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Note on Backpropagation 
John Hull 

 
Backpropagation is a way of using the chain rule to calculate 

derivatives of the mean squared error (or other objective 
function) with respect to the parameter values. For convenience 
we assume a single target. The mean squared error is given by: 
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where there are n observations, 𝑦̂𝑖 is the value of the target for the 

ith observation, and yi is the estimate of the target’s value given by 
the neural network.  If is the value of a parameter 
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We can therefore consider each observation separately, 
calculating 𝜕𝑦𝑖 𝜕θ,⁄   and at the end use this equation to get the 

partial derivative we are interested in.  
We start with the values of  used to calculate the target 𝑦𝑖 at 

the end of the network and work back through the network 
considering other values. As in Chapter 6, we define L as the 
number of layers and K as the number of neurons per layer. The 
value at the kth neuron for layer l will be denoted by 𝑉𝑙𝑘(1 ≤ k ≤ K; 
1 ≤ l ≤ L). 

First we note that if  is a parameter relating the output to the 
final layer, 𝜕𝑦𝑖 𝜕θ⁄  can be calculated without difficulty. If is a 
parameter relating the value at neuron k of the final layer to a 
neuron in the penultimate layer, we have from the chain rule 
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Both 𝜕𝑦𝑖 𝜕𝑉𝐿𝑘⁄  and 𝜕𝑉𝐿𝑘 𝜕θ⁄   can be calculated without difficulty.   

Now let us consider the situation where the parameter 
relates the value at neuron k of layer l to a neuron in layer l−1 (l 
< L).  Then 
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The partial derivative 𝜕𝑉𝑙𝑘 𝜕θ⁄  can be calculated without difficulty. 
We have to do a little more work to calculate 𝜕𝑦𝑖 𝜕𝑉𝑙𝑘⁄ . An 
application of the chain rule gives 
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The partial derivative, 𝜕𝑉𝑙+1,𝑘∗ 𝜕𝑉𝑙𝑘⁄ , can be calculated without 

difficulty for all k and k*. Because calculations start at the end of 
the network and work back, we have already calculated the values 
of 𝜕𝑦𝑖 𝜕𝑉𝑙+1,𝑘∗   ⁄ for all k* by the time that we consider a  that 

relates layer l−1 to layer l. 
Taken together, the equations we have presented provide a 

fast way to calculate all the partial derivatives necessary for the 
gradient descent algorithm.  

 
  


