Technical Note No. 31*

Options, Futures, and Other Derivatives John Hull

Properties of Ho-Lee and Hull-White Interest Rate Models

This note presents some of the math underlying the Ho-Lee and Hull-White one-factor models of the term structure. It follows the approach in Hull and White (1993). ${ }^{1}$

In a one-factor term structure, model the process for a zero-coupon bond price in the traditional risk-neutral world must have a return equal to the short rate r. Suppose that $v(t, T)$ is the volatility. Then:

$$
\begin{equation*}
d P(t, T)=r P(t, T) d t+v(t, T) P(t, T) d z \tag{1}
\end{equation*}
$$

In this note, we will assume that v is a function only of t and T. Because the bond's price volatility declines to zero at maturity $v(t, t)=0$.

From Ito's lemma, for any times T_{1} and T_{2} with $T_{2}>T_{1}$

$$
\begin{align*}
& d \ln P\left(t, T_{1}\right)=\left[r-\frac{v\left(t, T_{1}\right)^{2}}{2}\right] d t+v\left(t, T_{1}\right) d z(t) \tag{2}\\
& d \ln P\left(t, T_{2}\right)=\left[r-\frac{v\left(t, T_{2}\right)^{2}}{2}\right] d t+v\left(t, T_{2}\right) d z(t) \tag{3}
\end{align*}
$$

Define $f\left(t, T_{1}, T_{2}\right)$ as the forward rate for the period between time T_{1} and T_{2} as seen at time t

$$
f\left(t, T_{1}, T_{2}\right)=-\frac{\ln P\left(t, T_{2}\right)-\ln P\left(t, T_{1}\right)}{T_{2}-T_{1}}
$$

From equations (2) and (3)

$$
d f\left(t, T_{1}, T_{2}\right)=\left[\frac{v\left(t, T_{2}\right)^{2}-v\left(t, T_{1}\right)^{2}}{2\left(T_{2}-T_{1}\right)}\right] d t-\left[\frac{v\left(t, T_{2}\right)-v\left(t, T_{1}\right)}{T_{2}-T_{1}}\right] d z(t)
$$

Define $R(t, T)$ as the zero rate for the period between t and T.

$$
R(t, T)=f(0, t, T)+\int_{0}^{T} d f(\tau, t, T)
$$

so that

$$
\begin{equation*}
R(t, T)=f(0, t, T)+\int_{0}^{t}\left[\frac{v(\tau, T)^{2}-v(\tau, t)^{2}}{2(T-t)}\right] d \tau-\int_{0}^{t}\left[\frac{v(\tau, T)-v(\tau, t)}{T-t}\right] d z(\tau) \tag{4}
\end{equation*}
$$

* ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.
${ }^{1}$ See J. Hull and A. White, "Bond Option Pricing Based on a Model for the Evolution of Bond Prices," Advances in Futures and Options Research, 6 (1993), 1-13.

As T approaches $t, R(t, T)$ becomes $r(t)$ and $f(0, t, T)$ becomes the instantaneous forward rate, $F(0, t)$ so that

$$
r(t)=F(0, t)+\int_{0}^{t} \frac{\partial}{\partial t} \frac{v(\tau, t)^{2}}{2} d \tau-\int_{0}^{t} \frac{\partial}{\partial t} v(\tau, t) d z(\tau)
$$

or

$$
\begin{equation*}
r(t)=F(0, t)+\int_{0}^{t} v(\tau, t) v_{t}(\tau, t) d \tau-\int_{0}^{t} v_{t}(\tau, t) d z(\tau) \tag{5}
\end{equation*}
$$

where subscripts denote partial derivatives. To calculate the process for r we differentiate with respect to t. Because $v(t, t)=0$, this gives

$$
\begin{equation*}
d r=\left\{F_{t}(0, t)+\int_{0}^{t}\left[v(\tau, t) v_{t t}(\tau, t)+v_{t}(\tau, t)^{2}\right] d \tau-\int_{0}^{t} v_{t t}(\tau, t) d z(\tau)\right\} d t-\left.v_{t}(\tau, t)\right|_{\tau=t} d z(t) \tag{6}
\end{equation*}
$$

Case 1: Ho-Lee; $v(t, T)=\sigma(T-t)$
In the case, equation (5) gives

$$
\begin{equation*}
r(t)=F(0, t)+\sigma^{2} t^{2} / 2-\int_{0}^{t} \sigma d z(\tau) \tag{7}
\end{equation*}
$$

and equation (6) gives

$$
d r(t)=\left[F_{t}(0, t)+\sigma^{2} t\right] d t+\sigma d z
$$

This is the Ho-Lee model

$$
d r=\theta(t) d t+\sigma d z
$$

We have proved the equation for $\theta(t)$

$$
\theta(t)=F_{t}(0, t)+\sigma^{2} t
$$

Also from equation (4)

$$
\begin{equation*}
R(t, T)=f(0, t, T)+\sigma^{2} t T / 2-\int_{0}^{t} \sigma d z(\tau) \tag{8}
\end{equation*}
$$

From equations (7) and (8)
$R(t, T)=f(0, t, T)+\sigma^{2} t T / 2+r(t)-F(0, t)-\sigma^{2} t^{2} / 2=f(0, t, T)-F(0, t)+\sigma^{2} t(T-t) / 2+r(t)$
Because

$$
\ln P(t, T)=-R(t, T)(T-t)
$$

It follows that

$$
\ln P(t, T)=-f(0, t, T)(T-t)+F(0, t)(T-t)-\sigma^{2} t(T-t)^{2} / 2-r(t)(T-t)
$$

The forward bond price $P(0, T) / P(0, t)$ equals $e^{-f(0, t, T)(T-t)}$ so that this becomes

$$
\ln P(t, T)=\ln \frac{P(0, T)}{P(0, t)}+F(0, t)(T-t)-\sigma^{2} t(T-t)^{2} / 2-r(t)(T-t)
$$

This proves:

$$
P(t, T)=A(t, T) e^{-r(t)(T-t)}
$$

where

$$
\ln A(t, T)=\ln \frac{P(0, T)}{P(0, t)}+F(0, t)(T-t)-\frac{1}{2} \sigma^{2} t(T-t)^{2}
$$

Case 2: Hull-White; $v(t, T)=\sigma\left(1-e^{-a(T-t)}\right) / a$
In this case, equation (5) gives

$$
\begin{equation*}
r(t)=F(0, t)+\frac{\sigma^{2}}{a^{2}}\left(1-e^{-a t}\right)-\frac{\sigma^{2}}{2 a^{2}}\left(1-e^{-2 a t}\right)-\int_{0}^{t} \sigma e^{-a(t-\tau)} d z(\tau) \tag{9}
\end{equation*}
$$

Equation (6) gives

$$
\begin{equation*}
d r(t)=\left\{F_{t}(0, t)+\frac{\sigma^{2}}{a}\left(e^{-a t}-e^{-2 a t}\right)+\int_{0}^{t} \sigma a e^{-a(t-\tau)} d z(\tau)\right\} d t-\sigma d z(t) \tag{10}
\end{equation*}
$$

Substituting for

$$
\left.\int_{0}^{t} \sigma e^{-a(t-\tau}\right) d z(\tau)
$$

from equation (9) into equation (10) we obtain
$d r(t)=\left\{F_{t}(0, t)+\frac{\sigma^{2}}{a}\left(e^{-a t}-e^{-2 a t}\right)-a r(t)+a F(0, t)+\frac{\sigma^{2}}{a}\left(1-e^{-a t}\right)-\frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)\right\} d t-\sigma d z(t)$
or

$$
d r(t)=\left\{F_{t}(0, t)+a F(0, t)-a r(t)+\frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)\right\} d t-\sigma d z(t)
$$

This is the Hull-White model

$$
d r(t)=(\theta(t)-a r) d t+\sigma d z
$$

with

$$
\theta(t)=F_{t}(0, t)+a F(0, t)+\frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)
$$

From equation (4)
$R(t, T)=f(0, t, T)+\frac{\sigma^{2}\left[e^{-2 a(T-t)}-e^{-2 a T}-1+e^{-2 a t}-4 e^{-a(T-t)}+4 e^{-a T}+4-4 e^{-a t}\right]}{4 a^{3}(T-t)}$

$$
\begin{equation*}
+\frac{\sigma\left(e^{-a T}-e^{-a t}\right)}{a(T-t)} \int_{0}^{t} e^{a \tau} d z(\tau) \tag{11}
\end{equation*}
$$

From equation (9)

$$
\sigma \int_{0}^{t} e^{a \tau} d z(\tau)=-r(t) e^{a t}+F(0, t) e^{a t}+\frac{\sigma^{2}}{a^{2}}\left(e^{a t}-1\right)-\frac{\sigma^{2}}{2 a^{2}}\left(e^{a t}-e^{-a t}\right)
$$

so that

$$
\begin{aligned}
R(t, T) & =f(0, t, T)+\frac{\sigma^{2}\left[e^{-2 a(T-t)}-e^{-2 a T}-1+e^{-2 a t}-4 e^{-a(T-t)}+4 e^{-a T}+4-4 e^{-a t}\right]}{4 a^{3}(T-t)} \\
& +\frac{\left(e^{-a T}-e^{-a t}\right)}{a(T-t)}\left[-r(t) e^{a t}+F(0, t) e^{a t}+\frac{\sigma^{2}}{a^{2}}\left(e^{a t}-1\right)-\frac{\sigma^{2}}{2 a^{2}}\left(e^{a t}-e^{-a t}\right)\right]
\end{aligned}
$$

Now

$$
\ln P(t, T)=-R(t, T)(T-t)
$$

and the forward bond price $P(0, T) / P(0, t)$ equals $e^{-f(0, t, T)(T-t)}$. After some tedious algebra we get

$$
\ln P(t, T)=\ln \frac{P(0, T)}{P(0, t}+F(0, t) B(t, T)-\frac{1}{4 a^{3}} \sigma^{2}\left(e^{-a T}-e^{-a t}\right)^{2}\left(e^{2 a t}-1\right)-r(t) B(t, T)
$$

where

$$
B(t, T)=\frac{\left.1-e^{-a(T-t)}\right)}{a}
$$

showing that

$$
P(t, T)=A(t, T) e^{-B(t, T) r}
$$

where

$$
\ln A(t, T)=\ln \frac{P(0, T)}{P(0, t}+F(0, t) B(t, T)-\frac{1}{4 a^{3}} \sigma^{2}\left(e^{-a T}-e^{-a t}\right)^{2}\left(e^{2 a t}-1\right)
$$

Bond Options

Consider a European option with strike price K and maturity T on a zero-coupon bond where the maturity of the bond is s. The forward price of the bond underlying the option as seen at time $t, F_{B}(t, T, s)$, is

$$
F_{B}(t, T, s)=\frac{P(t, s)}{P(t, T)}
$$

Using the results in equations (2) and (3) we get

$$
d \ln F_{B}(t, T, s)=\frac{v(t, T)^{2}-v(t, s)^{2}}{2} d t+[v(t, s)-v(t, T)] d z
$$

This shows that the $P(T, s)=f_{B}(T, T, s)$ is lognormal when $v(t, T)$ is function only of t and T. The variance $\ln P(T, s)$ is then

$$
\sigma_{P}^{2}=\int_{0}^{T}[v(t, s)-v(t, T)]^{2} d t
$$

In the case of Ho-Lee $v(t, T)=\sigma(T-t)$ and $\sigma_{P}^{2}=\sigma^{2}(s-T)^{2} T$. In Hull-White $v(t, T)=\sigma B(t, T)$ so that

$$
\sigma_{P}^{2}=\sigma^{2} \int_{0}^{T}[B(t, s)-B(t, T)]^{2} d t=\frac{\sigma^{2}}{2 a^{3}}\left[1-e^{-a(s-T)}\right]^{2}\left(1-e^{-2 a T}\right)
$$

In both cases bond options can be valued using Black's model. The average variance rate of the forward bond price is σ_{P}^{2} / T. This leads to the results for bond options in the text.

