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ABSTRACT 

As has been pointed out by a number of researchers, the normally calculated delta does not 

minimize the variance of changes in the value of a trader’s position. This is because there is a 

non-zero correlation between movements in the price of the underlying asset and movements in 

the asset’s volatility. The minimum variance delta takes account of both price changes and the 

expected change in volatility conditional on a price change. This paper determines empirically a 

model for the minimum variance delta. We test the model using data on options on the S&P 500 

and show that it is an improvement over stochastic volatility models, even when the latter are 

calibrated afresh each day for each option maturity. We also present results for options on the 

S&P 100, the Dow Jones, individual stocks, and commodity and interest-rate ETFs. 
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Optimal Delta Hedging for Options 

 

I. Introduction 

The textbook approach to managing the risk in a portfolio of options involves specifying a 

valuation model and then calculating partial derivatives of the option prices with respect to the 

underlying stochastic variables. The most popular valuation models are those based on the 

assumptions made by Black and Scholes (1973) and Merton (1973). When hedge parameters are 

calculated from these models, the usual market practice is to set each option’s volatility 

parameter equal to its implied volatility. This is sometimes referred to as using the “practitioner 

Black-Scholes model.” The “practitioner Black-Scholes delta” for example is the partial 

derivative of the option price with respect to the underlying asset price with other variables, 

including the implied volatility, kept constant.  

Delta is by far the most important hedge parameter and fortunately it is the one that can be most 

easily adjusted as it only requires a trade in the underlying asset. Ever since the birth of 

exchange-traded options markets in 1973, delta hedging has played a major role in the 

management of portfolios of options. Option traders adjust delta frequently, making it close to 

zero, by trading the underlying asset.  

Even though the Black-Scholes-Merton model assumes volatility is constant, market participants 

usually calculate a “practitioner Black-Scholes vega” to measure and manage their volatility 

exposure. This vega is the partial derivative of the option price with respect to implied volatility 

with all other variables, including the asset price, kept constant.1 This approach, although not 

based on an internally consistent model, has the advantage of simplicity. The price of an option 

at any given time is, to a good approximation, a deterministic function of the underlying asset 

price and the implied volatility.2 A Taylor series expansion shows that the risks being taken can 

be assessed by monitoring the impact of changes in these two variables.  

                                                 
1 In a portfolio of options dependent on a particular asset, the options typically have different implied volatilities. 

The usual practice when vega is calculated is to calculate the portfolio vega as the sum of vegas of the individual 

options. This is equivalent to considering the impact of a parallel shift in the volatility surface.  
2 This is exactly true if we ignore uncertainties relating to interest rates and dividends. 
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As is well known, there is a negative relationship between an equity price and its volatility. This 

was first shown by Black (1976) and Christie (1982) who used physical volatility estimates. 

Other authors have shown that it is true when implied volatility estimates are used.  One 

explanation for the negative relation is leverage. As the equity price moves up (down), leverage 

decreases (increases) and as a result volatility decreases (increases). In an alternative hypothesis, 

known as the volatility feedback effect, the causality is the other way round. When there is an 

increase (decrease) in volatility, the required rate of return increases (decreases) causing the 

stock price to decline (increase). The two competing explanations have been explored by a 

number of authors including French et al (1987), Campbell and Hentschel (1992), Bekaert and 

Wu (2000), Bollerslev et al (2006), Hens and Steude (2009), and Hasanhodzic and Lo (2013).  

On balance, the empirical evidence appears to favor the volatility feedback effect.  

A number of researchers have recognized that the negative relationship between an equity price 

and its volatility means that the practitioner Black-Scholes delta does not give the position in the 

underlying equity that minimizes the variance of the hedger’s position. The minimum variance 

(MV) delta hedge takes account of the impact of both a change in the underlying equity price and 

the expected change in volatility conditional on the change in the underlying equity price.  Given 

that delta hedging is relatively straightforward, it is important that traders get as much mileage as 

possible from it. Switching from the practitioner Black-Scholes delta to the minimum variance 

delta is therefore a desirable objective. Indeed it has two advantages. First, it lowers the variance 

of daily changes in the value of the hedged position. Second, it lowers the residual vega exposure 

because part of vega exposure is handled by the position that is taken in the underlying asset. 

A number of stochastic volatility models have been suggested in the literature. These include 

Hull and White (1987, 1988), Heston (1993), and Hagan et al (2002). A natural assumption 

might be that using a stochastic volatility model automatically improves delta. In fact, this is not 

the case if delta is calculated in the usual way, as the partial derivative of the option price with 

respect to the asset price.  To calculate the MV delta, it is necessary to use the model to 

determine the expected change in the option price arising from both the change in the underlying 

asset and the associated expected change in its volatility. 

A number of researchers have implemented stochastic volatility models and used the models’ 

assumptions to convert the usual delta to an MV delta. They have found that this produces an 

improvement in delta hedging performance, particularly for out-of-the-money options. The 
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researchers include Bakshi et al (1997) who implemented three different stochastic volatility 

models using data on call options on the S&P 500 between June 1988 and May 19913; Bakshi et 

al (2000), who looked at short and long-term options on the S&P 500 between September 1993 

and August 1995;  Alexander and Nogueira (2007), who looked at call options on the S&P 500 

during a six month period in 2004; Alexander et al (2009), who consider the hedging 

performance of six different models using put and call options on the S&P 500 trading in 2007; 

and Poulsen et al (2009) who looked at data on S&P 500 options, Eurostoxx index options, and 

options on the U.S. dollar euro exchange rate during the 2004 to 2008 period. Bartlett (2006) 

shows how a minimum variance hedge can be used in conjunction with the SABR stochastic 

volatility model proposed by Hagen et al (2002).  

This paper is different from the research just mentioned in that it is not based on a stochastic 

volatility model. It is similar in spirit to papers such as Crépey (2004), Vähämaa (2004) and 

Alexander et al (2012).  These authors note that the minimum variance delta is the practitioner 

Black-Scholes delta plus the practitioner Black-Scholes vega times the partial derivative of the 

expected implied volatility with respect to the asset price. Improving delta therefore requires an 

assumption about the partial derivative of the expected implied volatility with respect to the asset 

price. Crépey (2004) and Vähämaa (2004) test setting the partial derivative equal to (or close to) 

the (negative) slope of the volatility smile, as suggested by the local volatility model.4 Alexander 

et al (2012) build on the research of Derman (1999) and test eight different models for the partial 

derivative, including a number of regime-switching models.  

This paper extends previous research by determining empirically a model for the partial 

derivative of the expected implied volatility with respect to asset price. We show that, when the 

underlying asset is the S&P 500, this partial derivative is to a good approximation a quadratic 

function of the practitioner Black-Scholes delta of the option divided by the product of the asset 

price and the square root of the time to maturity. This leads to a simple model where the MV 

delta is calculated from the practitioner Black-Scholes delta, the practitioner Black-Scholes vega, 

the asset price, and the time to option maturity. We show that the hedging gain from 

approximating the MV delta in this way is better than that obtained using a stochastic volatility 

model or a local volatility model. The results have practical relevance to traders, many of whom 

                                                 
3 They also looked at puts on the S&P 500, but did not report the results as they were similar to calls. 
4 See for example Derman et al (1995) and Coleman et al (2001). The local volatility model was suggested by 

Derman and Kani (1994) and Dupire (1994).   
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still base their decision making on output from the practitioner Black-Scholes model. The 

hedging gain from using our approach for options on other indices was similar to that for options 

on the S&P 500. The approach also led to a hedging gain for options on individual stocks and 

ETFs, but this was not as great as for options on indices.  

The structure of the rest of the paper is as follows. We first discuss the nature of the data that we 

use. Second, we develop the theory that allows us to parameterize the evolution of the implied 

volatilities of options. The theory is then implemented and tested out-of-sample using options on 

the S&P 500. The results are compared with those from a stochastic volatility and a local 

volatility model. Based on the results for the S&P 500 we then carry out tests for options on 

other indices and for options on individual stocks and ETFs.  

 

II. Data 

We used data from OptionMetrics. This is a convenient data source for our research. It provides 

daily prices for the underlying asset, closing bid and offer quotes for options, and hedge 

parameters based on the practitioner Black-Scholes model. We chose to consider options on the 

S&P 500, S&P 100, the Dow Jones Industrial Average of 30 stocks (DJIA), the individual stocks 

underlying the DJIA, and five ETFs. The assets underlying three of the ETFs are commodities, 

gold (GLD), silver (SLV) and oil (USO). The assets underlying the other two ETFs were the 

Barclays U.S. 20+ year Treasury Bond Index (TLT) and the Barclays U.S. 7-10 year Treasury 

Bond Index (IEF). The options on the S&P 500 and the DJIA are European. Both European and 

American options on the S&P 100 are included in our data set. Options on individual stocks and 

those on ETFs are American. The period covered by the data we used is January 2, 2004 to 

August 31, 2015 except for the commodity ETFs where data was first available in 2008.5  

Only option quotes for which the bid price, offer price, implied volatility, delta, gamma, vega, 

and theta were available were retained. The option data set was sorted to produce observations 

for the same option on two successive trading days. For every pair of observations the data was 

normalized so that the underlying price on the first of the two days was one. Options with 

remaining lives less than 14 days were removed from the data set. Call options for which the 

                                                 
5 This is a much longer period than that used by other researchers except Alexander et al (2012). 
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practitioner Black-Scholes delta was less than 0.05 or greater than 0.95, and put options for 

which the practitioner Black-Scholes delta was less than –0.95 or greater than –0.05 were 

removed from the data set. For options on individual stocks, in addition to the filters used for 

options on the indices, days on which stock splits occurred were removed. 

After all the filtering there remain more than 1.3 million price quotations for both puts and calls 

on the S&P 500, about 0.5 million observations for the other indices and ETFs, and about 

200,000 observations for options on each individual stock in the Dow Jones Industrial Index. The 

trading volume for puts on the S&P 500 is much greater than that for calls.6 Puts and calls trade 

in approximately equal volumes for other indices. Calls trade more actively than puts for the 

individual stocks. Trading tends to be concentrated in close-to-the-money and out-of-the-money 

options. One notable feature is that the trading of close-to-the-money call options is particularly 

popular. The majority of trading is in options with maturities less than 91 days. 

 

III. Background Theory 

In the Black-Scholes model the underlying asset price follows a diffusion process with constant 

volatility.  Many alternatives to Black-Scholes have been developed in an attempt to explain the 

option prices that are observed in practice. These involve stochastic volatility, jumps in the asset 

price or the volatility, risk aversion, and so on.  Departures from Black-Scholes tend to reduce 

the performance of delta hedging. For example, Sepp (2012) shows that this is so for a mixed-

jump diffusion model and some of the papers referenced earlier show that this is so for stochastic 

volatility models. In this section we provide a theoretical result for determining the minimum 

variance delta from the practitioner Black-Scholes delta. The result involves the implied 

volatility and is exactly true in the limit for diffusion processes while being an approximation in 

the case of other models.  

                                                 
6 The bid-offer spread for puts on the S&P 500 is smaller than that for calls except in the case of deep in-the-money 

options where the spreads are about the same. 
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Define S as a small change in an asset price and f as the corresponding change in the price of 

an option on the asset.  The minimum variance delta, MV, is the value that minimizes the 

variance of 7 

 MVf S     (1) 

We show in Appendix A that it is approximately true that  

 
   imp impBS BS

MV BS BS

imp

E Ef f

S S S

    
      

   
  (2) 

where fBS is the Black-Scholes-Merton pricing function, imp is the implied volatility, BS is the 

practitioner Black-Scholes delta, BS is the practitioner Black-Scholes vega, and E(imp) is the 

expected value of the implied volatility as a function of S. 

Other authors, in particular Alexander et al (2012), have explored the effectiveness of various 

estimates ∂E(imp)/∂S in determining the minimum variance delta. In what follows we estimate 

this function empirically and then conduct out-of-sample tests of the effectiveness of the 

estimated function.  

When presenting our results, we shall define the effectiveness of a hedge as the percentage 

reduction in the sum of the squared residuals resulting from the hedge. We denote the Gain from 

an MV hedge as the percentage increase in the effectiveness of an MV hedge over the 

effectiveness of the practitioner Black-Scholes hedge. Thus: 

 
 
 

MV

BS

Gain 1
SSE f S

SSE f S

  
 

  
  (3) 

where SSE denotes sum of squared errors.8 

 

                                                 
7 An early application of this type of hedging analysis to futures markets is Ederington (1979) 
8 Using standard deviations rather than SSEs would produce a similar measure but the Gain would be numerically 

smaller 
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IV. Analysis of S&P 500 Options 

In this section we examine the characteristics of the MV delta for options on the S&P 500 with 

the objective of determining the functional form of the MV delta. Once we have a candidate 

functional form, we will test it out of sample for both options on the S&P 500 and options on 

other assets. 

We start with an implementation based on equation (1) applied to daily price changes:  

 MVf S       (4) 

where  is an error term. Because the mean of S and f are both close to zero, minimizing the 

variance of  in this equation, and other similar equations that we will test, is functionally 

equivalent to minimizing the sum of squared values. Several other variations on the model were 

tried such as using non-normalized data, replacing f with f – BSt, where BS is the 

practitioner Black-Scholes theta9 and t is one trading day, or including an intercept. None of the 

variations had a material effect on the results we present. The results that we report are for the 

model in (4).  

We estimated equation (4) for options with different moneyness and time to maturity. 

Moneyness was measured by BS. We created nine different moneyness buckets by rounding BS 

to the nearest tenth and seven different option maturity buckets (14 to 30 days, 31 to 60 days, 61 

to 91 days, 92 to 122 days, 123 to 182 days, 183 to 365 days, and more than 365 days). For each 

delta and each maturity bucket, the value of MV was estimated. In all cases MV – BS was 

negative. This result is consistent with the results of other researchers. It means that traders of 

S&P 500 index options should under-hedge call options and over-hedge put options relative to 

relative to the hedge suggested by the practitioner Black-Scholes model.10   

                                                 
9 The practitioner Black-Scholes theta is the partial derivative with respect to the passage of time with the volatility 

set equal to the implied volatility) and time is measured in days. If the asset price and its implied volatility do not 

change, the option price can be expected to decline by about BSt in one day. 
10 A call has a positive delta and the MV delta, MV, is less positive than BS; a put has a negative delta and MVis 

more negative than BS. 
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The bucketed results show that MV – BS is not heavily dependent on option maturity and is 

roughly quadratic in BS. It is approximately true that11 

  BS BSS TG      

for some function G where T is the time to the option maturity. From this equation, equation (2), 

and the assumption of scale invariance12 we obtain 

  2BS
MV BS BS BSa b c

S T


          (5) 

where a, b, and c are constants. Applying (5) to equation (2) shows that  

  
2

BS BS
imp

a b c S
E

ST

     
   

 
   

In the balance of the paper we examine the effectiveness of the approximation in equation (5) for 

MV. 

 

V. Out of Sample Tests of S&P 500 Options 

To this point our work has been largely descriptive, motivated by a desire to produce a simple 

model of how the volatility surface for S&P 500 options evolves as a result of stock price 

changes. Our simple model is that for a particular moneyness and a particular stock price change, 

the expected size of the change in the implied volatility is inversely proportional to the square-

root of the option life. For a particular option maturity and a particular percentage stock price 

change, the expected size of the change in the implied volatility is a quadratic function of our 

measure of moneyness, BS. The same model applies across the range of deltas considered.  

                                                 
11 For European options,  BS 1

qTS T N d e   where 2

1 ln( / ) ( / 2)d S K r q T T       , K is the strike price, T 

is the time to maturity, r is the risk-free rate, q is the dividend yield, and N is the cumulative normal distribution 

function. However, 
BS 1( ) qTN d e   so that 1

1 ( )qT

BSd N e  .  As a result,  1

BS BS( )qT qTv S T N N e e   . If q is zero 

 BSv S T is dependent only on BS. When q is small this is approximately true.  

12 A scale invariant model is one where the distribution of St / S0 is independent of S0. See for example Alexander 

and Nogueira (2007). 
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We now consider how well our empirical hedge ratio model works in reducing uncertainty.  We 

estimate the MV delta using historical data and then use that estimate to reduce the variance of 

the hedging error in the future. In carrying out this test we use a moving window where 

parameters are estimated over a 36-month period and then used to determine MV hedges during 

the following month. The first month for which MV hedges are estimated is January 2007 and 

the last is August 2015. We tested moving windows of length between 12- and 60-months but 

did not find that any one of these was materially better than the others.13  

The only element of our simple model that is unknown is the quadratic function of moneyness in 

equation (5). We estimate the model parameters, a, b and c, using a regression model based on 

equations (4) and (5).  

  2BS
BS BS BS

S
f S a b c

ST

 
            (6) 

where f is the one-day change in the option price, S is the change in the stock price, S, T is the 

remaining life of the option, and BS and vBS are the delta and vega calculate using the 

practitioner Black-Scholes model. This model is fitted to all options in each 36-month estimation 

period. The estimation is done separately for puts and calls. The estimated coefficients, â , b̂ , 

and ĉ , are shown in Figure 1. Usually, the parameters of the best fit quadratic model change 

slowly through time, but during the credit crisis of 2008 some extreme changes were observed. 

The three coefficients estimated in a 36-month estimation period are used to determine the hedge 

error resulting when the estimated model is used to hedge each option on each day in the 

following test month. The hedging error based on this model, MV, is 

  2BS
MV BS BS BS

ˆˆ ˆ
S

f S a b c
ST

 
             

The hedging error based on standard Black-Scholes hedging, BS, is 

 
BS BSf S        

                                                 
13 In all our reported results we consider one day changes in option prices and implied volatilities when estimating 

the MV hedge parameters. Slightly better results occur if the observation period is increased to several trading days. 
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Once the hedging errors have been calculated for all 104 months the Gain (equation (3)) 

resulting from using our model to hedge is then calculated as 

 

 
MV

BS

Gain  1
SSE

SSE


 


  

The Gain was calculated including the residuals for all options and then considering only the 

residuals from options in a particular delta bucket. This resulted in one overall Gain and 9 

bucketed Gains for each test month.  

When the residuals for all options are included, the average Gain is about 26% for calls and 23% 

for puts. The average Gain achieved for each delta bucket is shown in Table 1. This shows that 

for call options the Gain is largest for out-of-the-money options (a Gain of about 42% for the 

highest strike options) and smallest (about 17%) for in-the-money options. For put options the 

Gains are higher for low strike options (out-of-the-money) and lower for high strike (in-the-

money) options. We confined our hedging effectiveness test to options with maturities greater 

than 13 days. This eliminates very short term options. Including the very short maturity options 

slightly worsens our results due to the large gammas of short-term options that are close to the 

money.  

MV hedging works better for calls than puts and better for out-of-the-money options than in-the-

money options. To understand why this is the case we directly estimate the relationship between 

implied volatility changes and stock price changes by estimating  in 

 imp

S

ST

 
      (7) 

The estimation is done separately for puts and calls for every delta bucket using all options 

observed between 2007 and 2015. The R2 for each delta bucket is shown in Figure 2.  

The R2 from the estimation in equation (7) for calls with BS in the 0.1 bucket is about 0.60. That 

is, the change in the implied volatility due to changes in the stock price explains about 60% of 

the total variation in implied volatilities. As BS increases the average R2 declines due to 

increased idiosyncratic noise in the implied volatility data. This explains the effectiveness of MV 
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hedging for out-of-the money calls and the declining effectiveness of MV hedging for in-the-

money calls. 

The results for put options are somewhat different. The fraction of total variance in implied 

volatilities explained by changes in the stock price is much smaller than that observed for call 

options. There is much more idiosyncratic variation in the implied volatilities of put options. As 

a result, MV hedging of puts is less effective than for calls. We note that the different hedging 

performance for puts and calls cannot be explained by the model driving prices. For any model 

(including jump models), put call parity shows that the hedging error for a put should in theory 

be the same as that for the corresponding call. The observed differences led us to carry out a test 

of put-call parity.  

A Put-Call Parity Test 

We used our quadratic model to test how well put-call parity has held over the period covered by 

our data. We first used the put-call parity relationship to turn all call prices in our data set into 

synthetic put prices. We estimated â , b̂ , and ĉ  in our quadratic form using the actual put prices, 

and ˆ̂a , 
ˆ̂
b , and ˆ̂c  using the synthetic put prices for each of our three-year calibration periods. We 

then calculated the root mean square error of the difference between the estimated put parameters 

and the put parameters calculated from the synthetic put data under the assumption that put-call 

parity holds: 

 

   
22 2ˆˆ ˆˆ ˆˆ ˆ ˆ ˆ

3

a a b b c c

RMSE

      
    (8) 

The results are shown in Figure 3. These results suggest that put-call parity was seriously 

violated before December 2008 but that thereafter it was approximately true. (The first 

observation of the post-December 2008 period is December 2011.)14   

 

                                                 
14 Some violations of put-call parity are probably created by our use of mid-market prices rather than transaction 

prices. 
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VI. Comparison with Alternative Models 

In the previous section we tested an empirical model to determine the minimum variance delta 

hedge. The results show that a reasonable improvement in hedging accuracy can be achieved in 

this way. However, as mentioned earlier, other researchers have calculated minimum variance 

deltas from stochastic volatility models and local volatility models. In this section we compare 

the performance of our empirical model with these two categories of models. 

Stochastic Volatility Model 

The stochastic volatility model we use is a particular version of the SABR model discussed by 

Hagen et al. (2002):15 

 
dF Fdz

d dw

 

  
 (9) 

where F is the futures stock price when the numeraire is the zero coupon bond with maturity T. 

The dz and dw are Wiener processes with constant correlation  and  is a constant volatility of 

volatility parameter. In this model the expected change in the volatility given a particular change 

in the futures price is 

  
dF

E d dF
F

      

Hagan et al (2002) and Rebonato et al (2011) show that under the model defined by equation (9), 

a good analytic approximation to the implied volatility for a European option can be produced. 

Define BS( , )f F   as the value of an option given by the Black-Scholes-Merton assumptions 

when the futures stock price is F and the volatility is . An estimate of the minimum variance 

delta given by the model is then 

 
       BS 0 imp 0 0 BS 0 imp 0 0

SV

, , , ,f F F F F F F f F FE f F

F F

        
  

 
 (10) 

                                                 
15 As pointed out by Poulsen et al (2009), similar results are obtained for different stochastic volatility models. In the 

general SABR model dF F dz  . Setting =1 ensures scale invariance which is a reasonable property for equities 

and equity indices. The model we choose is equivalent to a version of the model in Hull and White (1987). 
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The procedure for implementing this model is as follows. On each trading day the implied 

volatilities of all options with a particular maturity are determined.16 The parameters for the 

stochastic volatility model (0, , and ) that are to be used for that particular option maturity are 

chosen to minimize the sum of squared differences between the market implied volatilities and 

the model implied volatilities.17 Once the model parameters are determined for the particular 

maturity, the minimum variance delta is then determined for each option with that maturity using 

equation (10). This procedure is repeated for every option maturity observed on each trading day. 

To align the tests of the stochastic volatility model with the tests of our empirical model we 

calibrated the model for every option maturity every day from the start of 2007 to August 2015. 

Puts and calls were considered separately. Since there are about 13 different maturities observed 

on each trading the SABR model requires about 78 model parameters to be estimated on each 

trading day. In total, about 29,000 optimizations are carried out and about 87,000 model 

parameters are estimated. The estimated parameters are reasonable and provide a good fit to the 

observed implied volatilities. The average initial volatility, 0, is about 19% which is 

approximately equal to the average at-the-money option implied volatility, the average volatility 

of the volatility, , is about 1.2, and the average correlation is about –0.85 while the average root 

mean square error in fitting the implied volatility is about 0.32%. 

The upper panel of Table 1 compares the Gain from the SABR model with the Gain from the 

empirical model developed in this paper. The results are aggregated by practitioner Black-

Scholes delta rounded to the nearest tenth. The table shows the stochastic volatility model is 

worse at reducing hedging variance than our empirical model. The results are particularly 

compelling because the SABR model utilizes many more parameters than our model. In our 

empirical approach we estimate only the three coefficients of the quadratic function (equation 

(6)) and update the estimates once a month. There are a total of 104 calibrations and a total of 

312 parameters are estimated. This can be contrasted with the SABR model where nearly 

100,000 parameters are estimated. Overall the SABR model performs less well than our 

empirical model. Its performance is better than the empirical model only for very-deep-in-the-

model options.  

                                                 
16 In practice the SABR model is used as a model for the behavior of all options with a particular maturity. When 

calibrated to all options of all maturities we find that it provides poor results. This is not surprising as the model is 

not designed to fit the term structure of implied volatilities.  
17 For a particular maturity to be included in our sample on any day we require that there be options with more than 

10 different strike prices and that the root mean square error in fitting the implied volatilities be smaller than 1%. 
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In Appendix B we develop the procedure for calculating the t-statistic used to determine the 

statistical significance of the difference between the Gains for two different hedging procedures. 

Since the sample size is always greater than 100,000 this t-statistic can be considered to be a z-

statistic. The lower panel of Table 1 shows the t-statistic for the difference between the Gain 

arising from the quadratic hedging model and the Gain from hedging with the SABR model. 

Considering all call options together, t is 8.24 while for all puts it is 11.52. For individual deltas 

it is greater than 2.5 in all cases except for deep in-the-money call and put options. For calls 

when  = 0.9 the difference is not statistically different from zero and for puts when  = –0.8 the 

SABR model out-performs the empirical model. However, for options which trade actively, the 

empirical model is clearly better than SABR.  

Local Volatility Model 

The slope of the volatility smile plays a key role determining the partial derivative of the 

expected implied volatility with respect to the asset price for the local volatility model. Under the 

local volatility model, for at-the-money options the rate of change in the implied volatility with 

respect to changes in the underlying price is equal to the slope of the volatility smile. This is 

exactly true for futures options and approximately true if the difference between the interest rate 

and the dividend yield are small. This has been discussed and proved by many authors (for 

example, Derman et al (1995), and Coleman et al (2001)) In this case the MV delta, equation (2), 

becomes 

 imp

MV BS BS
K


    


   

We now apply this result to the S&P 500 options we are considering. We assume this result is 

approximately true for options which are not at the money. This is equivalent to the assumption 

that (a) the volatility smile is linear and (b) the volatility smile exhibits parallel shifts. These two 

assumptions are approximately, but not exactly, true. 

We find that a quadratic gives an excellent fit to the implied volatility smile for a particular 

maturity. We therefore determined the slope of smile model for each maturity on each day by 

fitting a quadratic function to the smile and using it to determine the slope of the smile for each 
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option. The results are shown in upper panel of Table 118 and the t-statistic for the difference 

between the Gain arising from the quadratic hedging model and the Gain from hedging with the 

local volatility model are shown in the lower panel.  

The performance of the local volatility model is not significantly different from that of the 

empirical model for deep in- and out-of-the-money calls. In all other cases the local volatility 

hedging is much worse than the empirical model hedging. This is particularly true for put 

options. 

 

VII. Results for Other Stock Indices 

We now return to a consideration of the empirical model and test how well it works for other 

stock indices. Specifically, we consider European (ticker XEO) and American (ticker OEX) 

options on the S&P 100, and European options on the Dow Jones Industrial Index (ticker DJX). 

We implement out-of-sample tests similar to those done on the S&P 500. The two contracts on 

the S&P 100 are the same except for exercise terms. They therefore allow us to explore the 

degree to which hedging differs for American options.  

The out of sample test was based on estimating the three parameters of the quadratic function in 

equation (6) using options of all strikes and maturities. The model parameters were estimated 

using a 36-month estimation period and the three estimated parameters were then used to delta 

hedge for a one-month testing period. The Gain (equation (3)) resulting from using our model to 

hedge in the test periods is then calculated. The Gain achieved for puts and calls in each delta 

bucket is shown in Table 2. 

The results for call options for all indices are essentially the same as those found for options on 

the S&P 500. It is tempting to think that the results for the American style (OEX) call options are 

the same as those for the European style options because American style call options are almost 

never exercised early and hence are effectively European. However, for more than 80% of the 

sample tested the S&P 100 dividend yield is more than 1.5% higher than the interest rate.19 In 

                                                 
18 We experimented with other implementations of the slope-of-smile model but did not obtain better results. 
19 The relevant interest rates were almost invariably at least 1.5% lower than the dividend yield between January 

2009 and August 2015. 
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these circumstances the probability of early exercise is high. As a result, it appears that the 

American feature of the option does not affect the hedging effectiveness of our rule of thumb. 

The results for put options are a bit more complicated. The results for XEO options were similar 

to those for options on the S&P 500 and the results for DJX options are similar but weaker. The 

weaker DJX results may be caused by the fact that there are only 30 stocks in the index which 

means that there will be more idiosyncratic variation in the implied volatilities.  

Our results for in-the-money American (OEX) options are different from our results for all other 

assets in that the Gain for put options is large for both in- and out-of-the-money options. Overall, 

the conclusion that can be drawn from Table 2 is that our rule of thumb for hedging works as 

well for American options as for European options. 

 

VIII. Results for Single Stocks and ETFs 

We repeated the out-of-sample hedging tests based on the quadratic model in equation (6) for 

each of the thirty individual stocks underlying the DJX and each of the five ETFs. The average 

hedging variance reduction, averaging across the 30 stocks, the 3 commodities and the 2 interest 

rate products, found in these tests is reported in Table 3.  

The average hedging gain for call options on single stocks are similar to but rather smaller than 

those for options on the Dow Jones Industrial Average. For put options the results are very poor. 

MV hedging contributes nothing or has a negative effect for puts. To understand why this is the 

case we carried out the regression in equation (7) for puts and calls for every delta bucket for 

each of the 30 stocks. The average R2 across the thirty stocks is shown in Figure 4. 

The R2 exhibits the same pattern observed in Figure 2 for options on the S&P 500 but is 

somewhat smaller than that for the index options indicating that the idiosyncratic noise is larger 

for individual stocks. The increased idiosyncratic noise reduces the MV hedging effectiveness by 

inserting a wedge between parameters estimated in one period and the parameters that would 

produce the most effective MV hedge in the following period. The results for puts are quite 

different. The fraction of the variance of changes in the implied volatility explained by stock 
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price changes, R2, is essentially zero. As a result we can expect no improvement from MV 

hedging which is what we see. 

The results for the ETFs are divided into results for options on commodities (gold, silver, and 

oil) and options on interest-rate products (20+ year Treasury Bonds and 7 to 10 year Treasury 

bonds). The results for options on commodities are similar to those for individual stocks while 

the results for interest-rate products are much weaker. As in most of the stock index results, MV 

hedging provides a much bigger Gain for call options on commodities than put options and the 

gain is greatest for out-of-the-money options. The negative correlation between price and 

implied volatility for commodities and interest rate products cannot be explained by a leverage 

and therefore lends support for the volatility feedback hypothesis. 

 

IX. Conclusions 

Delta is by far the most important Greek letter. It plays a key role in the management of 

portfolios of options. Option traders take steps to ensure that they are close to delta neutral at 

least once a day and derivatives dealers usually specify delta limits for their traders. This paper 

has investigated empirically the difference between the practitioner Black-Scholes delta and the 

minimum variance delta. The negative relation between price and volatility for equities means 

that the minimum variance delta is always less than the practitioner Black-Scholes delta. Traders 

should under-hedge equity call options and over-hedge equity put options relative to the 

practitioner Black-Scholes delta.  

The main contribution of this paper is to show that a good estimate of the minimum variance 

delta can be obtained from the practitioner Black-Scholes delta and an empirical estimate of the 

historical relationship between implied volatilities and asset prices. We show that the expected 

movement in implied volatility for an option on a stock index can be approximated as a quadratic 

function in the option’s practitioner Black-Scholes delta divided by the square root of time. This 

leads to a formula for converting the practitioner Black-Scholes delta to the minimum variance 

delta. When the formula is tested out of sample, we obtain good results for both European and 

American call options on stock indices. For options on the S&P 500 we find that our model gives 

better results that either a stochastic volatility model or a model based on the slope of the smile. 
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Call options on individual stocks and ETFs exhibit the same general behavior as call options on 

stock indices, but the effectiveness of MV hedging is greatly reduced because there is more noise 

in the relationship between volatility changes and price changes.  For nearly all the assets we 

considered, the results for put options are much worse than those for call options. In the case of 

put options on individual stocks and ETFs, the results are particularly disappointing in that 

virtually none of the variation in changes in implied volatility is explained by changes in stock 

prices. The relatively poor performance of MV hedging for put options is a puzzle because (a) in 

the case of the European options considered put-call parity means that puts and calls can be 

regarded as substitutes for each other and (b) that in the case of American options puts are less 

likely to be exercised early than call options for most of our sample period. It appears that the 

reason for the discrepancy between calls and puts is a result of a very high level of idiosyncratic 

noise in the prices of put options.  

The most striking result is the ubiquity of the negative relation between asset price and implied 

volatilities for call option prices. When asset prices rise, implied volatilities decline resulting in 

an MV delta that is less than the practitioner Black-Scholes delta. For options on equities and 

equity indices this might be explained by a leverage argument. As equity prices rise the firm 

becomes less levered and equity volatility declines. However, this argument does not seem to 

apply to commodity or bond prices. For these assets it seems likely that we have to rely on the 

volatility feedback effect in which an increase in volatility raises the required rate of return 

resulting in a stock price decline.  
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Appendix A 

The implied volatility is defined as the volatility which when inserted into the Black-Scholes 

option pricing function results in a model price that equals the market price. Suppose that we 

observe the price of an option price, f, when the stock price is S. The implied volatility is 

implicitly defined by20 

  BS imp,f f S    (A1) 

where fBS is the Black-Scholes-Merton pricing function and imp is the implied volatility. The 

Black-Scholes-Merton pricing function is continuous and continuously differentiable. 

First let us consider a two-factor world in which the stock price and the volatility of the stock 

price obey diffusion processes. In this world the option price also changes continuously which 

allows us to expand equation (A1) in a Taylor series 

  2

mp

imp

i

f f
f S O S

S

 
      

 
  

or equivalently 

 BS BS impf S v         (A2) 

where BS and vBS are the delta and vega as defined by the practitioner Black-Scholes model and 

 denotes the residual higher order terms in the series. Subtracting MVS from both sides we 

have 

  MV BS MV BS impf S S v             (A3) 

Conditioning on S and taking expectations we obtain 

                                                 
20 Note that imp, is a “catch-all” parameter capturing the difference between the Black-Scholes pricing function and 

how option prices are determined in the real world. It leads to an exact pricing function that is always correct in the 

real-world. All the changes we consider in f, S, and imp are changes in the real world. The risk-neutral world, 

although used to derive any particular option pricing model, is not relevant to the derivation of equation (2) or our 

empirical work in Section IV. 
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In the case of diffusion processes as S approaches zero the last term is infinitesimal so  

 
 imp

MV BS BS

E
v

S


   


  (A4) 

which leads to equation (2).  

Now consider the more general case in which there are many factors driving asset prices and the 

processes may not be diffusion processes. In this case the option price may change 

discontinuously and the Taylor series expansion omits the effects of other state variables. As a 

result, the residual term in equation (A2), , now includes the effects of the omitted state 

variables and, if the option price changes discontinuously, may be large. In this case equation (2) 

is only approximately true since it omits the term E()/S. 
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Appendix B 

This appendix describes the calculation of the t-statistic used to determine the statistical 

significance of the difference between the Gain values for two different hedging methods. 

Consider a set of n observations of one-day changes in option prices. These price changes can be 

hedged using the practitioner Black-Scholes delta, a minimum variance delta based on our 

quadratic function, or a minimum variance delta based on the SABR model. Let xi be the squared 

residual from hedging the ith one-day change in option price using the quadratic function, yi be 

the squared residual from hedging with the SABR model, and zi be the squared residual from 

Black-Scholes hedging. 

The Gain from quadratic hedging is 

 Quad

1 1

Gain 1
n n

i i

i i

x z
 

     

The Gain from SABR-hedging is 

 SABR

1 1

Gain 1
n n

i i

i i

y z
 

     

Defining 
1

n

i

i

z Z


 , the difference in the Gains is 

1

1
Diff ( )

n

i i

i

x y
Z 

    

Suppose the individual difference observations, xi – yi, are draws from a distribution with mean  

and standard deviation . These parameters can be estimated from the observed values of the 

differences: 
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If the individual observations are independent then the estimated mean and standard deviation of 

Diff are ˆ /n Z  and ˆ /n Z , and the t-statistic to test whether Diff is significantly different from 

zero is ˆ ˆn  . If the individual observations are not independent but exhibit serial correlation, 

a Newey-West adjustment factor must be applied to the estimated variance. Given the way in 

which the data is aggregated, the procedure used to determine the adjustment factor warrants 

explanation.  

There are approximately 54,000 unique put and call options in the S&P 500 data set. Each of 

these options has a unique expiry date and strike price and may fall into different aggregation 

groups at different times. For each of these unique options, the time series of the Diff statistic 

was calculated and the Newey-West adjustment factors for lags between 1 and 50 were 

calculated. The average adjustment factor, averaging across all the option series, was then 

calculated for each lag. The magnitude of the average adjustment factor plateaued at about 30 

lags and so we used 30 lags to determine the adjustment factor used for each option series. 

(Using 20 or 40 lags did not materially change the results.) The estimate of the adjusted sample 

variance is 
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where wi is the Newey-West adjustment factor for the option series on which the ith observation 

is based.  
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Table 1 

The out-of-sample average hedging Gain (equation (3)) January 2007 to August 2015 for options 

on the S&P 500 from MV delta hedging. The SABR and Local Vol models are calibrated daily 

for each option maturity and applied to determine the hedge for the next day. The Empirical 

model parameters, a, b and c in equation (5) are estimated using all options traded in a 36 month 

window and then applied to determine the hedge on every day in the next month. Results are 

reported for buckets based on rounding BS to the nearest tenth. The upper panel shows the 

hedging GAIN values. The lower panel shows the Newey-West adjusted t-statistic for the 

difference between the empirical model GAIN and the alternative model GAINs. 

GAIN 

 Call Options   Put Options 

BS 
Empirical 

model 

SABR 

model 

Local 

Vol 
 BS 

Empirical 

model 

SABR 

model 

Local 

Vol 

0.1 42.1% 39.4% 42.6%  –0.9 15.1% 11.2% –7.4% 

0.2 35.8% 33.4% 36.2%  –0.8 18.7% 19.6% 6.8% 

0.3 31.1% 29.4% 30.3%  –0.7 20.3% 17.7% 9.1% 

0.4 28.5% 26.3% 26.7%  –0.6 20.4% 16.7% 9.2% 

0.5 27.1% 24.9% 25.5%  –0.5 22.1% 16.7% 10.8% 

0.6 25.7% 25.2% 25.2%  –0.4 23.8% 17.7% 12.0% 

0.7 25.4% 24.7% 25.8%  –0.3 27.1% 21.7% 16.8% 

0.8 24.1% 23.5% 25.4%  –0.2 29.6% 25.8% 20.6% 

0.9 16.6% 17.0% 16.9%  –0.1 27.5% 26.9% 17.7% 

All 25.7% 24.6% 25.5%  All 22.5% 19.0% 10.2% 

 

t-Statistic 

 Call Options   Put Options 

BS 
Empirical  

– SABR 

Empirical  

– Local Vol 
 BS 

Empirical  

– SABR 

Empirical  

– Local Vol 

0.1 3.94 –0.06  –0.9 9.71 27.11 

0.2 3.75 0.79  –0.8 –2.34 12.34 

0.3 3.22 4.31  –0.7 1.39 10.42 

0.4 4.22 6.55  –0.6 3.29 10.25 

0.5 4.74 6.65  –0.5 6.09 11.53 

0.6 2.95 5.16  –0.4 7.22 13.89 

0.7 3.24 2.82  –0.3 7.17 14.18 

0.8 2.70 –0.45  –0.2 5.46 13.97 

0.9 –0.01 0.44  –0.1 0.66 17.63 

All 8.74 8.13  All 12.75 41.99 
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Table 2 

The average out-of-sample hedging Gain (equation (3)) from MV delta hedging when the model 

parameters, a, b and c in equation (6) are estimated using options with all strikes and maturities 

observed in a 36 month window and then applied to determine the hedge in the next month. 

Results are reported for each delta bucket for European (XEO) and American (OEX) options on 

the S&P 100 and for European options on the Dow Jones Industrial Index (DJX). 

 Call Options   Put Options 

BS XEO OEX DJX  BS XEO OEX DJX 

0.1 36.2% 35.1% 23.9%  –0.9 10.7% 32.0% –1.3% 

0.2 32.8% 26.4% 28.7%  –0.8 15.7% 28.4% –0.7% 

0.3 27.7% 22.2% 31.6%  –0.7 20.1% 27.4% 1.7% 

0.4 26.0% 21.4% 29.5%  –0.6 19.4% 25.3% 5.2% 

0.5 23.9% 18.5% 29.2%  –0.5 20.9% 23.8% 7.8% 

0.6 24.0% 17.0% 28.3%  –0.4 20.9% 23.2% 10.9% 

0.7 22.5% 17.7% 28.9%  –0.3 22.9% 24.8% 15.0% 

0.8 21.2% 15.4% 24.7%  –0.2 24.9% 26.2% 17.0% 

0.9 16.1% 8.2% 15.7%  –0.1 24.8% 25.9% 16.0% 

All 23.0% 16.7% 26.5%  All 19.7% 27.1% 5.5% 
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Table 3 

The average out-of-sample hedging Gain (equation (3)) observed across the 30 stocks underlying 

the DJX, the three commodities (gold, silver and oil), and two interest-rate products (20+ year 

bonds and 7 to 10 year bonds). The model parameters, a, b and c in equation (6) are estimated 

using options with all strikes and maturities observed in a 36 month window and then applied to 

determine the hedge in the next month. Gain results are reported for each delta bucket based on 

rounding BS to the nearest tenth.  

 Call Options   Put Options 

BS Stocks Commodities Int. Rates  BS Stocks Commodities Int. Rates 

0.1 32.2% 28.9% 5.2%  –0.9 0.9% 3.3% 0.0% 

0.2 26.8% 20.8% 3.6%  –0.8 1.7% 5.1% –0.6% 

0.3 23.2% 15.2% 2.1%  –0.7 3.7% 5.1% –1.1% 

0.4 19.1% 12.5% 2.0%  –0.6 5.7% 5.3% –1.1% 

0.5 15.0% 9.8% 1.3%  –0.5 5.2% 4.0% –0.5% 

0.6 11.4% 7.3% 1.5%  –0.4 3.5% 1.9% 1.6% 

0.7 8.3% 4.2% 1.6%  –0.3 1.8% –0.9% 3.1% 

0.8 5.4% 1.6% 0.2%  –0.2 0.7% –3.0% 5.8% 

0.9 2.5% 0.6% –1.2%  –0.1 2.6% –4.1% 6.2% 

All 10.3% 7.7% 1.4%  All 2.5% 2.5% 0.2% 
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Figure 1 

The estimated parameters for the quadratic in equation (6) for puts and calls on the S&P 500 

observed between 2004 and 2015. The estimations use overlapping 36-month periods. For call 

options the negative of the b̂  parameter is plotted so that the same scale can be used for both 

charts. 
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Figure 2 

The average R2, the fraction of total variance of changes in implied volatility explained by 

changes in the index, for all options on the S&P 500 observed between 2004 and 2015.  

The horizontal axis is ordered so that high strike prices are on the right hand end and low strike 

prices are on the left. 
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Figure 3 

The root mean squared difference between estimated parameters for the quadratic in equation (6) 

for put options, and the parameter values for put option prices that are calculated from call option 

prices under the assumption that put-call parity holds (equation (8)). The estimation uses 

overlapping 36-month periods based on options on the S&P 500.  
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Figure 4 

The average R2, the fraction of total variance of changes in implied volatility explained by 

changes in the stock price. The results shown are averaged across the stocks underlying the 

DJIA.  

The horizontal axis is ordered so that high strike prices are on the right hand end and low strike 

prices are on the left. 

 

 

 


