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Abstract 

We define long shots as investment projects with four features: (1) low 
probabilities of success; (2) long gestation lags before any cash flows are 
realized; (3) large required up-front investments; and (4) very large payoffs 
(relative to initial investment) in the unlikely event of success. Funding long 
shots is becoming increasingly difficult—even for high-risk investment 
vehicles like hedge funds and venture funds—despite the fact that some of 
society’s biggest challenges such as cancer, Alzheimer’s disease, global 
warming, and fossil-fuel depletion depend critically on the ability to undertake 
such investments. We investigate the possibility of improving financing for 
long shots by pooling them into a single portfolio that can be financed via 
securitized debt, and examine the conditions under which such funding 
mechanisms are likely to be effective. 
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1 Introduction 

The standard approach to capital budgeting and investment decisions for risky projects 

involves estimating a project’s expected incremental cash flows, choosing an appropriate 

risk-adjusted discount rate, and calculating the net present value (NPV) of the project’s 

cash flows.  This approach is appropriate for many of the investment opportunities 

encountered in practice, such as the replacement of plant and equipment or the 

development of new products and services. We will refer to these as “textbook projects.”  

Usually they are expected to lead to some level of positive future cash inflows in many 

states of the world, and the key issue is to determine whether these positive inflows will be 

sufficient to justify the initial investment when averaged across all possible states of the 

world.  In well-functioning capital markets, a textbook project can be funded if it has 

positive expected NPV. 

In this article, we focus on a different type of project, which we call a “long shot,” defined as 

an investment with four specific characteristics: (1) it requires a large amount of initial 

capital; (2) it has a long gestation lag, during which no cash flows are generated and/or 

additional capital investment is required; (3) it has a low probability of success; and (4) if 

successful, its payoff is very large relative to the initial investment. Terms such as “large 

amount of capital,” “long gestation lag,” and “low probability of success” are necessarily 

ambiguous and often context-dependent, hence from the perspective of academic finance, 

long shots are ill-defined. However, from the practical perspective, investment 

professionals, investors, and entrepreneurs understand all too well the challenges of long 

shots, including drug development, alternative energy (fusion, wind, solar) technology, 

quantum computing, space colonization, and mitigating the environmental impact of 

climate change through geo-engineering.1  

The characteristics of long shots make them much more difficult to fund on a stand-alone 

basis than textbook projects, often creating a “Valley of Death” in terms of the availability of 

investment capital. Traditionally, venture capital (VC) or philanthropic donations have 

                                                           
1 See for example Fernandez, Stein, and Lo (2012) and Gaddy, Sivaram, and O’Sullivan (2016). 
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been the primary sources of funding. However, some of society’s biggest challenges such as 

cancer, Alzheimer’s disease, global warming, and fossil-fuel depletion depend critically on 

the ability to undertake long shots, and because of the risk profile of a typical long shot, the 

funding requirements far outstrip the capital available from these traditional sources. 

The simplest long shot is one in which there is a single up-front capital investment, a 

known project duration, and a known payoff at the end of the life if the project is successful. 

Suppose, for example, that a research and development (R&D) project requires an initial 

investment of $200 million, lasts 10 years, and has a 5% probability of a payoff of $10 

billion, and that the project’s risk is purely idiosyncratic (i.e., no priced-factor exposure). If 

the discount rate for the expected cash flows from this long shot is less than 9.60%, the 

project has a positive expected NPV.  In principle, such a project should be quite attractive 

to investors, especially given the idiosyncratic nature of the risk and current level of 

interest rates.2 According to standard corporate finance textbooks, this project should be 

undertaken, and in frictionless unconstrained capital markets, it would be. In practice, such 

projects are unlikely to appeal to traditional investors because of their scale, duration, and 

low probability of success, relative to their level of expected return. In industry parlance, 

there is “lower hanging fruit.”  

A long shot’s risk/reward profile can be improved by forming a portfolio of many such 

projects. If, for example, a “megafund” of 150 statistically independent projects—each 

identical to the one just considered—were formed, the probability of at least one success 

would be 99.95% and the probability of at least four successes would be about 95%. While 

risk has been greatly reduced—to the point that many institutional investors would now 

find the investment attractive—such a portfolio would have a 10-year duration and require 

$30 billion of funding.  As a result, a portfolio of such scale would be virtually impossible 

for any single venture capitalist to fund.3 Private equity funds have considerably larger 

scale, but their focus is typically investing in and restructuring more mature businesses 

                                                           
2 The nature of much of R&D is such that the systematic risk associated with success or failure is very low. 
However, there may be some systematic risk associated with the value of the project in the event of success. 
3 According to the National Venture Capital Association 2017 Yearbook, the total assets under management in 
the U.S. VC industry in 2016 were $333.5 billion. 
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rather than taking on more speculative early-stage investments that characterize long 

shots. 

In this article, we ask whether diversification and securitization techniques can be used to 

structure portfolios of long shots so as to make their risk/reward profile more attractive to 

a broad range of conventional institutional investors. If so, such techniques could 

dramatically increase the pool of available capital to fund long shots, many of which have 

social value far beyond their private-sector returns.  

Our secondary goal is to distinguish projects that can be handled by the private sector from 

those that must, at least in the early stages, rely on some type of government support. 

Although long shots may not exhibit “market failures” in the traditional economic sense, 

i.e., externalities or public-goods aspects, we propose a new kind of market imperfection: 

the combination of outsized scale of investment needed to achieve acceptable levels of 

diversification and their high levels of risk—as measured both by duration and probability 

of success—which make such investments difficult to undertake using current investment 

vehicles. 

Securitization is a particularly effective tool in dealing with scale and risk.4 Just as a 

traditional asset-backed security (ABS) is used to segment the risks in a portfolio of loans 

or credit default swaps to appeal to a broader range of investors, a “research-backed 

obligation” (RBO) can be structured as a series of debt and equity tranches to distribute the 

risks in a portfolio of long-shot R&D projects. For example, in a simple RBO structure 

consisting of just three tranches—a senior tranche, a mezzanine tranche, and an equity 

tranche—structured under a strict priority arrangement, the cash flows from successful 

projects would flow first to the senior tranche until it has received its specified principal 

and interest payments. If there were sufficient cash flows remaining, these would then flow 

to the mezzanine tranche until it has received its specified principal and interest payments. 

Residual cash flows would then be allocated to the equity tranche. 

                                                           
4 See Fernandez, Stein, and Lo (2012). 
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The advantage of a securitization structure is that it has to the potential to attract a broad 

range of investors, thereby increasing the potential scale of overall funding. In our simple 

example of 150 projects, the senior tranche might be rated AAA and the mezzanine tranche 

BBB. The probability of default on a loan in a traditional ABS plays the same role as the 

probability that a long-shot project will fail. Of course, the probability of long-shot failure 

(95% in our example) is generally much higher than the probability of loss on a loan, but 

the simplest RBO structure is otherwise similar to a conventional ABS in most respects.  

The analogy to an ABS also highlights the important role of pairwise correlations among 

projects. Our illustrative example above assumed that project successes are independent 

events, but this is not usually the case. “Success correlation”—the correlation between the 

success or failure of two long shots—is one of the critical factors in determining whether 

private-sector funding is feasible, as in the case of traditional ABS such as mortgage-backed 

securities. There are a number of reasons for positive success correlation in long-shot 

projects. For example, the successes of cancer therapies being pursued by different teams 

using the same biological pathway are related because they depend on the therapeutic 

viability of that single pathway. However, unlike mortgage defaults—which became highly 

correlated during the national decline in home prices starting in 20065—success 

correlations among biomedical projects are unlikely to change over time in response to 

market cycles.  

In Section 2 we review the relevant literature and in Section 3 we describe the basic 

analytical framework of long shots. We then consider the application of securitization in 

Section 4, and show how correlation and other parameters affect the economic viability of 

long-shot investments. More practical aspects of securitizing long-shot portfolios are 

considered in Section 5, and we provide two concrete examples in Section 6, one in which 

securitization is effective and one where securitization fails. We conclude in Section 7. 

  

                                                           
5 See, for example, Lo (2012). 
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2 Literature Review 

Funding early-stage risky ventures has traditionally been the domain of the VC industry. In 

2016, the VC industry represented only $333.5 billion of the $4.5 trillion of private assets 

under management in the U.S. (National Venture Capital Association (2017), Preqin 

(2016)), but it has historically had a disproportionate influence on technological 

innovation (Kortum and Lerner (2000)). Nevertheless, long-shot investments have 

remained stubbornly difficult to fund, even through VC. Modern examples of long-shot 

investments can be found in the biopharma and energy sectors, where the lack of VC 

funding for expansion beyond the early-research stage is often referred to as the “Valley of 

Death.”  

This is not a new phenomenon. The basic scale-up problem has been known for over a 

century within the chemical engineering sector, where the inventor of the first synthetic 

plastic, Leo Baekeland, gave the now-famous advice, “Commit your blunders on a small 

scale and make your profits on a large scale” (Baekeland (1916)).  

Structural explanations for the lack of funding are common.   For example, the “low-

hanging fruit” or the “better than the Beatles” problem are often given as explanations for 

the decline in R&D efficiency within the biopharma industry (e.g., Scannell et al. (2012)). 

Rather than focusing on particular explanations for why sectors such as rare disease drug 

development and clean energy technologies are different from each other (Nanda, Younge, 

and Fleming (2015), Gaddy, Sivaram, and O’Sullivan (2016)), we propose to capture the 

dynamics of VC funding more generally via the framework of long-shot funding processes. 

An enduring characteristic of the VC industry is its high volatility (Gompers and Lerner 

(2004), Kaplan and Schoar (2005)), although the degree to which this reflects 

fundamentals versus investor overreaction is still under debate in some cases (Gompers et 

al. (2008)). Many relate “hot” investment markets to less circumspect VC investment in 

poorer quality firms, possibly through the mechanism of herding among investors 

(Scharfstein and Stein (1990)). However, Robinson and Sensoy (2016) have shown that 

roughly three-quarters of the underperformance of VC can be attributed to co-cyclicality of 

public market valuations and net cash flows to VC funds. Using cash flow data derived from 
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the holdings of almost 300 institutional investors, Jenkinson, Harris, and Kaplan (2016) 

find that North American venture funds from the 1990s substantially outperformed public 

equities; those from the early 2000s have underperformed; and recent vintage years have 

seen a modest rebound. The variation in venture performance is significantly linked to 

capital flows: performance is lower for funds started when there are large aggregate 

inflows of capital to the sector. 

Despite the fact that risk is a key feature of venture investing, adjusting for risk in private 

investments is considerably more challenging because of illiquidity, infrequent trading, and 

highly skewed returns. However, using stochastic discount factor (SDF) methods for 

valuing VC investments, Korteweg and Nagel (2016) document an interesting difference 

between the risk-adjusted returns of VC startup investments and VC funds: start-up 

investments earn substantial positive abnormal returns, but VC fund abnormal returns are 

close to zero. They also find that the systematic component of startup company and VC 

fund payoffs resembles the negatively skewed payoffs from selling index put options, which 

contrasts with the call option-like positive skewness of the idiosyncratic payoffs. Using an 

SDF that includes index put option returns, they find negative abnormal returns to VC 

funds, while the abnormal returns to start-up investments remain large and positive. 

Nanda and Rhodes-Kropf (2013) found that, although startups initially funded in hot 

markets were more likely to go bankrupt than those funded in less active periods, hot-

market-startups that were successful had higher valuations and filed a greater number of 

more highly cited patents than comparable startups funded in cold markets. In other 

words, the outcomes for startups in more active markets were more likely to be in both 

tails of the distribution than those funded in less active markets. This may be indicative of 

heterogeneity in VC. For example, Chemmanur, Loutskina, and Tian (2014) found that 

corporate VC backed a proportionately larger number of startups with better patent 

outcomes than did independent venture capitalists, but that these startups were riskier and 

less profitable than their counterparts. This suggests that the lack of financing of long-shot 

projects may be a question of composition rather than base quality. 
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The institutional response of the VC community to reducing all-or-nothing risks to 

investors has been to stage investments in sequential “rounds” or “raises.”  At the end of 

each stage, a project is abandoned, sold, or retained. Gompers (1995) showed that such 

staging structures have led venture capitalists to focus primarily on early stage companies. 

In some sectors, the market in intellectual property assets created by intermediate stages 

acts to counter this early-stage focus, as has been the case in the biopharma industry (Gans, 

Hsu, and Stern (2002)).  

Gompers (1995) argues that staging is a way for venture capitalists to reduce agency costs. 

Kerr, Nanda, and Rhodes-Kropf (2014) view staging as a process of experimentation that 

allows both the investor and the innovator to negotiate in an environment of extreme 

Knightian uncertainty. Ewens, Nanda, and Rhodes-Kropf (2015) extend this analysis to 

consider how it has influenced the type of projects that are funded. They find an adaptive 

shift in VC strategies toward newly viable “long-shot bets,”6 but that this shift comes at the 

expense of capital-intensive projects unaffected by the innovation. Furthermore, staging 

can create agency costs of its own (Cornelli and Yosha (2003), Bergemann and Hege 

(2005)).  For example, Nanda and Rhodes-Kropf (2014) observed that the mere possibility 

of financing risk in future stages provides a significant disincentive for investors to invest 

in first-round funding for otherwise sound projects. 

To bridge the so-called “Valley of Death” in biomedicine—the preclinical stages of drug 

discovery through phase 2 clinical trials—Fernandez, Stein, and Lo (2012) and Fagnan et 

al. (2013) proposed combining multiple long shots into a single portfolio, and then 

financing that portfolio using both securitized debt and equity. Although taking “multiple 

shots on goal” in drug development is expensive—requiring hundreds of millions to several 

billion dollars (depending on the therapeutic area) to achieve sufficient risk reduction 

through diversification—securitization allows entrepreneurs to tap into much larger pools 

of capital. In 2016, the total size of U.S. debt markets was $39.4 trillion, which is 

considerably larger than the VC industry’s $333.5 billion in assets under management in 

that same year (of which only about $11.7 billion was invested in the life sciences.). When 

                                                           
6 Their usage of “long shot” is colloquial, unlike our more specific definition. 



 

7 April 2019 © 2019 by Hull, Lo, and Stein Page 8 
 All Rights Reserved 

one considers that, by some estimates, developing a single cancer drug can cost more than 

$2 billion (DiMasi, Grabowski, and Hansen, 2016), it becomes clear that the VC community 

does not have sufficient capital to provide the required funding on its own.   

The present paper provides a more systematic and comprehensive analysis of the 

opportunities and limitations of securitization in funding this type of project. Our analysis 

is applicable to all long shots, not just those in the biomedicine area. 

3 Long-Shot Investments 

Consider a project which requires an initial investment I at time 0, provides a single cash 

inflow at time T in the event of success, and has a T period probability of success, p. We 

define the investment as a long shot if the probability of success, 𝑝, is small, its life, 𝑇, is 

long (often five years or more), and the initial investment, I, is “large.” The motivation for 

our definition is to capture the unique features of investment projects that have potentially 

transformative payoffs, but where the required investment, risk of failure, and duration are 

much higher than for typical investments. The expected cash inflow, conditional on success, 

must of course be much larger than I, otherwise no rational investor would consider 

investing in the project. Examples of long shots include curing cancer, generating energy 

via fusion, mining asteroids and colonizing space and other planets, and geo-engineering 

our planet to mitigate climate change.  

We argue that it is difficult for traditional financing sources involving VC and public or 

private equity to fund long shots and examine the role that can be played by securitization 

instead.  

3.1      A Simple Example 

 To see the problems in applying traditional financing structures to long shots, consider a 

stylized example involving cancer drug development. Assume that the typical out-of-pocket 

costs for conducting clinical trials for a single anti-cancer compound are approximately 

$200 million; the average duration for these trials is 10 years; and the historical success 

rate of cancer drug development programs is approximately 5%. If successful, a typical 
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cancer drug might generate $2 billion in annual profits for the remainder of its patent life of 

10 years (a 20-year patent minus 10 years of clinical trials). Figure 1 provides a timeline of 

the cash flows.  

  

 

Figure 1. Timeline of revenues and costs of a hypothetical cancer drug development 
project. 

 

Using a 10% cost of capital (an approximate value for the pharmaceutical industry, as 

documented by Giaccotto, Golec, and Vernon, 2011), these profits are equivalent to a payoff 

of $12.29 billion in year 10. The expected payoff (in billions) is 

0.05 × 12.29 + 0.95 × 0 =0.614 

 implying an annualized expected return on the initial investment of 200 million equal to 

11.9%.7 However, the 95% risk of total loss is extremely high and unlikely to interest a 

typical investor (especially given the 10-year gestation lag before any cash flows can 

begin). Therefore, entrepreneurs have difficulty attracting financing for such projects from 

traditional sources such pharmaceutical companies, and face even greater challenges in 

attracting capital from higher cost-of-capital investors like VCs and private-equity funds, 

who typically require expected returns of 20% to 30%. Moreover, such investors would 

almost always look to earn these returns far sooner than the 10-year term of typical drug 

development project. 

A natural approach to solving some of these challenges is to combine several long shots in a 

                                                           
7 We define the “expected return” as the return provided by the expected payoff. This is the most meaningful 
measure as it corresponds to the maximum discount rate for which the project is attractive. Note that for a 
single-period long-shot project it is much greater than the expected internal rate of return. (The expected 
internal rate of return is −92.5% for the project considered here.).  
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portfolio. However, the low probability of success means that a large number of projects 

are necessary to achieve a reasonable degree of diversification.  Consider an investment in 

a portfolio of 𝑛 independently and identically distributed (IID) projects similar to the one 

we have just considered.8  The expected return from the portfolio is still 11.9%. Risk, as 

measured by the ratio of the standard deviation of the payoff to the expected payoff, is 

√
1 − 𝑝

𝑛𝑝
 

For values of n equal to 1, 10, 50, and 100 and p = 5%, this is 4.36, 1.38, 0.62, and 0.44, 

respectively. As is well known, the binomial distribution approaches the normal 

distribution as n increases. However, for small p, this convergence happens slowly, as is 

illustrated in Figure 2 which contains the probability distribution, as calculated from the 

binomial distribution, of the number of successes when there are 10, 50, and 100 projects.   

 

 

Figure 2. Probability distribution for the number of successes when the probability of success 
is 0.05 and the number of projects is (a) 10, (b) 50, and (c) 100. 

 

Unfortunately, constructing a portfolio of 100 projects similar to the one we have 

considered requires $20 billion, which dwarfs the assets under management of most VCs.  

                                                           
8 In our subsequent models and simulations, we relax the IID assumption. 
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Also, the risk-return profile is still not sufficiently favorable to attract VCs,9 nor is the 10-

duration and illiquidity addressed by a portfolio approach. 

3.2     Project Correlation 

In practice, project successes are rarely independent events. The Gaussian copula, 

developed by Vasicek (1987) and Li (2000), is a relatively simple way of modeling success 

correlation. Suppose there are n non-independent projects, each with an unconditional 

probability of success equal to p.  The copula model associates a standard normal 

distribution with each project. Each project i is successful when the value 𝑉𝑖 obtained from 

the normal distribution corresponding to the project is less than 𝑁−1(𝑝) where N is the 

cumulative normal distribution function. The pairwise correlations among {𝑉𝑖} represent 

the factor correlations, which, suitably transformed, result in success correlations.  

The correlations between the normal distributions in the Gaussian copula model can be 

generated using a factor model. In the case of a single common factor, 𝑉𝑖 (1 ≤ i ≤ n) may be 

written as:  

𝑉𝑖 = 𝑎𝑖𝐹 + √1 − 𝑎𝑖
2𝑍𝑖                                                                 (1) 

where the 𝑎𝑖 are constants (−1 ≤  𝑎𝑖  ≤ 1) while the common factor F and idiosyncratic noise 

term 𝑍𝑖  have uncorrelated standard normal distributions. The correlation between 𝑉𝑖 and 

𝑉𝑗, known as the copula correlation, is then simply 𝑎𝑖𝑎𝑗. For convenience, it is often 

assumed that 𝑎𝑖 equals a constant, a, for all i.  Conditional on F, the successes are then 

uncorrelated with probability  

𝑁 (
𝑁−1(𝑝) − √ρ𝐹

√1 − 𝜌
) 

where 𝜌 = 𝑎2 is the pairwise unconditional correlation between the Vi’s. 

                                                           
9 See Jenkinson, Harris, and Kaplan (2016) and Korteweg and Nagel (2016) for historical VC returns with and 
without risk adjustment. 
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Discretizing the normal distribution of F, the probability, q(h), of exactly h successes from n 

projects is: 

𝑞(ℎ) = ∑𝑤𝑘𝐵(ℎ, 𝑛, 𝑝𝑘)

𝐾

𝑘=1

                                                  (2) 

                                                           

where 

𝑝𝑘 = 𝑁(
𝑁−1(𝑝) − √𝜌𝐹𝑘

√1 − 𝜌
)                                                  (3) 

                                                        

and 𝐵(ℎ, 𝑛, 𝜋) is the binomial probability that there will be h occurrences of an event in n 

trials when the probability of an occurrence is 𝜋. The parameters 𝑤𝑘 and 𝐹𝑘 are the weights 

and values when a standard normal distribution is approximated using Gaussian-Hermite 

quadrature and K points. 10 

The calculations are illustrated in Table 1. We assume that the normal distribution is 

approximated by only 10 points (K=10), there are five projects (n=5), and the 

unconditional probability of success is 10% (p=0.1). The Fk and wk are given by Gaussian-

Hermite quadrature. 11   The pk are calculated using (3) and q(h) is calculated as 0.6018, 

0.3096, 0.0764,0.0112, 0.0010, and 0.0000  for h =  0, 1, 2, 3, 4 and 5, respectively by 

summing values in the last six rows of the table.  

 

                                                           
10 Gauss-Hermite quadrature is an accurate way of approximating the normal distribution for the purposes of 
numerical integration. See, for example, Davis and Rabinowitz (1975, Ch2). 
11 See http://www-2.rotman.utoronto.ca/~hull/ofod/index.html for a table of weights and values when 
Gaussian -Hermite quadrature with different values of K is used. K=10 is used for illustration. Results 
presented in this paper are based on K=30. 

http://www-2.rotman.utoronto.ca/~hull/ofod/index.html
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Table 1: Illustration of calculation of distribution of the number of successes using the Gaussian copula 
model. 

The impact of correlation on the probability distribution of the number of defaults depends 

on the number of projects and their probabilities of success.  Consider the situation where 

the probability of success is 10%.  When there are only five projects, a copula correlation of 

5% increases the standard deviation of the number of successes by only 3.5% relative to 

the zero-correlation case. This is due, in part, to the observation that the distribution of 

outcomes of five projects exhibits pronounced skewness, even with no correlation.  With 

25 and 50 projects, the distributions of outcomes are more symmetrical without 

correlation, and the increase in the standard deviation is 19.5% and 36.9%, respectively. 

With 100 projects (the situation in Figure 3) the standard deviation increase is 66.2%, and 

with 200 projects it is over 100%. 

 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

4.8595 3.5818 2.4843 1.4660 0.4849 -0.4849 -1.4660 -2.4843 -3.5818 -4.8595

0.0000 0.0008 0.0191 0.1355 0.3446 0.3446 0.1355 0.0191 0.0008 0.0000

0.0076 0.0163 0.0297 0.0494 0.0769 0.1144 0.1639 0.2282 0.3110 0.4207

0.0000 0.0007 0.0164 0.1052 0.2310 0.1878 0.0554 0.0052 0.0001 0.0000

0.0000 0.0001 0.0025 0.0273 0.0962 0.1212 0.0543 0.0077 0.0003 0.0000

0.0000 0.0000 0.0002 0.0028 0.0160 0.0313 0.0213 0.0046 0.0002 0.0000

0.0000 0.0000 0.0000 0.0001 0.0013 0.0040 0.0042 0.0014 0.0001 0.0000

0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0004 0.0002 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

𝐹𝑘
𝑤𝑘

𝑝𝑘
𝑤𝑘𝐵(0,5, 𝑝 )
𝑤𝑘𝐵(1,5, 𝑝 )

𝑤𝑘𝐵(2,5, 𝑝 )

𝑤𝑘𝐵(3,5, 𝑝 )
𝑤𝑘𝐵( ,5, 𝑝 )

𝑤𝑘𝐵(5,5, 𝑝 )
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Figure 3. Probability distribution for the number of successes in a portfolio of 100 
projects when the probability of success is 0.05 and the Gaussian copula correlation is (a) 
0.01, (b) 0.05, and (c) 0.10. 

The Gaussian copula model can be generalized so that more than one factor drives the 

correlations.  Also, other copulas with different properties can be used. One convenient 

way of developing other copulas is to assume non-normal, zero-mean, unit-variance 

distributions for F and 𝑍𝑖   in (1). 

4 Securitization 

Securitization is a well-established financing mechanism that repackages cash flows from a 

portfolio of assets into securities for which there is higher investment demand. 

Traditionally the assets have been debt instruments with regularly scheduled payments, so 

we begin by reviewing how securitization works in this case before moving on to consider 

long shots.12 

Figure 4 shows a simple idealized collateralized debt obligation (CDO) in which 100 five-

year loans, each with a principal balance of $1 million and an interest rate of 5%, are 

transformed into three structured securities: a senior tranche with a principal balance of 

$80 million, a mezzanine tranche with a principal balance of $15 million, and an equity 

                                                           
12 See Das and Stein (2013) and Hull (2017) for a further discussion of the use of securitization and tranching 
for debt instruments. 
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tranche with a principal balance of $5 million.  The tranche yields (i.e., the returns that they 

will receive in the absence of any losses from defaults, assuming they are sold at par) are 

3%, 7%, and 25%, respectively. The weighted average yield is 4.7%. (This is less than the 

5% interest rate on the loans consistent with the creator of the structure having a positive 

expected profit.) As the underlying loans are paid down, the principal and interest 

payments from those loans are used to pay debt service on the senior and mezzanine 

bonds, and to make equity payments. 

 

 

 

Figure 4. A simple example of a five-year structure for the securitization of debt 
instruments. Each loan lasts five years and carries an interest rate of 5%. The 
weighted average yields on the tranches is 4.7%. A strict priority rule determines how 
cash flows are allocated to tranches. The yield indicates the return that will be 
realized by a tranche if no losses are allocated to the tranche. Assuming a 50% 
recovery rate, the equity, mezzanine, and senior tranches will earn the specified 
yields if the number of defaults is less than 0, 10, and 40, respectively. 

 

We assume a simple priority rule for both principal and interest payments on the 

structured securities: the senior tranche receives the first $80 million of loan principal 

repayments, the mezzanine tranche receives the next $15 million, and the equity tranche 

receives the last $5 million. Similarly, interim loan interest payments flow first to the senior 

tranche until it has received the specified return of 3% on its outstanding principal, then to 

the mezzanine tranche, and if any interest cash flows remain after the mezzanine tranche 

Loan 1

Loan 2

Loan 3



Loan 100

Principal:

$100 million

SPV

Senior Tranche (AAA)

Principal: $80 million

Yield = 3%

Mezzanine Tranche (BBB)

Principal: $15 million

Yield = 7%

Equity Tranche 

Principal: $5 million

Yield = 25%
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has received its specified return of 7% on outstanding principal, they are used to provide a 

return of up to 25% to the equity tranche.13 

In the idealized structure in Figure 4, losses are borne first by the equity tranche. If losses 

reach $5 million of par, the equity tranche is wiped out and subsequent losses are borne by 

the mezzanine tranche. If losses exceed $20 million, the mezzanine tranche is also wiped 

out and subsequent losses are borne by the senior tranche.  Suppose that the recovery rate 

in the event of a default on a loan is 50%.  The mezzanine tranche will not lose any 

principal if the number of defaults is less than or equal to 10 = $5MM/(0.5$1M) and the 

senior tranche will not lose any principal if the number of defaults is less than or equal to 

40. 

In practice, the rules for distributing cash flows to the tranches in a cash CDO are more 

complicated than the simple structure in Figure 4.  For example, there are usually more 

than three tranches and some over-collateralization where the principal of the loans is 

greater than the principal of tranches.  In addition, there are numerous forms of credit 

enhancement beyond subordination such as coverage triggers, cash flow redirection, 

reserve accounts, etc. Also, there are usually some departures from the strict priority rule 

we have assumed. See Section 5 for a more detailed discussion. 

4.1   Application to Long Shots 

The use of securitization techniques to fund biomedical innovation has been proposed by 

Fernandez, Stein, and Lo (2012) and Fagnan et al. (2014). Our aim is to generalize this 

approach and discuss its viability and limitations in various cases. 

A portfolio of long-shot projects can be financed through the issuance of an equity tranche 

and a number of debt tranches. The cash flows generated by successful projects are then 

channeled to pay principal and interest on the debt tranches. When a simple strict priority 

rule is used, cash inflows from successful projects go first to the senior tranche until the 

cash inflows have been exhausted or the senior tranche has received its specified yield. 

                                                           
13 Here we assume a simple zero-coupon structure for the senior and mezzanine tranches so that we may 
ignore the timing of interim interest payments.  
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Excess cash inflows then go to the next-most-senior tranche until the cash inflows are 

exhausted or it has received its specified yield, and so on. As in the case of a cash CDO, the 

rules for allocating cash flows are usually more complicated than this (see Section 5).  The 

model we use here is a simplification designed to explore the key factors determining the 

feasibility of securitization. Figure 5 shows a simple situation where, as in Figure 4, there 

are only three tranches:  a senior tranche, a mezzanine tranche, and an equity tranche. The 

portfolio consists of 150 long shot projects all assumed to have identical properties.  Each 

project requires an investment of $200 million and has a life of five years.  The probability 

of a successful outcome from a project is 10% and the expected annual compound return 

from a project is 10%.  This means that the expected cash flow from a successful project at 

the end of the five years is $3.22 billion. Given that long-shot projects typically have very 

little systematic risk, the 10% expected return is attractive. (As mentioned earlier, the 

systemic risk associated with R&D projects is often low.) However, it may be difficult to 

obtain funding from conventional sources.  

 

 

 

Figure 5. A simple example of a five-year structure for the securitization of long-shot 
projects. Each project lasts five years and requires an initial investment of $200 million. 
Each project has a 10% probability of success. If successful, it gives a cash flow of $3.22 
billion in five years. If unsuccessful, it gives rise to no cash flows. The expected cash inflow 
therefore provides a return of 10%. A strict priority rule determines how cash inflows 
from successful projects are allocated to tranches. The yield indicates the return that will 
be allocated to a tranche if there are a sufficient number of project successes. The senior 
tranche will lose principal if there are less than six successful projects. The mezzanine 
tranche will lose principal if there are less than eight successful projects. 

 

Long Shot 1 

Long Shot 2



Long Shot 150

Total Investment:

$30 billion

SPV

Senior Tranche

$15 billion

Yield=3%

Mezzanine Tranche

$5 billion

Yield=7%

Equity Tranche

$10 billion

Residual Cash Flows
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4.2      Analytics of Long-Shot Securitization 

We now present analytics for securitizations similar to that in Figure 5. We assume that a 

portfolio of n projects is financed by m debt tranches and an equity tranche. We denote the 

probability that h of the n projects are successful by q(h). (This could be determined using 

the copula model in Section 3.2, or in some other way.) We assume a simple priority rule, as 

in Figure 5, and denote by 𝐾𝑗  (1 ≤ j ≤ m) the cash flow necessary to provide the first j 

tranches with their promised returns. (In the example in Figure 5, m = 2, 𝐾1 = $15×1.035 = 

$17.39 billion and 𝐾2 = $17.39 + $5 × 1.075 = $24.40 billion.)   

All projects have the same life and successful projects are assumed to give rise to identical 

payoff distributions at maturity. We will denote the mean and standard deviation of the 

payoff from a successful project by 𝜇 and 𝜎, respectively. The coefficient of correlation 

between the payoffs from each pair of successful projects will be assumed to be the same 

and will be denoted by 𝜌𝑐 . 

Conditional on h successful projects, the mean and standard deviation of the total payoff 

available for servicing the tranches are 

𝜇ℎ = ℎ𝜇 

and 

𝜎ℎ = 𝜎√ℎ + 𝜌𝑐ℎ(ℎ − 1) 

 respectively. 

The simplest assumption would be that the payoffs from successful projects are 

multivariate normal, implying that the total payoff from h successes is normally 

distributed. However, because this assumption has the undesirable property that payoffs 

from successful projects can be negative, we instead assume that the payoffs from 

successful projects are lognormal, which appears consistent with empirical observations14.  

The risk of a debt tranche is then given by Proposition 1 (all proofs are provided in the 

Appendix): 
                                                           
14 See Fernandez, Stein, and Lo (2012) for a discussion. 
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Proposition 1: If the payoff from a successful project is lognormally distributed, the 

probability, 𝜋𝑗 , that the jth tranche will receive its promised return can be 

approximated as 

𝜋𝑗 = ∑𝑞(ℎ)𝑁(
ln(𝜇ℎ 𝐾𝑗⁄ ) − 𝑠ℎ

2 2⁄

𝑠ℎ
)

𝑛

ℎ=1

                                                   ( ) 

                                                 

where 

𝑠ℎ = √ln (1 +
𝜎ℎ
2

𝜇ℎ
2)   . 

 

 

The risk of the equity tranche can be approximated in a similar manner, as described in 

Proposition 2: 

Proposition 2:  When the payoff from a successful project is lognormally distributed, the first 

two moments of the payoff from the equity tranche can be approximated as    

𝑀1 = ∑𝑞(ℎ) [𝜇ℎ𝑁(
ln(𝜇ℎ 𝐾𝑚⁄ ) + 𝑠ℎ

2 2⁄

𝑠ℎ
) − 𝐾𝑚𝑁 (

ln(𝜇ℎ 𝐾𝑚⁄ ) − 𝑠ℎ
2 2⁄

𝑠ℎ
)]

𝑛

ℎ=1

 

𝑀2 = ∑𝑞(ℎ)[(𝜇ℎ
2 + 𝜎ℎ

2)]𝑁 (
ln(𝜇ℎ 𝐾𝑚⁄ ) + 3 𝑠ℎ

2 2⁄

𝑠ℎ
)

𝑛

ℎ=1

+𝐾𝑚
2𝑁(

ln(𝜇ℎ 𝐾𝑚⁄ ) − 𝑠ℎ
2 2⁄

𝑠ℎ
)

− 2𝐾𝑚 𝜇ℎ𝑁(
ln(𝜇ℎ 𝐾𝑚⁄ ) + 𝑠ℎ

2 2⁄

𝑠ℎ
) 

where   

𝑠ℎ = √ln (1 +
𝜎ℎ
2

𝜇ℎ
2)    . 
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Define the mean and standard deviation of the return (not annualized) to the equity 

tranche over the life of the project as 𝜇𝐸  and 𝜎𝐸 , respectively. If E is the investment in the 

equity tranche, these are related to the moments in Proposition 2 by 

𝜇𝐸 =
𝑀1

𝐸
− 1                                                                     (5) 

 

𝜎𝐸 =
√𝑀2 −𝑀1

2

𝐸
                                                                   (6) 

                                                                       

A special case of the results in Propositions 1 and 2 is when the payoff from a successful 

project is assumed to be known with certainty. By letting 𝑠ℎ  tend to zero, we see that the 

probability that the jth tranche receives its promised return in Proposition 1 reduces to 

𝜋𝑗 = ∑ 𝑞(ℎ)

ℎ|𝜇ℎ>𝐾𝑗

                                                                 (7) 

                                                                    

The moments of the payoff to the equity tranche in Proposition 2 reduce to: 

𝑀1 = ∑ 𝑞(ℎ)

ℎ|𝜇ℎ>𝐾𝑗

(𝜇ℎ − 𝐾𝑚) 

𝑀2 = ∑ 𝑞(ℎ)

ℎ|𝜇ℎ>𝐾𝑗

(𝜇ℎ
2 + 𝐾𝑚

2 − 2𝐾𝑚𝜇ℎ) 

                                                

4.3     Example 

We now use the analytics in Section 4.2 to explore the properties of the securitization in 

Figure 5. As already noted in the structure shown in Figure 5, 𝐾1= $17.39 billion and 𝐾2 = 

$24.40 billion. Also, 𝜇 = $3.22 billion.  In a typical securitization of this type, the objective is 
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to arrange for the senior tranche to have a high investment-grade rating (e.g., AAA) and for 

the mezzanine tranche to have a mid-investment-grade rating (e.g., BBB). When evaluating 

tranches, credit rating agencies compare the loss forecasted by their models with the 

historical loss experience on bonds and other benchmarks.  Standard & Poor’s (S&P) and 

Fitch use probability of default as the metric of interest when doing this analysis, while 

Moody’s uses expected loss.  For simplicity, we will follow the approach adopted by S&P 

and Fitch in what follows.  Accordingly, if the loss probability corresponds to that of a AAA 

bond, the tranche is a candidate for a AAA rating. Similarly, if the loss probability 

corresponds to that of a BBB bond, the tranche is a candidate for a BBB rating. Based on 

statistics provided by rating agencies, we assume in what follows that the five-year default 

probability must be less than 0.2% for a AAA tranche and less than 1.8% for a BBB tranche. 

Consider first the case where the payoff from a successful project is known (= $3.22 

billion). Six projects are required to produce a payoff greater than  K1 (6×3.22 >17.39) and 

eight projects are required to  produce a payoff greater than K2 (8×3.22 >24.40). Therefore, 

from (7):  

 

𝜋1 = ∑𝑞(ℎ)                                   

ℎ≥6

𝜋2 =∑𝑞(ℎ)  

ℎ≥8

 

 

If there is no success correlation, the q(h) are binomial probabilities so that 𝜋1 =

∑ 𝐵( , 150,0.1)𝑘≥6  = 0.9981 and 𝜋2 =∑ 𝐵( , 150,0.1)𝑘≥8  =0.9860. The default probabilities 

on the senior and mezzanine tranches are therefore 0.19% and 1.40%, respectively.  

Quantitatively, this would justify considering AAA and BBB credit ratings, respectively. 

However, when the success correlation is modeled using (1)–(3) with a copula correlation 

of 5%, 𝜋1 = 0.9444 and 𝜋2 = 0.8724. The senior and mezzanine tranches are then no longer 

close to being candidates for AAA and BBB ratings.  To increase the credit quality of the 

structured securities created from this portfolio it would be necessary to either change the 

capital structure of the securitization (e.g., by increasing the subordination levels) or add 

structural features (such as those described in Section 5), or both. 
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When the payoff from a successful project is uncertain, but correlation is zero, the senior 

and mezzanine tranches become slightly more risky, but the impact of this is much less 

than the impact of success correlation. For example, when there is no success correlation 

and no payoff correlation, increasing the standard deviation of the payoff from a success 

from zero to 25% of the expected payoff means that in (4) q(h) = B(h,150,0.1), mh = 3.22h, 

h= 0.25×3.22√ℎ.   In the case of the senior tranche we set Kj = 17.39 and find that the  

default probability is 0.22% (compared with 0.19% when payoffs are assumed known). In 

the case of the senior tranche we set Kj =24.40 and find that the default probability is 

1.78% (compared with 1.40% when payoffs are assumed known). For the case where the 

correlation is non-zero and payoffs are uncertain, the results in Section 3.2 can be used to 

determine the q(h) in (4). Again we find that payoff uncertainty is less important than 

success correlation.  

4.4     Funding Viability 

If venture capitalists and other investors required compensation only for non-diversifiable 

risk, as theory predicts, securitization would not increase funding opportunities for long 

shots. We can see this immediately in the context of the Capital Asset Price Model (CAPM). 

Suppose that there are m tranches, all funded by well-diversified investors and that the 

CAPM beta of an investment in the jth tranche is 𝛽𝑗 . Then: 

𝐸(𝑅𝑗) ≥ 𝑅𝐹 + 𝛽𝑗(𝐸(𝑅𝑀) − 𝑅𝐹) 

where 𝑅𝐹 is the risk-free rate, 𝑅𝑗  is the return on the jth tranche, 𝑅𝑀 is the return on the 

market, and E denotes expected value. If a proportion 𝛾𝑗  of the portfolio is funded by the jth 

tranche then, in the absence of frictions, 

𝐸(𝑅𝑃) =∑𝛾𝑗𝐸(𝑅𝑗) ≥ ∑𝛾𝑗

𝑚

𝑗=1

𝑚

𝑗=1

𝛽𝑗(𝐸(𝑅𝑀) − 𝑅𝐹) 

where 𝑅𝑃 is the return on the portfolio. Because the beta of the portfolio equals ∑ 𝛾𝑗𝛽𝑗
𝑚
𝑗=1 , a 

well-diversified investor should be prepared to invest in the portfolio without 

securitization. Similar results apply for multi-factor models. 
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Research by Cochrane (2005) and Ewens, Jones, and Rhodes-Kropf (2013) suggest that 

venture capitalists and providers of private equity funding do, in fact, care about (i.e., price) 

diversifiable risk. Cochrane shows that individual VC projects earn large positive alphas. 

Ewens, Jones, and Rhodes-Kropf provide a possible explanation for this.  The investors in 

VC and private equity funds may be well-diversified, but the funds themselves are not well-

diversified.15 A significant part of a fund manager’s compensation is related to the 

performance of the fund. Furthermore, the contract with investors is set in advance of deals 

being signed with entrepreneurs to acquire firms for the fund portfolio. This creates a 

principal-agent problem in which idiosyncratic risk is rationally priced by the fund 

manager even though it would not be priced by the fund’s investors if they were 

negotiating terms directly with entrepreneurs.  

To assess the viability of a securitization similar to that in Figure 5, we estimate the Sharpe 

ratio for the equity tranche assuming that the more senior debt tranches have been made 

as large as their desired credit ratings will allow. The Sharpe ratio is the excess expected 

return above the risk-free rate divided by the return standard deviation. It is a measure of 

an investment’s risk/reward profile that is widely used by venture capitalists, private 

equity fund managers, and hedge fund managers.  As a reference point, the average Sharpe 

ratio for the CRSP value-weighted return between 1970 and 2016 (calculated using a 60-

month rolling window) was 0.37 and the average realized return during this period was 

10.9%.    

Suppose that the rating for tranche j requires the probability that it will receive its 

promised return to be at least �̂�𝑗. From Proposition 1, the maximum value of Kj , �̂�𝑗 ,  is given 

by solving 

�̂�𝑗 = ∑ 𝑞(ℎ)𝑁 (
ln(𝜇ℎ �̂�𝑗⁄ )−𝑠ℎ

2 2⁄

𝑠ℎ
)𝑛

ℎ=1 .                                              (8) 

                                                           
15 Gompers and Lerner (1999), for example, note that funds typically invest in at most two dozen firms over 
about three years and that the expertise of the fund managers may be limited to a particular sector of the 
economy.   
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When there is no payoff uncertainty this reduces to �̂�𝑗 = 𝜇ℎ̂  where ℎ̂ is the maximum value 

of H for which  

�̂�𝑗 ≥ ∑ 𝑞(ℎ)
ℎ≥𝐻

 

The maximum size of the first tranche is �̂�1 and the maximum size of the jth tranche (j >1), 

conditional on the sizes of earlier tranches being maximized, is �̂�𝑗 − �̂�𝑗−1.  

Assume that the minimum proportion of funding to be provided by the equity tranche is e 

(0 ≤ e <1). Suppose there are m debt tranches, T is the life of the projects,  𝑟𝑗  is the yield on 

the jth most senior debt tranche, and C is the total funding required.  The maximum 

proportion of the funding that can be provided by the first (most senior) tranche is  

𝑢1 = min (
�̂�1

𝐶(1+𝑟1)𝑇
, 1 − 𝑒). 

The maximum proportion of the funding that can be provided by the jth debt tranche (2 ≤ j≤ 

m) is 

𝑢𝑗 = min(
�̂�𝑗−�̂�𝑗−1

𝐶(1+𝑟𝑗)
𝑇 , 1 − 𝑒 − ∑ 𝑢 

𝑗−1
 =1 ). 

This leaves the size of the equity tranche to be 1 − ∑ 𝑢𝑗
𝑚
𝑗=1 . 

There are a number of alternative ways of calculating the Sharpe ratio from the mean and 

standard deviation of multi-year returns. We choose to define it as arithmetic average 

return per year minus the risk-free rate divided by the standard deviation of the return per 

year. For this purpose we assume that returns in successive years are independent. This 

means that 

Sharpe Ratio =  
𝜇𝐸 𝑇−𝑟𝐹⁄

𝜎𝐸 √𝑇⁄
                                                           (9) 

where, as before, 𝑟𝐹 is the risk-free rate per year, and 𝜇𝐸  and 𝜎𝐸are the mean and standard 

deviation of the cumulative return over the life of the structure which can be calculated 

using (5) and (6) and the results in Proposition 2.  
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Table 2 contains results for the case in which m = 2, 𝑟1 = 3%, 𝑟2 = 7%, and T = 5, which are 

the parameters corresponding to Figure 5. The risk-free rate, 𝑟𝐹, is assumed to be 2% and 

we set e = 5%.16 We assume that �̂�1 = 0.998 (corresponding to a maximum default 

probability for the senior tranche of 0.2%) and �̂�2 = 0.982 (corresponding to a maximum 

default probability for the mezzanine tranche equal to 1.8%) with no payoff uncertainty. In 

the top panel of Table 2, the projects are assumed to be uncorrelated while in the bottom 

panel, the Gaussian copula correlation is assumed to be 5%.  (Figure 3b illustrates the effect 

of this amount of correlation on the probability distribution of the number of successes 

when there are 100 projects and the success probability is 5%.) 

To illustrate the calculations in Table 2 consider the situation where there are 300 projects, 

a 5% success probability, a 10% expected return on projects, and no pairwise correlation 

between them.  The probability of greater than 4, 5, 6, 7, and 8, successes are given by the 

binomial distribution as  0.9993, 0.9977, 0.9934, 0.9840, and 0.9659.  The senior tranche 

will obtain the required credit rating if it receives the promised payoff when there are five 

successes whereas the mezzanine tranche will obtain the required rating if it receives the 

promised payoff when there are eight successes.17 If the cost of each project is X,  a total of 

300X of capital is required. Because the expected return from a project is 10%, the payoff 

from one success success is given by 1.15X/0.05 = 32.21X. From five successes the payoff 

would be 161.05X and this would provide the senior tranche’s required return on 

161.05X/1.035=138.92X of funding. The senior tranche can therefore provide 

138.92X/300X=46.31% of the funding. Similarly from eight successes the payoff would be  

257.68X. Of this 96.63X would flow to the mezzanine tranche and would provide a return of 

7% on 96.63X/1.075=68.90X. The mezzanine tranche can therefore provide a further 

68.90X/300X=22.97% of the funding. This means that at least 100% − 46.31%−22.97% = 

30.73% of the funding must be provided by equity. The expected return and standard 

deviation of the return to equity can be calculating for each possible value of the number of 

                                                           
16 Setting e > 0 ensures that there is always an equity tranche and that a Sharpe ratio for it can always be 
calculated. 
17 This is because the probability of five or more success is greater than 0.998 but the probability of six or 
more successes is not greater than 0.998. Similarly, the probability of eight or more successes is greater than 
0.982 but the probability of nine or more successes is not greater than 0.982. 
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successes, h and the payoffs to the tranches. In the case we are considering, the expected 

return to equity is 19.68% and the Sharpe ratio given by (9) is 0.46. 

For the second half of the table where there is a copula correlation of 0.05 the 

results in  Section 3.2 are used to calculate q(h). When there is uncertainty about the payoff, 

(8) can be used to calculate the maximum sizes of the non-equity tranches and therefore 

the minimum size of the equity tranche.  

 

Table 2. Minimum size, expected returns (E[Re]), and Sharpe ratios (SRe) of the equity 
tranche. Various combinations of the number of projects, the probability of success, 
the expected return, and copula correlation of projects in Figure 5 are considered. 
Projects are assumed to last five years.  The probability of loss on the senior and 

50 100 150 200 300 400

Min Size 100.00% 77.03% 66.17% 49.25% 30.73% 26.00%

5% E[Re] 10.00% 10.87% 12.30% 14.48% 19.68% 22.80%

SRe 0.23 0.28 0.35 0.39 0.46 0.56

Min Size 77.03% 46.84% 29.12% 20.26% 10.60% 5.16%

10% 10% E[Re] 10.86% 15.62% 20.96% 26.13% 38.44% 56.49%

SRe 0.29 0.42 0.50 0.56 0.69 0.80

Min Size 50.86% 29.12% 16.77% 10.60% 5.00% 5.00%

15% E[Re] 13.79% 20.95% 29.48% 38.42% 57.79% 58.71%

SRe 0.34 0.51 0.62 0.71 0.88 1.05

Min Size 100.00% 64.52% 47.73% 21.59% 5.00% 5.00%

5% E[Re] 20.00% 25.31% 30.79% 47.28% 92.79% 94.37%

SRe 0.40 0.53 0.66 0.74 0.92 1.10

Min Size 64.52% 17.87% 5.00% 5.00% 5.00% 5.00%

20% 10% E[Re] 25.31% 52.95% 93.77% 94.37% 94.37% 94.37%

SRe 0.55 0.78 0.97 1.13 1.38 1.60

Min Size 24.07% 5.00% 5.00% 5.00% 5.00% 5.00%

15% E[Re] 44.16% 93.77% 94.37% 94.37% 94.37% 94.37%

SRe 0.67 0.99 1.23 1.42 1.74 2.01

Min Size 100.00% 100.00% 84.69% 77.03% 75.43% 74.62%

5% E[Re] 10.00% 10.00% 10.54% 10.89% 11.34% 11.56%

SRe 0.18 0.22 0.22 0.22 0.24 0.25

Min Size 100.00% 77.03% 67.77% 67.68% 61.54% 58.46%

10% 10% E[Re] 10.00% 10.87% 11.80% 12.31% 12.91% 13.25%

SRe 0.24 0.25 0.26 0.28 0.29 0.29

Min Size 84.69% 66.17% 59.99% 56.90% 53.82% 52.27%

15% E[Re] 10.52% 12.32% 13.12% 13.58% 14.07% 14.34%

SRe 0.27 0.30 0.31 0.32 0.33 0.33

Min Size 100.00% 100.00% 76.34% 64.52% 62.04% 60.79%

5% E[Re] 20.00% 20.00% 23.12% 25.34% 26.30% 26.80%

SRe 0.32 0.39 0.40 0.41 0.44 0.45

Min Size 100.00% 64.52% 50.21% 50.06% 40.57% 35.83%

20% 10% E[Re] 20.00% 25.31% 29.50% 30.13% 33.88% 36.26%

SRe 0.43 0.46 0.49 0.52 0.54 0.54

Min Size 76.34% 47.73% 38.19% 33.42% 28.65% 26.26%

15% E[Re] 23.10% 30.80% 35.07% 37.82% 41.17% 43.15%

SRe 0.49 0.55 0.58 0.60 0.62 0.63

Number of ProjectsEquity 

Tranche

Success 

Prob

Project 

E[R]

0% Pairwise Correlation Among Projects

5% Pairwise Correlation Among Projects
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mezzanine tranches are less than 0.2% and 1.8%, respectively, over the five years.  
Tranche yields are as in Figure 5. The risk-free rate is assumed to be 2%.   

The attractiveness of a securitization structure increases as the percentage of funding 

provided by equity declines, as the expected return on the equity tranche increases, and as 

the Sharpe ratio increases. Consider first the most challenging situation where the expected 

return is 10% and the success probability is 5%. If projects are uncorrelated, roughly 50% 

of a megafund of 200 projects could be financed by AAA and BBB bonds.  This percentage 

increases as the number of projects in the fund increases, but the total amount of equity 

funding per project would not change substantially. The expected returns and Sharpe ratios 

are not unreasonable when compared with those for the CRSP value-weighted index 

mentioned earlier. However, when correlation between the projects is introduced, all 

aspects of the structure become much less attractive.  

As shown in Table 2, as the probability of success increases, the size of a feasible megafund 

decreases and the structure becomes more attractive. For example when the success 

probability is 10% (the situation in Figure 5), 150 projects would create an attractive 

structure where about only 30% has to be funded from equity (so that 70% can be funded 

from AAA and BBB bonds).  However, the bottom panel of Table indicates that the success 

probability must be more than 15% when the copula correlation is 5% for such high levels 

of leverage.  

Increasing the expected return from 10% to 20% leads to attractive structures in the cases 

of both 0% and 5% correlation.  We conclude that this form of very simple securitization is 

a potentially useful tool in all situations except those where the probability of success is 

low and there is material correlation between the successes of different project outcomes. 

4.5   Correlation Assumptions 

In some situations, projects can be stratified into a small number of groups (e.g., different 

broad disease categories or different sources of energy). In such cases, we expect the 

within-group pairwise correlations to be greater than the between-group correlations. This 

is equivalent to assuming a multi-factor model for the latent variables, 𝑉𝑖, in (1). We find 

that similar results are obtained by replacing all correlations by the average correlation 
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(i.e., all off-diagonal entries in the correlation matrix are replaced by the average of the off-

diagonal entries). This corresponds to the assumption that is commonly made when debt 

securitizations are analyzed. 

5 Practical Approaches to Improving Credit Quality 

The securitization model of Section 4 illustrates the relative importance of different 

parameters in a long-shot securitization, but is a simplification in several respects. It 

assumes that (a) all projects are entered into at the same time and have the same known 

life; (b) all the funding is provided at the beginning of a project’s life; (c) a project is 

categorized as a success or failure only at the end of its life; (d) a success is monetized only 

at the end of a project’s life; (e) costs are known in advance; and (f) failures are written off 

entirely. We have also assumed a simple zero-coupon structure for the structured debt and 

that there were no structural enhancements beyond subordination.  

In practice, structured transactions often depart from the assumptions of our stylized 

models along two broad dimensions: the structure of the securities issued by an RBO, and 

the structure and evolution of the assets in the portfolio and the markets in which they are 

bought and sold. 

5.1    Structure of Securities 

Departures from the idealized structure of the securities primarily relate to the events on 

which the security payouts depend or the mechanisms that are used to protect one or more 

classes of investor.  

Cash-flow securitizations are typically more complicated than the stylized structure in 

Section 4 because they distribute interim, as well as final, cash flows from a portfolio of 

underlying assets to investors. For example, a collateralized loan obligation (CLO) is a 

simple example of a cash-flow securitization where interest and principal payments from a 

portfolio of individual loans are used to repay principal and interest on tranches.  

The strict priority rule we assumed in Section 4 typically applies to synthetic 

securitizations (such as synthetic CDOs), but not to cash flow securitizations. In the latter, 
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the rules for determining how cash flows are directed to tranches can be quite complicated. 

For example, cash flows are often redirected from junior to senior tranches if there is 

insufficient cash flow to pay all tranches and amortization schedules may be accelerated in 

such cases. This provides additional protection for senior tranches. However, it creates 

path dependence and means that analytic models such as those in Section 4 serve only as 

approximations. A more complete valuation generally requires a multi-period Monte Carlo 

simulation model.  

Some of the additional credit protection mechanisms available to cash-flow securitizations 

include: reserve accounts that are pre-funded and then maintained at specific levels in 

expectation of future interest and principal payments or project funding needs; coverage 

triggers that require assets to be sold if specific reserves are not currently available to 

cover future debt payments; and accelerated waterfalls that require the portfolio to be 

prematurely liquidated to retire the bonds if certain financial criteria are not met.  In 

addition, the terms of the debt itself may be heterogeneous, with different amortization and 

maturity schedules and periodic coupon payments, rather than a zero-coupon structure. 

Table 3 summarizes some of the structural differences between the securities hypothesized 

in the stylized model of Section 4 and those typically seen in the real world. 

 

 Stylized Model Real-world Securitization 

Debt maturity Constant across classes Staggered by class 

Coupon timing At maturity Periodic 

Pre-maturity cash flows Ignored Incorporated 

Structural protection Subordination Subordination, cash flow 

triggers, waterfall acceleration 

Reserve accounts None  Debt coverage, project 
development 

   

Table 3. Summary of structural differences between the stylized synthetic 
securitization model in Section 4 and a typical long-shot securitization structure. 
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5.2     Structure of Assets 

In our analytic models, we assume that the assets are purchased at time 0 and then 

evaluated at time T, where the model time between 0 and T is considered to be a single 

period. We assumed that each asset in the portfolio either realizes its exit value or fails at 

time T and that there is no contingency, beyond the terminal success probability. This set of 

assumptions is appropriate for synthetic transactions, but in practice cash-flow 

securitizations are liable to be more complicated: 

 There is considerable contingency built into funding decisions and thus costs, 
since projects that do not pass an interim phase of advancement do not require 
funding for future phases (prior to reaching the exit target). Conversely, funding 
must also be budgeted to be available at dates beyond the initial investment. 

 Projects reach target exit phases at different rates.  Thus, while some projects 
are still advancing, others may have already reached their exit target.  Sales of 
these projects provide additional capital to fund development of remaining 
projects still in the portfolio. Furthermore, it is possible to exit some projects 
early, but still at a profit if they have advanced part-way through the 
development process.  This is particularly helpful if additional capital is required 
for debt servicing.  This “time tranching” also serves to reduce correlation. 

 Asset sales are not necessarily instantaneous (as is the case when the assets are, 
for example, corporate bonds).  In the case of long-shot projects, buyers must be 
found and terms negotiated before an exit may take place.  This typically takes 
additional time so that there is a lag between the time a portfolio manager 
decides to sell a project and the time that proceeds of the sale are received. 

Table 4 summarizes these and other features that differentiate typical long-shot assets 

from those in the stylized model of Section 4, and Figure 6 contains a schematic description 

of how a cash-flow securitization with coupon-paying debt might be structured for a 

portfolio of early-stage drug compounds. Not shown in Figure 6 are reserve accounts or the 

various changes to the portfolio and cash-flow structure that may occur when, for example, 

available funds are not sufficient to ensure that future debt payments can be made, and 

therefore cash flow is redirected or assets are sold early to raise capital. 
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Feature of assets Stylized Analytic Model Real-world Securitization 
 

Timing of cash flows Fixed Variable 

Arrival time of transitions Fixed Variable 

Monetization One time Staged 

Development Costs Fixed Variable 

Payment timing for costs One time up-front Multiple throughout 

Contingency of costs Deterministic Contingent 

Acquisition timing Instantaneous Staged 

Exit timing Instantaneous Delayed 

 

Table 4. Summary of differences in assets between the stylized securitization model in 
Section 4 and a typical long-shot securitization structure. 

 

 

Figure 6. Schematic design of a cash-flow securitization, with coupon-paying debt, for 
a portfolio of early-stage drug development projects in which: (1) securities are 
issued; (2) proceeds from the sale of the securities are used to purchase a portfolio of 
candidate therapies (sometimes over a period of time); (3) as therapies move through 
the approval process, they gain value and are sold or they fail and are withdrawn; 
(4) proceeds of the sales are used to pay principal and interest and to fund trials on 
remaining drugs; and (5) at end of the transaction, the remaining portfolio is sold and 
the proceeds the distributed. 
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Fernandez, Stein, and Lo (2012) and Fagnan et al. (2014) have developed an open-source 

library of software tools (called RBOToolbox) to simulate the performance of securitization 

structures with behaviors such as those depicted in Figure 6. The simulation results for 

hypothetical megafunds in oncology and in rare diseases yield attractive risk/reward 

profiles when compared to current market investment opportunities. The results also 

suggest that the flexibility built into real-life structures often increases the protection 

provided to bondholders, allowing a greater percentage of funding to come from AAA and 

BBB bonds than suggested by the simple model of Section 4.   We provide a more detailed 

analysis of the benefits of different components of cash flow securitization in the first 

example in Section 6. 

However, securitization is not a panacea. In situations where the number of distinct 

research approaches is small and the projects’ success probabilities are low, securitization 

is not feasible for the reasons discussed in Section 4.4.  We illustrate both of these cases in 

the next section. 

6 Illustrative Examples 

To illustrate the range of applications of long-shot financing, we provide two examples at 

opposite extremes: a portfolio of rare-disease therapeutics and a portfolio of Alzheimer’s 

disease (AD) therapeutics. For reasons that will become clear once we describe the 

risk/reward profiles of each investment, the former can be easily financed with both 

securitized debt and equity, particularly when additional securitization techniques such as 

those discussed in Section 5 are used, whereas the latter is virtually impossible to finance 

using any purely private-sector means. 

6.1    Rare Diseases 

According to the Orphan Drug Act of 1983, rare or “orphan” diseases are considered to be 

those that affect fewer than 200,000 patients in the U.S. Developing successful therapies for 

such diseases are long shots—the success rate, from the preclinical phase to FDA approval 
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ranges from less than 1% to 20% and higher, depending on the condition and type of 

therapy.  This is still much higher than for many other drug development areas and is due, 

in part, to the scientific properties of many orphan diseases which are often caused by a 

single mutation in a patient’s genome.  This property results in two features that are 

particularly well-suited to portfolios. First, the research on therapies may move directly to 

the treatment of the mutation, rather than having to first establish the cause of the disease, 

shortening development time and increasing the odds of success.  Second, because many 

diseases are monogenic (i.e., they are caused by a random mutation in a single gene), the 

success correlations among different therapeutic programs is likely to be low.  In addition 

to these scientific properties,  and although patient populations are often quite small, there 

are additional financial considerations that make these therapies more economically 

viable: they often receive faster regulatory approval (shorter trials), patients are often 

registered through foundations and can thus be pre-screened and identified (leading to 

smaller, cheaper trials), there are often periods of extended patent exclusivity (due to 

legislative actions), and patients are readily reimbursed for treatments (leading to 

attractive valuations upon success). 

Following Fagnan et al. (2014) and Fagnan et al. (2015), we analyze a hypothetical 

portfolio of orphan disease therapies. The goal of such a megafund is to purchase candidate 

therapies at the preclinical or early phase 1 stage, where the drugs are typically very risky 

and therefore difficult to fund individually, and to use the fund as a vehicle to finance trials 

through to the much less risky phases 2 and 3 where investors have greater capacity given 

their risk tolerance.18 

We adopt most of the calibrations in Fagnan et al. (2014), including: (1) the success 

probabilities, trial costs, and exit valuations; (2) the promised yields of the senior and 

subordinated debt (5% and 8%, respectively); and (3) the assumption that the target 

                                                           
18 In order to be approved for use in patients, a drug must undergo a number of trial phases, each of which 
requires a larger population of test subjects and capital to fund, but the success of which increases the 
probability of ultimate approval and therefore increases the economic value of the compound.  In the U.S., for 
example, the FDA mandates that phase 1 trials test the drug’s safety and dosage (typically 20-80 subjects), 
phase 2 trials test the drug’s efficacy and side effects (hundreds of subjects), and phase 3 trials test more 
rigorously the drug’s efficacy and further test dosing and adverse reactions (thousands of subjects). 
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portfolio consists of an equal number of preclinical compounds and phase 1 compounds 

(acquired at launch), that  all compounds have target exits in phase 3, and all forms of 

structured exits such as deferred milestone payments, etc. are ignored. However, we 

modify some assumptions related to the megafund’s capital structure:  

Fagnan et al. (2014) assumed a capital structure of 15% senior debt, 20% subordinated 

debt, and 65% equity.  Our simulations assume 30% senior debt, 20% subordinated debt, 

and 50% equity, which is somewhat more consistent with current market transactions. 

To demonstrate the impact of different cash-flow structuring profiles, we 

– structure debt as either coupon-paying or zero coupon;  
– structure maturities as either concurrent or staggered; and 
– include and exclude budgeting for debt service payments. 

Our goal in varying the debt structure is to explore the impact that structuring can have on 

the credit quality of the debt.  While these results are specific to the transaction structure in 

our example, they are directionally consistent with comparable results from other 

structures. 

The results of our simulation are given in Table 5 (a companion table in the Appendix 

contains details of the structural differences between the simulations). The first rows of the 

table show the probabilities of default for the senior and subordinated debt tranches (“PD 

senior” and “PD subordinated,” respectively) along with the S&P rating that has the closest 

historical default rate to the estimate for the debt maturity, based on S&P’s historical 

default studies (Standard & Poor’s, 2016, Table 26).  The next rows show the mean 

annualized return on equity (ROE) for the equity holders along with the probabilities of a 

loss to equity (“P(equity loss)”) and the probability of large returns (“P(ROE > 25%)”).  

Finally, the last row of the table shows the average number of therapies successfully 

advanced at least one phase through the approval process. 
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(1) 

Simulation 

light 

structuring, 

zero coupon 

 

(2) 

Simulation light 

structuring, semi-annual 

coupon 

 

(3) 

Simulation fuller 

structuring, semi-

annual coupon 

(4) 

Equity 

only 

 

 

PD senior   9.4 % 1.2 % 7 bps      - 

Closest S&P historical default 

rate BB / BB-  BBB AAA      - 

PD subordinated 22.1 % 4.4 % 1.7 %      - 

Closest S&P historical default 

rate B/B- BBB- / BB+ BBB+ / BBB      - 

ROE (mean) 15.0% 10.8% 13.8% 10.1% 

P(equity loss) 17.3% 18.4% 14.5% 19.9% 

P(ROE > 25%) 34.3% 23.2% 27.7% 9.9% 

Mean drugs exiting (P2/P3) 2.7 / 4.3 3.6 / 3.5 2.9 / 4.2 0.9 / 2.4 

 

Table 5. Summary of orphan disease megafund simulation with 1 million paths using 
debt structured as (1) zero coupon with no reserves or overcollateralization; (2) 
coupon paying debt with no reserves or overcollateralization; (3) coupon paying debt 
with reserves and overcollateralization; and (4) no debt but the same starting equity. 
The table shows the probabilities of default for senior and subordinated debt, the 
corresponding S&P ratings with the closest historical default rate, the mean 
annualized ROE for equity holders;  probability that ROE < 0; and the probability that 
ROE > 0.25. It also shows the drugs exiting at phase 2 (P2) and phase 3 (P3).  Portfolios 
contained an average of 16 (8) compounds when structured with (without) debt (see 
Appendix A.3). 

 

As expected, the ROE results suggest that adding leverage generally increases the expected 

return for the transaction.  However, this advantage is mediated by the tradeoff between 

increased purchasing power in constructing the portfolio (by virtue of a larger, levered 

capital base) and the need to service debt, which reduces returns both by siphoning off 

cash flow and by constraining portfolio growth (due either to the need to reduce 

development costs in order to service debt, or, in some cases, to sell assets to meet debt 

servicing requirements). Also, because more assets are purchased when using leverage, 

levered transactions advance a larger number of projects (in this case, by advancing more 

drugs through to phases 2 and 3).  
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A comparison of the columns of Table 5 suggests that the use of some of the structuring 

elements of Section 5 appears to improve both the credit quality of the debt and the returns 

to equity holders.  In general, more structuring results in higher returns and lower 

probabilities of default, with the probability of the simple zero-coupon structure exhibiting 

a default probability more than two orders of magnitude larger than its more structured 

counterpart.   In addition, the risk to equity in using debt financing tends to be improved as 

more structuring tools are applied, due in part to the increased diversification when a 

larger number of assets is purchased.  In this example, the probability of a loss to equity 

decreases when a larger portfolio is financed (using debt), and the decrease is substantial 

in the case of the most structured bond (see column 3): the probability of a negative return 

is about 14.5%, versus 19.9% for straight equity (see column 4).  It is also notable that the 

probability of realizing an ROE of greater than 25% rises to 27.7% for the highly structured 

transaction versus only 10% for the smaller, equity-only portfolio. 

Note that the returns for the more fully structured case in Table 5 likely understate the 

performance of the transaction because we assume the same coupons on debt for all of the 

debt transactions, even though the more heavily structured transaction uses debt with 

shorter average maturities and much lower default probabilities.  It is likely that the 

coupon on a zero-coupon bond with a five-year maturity and a 9.4% probability of default 

would be much higher than that of a four-year maturity bond making semi-annual 

payments with a default probability of just 7 basis points (bps).  Such a difference in 

coupons for these two bonds would magnify the differences in ROE by virtue of more cash 

flow being directed to the portfolio and less to debt service.  (The lower (higher) coupon 

rates would also likely reduce (increase) the default probabilities for the bonds.) 

This example demonstrates the importance of including real-world features in the analysis 

of long-shot portfolios, but there are still more features that we have not included. For 

example, given the complexities in negotiating transactions for exiting investments in 

biomedical projects, it is likely that an initial portfolio would not be fully constructed at 

closing and may take several years to complete. This timing is not captured by our 

simulations. 
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More importantly, it is typical (currently about 90% of the time) for biomedical projects to 

exit under terms involving a combination of an up-front payment and one or more 

“milestone” payments that are subsequently paid to the seller upon the successful 

achievement of additional clinical and commercial objectives by the buyer.  For example, a 

drug may be sold in phase 2 for $50 million up-front and another $25 million that is 

payable by the buyer to the seller if the drug achieves its phase 3 endpoints. Such deal 

terms have significant implications for the timing of cash flows which, in turn, affect the 

default probabilities of the bonds, the correlation of cash flows, and the return to equity 

holders. 

6.2     Alzheimer’s Disease 

An example of the limitations of long-shot financing can be seen in the case of drug 

development for AD which is studied by Lo et al. (2014). Because the basic biology of AD is 

less well developed than that of other diseases, formulating targets for drug development is 

more difficult. Moreover, clinical trials for neurodegenerative diseases like AD often cost 

more (up to $600 million vs. $200 million for a typical cancer drug and even less for a 

targeted orphan disease therapy); take longer (13 years vs. 10 years in oncology), which 

yields a shorter patent life upon approval; and have lower estimated probabilities of 

success (see below). However, given that 5 million Americans are currently estimated to 

suffer from AD, the earnings per year of an approved AD drug are considerably higher than 

those of the average cancer drug (estimated at $5 billion vs. $2 billion per year), yielding an 

NPV of $24.3 billion at approval. 

The clearest manifestation of these combined challenges is that there have been no new AD 

drugs approved by the FDA since 2003.   

This is in a sharp contrast to the 36 cancer drugs approved between January 2015 and 

April 2017. In fact, after informally polling a number of AD experts, Lo et al. (2014) 

reported identifying only 64 potential AD targets, of which only two to three, 

predominantly, were being pursued by the biopharma industry. Within the months prior to 

this writing, there have been at least four highly visible failures of AD drug candidates in 

phase 3 trials (Lilly’s solanezumab in November 2016, Lundbeck’s idalopirdine and 
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Merck’s verubecestat in February 2017, and Axovant’s intepirdine in September 2017), 

raising further doubts in the minds of investors about this therapeutic area.  

To examine what this implies for long-shot financing, we performed a variation of the 

simulation in Lo et al. (2014). Consider a stylized megafund of 64 AD drug candidates with 

the cost and revenue parameters in Table 6: 

Cost per project  $600 million 
Clinical trial duration  13 years 
Remaining patent life  7 years 

Earnings per year  $5 billion 
Cost of capital  10%19 

 

Table 6. Parameters used for analysis of Alzheimer’s megafund. 

 

The total cost of constructing the portfolio of 64 AD candidate therapies is 64 × $600 

million = $38.4 billion and the NPV of the payoff for a single successful project is $24.3 

billion, so that at least two successful projects are required just to recover the initial 

investment (assuming no other fees or expenses).  In the scenario of two successful drugs, 

the investor would receive $48.6 billion in NPV, yielding a total return (not annualized) for 

the 20-year investment of R = 48.6

38.4
-1 = 𝑅 = 48.6

38.4
− 1 =26.6%, or just over 1% per year 

annualized.   

The only two remaining parameters needed to simulate the investment performance of an 

AD megafund are the probability of success of each project and the pairwise correlation 

among projects, if any. Because there have been no successful AD drugs developed over the 

last 14 years, the probability of success is difficult to estimate. In the most recent published 

study, Cummings, Morstorf, and Zhong (2014) estimate a failure rate of 99.6% for a 0.4% 

                                                           
19 Note that the 10% assumption for cost of capital is generous.  For example, Kerins, Smith, and Smith (2004) 
and Moeza and Sahut (2013) both find that for diversified biotechnology venture investors, a gross cost of 
capital in the range of 13% to 15% is reasonable.  
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probability of success using a sample of 413 AD trials from 2002 to 2014.20 For simplicity, 

we run simulations with p = 1%, 5%, and 10% for illustrative purposes. With respect to 

pairwise correlation, we follow Lo et al. (2014) and use equicorrelated multivariate normal 

latent variables to simulate correlated Bernoulli trials.21 

The cumulative distribution functions (CDFs) for the total number of successes (out of 64 

trials) are displayed in Figure 7 for various pairwise correlation assumptions.  The red line 

shows the results when using average estimated pairwise correlations provided by several 

AD experts, while the interpretation of the others is given in the legends.   

We also show results for the success correlation, 𝜌, ranging from 0% to 75%—Figure 7a 

contains the CDFs for p = 1%, and the two remaining subfigures contain the CDFs for p = 

5% and 10%. These figures show that the distribution of the total number of successes 

depends heavily on 𝜌. With 𝜌 = 0% and p = 1%, the probability of at least one success out of 

64 trials is 47.5%; with 𝜌 = 5%, this probability becomes 43.7%; with 𝜌 = 10%, this 

probability becomes 40.2%; and with 𝜌 = 75%, this probability declines to 9.9%. 

Of course, the impact of higher pairwise correlation is diminished when  the probability of 

success for each Bernoulli trial is higher. For example, Figure 7c shows that when p = 10%, 

the probability of at least one success ranges from 99.9% with 𝜌 = 0% to 45% with 𝜌 = 

75%, almost as high as in the case with p = 1% and 𝜌 = 0%. Therefore, the impact of success 

correlation on default probabilities can be mitigated by selecting projects with higher 

probabilities of success. However, doing so is akin to identifying investments with positive 

“alpha”; it is easier said than done. 

  

                                                           
20 Using the “Rule of Threes,” the naïve 95% upper bound on the estimate of the success rate, having observed 
zero successes in 413 trials, would be 3/413= 0.07%.  By similar calculations, a naïve 99% upper bound on 
the success rate would be 1.1% and a 99.9% upper bound would be 1.7% (assuming no correlation). 
21 This is equivalent to the Gaussian copula model (1). 
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(a) (b) 

 
(c) 

Figure 7. Cumulative probability distribution functions for the number of successes, k,  in 64 trials 
with equal pairwise correlation ranging from 0% to 75%, and correlation determined by averaging 
expert opinion (see Lo et al., 2014), for probability of success p equal to (a) 1%; (b) 5%; and (c) 10%. 
To show more detail in the left tail of the distribution functions, the graphs display only up to k = 25. 

 

The performance results for the hypothetical AD megafund are contained in Table 7. With 

𝑝 = 1% and 𝜌 = 0%, the expected annualized return is −53. % with an annualized 

standard deviation of  9.1%. And this is the best-case scenario for the fund when 𝑝 =

1%—as 𝜌 increases, the fund’s performance becomes worse, yielding an expected return of 

−89.5% with 𝜌 = 75%. With such performance, no rational investor would participate in 

this fund, hence securitization is not a feasible alternative.   

Performance improves somewhat when 𝑝 = 5%. With no pairwise correlation, the 

expected return in this case is 1% and the standard deviation is 20.3%. However, with even 

the slightest positive correlation, the fund’s expected return becomes negative. Only when 

the probability of success reaches 10% does megafund financing become feasible. But even 
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in this extreme case, once pairwise correlations reach 25%, the expected return becomes 

negative and megafund financing is again infeasible.  

There is, of course, some level of p beyond 10% for which the expected return is positive, 

but in the context of AD, such levels are currently unrealistic. 

 

Table 7. Performance statistics of a hypothetical portfolio of 64 AD drug candidates 
over a 13-year investment period, each with probability of success, p, ranging from 
1% to 10% and pairwise correlations, 𝝆, ranging from 0% to 75%, and with success 
probabilities and correlations determined by experts. E[hits]: expected hits; E[R]: 
expected returns; SD[R]: standard deviation. 

 

Motivated by the results above, an alternative strategy to “picking winners” is to construct 

portfolios containing many different therapeutic approaches, which can reduce correlation.  

At one extreme, if all projects are perfectly correlated, the probability of one success is the 

same as the probability of 64 successes.  By investing in a more diverse portfolio, perhaps 

containing more unconventional approaches, the portfolio’s expected returns may be 

improved due to the reduction in correlation.  These more unorthodox therapies may have 

lower probabilities of success.  However, the diversification benefit they confer could 

overcome their (relatively) lower likelihood of paying off, particularly for portfolios with 

such low initial probabilities of success.  This technique—trading asset quality for portfolio 

diversification—is routinely employed by credit portfolio managers in managing more 

conventional fixed-income portfolios (Bohn and Stein, 2009). However, an important 

constraint on our results is the availability of viable AD therapies in which to invest. In 

p r E[hits]

Prob at 

least 1 hit E[R] SD[R] p r E[hits]

Prob at 

least 1 hit E[R] SD[R]

1% 0%  0.6   47.5%  -53.4%  49.1%  10% 0%  6.4   99.9%  10.6%  5.3%  

1% 5%  0.6   43.7%  -56.9%  49.0%  10% 5%  6.4   98.9%  9.0%  12.4%  

1% 10%  0.6   40.2%  -60.2%  48.6%  10% 10%  6.4   97.2%  6.7%  19.2%  

1% 25%  0.6   31.3%  -68.7%  46.6%  10% 25%  6.4   88.4%  -3.3%  35.7%  

1% 50%  0.6   19.3%  -80.2%  40.6%  10% 50%  6.4   68.4%  -24.8%  51.7%  

1% 75%  0.6   9.9%  -89.5%  31.8%  10% 75%  6.4   45.0%  -49.5%  56.4%  

5% 0%  3.2   96.3%  1.0%  20.3%  3.8   78.5%  -16.7%  44.0%  

5% 5%  3.2   91.6%  -4.0%  29.6%  

5% 10%  3.2   86.7%  -9.0%  36.0%  

5% 25%  3.2   72.5%  -23.7%  47.4%  

5% 50%  3.2   50.3%  -46.3%  53.7%  

5% 75%  3.2   29.7%  -67.4%  50.5%  

Experts
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practice, we are limited simply by the small number of distinct targets, mechanisms of 

action, and researchers in the field. 

Although AD therapies currently do not appear to be conducive to a purely private-sector 

funding model, this should not be interpreted as motivation to divest from AD therapeutics 

(although several large pharma companies seem to be doing just that). Instead, it 

underscores the need for some sort of government intervention to address this societal 

challenge. In fact, Lo et al. (2014) show that, from a public policy perspective, government 

investment in an AD megafund may yield potentially highly attractive rates of return when 

we include the projected cost savings to taxpayers of delaying the onset or slowing the 

progression of AD (e.g., according to the Alzheimer’s Association (2017), the projected 

2017 spending on AD by Medicare and Medicaid alone is $175 billion). 

Additional research can lead to both improved probabilities of technical success (as the 

scientific community expands its knowledge of the biology of AD) and a more diverse set of 

therapeutic alternatives (as funding becomes available to finance research on novel 

scientific approaches).  Through more creative government-backed programs such as long-

term AD bonds backed by government guarantees (such as those described in Fagnan, et 

al.,  2013), these dual outcomes may serve, over time, to transform AD drug development to 

a purely private-sector pursuit. 

7 Conclusions 

Long shots play a key role in innovation—they are the means by which some of society’s 

biggest challenges will be met. In this paper, we propose the use of securitization to finance 

long shots, a well-established financing technique uniquely suited because of the scale and 

scope of debt markets and their risk-sharing capacity. 

The viability of the securitization structure we have proposed depends critically on the 

number of available projects, their probabilities of success, the costs of development, the 

relative relationship between these costs and the payoff upon success, and the correlations 

between projects. Because of the sensitivity of default probabilities to these correlations, it 

is important to maximize diversification among the projects chosen for the portfolio. Of 
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course, greater diversity also means greater expertise required to manage the portfolio, 

hence a balance must be struck. 

We also show that in some settings, credit quality may be improved dramatically through 

the use of more involved structuring techniques.  While such techniques cannot turn a 

negative NPV investment positive, they do permit more efficient use of the returns 

generated by portfolios of positive NPV projects to service structured debt backed by the 

portfolio. This may result in significant increases in the credit quality of the structured 

debt, even when projects are correlated. We provide an example of such performance 

improvement on portfolios composed of identical assets, but differing structures and 

structural enhancements. 

Finally, our analysis has the potential to allow us to distinguish projects that can only be 

funded by the government from those that can be funded by the private sector. For long 

shots that yield a much higher return to society than to the private sector, government 

funding must be used to bridge the financing gap, perhaps in the form of public/private 

partnerships. Except for these cases, however, it appears feasible to finance long shots 

through private-sector securitization as described in this paper.   
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APPENDIX 

A.1 Proof of Proposition 1 

To prove Proposition 1 we note that the sum of variables that are multivariate lognormal is 

approximately lognormally distributed. Appropriate parameters for the lognormal 

distribution of the sum can be determined by moment matching.22  Define 𝑚ℎ and 𝑠ℎ  as the 

mean and standard deviation of the logarithm of total payoff from h successes. From the 

properties of the lognormal distribution, we require 

𝜇ℎ = exp(𝑚ℎ + 𝑠ℎ
2 2⁄ ) 

𝜎ℎ
2 = 𝜇ℎ

2[exp(𝑠ℎ
2) − 1] 

 

so that 

𝑠ℎ = √ln (1 +
𝜎ℎ
2

𝜇ℎ
2) 

𝑚ℎ = ln(𝜇ℎ) − 0.5𝑠ℎ
2 

Conditional on h successes, the probability that the payoff will be greater than 𝐾𝑗  is 

𝑁(
𝑚ℎ − ln (𝐾𝑗)

𝑠ℎ
) 

The result in Proposition 1 follows from substituting for 𝑚ℎ.  

A.2 Proof of Proposition 2 

To prove Proposition 2, define 𝑃ℎ as the payoff conditional on h successes and 𝑓ℎ(𝑃ℎ) as its 

probability density. From Proposition 1 

                                                           
22 This approach was suggested by Fenton (1960) and is known as the Fenton-Wilkinson approximation. It is 
commonly used when pricing derivatives such as basket and Asian options and provides good accuracy in a 
wide range of situations. 
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∫ 𝑓ℎ(𝑃ℎ)𝑑𝑃ℎ

∞

𝐾𝑚

= 𝑁(
ln(𝜇ℎ 𝐾𝑚⁄ ) − 𝑠ℎ

2 2⁄

𝑠ℎ
) 

 

From results in Aitchison and Brown (1957) 

∫ 𝑃ℎ𝑓ℎ(𝑃ℎ)
∞

𝐾𝑚

𝑑𝑃ℎ = 𝜇ℎ𝑁(
ln(𝜇ℎ 𝐾𝑚⁄ ) + 𝑠ℎ

2 2⁄

𝑠ℎ
) 

∫ 𝑃ℎ
2𝑓ℎ(𝑃ℎ)𝑑𝑃ℎ

∞

𝐾𝑚

= (𝜇ℎ
2 + 𝜎ℎ

2)𝑁 (
ln(𝜇ℎ 𝐾𝑚⁄ ) + 3𝑠ℎ

2 2⁄

𝑠ℎ
) 

The first moment of the distribution of the cash flow to the equity tranche is  

𝑀1 = ∫ (𝑃ℎ − 𝐾𝑚)𝑓ℎ(𝑃ℎ)
∞

𝐾𝑚

𝑑𝑃ℎ = ∫ 𝑃ℎ𝑓ℎ(𝑃ℎ)
∞

𝐾𝑚

𝑑𝑃ℎ − 𝐾𝑚∫ 𝑓ℎ(𝑃ℎ)
∞

𝐾𝑚

𝑑𝑃ℎ  

The second moment is   

𝑀2 = ∫ (𝑃ℎ − 𝐾𝑚)
2𝑓ℎ(𝑃ℎ)

∞

𝐾𝑚

𝑑𝑃ℎ

= ∫ 𝑃ℎ
2𝑓ℎ(𝑃ℎ)

∞

𝐾𝑚

𝑑𝑃ℎ + 𝐾𝑚
2 ∫ 𝑓ℎ(𝑃ℎ)

∞

𝐾𝑚

𝑑𝑃ℎ − 2𝐾𝑚∫ 𝑃ℎ𝑓ℎ(𝑃ℎ)
∞

𝐾𝑚

𝑑𝑃ℎ 

 

Proposition 2 follows. 
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A.3 Additional Parameters for Orphan Drug Megafund Simulation 

 
 

Fund Characteristic 

(1) 

Simulation light 

structuring, 

zero coupon 

 

(2) 

Simulation light 

structuring,semi-

annual coupon 

 

(3) 

Simulation fuller 

structuring, semi-

annual coupon 

(4) 

Equity only 

 

 

Total capital $575    MM $575    MM $575    MM $ 287.5 MM 

Senior debt $287.5 MM $287.5 MM $287.5 MM - 

Subordinated debt $172.5 MM $172.5 MM $172.5 MM - 

Equity $115    MM $115    MM $115    MM $ 287.5 MM 

 

Average number of drugs acquired 

(Pre/P1) 8.0/8.0 8.0/8.0 8.0 / 7.9 4.0/3.9 

Senior bond 

    Maturity 5 yrs 4 yrs 4 yrs NA 

Coupon payment schedule Terminal per Semi-annual Semi-annual NA 

Amortization Terminal per 2 yr straight line 2 yr straight line NA 

Subordinated bond 

    Maturity 5 yrs 6 yrs 6 yrs NA 

Coupon payment schedule Terminal per Semi-annual Semi-annual NA 

Amortization Terminal per 2 yr straight line 2 yr straight line NA 

Budget for future trials No No Yes NO 

Senior debt coverage requirement NA NA 1.75 NA 

Subordinated debt coverage 

requirement NA NA 2.75 NA 

Number of periods of P&I reserved 0 0 2 NA 

      

Table A.1 Additional details of orphan disease megafund simulation with 1 million paths using 
debt structured as (1) zero coupon with no reserves or overcollateralization; (2) coupon paying 
debt with no reserves or overcollateralization; (3) coupon paying debt with reserves and 
overcollateralization; and (4) no debt but the same starting equity. P&I: principal and interest 
payments. 


