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Calculation of Cumulative Probability in Bivariate Normal Distribution

Define M (a, b; p) as the cumulative probability in a standardized bivariate normal
distribution that the first variable is less than a and the second variable is less than b,
when the coefficient of correlation between the variables is p. Drezner provides a way of

calculating M (a, b; p) to four-decimal-place accuracy.! If a <0, b <0, and p < 0,
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where
f(z,y) =expla’(2x —a') +V'(2y — b') + 2p(x — a’)(y — V)]
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A, = 0.3253030 Ay = 0.4211071 As = 0.1334425 A4 = 0.006374323
B, = 0.1337764 By = 0.6243247 Bs = 1.3425378 By = 2.2626645

In other circumstances where the product of a, b, and p is negative or zero, one of the
following identities can be used:

M(a, b; p) = N(a) = M(a, —b; —p)
M(a, b; p) = N(b) = M(—a, b; —p)
M(a, b; p) = N(a) + N(b) — 14+ M(—a, —b; p)
In circumstances where the product of a, b, and p is positive, the identity
M(a, b; p) = M(a, 0; p1) + M(b, 0; p2) — 0
can be used in conjunction with the previous results, where

_ (pa —b)sgn (a) _ (pb—a)sgn (b)
1= P2 =
Va2 — 2pab + b2 Va2 — 2pab + b2

1— b +1 when x > 0
5 L sen(a)sgn(b) sgn (z) =
4 -1 when z < 0
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