Note on Backpropagation John Hull

Backpropagation is a way of using the chain rule to calculate derivatives of the mean squared error (or other objective function) with respect to the parameter values. For convenience we assume a single target. The mean squared error is given by:

$$
E=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

where there are n observations, \hat{y}_{i} is the value of the target for the i th observation, and y_{i} is the estimate of the target's value given by the neural network. If θ is the value of a parameter

$$
\frac{\partial E}{\partial \theta}=-\frac{2}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right) \frac{\partial y_{i}}{\partial \theta}
$$

We can therefore consider each observation separately, calculating $\partial y_{i} / \partial \theta$, and at the end use this equation to get the partial derivative we are interested in.

We start with the values of θ used to calculate the target y_{i} at the end of the network and work back through the network considering other θ values. As in Chapter 6 , we define L as the number of layers and K as the number of neurons per layer. The value at the k th neuron for layer l will be denoted by $V_{l k}(1 \leq k \leq K$; $1 \leq l \leq L$).

First we note that if θ is a parameter relating the output to the final layer, $\partial y_{i} / \partial \theta$ can be calculated without difficulty. If θ is a parameter relating the value at neuron k of the final layer to a neuron in the penultimate layer, we have from the chain rule

$$
\frac{\partial y_{i}}{\partial \theta}=\frac{\partial y_{i}}{\partial V_{L k}} \frac{\partial V_{L k}}{\partial \theta}
$$

Both $\partial y_{i} / \partial V_{L k}$ and $\partial V_{L k} / \partial \theta$ can be calculated without difficulty.
Now let us consider the situation where the parameter θ relates the value at neuron k of layer l to a neuron in layer $l-1$ (l $<L$). Then

$$
\frac{\partial y_{i}}{\partial \theta}=\frac{\partial y_{i}}{\partial V_{l k}} \frac{\partial V_{l k}}{\partial \theta}
$$

The partial derivative $\partial V_{l k} / \partial \theta$ can be calculated without difficulty. We have to do a little more work to calculate $\partial y_{i} / \partial V_{l k}$. An application of the chain rule gives

$$
\frac{\partial y_{i}}{\partial V_{l k}}=\sum_{k^{*}=1}^{K} \frac{\partial y_{i}}{\partial V_{l+1, k^{*}}} \frac{\partial V_{l+1, k^{*}}}{\partial V_{l k}}
$$

The partial derivative, $\partial V_{l+1, k^{*}} / \partial V_{l k}$, can be calculated without difficulty for all k and k^{*}. Because calculations start at the end of the network and work back, we have already calculated the values of $\partial y_{i} / \partial V_{l+1, k^{*}}$ for all k^{*} by the time that we consider a θ that relates layer $l-1$ to layer l.

Taken together, the equations we have presented provide a fast way to calculate all the partial derivatives necessary for the gradient descent algorithm.

