout the numerical procedure. We do not shift points on the grid to match the term 

structure. (As explained at the end of Section 2, the latter approach only works for 

particular short rate models.) 

2. The branching process from a node at time it may be different from any of the 

branching processes in Figure 1. We always branch to a triplet of three adjacent nodes at 

time (i+1)t , but the middle node can correspond to any of the values of x considered by 

the grid. 

3. As in the case of the procedure in Section 2, we move forward in time through the tree 

searching iteratively for values of ( )t  that match the initial term structure. However, in 

the case of the generalized procedure, the branching processes and the branch 

probabilities at time t depend on the value of ( )t . 

We now provide details. The x-values considered by the tree are 

 xxxxxxxxx  2,,,,2 00000  

where 3 ,x t   0 0( ),x f r and 0r  is the initial t interest rate.  

The node at time it for which x = x0 + jx will be denoted by the (i, j) node.  The initial x-node 

is therefore (0, 0). We define jd(i) and ju(i) and the lowest and highest values of j that can be 

reached at time it. 

For a particular value of  at time it, the branching process from node (i, j) is determined as 

follows. Define the first and second moment of x at time (i+1)t conditional on x being at node 

(i, j) at time it as m1 and m2, respectively. We set 

   2

121     and)()(5.0)( mtmtrGrGrFrfm jjjj    

where 
jr  is the t rate at node (i, j). By expanding f(r) in the expression for 1m  in a Taylor series 

and noting that ( ) 1 ( )f r G r  we see from equation (3) that, in the limit as t tends to zero, it 
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gives the correct first moment for x. The variance of x is in the limit t. The expression for the 

second moment is therefore also correct in the limit as t tends to zero. 

The nodes that can be reached from node (i, j) are ( 1, 1)i j  , ( 1, )i j , and ( 1, 1)i j   

where j  is chosen so that 0x j x  is as close as possible to m1. This means that 














 5.0int 01

x

xm
j  

Define , ,  and d m up p p as the probabilities of branching from node (i, j) to nodes ( 1, 1)i j  , 

( 1, )i j , and ( 1, 1)i j  , respectively. We choose the probabilities so that the moments are 

matched. This means that 

 

 

2

1 0 1 0

2

2

1 0 1 0

2

2 2

2 2

1

u

d

m u d

t m x j x m x j x
p

x x

t m x j x m x j x
p

x x

p p p

 

 

       
 

 

       
 

 

  

 

Because tx  3  and xxjxm   5.001 , these probabilities are always positive.   

Define Qi,j as the Arrow Debreu price of node (i, j). This is the value of a derivative that pays off 

one if node (i, j) is reached and zero otherwise. We start at time zero, setting 10,0 Q  

and 0)0()0(  ud jj . We then successively consider the nodes at times , 2 , 3 ,t t t     

At time it we choose a trial value of   1i t  . This is used to determine branching 

probabilities for each node at time (i−1)t as well as ( )dj i  and ( )uj i . The Qi, j are determined for 

all j using 

  

)exp(),(
)1(

)1(

,1, 




 
ij

ijk

kkiji

u

d

trjkqQQ  
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where q(k, j) is the probability of moving from node (i−1, k) to (i, j) and 1

0( )kr f x k x   .7  

The price of a zero-coupon bond with maturity (i+1)t is then determined as  

  
 

 

1 , exp
u

d

j i

i i j j

j j i

P Q r t



    

We iterate searching for the value of   1i t   for which this bond price is consistent with the 

initial term structure of interest rates.  Once the correct value of   1i t   is found, 

( )dj i and ( )uj i , the final branching probabilities, and the Qi, j are stored. We are then ready to 

move on to consider the nodes at time (i+1)t. 

Continuing in this way the complete tree is constructed. It is used to value interest rate 

derivatives in an analogous way to other interest rate trees. The complete term structure can be 

calculated at each node by rolling back through the tree to calculate zero-coupon bonds with 

different maturities and recording their values at each node.  

Occasionally when   1i t  is being determined, the branching process oscillates during the 

iterative procedure in such a way that the (i+1)t bond price cannot be exactly matched.8 We 

handle this problem by freezing the current branching process between times (i−1)t  and it 

when the non-convergence is observed and then repeating the iterative procedure to determine 

  1i t  . This does not lead to negative branching probabilities because pu, pm, and pd remain 

positive for a wide range of positions of the central node relative to mean value of x. 

Specifically, they are positive when the distance between the mean value of x and the central 

node ( )01 xjxm    is less that 0.758x. 

Once the interest rate derivative has been valued it is usually necessary to calculate Greek letters. 

This should be done by freezing the final branching process for the whole tree and making small 

changes to the relevant variables. This procedure minimizes the impact of noise on the results.  

                                                           
7 For each k only three values of q(k, j) are non-zero. 
8 This ceases to happen altogether as t tends to zero. 
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One issue usually needs to be addressed for the model in equation (2). If the drift of r is negative 

for some values of t (as can happen, for example, when forward rates decline), the short rate may 

become negative. If x or G(r) is undefined for zero or negative interest rates this causes 

problems. We handle this by making a small adjustment to the drift of r so that it never falls 

below zero. We do this by setting 

    ,)()(5.0)(max1 trGrGrFrfm jjjj 
 

We find that  = 0.0001 works well.9 

Given the trend toward OIS discounting, it is often necessary to consider the behavior of two 

rates simultaneously when valuing interest rate derivatives. Hull and White (2015) propose a 

way in which a procedure for constructing a tree for the rate used for discounting, such as the 

one given here, can be augmented with another procedure that calculates at each node the 

expected value of the rate used to determine payoffs.  

Example 1 

For a detailed illustration of the procedure, we consider a simple example. We choose F(r) = −ar 

and G(r) = r with a > 0 and > 0 so that the process for the short rate is 

  rdzdtartdr   )(  

For this example, ln( )x r   and xr e . Figure 3 shows a two-year tree for the model when 

the initial term structure is given in Table 1, t = 0.5 years, a = 0.2 and = 0.15.  The values of 

( )t together with the ( )dj i  and ( )uj i  are shown in Table 2. Table 3 shows the branching 

probabilities and Table 4 shows the Arrow-Debreu prices and the t-period rate at each node.  

 

Example 2 

As a second more realistic illustration of the tree-building procedure, we let the G(r) function be  

                                                           
9 For some currencies it may be desirable to let the interest rate become slightly negative. Suppose that it is 

considered that the rate could become –e The simplest way of handling this is to assume that the procedures 

proposed here be used for r+e instead of r. 
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  

 

 

2

1 1 1

2

1 1 2

2

2 when

when

when

s r r r r r r

G r s K r r r r r

r r r 

   
 


    
  



 (4) 

where K is a positive constant. This function is always continuous and differentiable at r = r1.  

To ensure continuity and differentiability at r = r2, we set  2 1/ 2( )K r r   and 

2

2 1 2( )s K r r r     . The function was chosen because it is similar to the function derived for 

historical short-rate movements by Deguillaume et al (2013). (The latter is discussed further in 

the next section.) The drift was as in Example 1 with a = 0.05.  We set r1 = 0.02, r2 = 0.1, s = 

0.02, and  = 0.2 so that K = 1.25 and = 0.008. The volatility function is shown in Figure 4. 

The term structure was that on December 2, 2013 and is shown in Table 5. 

From equation (4), x is defined as follows 

   

 

1
1

1

1

1 1 2

2

ln when
2 2

1
tan / when

1
ln when

r r
r r

s r r

x r r K s r r r
sK

r C r r




 




   



  


 


 

where  

    1

2 2 1

1 1
ln tan /C r r r K s

sK

     


 

The constants of integration are chosen so that x is continuous.  

The inverse function is  
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 

 
 

1

1

1 1

1

2
when 0

1 exp 2 /

tan when 0

exp ( )
when

r
x

sx r

r r s / K  x sK x x

x C
x x


  




   


 




 



 

where 

  1

1 2 1

1
tan /-x r r K s

sK
   

Table 6 shows how the values calculated for annual-pay caps converge as the number of time 

steps is increased.   
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4. The Volatility Function Implied By Market Data 

The attraction of the generalized model is that users are able to specify the drift and the volatility 

function, G(r), in any way they like.10 In particular, the prices of actively traded options can be 

used to determine the volatility function. If G(r) is defined by some set of parameters, the model 

can be calibrated to market data by choosing the parameter values so that the model fits observed 

prices as well as possible. For example, a mean reverting drift could be specified and the 

volatility function could be set to  G r r . In this case, the calibration would find the value 

of  that best matches observed option prices. 

We choose to specify the volatility in a more general way. We let G(r) be a piecewise linear 

function of r defined by a set of specified corner points, ri, for i = 1, …, n and the values of the 

function at each corner point, si. Since this function is not continuously differentiable, it is 

necessary to develop a procedure for “rounding” the corner points. The details of this procedure 

appear in the Appendix. To avoid negative interest rates G(0) is set to zero. The model is then 

calibrated to market data by choosing the values of is  that result in a best fit to observed market 

prices. The market data therefore defines the shape of the G(r) function. 

To illustrate this process we calibrate the model  

  dzrGdtartdr )()(                                                             (5) 

with a = 0.05 to the prices of 10-year caps with different strikes observed on December 2, 2013. 

The term structure is that given in Table 5 and the cap volatilities and prices are given in Table 7. 

We chose n = 7 and set the values of ri equal to 1%, 2%, 3%, 4%, 5%, 6%, and 10% . The 

“goodness-of-fit” objective function we used was 

 
 

2

1

N
i i

i i

U V

U


  

                                                           
10 The ability to define the drift of the process is particularly important if the model is to be adapted to model the 

evolution of real (as opposed to risk-neutral) interest rates for risk management purposes. (See Hull, Sokol, and 

White (2014). 
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where N is the number of different caps used in the calibration (as indicated in Table 7, N = 10 

for this test), and Ui and Vi are the market price and model price of the ith cap.  An optimizer was 

then used to find the si that minimized the objective function.  

The fitted cap prices and the pricing errors are shown in Table 7 and the best fit set of si that 

result are shown in Table 811. The resulting G(r) is shown in Figure 5. Because of the large 

number of degrees of freedom in the calibration, the fit to the market prices is very good. 

Unfortunately, the type of high dimensional optimization involved in determining the best fit 

G(r) function when n = 7 is both time consuming and difficult. However, an examination of the 

G(r) function illustrated in Figure 5 shows that a simpler functional form may be acceptable. To 

explore this possibility we recalibrated the model using a G(r) with only three corner points: 1%, 

5% and 10%. The fitted cap prices and the pricing errors are shown in Table 9 and the best fit set 

of si that result is shown in Table 10. The resulting G(r) is shown in Figure 5. 

The best fit G(r) for the December 2, 2013 10-year caps is similar to the empirical observations 

of Deguillaume et al (2013). This paper shows that the short rate exhibits approximate lognormal 

behavior when the rate is low or high. For intermediate values of the rate, the behavior is 

approximately normal. The process derived from historical data by Deguillaume et al (2013) is  

 dr r dz   

where 

  

 

when

when

when

L L

L U

U U

s r r r r

r s r r r

s r r r r





 


  
   

  

This function is illustrated in Figure 6. 

The Deguillaume et al results are remarkably consistent across currencies and time periods. 

Because they are based on historical data, they apply to rate changes in the real world.  However, 

                                                           
11 Table 7 also shows the pricing errors that arise if the Hull-White (normal) or Black-Karasinski (lognormal) 

models are calibrated to the data. These models both have a systematic bias in their fit to the data. The Hull-White 

model tends to over-price low strike options and under-price high strike options. The reverse is true for the Black-

Karasinski model. 
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Girsanov’s well-known theorem shows that volatilities are unaffected by a change of measure. 

We should therefore expect the volatility of the short rate as a function of the short rate to be the 

same in both the real world and the risk-neutral world. Our results for the December 2013 10-

year caps suggest that the volatility function has the same shape in the two worlds  

The Deguillaume et al results are based on the long run average behavior of interest rates. To 

explore the longer-run average behavior of implied G(r) functions we calibrated the model in 

equation (5) to cap prices observed between 2004 and 2013. Market data for caps observed on 

the last trading day of March in each year were used. To minimize the effect on the calibration of 

very high and very low strike options the cap quotes used for a particular maturity were those 

where the cap rate was within 1.5 standard deviations of the at-the-money strike price.12 Because 

of this filtering the short-dated caps that are included in the calibration generally have fairly low 

strike prices. We were concerned that this might affect to calibration process, particularly the 

portion of the G(r) function that applies to high rates. As a result we divided the cap data into 

short-term caps, caps with maturities between 1 and 10 years, and long-term caps, caps with 

maturities between 10 and 30 years. The G(r) function for each year was estimated for these two 

groups separately. In each calibration, the model was fitted to about 50 caps with different strikes 

and maturities. 

The choice of the corner points in the parameterization of G(r) was determined by 

experimentation. We first tried the corner points used when calibrating to the December 2013 

data, 1% and 5%. We then tried 2% and 6% and ultimately decided to use 1.5% and 6% on the 

grounds that the goodness of fit for these corner points was slightly better on average than for the 

alternatives. The best fit parameters for each of the calibrations, as well as the average parameter 

values averaged over the ten years of observations, are shown in Table 11 and illustrated in 

Figures 7 and 8. In every year the G(r) function has the same shape as the Deguillaume et al 

function. Further, there is a high degree of similarity between the results for calibration to short-

term caps and calibration to long-term caps in each year. Most of the deviation is observed in the 

value of G(r) for high values of r where the short term caps provide little information. 

                                                           
12 The standard deviation was the average cap volatility for the maturity being considered multiplied by the square-

root of the maturity.  



16 
 

The volatility structure implied by cap prices is similar to that observed in the real world. The 

structures calibrated from cap prices provide a measure of the volatility structure at a point in 

time. As the results show, this changes from year to year and probably from day to day. Since we 

cannot observe the real world volatility structure over short periods of time the best we can say is 

that these results are consistent with Girsanov’s theorem. Overall, our results are supportive of 

the conjecture that the volatility function used (implicitly or explicitly) by market participants 

when pricing interest rate caps is similar to the volatility function derived by Deguillaume et al. 

What is more, this was true even before the Deguillaume et al research was first available as a 

working paper. 

 

5. Conclusions 

Interest rate trees are useful tools for implementing models of the short rate. Researchers have 

tended to use short rate models that have a particular form because there are well established 

procedures in the literature for constructing trees for these models. This paper greatly expands 

the range of models that can be used. This means that the choice of an interest rate model can be 

related more closely to the behavior of interest rates. We have shown how our tree-building 

technology can be used for a general model where the volatility function is approximately 

piecewise linear and the drift is mean-reverting. When we calibrate the model to market data, we 

find that a volatility function close to that estimated by Deguillaume et al (2013) from historical 

data gives the best fit. Girsanov’s theorem shows that volatilities are invariant to a change of 

measure. The paper therefore provides important support for the Deguillaume et al research 

findings. It also is suggestive of the volatility function that should be used to value non-standard 

interest rate options. 
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Appendix 

In this appendix we describe how to fit an arbitrary volatility function, G(r). Suppose that 

G(0) = 0, G(r1) = s1, G(r2)= s2, G(r3) = s3 and so on. If we fit a piecewise linear function to this 

data then 

 

  1

1 1 1

1 1

for

and

i i i i

i i i i i i
i i

i i i i

G r a b r r r r

s r s r s s
a b

r r r r



  

 

   

 
 

 

  (A1) 

In order for the function to be continuous we require that the values on both sides of the corner 

points be the same. As a result 

  1 1 1i i i i ia a b b r      (A2) 

The first derivative of the function is 

   1fori i iG r b r r r
      

This derivative is discontinuous at the corner points. 

In order to make the piecewise linear function be continuous and have a continuous derivative 

we insert a quadratic, 
2

1 1 1i i ix y r z r    , between 1ir   and 1ir   . If G(r) is to be continuous 

 
     

     

2

1 1 1 1 1 1

2
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If G(r) is to have a continuous first derivative 

 
 

 

1 1 1

1 1 1 1

2

2

i i i i

i i i i

b y z r

b y z r

  

   

  

   
  

Making use of equation (A2) these conditions can be solved for z, y and x 
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  
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4
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  (A3) 

The resulting continuously differentiable function is: 

  
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where the coefficients are given in equations (A1), (A2) and (A3). 

In the linear regions the x(r) function is  

  
 ln / 0

/ 0

a br b C b
x r

r a C b

   
 
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In the quadratic regions the x(r) function is  

  

12 2
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where 
24D xz y  . The constants of integration, C, are chosen to make x(r) continuous. 

In the linear regions the r(x) function is  

  
  

 

exp / 0

0

b x C a b b
r x

a x C b

   
 

 

 



21 
 

In the quadratic regions the r(x) function is  
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where   expq D x C  . When the discriminant, D, is negative only one of the two roots lies 

within the current region. 

This procedure allows us to replicate almost any G(r) function with high fidelity. The only 

condition that must be satisfied is that 1 2i ir r    . 
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Table 1 

Zero Coupon Interest Rates for Example 1 

Maturity Rate per annum 

(years) (% cont. comp.) 

0.5 5.0 

1.0 6.0 

1.5 7.0 

2.0 7.5 

3.0 8.5 

 

 

 

Table 2 

Values of Theta for Example 1 

Time 

(years) 

Minimum 

Node 

Maximum 

Node 
Theta 

0.0 0 0 0.04980 

0.5 1 3 0.05387 

1.0 2 5 0.01817 

1.5 1 6 0.03812 

2.0 1 7 
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Table 3 

Probabilities of Transitions between Nodes on the Tree for Example 1 

Time 

(years) 

Start 

Node 

End Node 

1 2 3 4 5 6 7 

0.0 0 0.2853 0.6275 0.0873 
    

0.5 1 
 

0.4432 0.5097 0.0471 
   

0.5 2 
 

0.0637 0.5826 0.3537 
   

0.5 3 
  

0.1597 0.6665 0.1739 
  

1.0 2 0.1182 0.6549 0.2269 
    

1.0 3 
 

0.1692 0.6666 0.1641 
   

1.0 4 
  

0.2227 0.6563 0.1210 
  

1.0 5 
   

0.2752 0.6330 0.0918 
 

1.5 1 0.1452 0.6646 0.1902 
    

1.5 2 
 

0.2864 0.6268 0.0868 
   

1.5 3 
  

0.4575 0.4970 0.0455 
  

1.5 4 
  

0.0462 0.5028 0.4510 
  

1.5 5 
   

0.0735 0.6054 0.3211 
 

1.5 6 
    

0.1165 0.6539 0.2296 

 

 

 

Table 4 

Arrow Debreu Prices and the Interest Rate at each node for Example 1 

 

Time 

(years) 0 1 2 3 4 5 6 

0.0 0.2782 0.6120 0.0851 
    

0.5 
 

0.1573 0.4945 0.2758 0.0142 
  

1.0 0.0179 0.1795 0.4084 0.2532 0.0401 0.0012 
 

1.5 0.0025 0.0612 0.3018 0.3330 0.1491 0.0128 0.0003 

Node Rate 6.008% 7.220% 8.676% 10.426% 12.528% 15.055% 18.091% 
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Table 5 

Zero coupon interest rates for Example 2 and cap calibration 

Time (yrs) Zero Rate 

0.25 0.20% 

0.5 0.22% 

1 0.27% 

2 0.38% 

3 0.67% 

4 1.08% 

5 1.52% 

6 1.93% 

7 2.27% 

8 2.55% 

9 2.78% 

10 2.98% 

15 3.60% 

20 3.85% 

25 3.96% 

30 4.02% 

 

Table 6 

Values of caps with annual payments on December 2, 2013 when volatility  

function is as shown in Figure 4, cap rate is 4%, and the principal is 100.  

Steps Cap Life (yrs) 

per year 10 20 30 

1 8.56 21.49 29.11 

2 7.84 20.18 27.38 

5 7.65 20.00 27.26 

10 7.67 20.11 27.43 

15 7.63 20.03 27.33 

20 7.64 20.01 27.29 
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Table 7 

Calibrating a piecewise linear G(r) function to the market prices of 10-year caps on 

December 2, 2013. The columns headed HW Price Difference and BK Price 

Difference show the errors that arise when the Hull-White (normal) or Black-

Karasinki (lognormal) models are used. The term structure on that date is shown in 

Table 5. The best fit G(r) function is shown in Table 8 and illustrated in Figure 5. 

Cap 

Strike 

Market 

Volatility 

Market 

Price 

Model 

Price 

Price 

Difference 

HW Price 

Difference 

BK Price 

Difference 

1.00% 50.75% 19.18% 18.87% –0.31% 2.19% –1.03% 

2.00% 38.73% 14.06% 13.86% –0.20% 1.89% –1.27% 

3.00% 32.30% 9.96% 9.99% 0.03% 1.60% –0.89% 

4.00% 30.15% 7.21% 7.12% –0.09% 0.89% –0.67% 

5.00% 28.50% 5.19% 5.10% –0.09% 0.28% –0.39% 

6.00% 26.50% 3.56% 3.68% 0.12% –0.01% 0.05% 

7.00% 25.72% 2.56% 2.63% 0.07% –0.35% 0.17% 

8.00% 25.50% 1.92% 2.01% 0.09% –0.61% 0.19% 

9.00% 25.55% 1.50% 1.46% –0.04% –0.76% 0.13% 

10.00% 25.70% 1.20% 1.12% –0.08% –0.80% 0.10% 

 

 

Table 8 

The corner points of the best fit piecewise linear G(r) function calibrated to the 

market data in Table 7. This function is illustrated in Figure 5. 

ri 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 10.0% 

si 0.00% 1.48% 1.68% 1.68% 1.80% 1.97% 2.33% 3.43% 

 

 



26 
 

Table 9 

Results from calibrating a piecewise linear G(r) function to the market prices of 

10-year caps on December 2, 2013. The term structure on that date is shown in 

Table 5. The best fit G(r) function is shown in Table 10 and illustrated in Figure 

5. The market price is expressed as a percent of notional principal. 

Cap 

Strike 

Market 

Volatility 

Market 

Price 

Model 

Price 

Price 

Difference 

1.00% 50.75% 19.18% 19.01% –0.17% 

2.00% 38.73% 14.06% 14.07% 0.01% 

3.00% 32.30% 9.96% 10.18% 0.22% 

4.00% 30.15% 7.21% 7.23% 0.01% 

5.00% 28.50% 5.19% 5.08% –0.11% 

6.00% 26.50% 3.56% 3.59% 0.04% 

7.00% 25.72% 2.56% 2.58% 0.02% 

8.00% 25.50% 1.92% 1.95% 0.03% 

9.00% 25.55% 1.50% 1.41% –0.09% 

10.00% 25.70% 1.20% 1.09% –0.11% 

 

 

Table 10 

The value of the best fit piecewise linear G(r) function, is , calibrated to the 

market data in Table 9 at each of the corner points. This function is illustrated in 

Figure 5. 

ri 0.0% 1.0% 5.0% 10.0% 

si 0.00% 1.62% 1.83% 3.48% 
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Table 11 

The value of the best fit piecewise linear G(r) function, is , calibrated to the market data in 

Table 9 at each of the corner points. The upper panel shows the is  for the case in which the 

calibration set is short-term caps (illustrated in Figure 7). The middle panel shows the is  

for the case in which the calibration set is long-term caps (illustrated in Figure 8). The 

lower panel shows the difference between the two calibrations. 

 Short-term Caps: 1- to 10-year maturity 

 
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Avg. 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1.50% 1.59% 0.93% 1.05% 0.92% 1.30% 1.28% 1.61% 1.55% 1.87% 1.96% 1.41% 

6.00% 1.91% 1.21% 1.05% 0.94% 1.35% 1.63% 1.70% 2.00% 2.10% 2.16% 1.60% 

10.00% 2.50% 2.11% 2.07% 1.88% 1.57% 4.40% 2.55% 3.38% 3.37% 4.71% 2.85% 

 Long-term Caps: 10- to 30-year maturity 

 
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Avg. 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1.50% 1.49% 1.19% 1.16% 1.01% 1.28% 1.37% 1.48% 1.56% 1.84% 1.88% 1.43% 

6.00% 1.59% 1.21% 1.16% 1.01% 1.30% 1.52% 1.48% 1.76% 1.89% 1.90% 1.48% 

10.00% 1.95% 1.95% 1.80% 1.63% 1.68% 4.30% 2.54% 2.82% 3.36% 4.88% 2.69% 

 Difference in Calibration Results: Long-term parameter less Short-term parameter 

 
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Avg. 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1.50% –0.10% 0.26% 0.11% 0.09% –0.02% 0.09% –0.13% 0.01% –0.03% –0.08% 0.02% 

6.00% –0.32% 0.00% 0.11% 0.07% –0.05% –0.11% –0.22% –0.24% –0.21% –0.26% –0.12% 

10.00% –0.54% –0.15% –0.27% –0.25% 0.12% –0.09% –0.01% –0.57% –0.02% 0.17% –0.16% 
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Figure 1 

Branching processes used in Hull and White (1994, 1996) 

(a) (b) (c)
 

 

 

Figure 2 

The drift of the short rate, r, as a function of r in Black and Karasinski (1991) when the volatility 

of r is 20%, the reversion rate, a, is 5% and the reversion level, at)( , is ln(0.03). 
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Figure 3 

Tree for Example 2 

Node, j

7

6

5

4

3

2

1

0

Time(yrs) 0.0 0.5 1.0 1.5 2.0

 

 

Figure 4 

Volatility function in equation (4) used to test model convergence. 
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Figure 5:  

The best-fit G(r) function calibrated to 10-year cap prices from December 2, 

2013. Two different functional forms are used. In the first case G(r) is a piecewise 

linear function defined by 7 corner points. In the second case G(r) is defined by 3 

corner points. 
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Figure 6:  

Deguillaume et al’s result for the variability of the short rate as a function of the 

short rate  
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Figure 7 

The best-fit G(r) function calibrated to 1- to 10-year cap prices from 2004 to 

2013. The solid line shows the average of the ten G(r) functions 
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Figure 8 

The best-fit G(r) function calibrated to 10- to 30-year cap prices from 2004 to 

2013. The solid line shows the average of the ten G(r) functions 

 

 

 


