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Properties of Lognormal Distribution

A variable V has a lognormal distribution if X = ln(V ) has a normal distribution.
Suppose that X is φ(m, s2); that is, it has a normal distribution with mean m and standard
deviation, s. The probability density function for X is
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The probability density function for V is therefore
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Consider the nth moment of V ∫ +∞
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Substituting V = expX this is∫ +∞
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The integral in this expression is the integral of a normal density function with mean
m + ns2 and standard deviation s and is therefore 1.0. It follows that∫ +∞
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V nh(V )dV = exp(nm + n2s2/2) (1)

The expected value of V is given when n = 1. It is

exp(m + s2/2)
The formula for the mean of a stock price at time T in the text is given by setting
m = ln(S0) + (µ− σ2/2)T and s = σ
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The variance of V is E(V 2)− [E(V )]2. Setting n = 2 in equation (1) we get

E(V 2) = exp(2m + 2s2)
The variance of V is therefore

exp(2m + 2s2)− exp(2m + s2) = exp(2m + s2)[exp(s2)− 1]
The formula for the variance of a stock price at time T in the text is given by setting
m = ln(S0) + (µ− σ2/2)T and s = σ
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