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ABSTRACT 

This paper proposes a simple model for incorporating wrong-way and right-way risk into CVA 

(credit value adjustment) calculations. These are the calculations, involving Monte Carlo 

simulation, made by a dealer to determine the reduction in the value of its derivatives portfolio 

because of the possibility of a counterparty default. The model assumes a relationship between 

the hazard rate of the counterparty and variables whose values can be generated as part of the 

Monte Carlo simulation. Numerical results for portfolios of 25 instruments dependent on five 

underlying market variables are presented. The paper finds that wrong-way and right-way risk 

have a significant effect on the Greek letters of CVA as well as on CVA itself. It also finds that 

the percentage effect depends on the collateral arrangements.  
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CVA AND WRONG WAY RISK
1 

 

1. Introduction 

It has for some time been standard practice for derivatives dealers to adjust the reported value of 

their derivatives transactions with a counterparty to reflect the possibility of losses being 

incurred because of a default by the counterparty. The adjustment is known as the credit value 

adjustment or CVA. The adjusted value of the derivative is the no-default value minus the CVA. 

A derivatives dealer has one CVA for each counterparty. These CVAs are themselves derivatives 

and must be managed similarly to other derivatives. CVAs are particularly complex derivatives. 

In fact, the CVA for a counterparty is more complex, and more difficult to value, than any of the 

transactions between the dealer and the counterparty. This is because the CVA for a counterparty 

is, as we will see, contingent on the net value of the portfolio of derivatives outstanding with that 

counterparty.  

Calculating CVAs is very computationally intensive. Gregory (2009) provides an excellent 

discussion of the issues. Statistics published about Lehman Brothers give a sense of the scale of 

the problem. Reuters (2008) reported that, at the time of its failure Lehman, had about 1.5 

million derivatives transactions outstanding with 8,000 different counterparties. This means that 

it had to calculate 8,000 different CVAs and the number of derivative transactions on which each 

CVA was dependent averaged about 200.  

Another measure, more controversial than CVA, is debit value adjustment or DVA.
2
 The DVA is 

the CVA as seen from the point of view of the counterparty. It reflects the costs to the 

counterparty as a result of the possibility that the dealer might default. The possibility that it 

might default is in theory a benefit to the dealer since in some circumstances it may not have to 

honor its obligations. The reason why DVA is controversial is that it appears that there is no easy 

way a dealer can monetize DVA without actually defaulting. However, accounting standards 

                                                           
1 We are grateful to Eduardo Canabarro, Jon Gregory, Dan Rosen, Ignacio Ruiz, Alexander Sokol, and Roger Stein 

for helpful comments on an earlier version of this paper. 

 
2
 DVA is sometimes also called debt value adjustment.  
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require reported values to reflect DVA.
3
  The book value of the derivatives outstanding with a 

counterparty is therefore calculated as their no-default value minus the CVA plus the DVA.
4
 

It is interesting to note that when the credit spread of a derivatives dealer increases, the dealer’s 

DVA increases. This in turn leads to an increase in the reported value of the derivatives on the 

books of the dealer and a corresponding increase in its profits. In the third quarter of 2011 the 

credit spreads of Wells Fargo, JPMorgan, Citigroup, Bank of America, and Morgan Stanley 

increased by 63, 81, 179, 266, and 328 basis points, respectively. As a result, these banks 

reported DVA gains that tended to swamp other income statement items.  Not surprisingly, DVA 

gains and losses have now been excluded from the definition of common equity in determining 

regulatory capital. In this paper, we will focus on CVA, but many of the points we make are 

equally applicable to DVA. 

Market variables that affect the no-default value of a dealer’s outstanding transactions with a 

counterparty also affect the dealer’s CVA for that counterparty. We will refer to these market 

variables as the “underlying market variables.” In addition, CVA is affected by the 

counterparty’s term structure of credit spreads (the “counterparty credit spreads”). CVA 

therefore gives rise to two types of exposures. One arises from potential movements in the 

underlying market variables; the other arises from potential movements in counterparty credit 

spreads.  

In December 2010, the Basel Committee on Banking Supervision published a new regulatory 

framework for banks known as Basel III.
5
 It requires a dealer’s CVA risk arising from changes in 

counterparty credit spreads to be identified and included in the calculation of capital for market 

risk. However, the dealer’s CVA risk arising from changes in the underlying market variables are 

not included in this calculation. Some dealers have developed their own sophisticated systems 

for managing both types of risk. These dealers feel that Basel III proposals are inadequate 

                                                           
3
 Both FAS157 and IAS39 require that, for instruments that are accounted for using mark-to-market accounting, the 

reported value should reflect both the CVA and DVA. 
4
 There is in theory a dependence here in that if the dealer defaults subsequent defaults by the counterparty are 

irrelevant and vice versa. See Hull and White (2001) for a discussion of this point in the context of credit default 

swaps. 
5
 See Basel Committee on Banking Supervision (2010)  
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because, if a dealer hedges against the underlying market variables, the hedging trades will lead 

to an increase, not a decrease, in its required capital.
6
  

Since the crisis, governments have moved to require “standardized” over-the counter derivatives 

to be cleared through central clearing parties. This paper focuses on how counterparty credit risk 

is handled for those transactions that continue to be cleared bilaterally.
7
 This includes all 

derivatives transactions classified as “non-standard.” It also includes some categories of 

derivatives, such as forward foreign exchange contracts and transactions with end users, that are 

excluded from the central clearing legislation.  

Transactions between a dealer and a counterparty are typically governed by an International 

Swaps and Derivatives Association (ISDA) Master Agreement. This specifies that all 

transactions between the two parties are to be netted and considered as a single transaction in the 

event that there is an early termination. The circumstances under which one side can send an 

early termination notice to the other side and the procedures that are then used are specified in 

the ISDA Master Agreement. 

Collateralization has become an important feature of over-the-counter derivatives markets. An 

ISDA Master Agreement typically has a Credit Support Annex (CSA) which specifies the rules 

governing the collateral that has to be posted by the two sides. In particular, it specifies a variety 

of items including the threshold, the independent amount, the minimum transfer amount, haircuts 

that will apply to assets that are posted as collateral, etc. Suppose that the two sides are Party A 

and Party B, and Party B is required to post collateral. The threshold is the unsecured credit 

exposure to Party B that Party A is willing to bear. If the value of the derivatives portfolio to 

Party A is less than the threshold, no collateral is required from Party B. If the value of the 

derivatives portfolio to Party A is greater than the threshold, the required collateral is equal to the 

difference between the value and the threshold. The independent amount plays the same role as 

the initial margin in a futures contract and can be regarded as a negative threshold. A failure to 

                                                           
6
 See, for example, Pengelly (2011) 

7
 How derivatives dealers will assess their credit exposure arising from transactions that are cleared through a central 

clearing party remains to be seen. The dealer is exposed to a) a default by any of the other clearing house members 

and b) a default by the clearing house itself. 
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post the required collateral by Party B is an “event of default” that unless corrected leads to the 

early termination of all outstanding transactions. 

In the calculation of CVA, it is usually assumed that the counterparty’s probability of default is 

independent of the dealer’s exposure to the counterparty. A situation where there is a positive 

dependence between the two, so that the probability of default by the counterparty tends to be 

high (low) when the dealer’s exposure to the counterparty is high (low), is referred to as “wrong-

way risk.” A situation where there is negative dependence, so that the probability of default by 

the counterparty tends to be high (low) when the dealer’s exposure to the counterparty is low 

(high) is referred to “right-way risk.”  

A subjective judgment of the amount of wrong-way or right-way risk in transactions with a 

counterparty requires a good knowledge of the counterparty’s business, in particular the nature of 

the risks facing the business. It also requires knowledge of the transactions the counterparty has 

entered into with other dealers.
8
 The latter is difficult to know precisely, but the extra 

transparency provided by post-crisis legislation may help.  

One situation in which wrong-way risk tends to occur is when a counterparty is selling credit 

protection to the dealer. (AIG and monolines are obvious examples here.) This is because credit 

spreads are correlated. When credit spreads are high, the value of the protection to the dealer is 

high and as a result the dealer has a large exposure to its counterparty. At the same time, the 

credit spreads of the counterparty are also likely to be high indicating a relatively high 

probability of default for the counterparty. Similarly, right-way risk tends to occur when a 

counterparty is buying credit protection from the dealer.  

A situation in which a counterparty is speculating by entering into many similar trades with one 

or more dealers is likely to lead to wrong-way risk for the dealer. This is because the 

counterparty’s financial position and therefore its probability of default are likely to be affected 

adversely if the trades move against the counterparty. If the counterparty enters into transactions 

to partially hedge an existing exposure, there should in theory be right-way risk. This is because, 

                                                           
8
 A complication is that sometimes a company will trade with many different market participants in an attempt to 

conceal its true exposure. 
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when the transactions move against the counterparty, it will be benefitting from the unhedged 

portion of its exposure so that its probability of default will tend to be relatively low.
9
 

This paper explains the way CVA is calculated and the advanced approach for calculating CVA 

risk capital under Basel III. The paper then proposes a model for incorporating wrong-way risk 

into CVA calculations. Other authors who have attempted to tackle the wrong-way risk problem 

include Cespedes et al (2010) and Sokol (2010). These authors propose an “exposure sampling” 

approach where the process followed by the exposure is approximated with a one-factor Markov 

process and a Gaussian (or other) copula is used to model the dependence between this process 

and the time to default. 

Our model is simpler than the exposure sampling approach and involves a relatively small 

adjustment to the method used to calculate CVA when the usual assumption of no dependence 

between exposure and probability of default is made. We specify a relationship between the 

hazard rate of the counterparty and  the value of variables whose values can be generated as part 

of the Monte Carlo simulation used to calculate CVA. Numerical results from the 

implementation of the model are presented.  

2. Calculating CVA  

Suppose that T is the longest-maturity derivative outstanding between a derivatives dealer and 

one of its counterparties. Define v(t) as the value of a derivative that has a payoff equal to the 

dealer’s net exposure to the counterparty at time t and R as the recovery rate (assumed to be 

constant). If we assume that the probability of a counterparty default at time t is independent of 

v(t) then, as discussed by, for example, Hull and White (1995), Canabarro and Duffie (2003), and 

Picault (2005), 

      
0

CVA 1
T

t
R q t v t dt


    (1) 

                                                           
9
 An exception could be when the counterparty is liable to run into liquidity problems. Although the assets being 

hedged have increased in value, the counterparty might be unable to post collateral when required. An example here 

is Ashanti Goldfields in September 1999. See for example Hull (2010, page 395) for a description of what happened. 
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where q(t) is the probability density function of the risk-neutral time to default for the 

counterparty. 

The net exposure depends on whether collateral is posted. If no collateral is posted, the 

dealer’sexposure, ENC(t), at time t is  

     max ,0NCE t w t  (2) 

where w(t) is the value to the dealer of the portfolio of derivatives it has with the counterparty at 

time t.
10

  

Suppose next that transactions are collateralized and the amount of collateral that is required to 

be posted by the counterparty with the dealer at time t is C(t). We assume that a negative value of 

C(t) indicates that the dealer is required to post –C(t) of collateral with the counterparty. If early 

termination happens as soon as the counterparty fails to post the required collateral, the 

collateralized exposure, EC(t), at time t is   

 0),()(max)( tCtwtEC   

When only the counterparty is required to post collateral and there is a threshold, K, then  

     max ,0C t w t K   (3) 

In this situation an independent amount, I, can be treated as a negative threshold so that C(t) = 

max(w(t) + I, 0). 

We define the “default unwind” date as the time when the dealer is able to either a) replace the 

transactions it has with the counterparty or b) unwind the hedges it has for those transactions. In 

practice, there is usually assumed to be a period of time prior to the default during which the 

counterparty ceases to post collateral and fails to return excess collateral.  This period of time is 

referred to as the “cure period” or “margin period of risk.” It can be thought of as having two 

                                                           
10

 We assume that collateral is posted continuously and that there is no minimum transfer amount. The procedures 

used can be modified to relax these assumptions. 
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components. The first is the period of time that elapses between the counterparty failing to post 

collateral or return excess collateral and the dealer declaring an early termination. This is the 

time during which attempts are being made to resolve disputes between the dealer and the 

counterparty about the value of the portfolio, whether the collateral demand is valid, and so on.
11

  

The second is the time that elapses between the dealer declaring an early termination and the 

default unwind date. This depends on market conditions, the nature of the portfolio, and the size 

of the portfolio. A total cure period of between 10 to 25 business days is commonly assumed. 

We can now refine the definition of  q(t).  It is the probability distribution of the time to a default 

unwind date.  Suppose that the assumed length of the cure period is c. If there is a default unwind  

at time t the collateral posted is C(t – c) where as before a negative value indicates that the dealer 

posts collateral with the counterparty. The net exposure is  

 0),()(max)( ctCtwtEC                                                          (4) 

Note that there can be an exposure when the value of the portfolio to the non-defaulting party, 

w(t), is negative.  This is because, if the portfolio has moved in the non-defaulting party’s favor, 

the collateral posted at the beginning of the cure period by the non-defaulting party, − C(t − c), 

may be more than the value of the portfolio at the end of the cure period to the defaulting party. 

The exposure arises from the defaulting party’s assumed failure to return any excess collateral 

during the cure period. 

The variable v(t) in equation (1) is the value of a derivative that pays off EC(t) at time t. It can be 

calculated as the expected value of EC(t) in a risk-neutral world discounted at the risk-free rate. 

DVA is calculated in the same way as CVA. To calculate DVA we let v(t) be the value of a 

derivative that has a payoff equal to the counterparty’s net exposure to the dealer at time t, and 

q(t) be the probability density function of the dealer’s time to a default unwind. With these 

altered definitions the right hand side of equation (1) gives the DVA. The counterparty’s 

exposure to the dealer is calculated in a manner similar to how the dealer’s exposure is 

calculated.  

                                                           
11

 The ISDA contract typically specifies that two days must be allowed for dispute resolution, but in practice it often 

takes much longer than this.  
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The variable w(t) is the value of the portfolio of derivatives that the dealer has with the 

counterparty. This may consist of a large number of individual transactions. The variable v(t) is 

the value of a derivative that pays off the net exposure EC(t) at time t. In CVA calculations, v(t) 

is therefore a complex derivative contingent on the portfolio’s value. As mentioned earlier, it is 

much more complex than any derivatives traded between the dealer and the counterparty. Netting 

tends to ensure that CVA is less than the sum of the dealer’s exposures on the individual 

transactions constituting the portfolio. 

 

3. Monte Carlo Simulation 

In practice, CVA is almost invariably calculated using Monte Carlo simulation. To approximate 

the integral in equation (1) we can choose times ti (0 ≤ i ≤ n) with t0 = 0, tn = T and t0 < t1 < t2 < 

… < tn and set 

  
1

CVA 1
n

i i

i

R q v


    (5) 

where qi is the probability of a default unwind between times ti−1 and ti and  *

i iv v t  with 

 *

10.5i i it t t  .
12

 

The qi’s are usually calculated from credit spreads. Sometimes a complete term structure of 

credit spreads for the counterparty can be observed in the market; sometimes it has to be 

estimated using credit spread data for other companies. If si is the credit spread for a maturity of 

ti, a good estimate of the (risk-neutral) probability of no default between times 0 and ti is 

 exp 1i is t R    .
13

 It follows that 

                                                           
12

 Note that qi is the unconditional risk-neutral probability of default between times ti−1 and ti (as seen at time zero). 

It is not the probability of default conditional on no earlier default. A confusion concerning the use of conditional 

and unconditional default probabilities in calculating CVA was pointed out by Rebonato et al (2010). 
13

 This is explained in Section 4. 
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 1 1exp exp
1 1

i i i i
i

s t s t
q

R R

    
      

    
 (6) 

To calculate the vi’s, the market variables affecting the no-default value of a dealer’s derivatives 

with a counterparty are simulated between times 0 and T in a risk-neutral world.
14

 One approach 

is to arrange the simulation so that the value of the dealer’s portfolio with the counterparty is 

calculated at times *

it c  and * (1 )it i n  . This means, on each simulation trial at each time 

)1(* nict i  , the collateral is determined using equation (3). Then at time *

it  the value of the 

dealer’s portfolio with the counterparty is determined and the net exposure of the dealer to the 

counterparty is calculated using equation (4). The variable vi is estimated as the present value of 

the average of the calculated net exposures at time )1(* niti  .
15

  

In practice, some approximations are usually made so that computations are feasible. The model 

used to value the portfolio during the Monte Carlo simulation may be simpler than either  

a) the model used to simulate the underlying market variables, or 

b) the model used by the dealer for marking to market its book.  

Also, the risk-neutral measure for the vi’s may be different from that used for the qi’s.  

The Monte Carlo simulation is computationally quite time consuming. Some dealers calculate 

CVA once a day, others less frequently. It is normal for the values of the market variables used 

in the simulation and the portfolio values to be stored. If a new transaction is contemplated with 

a counterparty, this stored data can then be used to quickly calculate the value of this transaction 

at each valuation time for each simulation trial. This enables the portfolio value at each valuation 

time for each simulation trial to be updated relatively quickly so that the impact of the new 

transaction on CVA is calculated.
16

 

                                                           
14

 When interest rates are stochastic a convenient numeraire is the value of a risk-free zero coupon bond maturing at 

the next valuation time. The Monte Carlo simulation can then be implemented by assuming that a) the returns on 

market variables between valuation dates and b) the discount rates between valuation dates equal the yield on the 

numeraire bond. 
15 Only a small amount of additional computation time is necessary to calculate DVA at the same time as CVA. 
16

 Note that the impact of a new transaction on CVA can be positive or negative. 
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Dealers also often estimate “peak exposures” which are high percentiles (e.g., 97.5%) of the 

exposures at times )1(* niti  . The “maximum peak exposure” is the maximum of the peak 

exposures calculated at these times. An interesting point (usually ignored in practice) is that 

these estimates should in theory be made using the real-world measure to calculate exposures, 

not the risk-neutral measure.
17

  

Using a delta/gamma approximation,
18

 the impact on CVA of a small change s in all the si’s is 

 

 

 
 

1 1
1

1

22 21 1
1

1

CVA exp exp
1 1

1
exp exp

2 1 1 1

n
i i i i

i i i

i

n
i i i i

i i i

i

s t s t
t t v s

R R

s t s t
t t v s

R R R

 




 




    
         

     

    
        

      





 (7) 

This equation enables the dependence of CVA on counterparty credit spreads to be included in 

the bank’s model for calculating market risk capital. Equations (5), (6), and (7) correspond to the 

equations used in the Basel III advanced approach for determining capital for CVA risk.
19

 

Calculating the sensitivity of CVA to a small parallel shift in a counterparty’s credit spread is 

straightforward using equation (7). Calculating the first and second partial derivatives of CVA 

with respect to the underlying market variables is liable to be more time consuming. Consider a 

market variable u with initial value u0. It is necessary to calculate the effect on the paths sampled 

of changing u0 to u0+ and u0− for a small when all random number streams are kept the same. 

When the variable follows geometric Brownian motion this is not too difficult. A small 

percentage change at time zero leads to the same small percentage change at all future times on 

all simulation trials. (This is true both when the volatility is deterministic and when the volatility 

is stochastic.) For other variables such as those following mean reverting processes, the impact 

                                                           
17

 This nuance is usually ignored because the only difference between the real-world and risk-neutral world 

measures is in the drift rates of the variables. The vast majority of the peak exposure, particularly when short 

maturities are considered, is a result of volatility not drift. Further, in many cases it is not clear what the real-world 

drifts are or whether using real-world drifts would increase or decrease the peak exposure.  
18

 The change in the value of a function can be approximated by using the first two terms of a Taylor series, the 

delta/gamma approximation:    
2

0.5f x x x       where  is df /dx and  is d
2
f /dx

2
. 

19
 Charging capital for the CVA risk associated with credit spreads is likely to encourage dealers to hedge spread 

risk by buying credit default swaps. This might have the unintended consequence of increasing credit spreads.  
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of a change at time zero on the change at future times is liable to depend on the path followed by 

the market variable. 

Suppose that 

iv and 

iv  are the values calculated for vi when the initial value of the market 

variable is u0+ and u0–respectively From equation (5) 

)(
2

1CVA

1





 






 i

n

i

ii vvq
R

u 
 




 





 n

i

iiii vvvq
R

u 1
22

2

)2(
1CVA


 

These equations enable CVA risks relating to the underlying market variables to be assessed and 

hedged. As already mentioned, under Basel III CVA exposures arising from the underlying 

market variables are not included in the calculation of market risk capital. 

 

4. A Model for Wrong-Way and Right-Way Risk 

The standard approach that we have described for calculating CVA assumes that v(t) and q(t) are 

independent. The situation where q is positively dependent on v is referred to as “wrong-way” 

risk. In this case, there is a tendency for a counterparty to default when the dealer’s exposure is 

relatively high. The situation where q is negatively dependent on v is referred to as “right-way” 

risk. In this case, there is a tendency for a counterparty to default when the dealer’s exposure is 

relatively low. 

A simple way of dealing with wrong-way risk is to use what is termed the “alpha” multiplier to 

increase v(t) in the version of the model in which v(t) and q(t) are assumed to be independent. 

The effect of this is to increase CVA by the alpha multiplier. The Basel II rules set alpha equal to 

1.4 or allow banks to use their own models, with a floor for alpha of 1.2. This means that, at 

minimum, the CVA has to be 20% higher than that given by the model where q(t) and v(t) are 

independent. If a bank does not have its own model for wrong way risk it has to be 40% higher. 

Estimates of alpha reported by banks range from 1.07 to 1.10. 
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The usual approach to modeling wrong-way risk is to reflect it in the way the v’s are calculated. 

The alpha multiplier approach just mentioned is one example of this approach. Another method 

sometimes used is to set v(t) equal to the present value of the exposure that is k standard 

deviations above the average exposure for some k.  

We will use a different approach. Instead of changing the calculation of v(t) we change the 

calculation of q(t) so that q(t) depends on the evolution of the variables in the Monte Carlo 

simulation used to calculate CVA up until time t. To do this, we have to introduce the concept of 

a hazard rate, a measure of the probability that a default will occur. If the hazard rate is h, the 

probability that a default will occur within any short period of time t, conditional on no earlier 

default, is ht. If the current time is zero, the probability that no default will occur before time t 

is exp(–ht). The hazard rate does not need to be constant. If the hazard rate changes 

deterministically over time, the probability that no default will occur before time t is 

)exp( th where h  is the average hazard rate between time zero and time t. If the hazard rate 

changes stochastically, the probability of no default between time zero and time t is the expected 

value of this. 

Hazard rates are not directly observable, but credit spreads are. A very good approximation of 

the average (risk-neutral) hazard rate between time 0 and time t is )1()( Rts   where s(t) is the 

credit spread for a maturity of t. 

Our approach is based on modeling a relationship between the hazard rate of a counterparty and 

a variable (or variables) that can be calculated in the Monte Carlo simulation and may affect the 

dealer’s exposure to the counterparty. This relationship can be either deterministic or stochastic. 

There are three ways of proceeding: 

1. Assume a relationship between the counterparty’s hazard rate and a variable, x, that is 

closely related to the dealer’s exposure to the counterparty. A reasonable approach here is 

to set x equal to w, the value of the dealer’s portfolio with the counterparty. If there is no 

relationship between the hazard rate, h(t), and w(t) then there is no wrong way or right 
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way risk. A positive relationship is indicative of wrong way risk and a negative 

relationship is indicative of right-way risk.
20

 

2. Assume a relationship between the counterparty’s hazard rate and a variable, x, that a) 

affects the value of the counterparty’s portfolio and b) has a big effect on the 

counterparty’s health. This variable, because it affects the value of the counterparty’s 

portfolio, is already part of the Monte Carlo simulation. The variable chosen for a gold 

producer might be the price of gold. For another company, it could be an exchange rate or 

interest rate. 

3. Assume a relationship between the counterparty’s hazard rate and a variable x that does 

not affect the value of the counterparty’s portfolio, but potentially has a big affect on its 

health. Possible choices for x are the counterparty’s five-year credit spread, its stock 

price, or the Moody’s KMV distance to default for the counterparty.
21

 Daily historical 

data must be used to estimate correlations between the variable chosen and the other 

variables in the Monte Carlo simulation so that the process assumed for the variable is 

appropriately modeled.  

The relationship between the hazard rate h and the variable x has the form 

    h t f x t  

The function f can involve a noise term. The function chosen may depend on the nature of the 

variable x and the nature of the company. The function f must have the property that 0)( th  for 

all possible values of x(t) and the noise term, if any. It must also have the property that for all 

times t the expected probability that there is no default before time t based on the random hazard 

rates equals the probability of no default before time t that is inferred from credit spreads at time 

zero. This means that the expected value of  thexp  must equal   exp 1st R   where h is 

the average hazard rate between time zero and time t and expectations are taken over all possible 

                                                           
20

 An alternative we have experimented with is to set x equal to the exposure. However, this does not work as well 

as setting x equal to the value of the portfolio because the exposure at any particular time is zero for many of the 

simulation trials.  
21

 Ruiz (2012) proposes a model where the hazard rate is assumed to depend on the equity price and shows how 
the model can be estimated empirically for Ford.  
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paths that x may follow. We explain how this condition is satisfied in the appendix. To allow the 

condition to be satisfied, the function f must involve a parameter which is a function of time. 

The assumption of a relationship between hazard rates and other variables is likely to be more 

attractive to regulators than the exposure sampling method. This is because the model can be 

backtested fairly easily. Past hazard rates can be estimated from historical data on credit spreads. 

These can be combined with historical data on x to test whether the assumed relationship 

between h and x held in the past. If the assumed relationship is itself estimated from historical 

data, it can be tested out of sample. 

An issue in the calculation of CVA is the existence of credit triggers in CSAs. A credit trigger 

can increase collateral requirements in the event of a downgrade. (An example here is AIG’s 

downgrade to below AA on September 15, 2008.) Credit triggers can also give the dealer the 

option to terminate transactions early. If credit triggers are ignored, CVA estimates are liable to 

be too high. A side benefit of the model we propose is that it can be used to incorporate credit 

triggers. An approximate relationship between the counterparty’s credit spreads (and therefore its 

hazard rate) and its credit rating can be estimated and adjustments to the CVA model to reflect 

the counterparty’s credit rating can then be made.  

In the rest of this paper we will illustrate the nature of wrong way risk by using the first of the 

approaches outlined above and set x = w, the value of the portfolio of derivatives. One function 

that we have found to be a robust choice in this case is 

      exph t a t bw t      (8) 

where b is a constant parameter, which measures the amount of right-way or wrong-way risk in 

the model,  a(t) is a function of time,  is a constant measuring the amount of noise in the 

relationship and  is normally distributed with zero mean and unit variance. In practice, we find 
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that, unless  is very large relative to w, the noise term makes little difference to the results so 

that the model can be safely assumed to be
22

 

 )]()(exp[)( tbwtath   (9) 

In this model, small percentage changes in the hazard rate bear a simple relationship to small 

changes in w:  

 wb
h

h



  

The model is illustrated in Figure 1.  

The relation between portfolio value and default probability can arise from the a correlation 

between w and the counterparty’s credit spreads (e.g., because the counterparty is writing credit 

protection) or because the counterparty becomes more likely to default as w(t) becomes high 

(e.g. because the counterparty is a hedge fund taking a big speculative position with the dealer in 

question and other dealers).   

There are two approaches to estimating b. The first is to collect historical data on w and on credit 

spreads for the counterparty. The credit spreads can be converted into hazard rates and b can then 

be estimated. The disadvantage of this approach is that it assumes the factors influencing the 

counterparty’s credit spreads in the past are the same as those that will do so in the future. 

The other approach involves subjective judgement about the amount of right-way or wrong-way 

risk the counterparty has. It best illustrated with an example. Suppose that the current value of w 

is $3 million and the counterparty’s five-year credit spread is 300 basis points. Assuming a 

recovery rate of 40%, this means that the average five-year hazard rate is 5% per year. Also, 

suppose that it is estimated that, if w increased to $20 million, the spread can be expected to rise 

to 600 basis points, corresponding to an average five-year hazard rate of 10%. Assuming the 

                                                           
22 An alternative similar model is   )()(exp1ln)( tbwtath  . In this model h(t)  increases linearly with w(t) 

when x(t) becomes very large whereas in equation (8) it increases exponentially. In practice, we find very little 

difference between the two models. 
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term structure of hazard rates is flat,
23

 when w(0) = 3, h(0) = 5% and when w(0) = 20, h(0) = 

10%. Solving a pair of simultaneous equations for a(0) and b, we find that for the model in 

equation (9), b is 0.0408. 

A key advantage of the approach we propose for incorporating wrong-way or right-way risk into 

CVA calculations is that it requires only a small change to the procedure for calculating CVA. 

This change is designed to determine a(t) in a way that is consistent with credit spreads observed 

today and is explained in the appendix. 

 

5. Numerical Results 

In this section we consider the impact that both collateral arrangements and right-way or wrong-

way risk have on CVA. There is a complex interplay between these factors and the results are 

often surprising. 

We first illustrate the model in equation (9) by assuming that the dealer has a simple portfolio 

consisting of a single one-year forward foreign exchange transaction. We assume that the 

principal is $100 million, the domestic and foreign risk free rates are 5%, the initial exchange 

rate is 1.0, the delivery exchange rate specified in the forward contract is also 1.0, and the 

volatility of the exchange rate is 15%. We suppose that the counterparty’s credit spread (all 

maturities) is 125 basis points. Four different collateral arrangements are considered: no 

collateral, a threshold of $10 million with a cure period of 15 days, a threshold of zero with a 

cure period of 15 days, and an independent amount of $5 million with a cure period of 15 days. 

In all cases, it is assumed that only the counterparty is required to post collateral. Tables 1 to 4 

report results for four possible cases: b is 0.03 and the dealer’s position is long; b is 0.03 and the 

dealer’s position is short; b is –0.03 and the dealer’s position is long; and b is –0.03 and the 

dealer’s position is short. 

The results illustrate that wrong-way and right-way risks have a material effect on the deltas and 

gammas of CVA as well as on CVA itself. This is true for both the deltas and gammas with 

                                                           
23

 Given the imprecision of any attempt to quantify wrong-way risk, this is a reasonable assumption.  
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respect to the exchange rate and the deltas and gammas with respect to the credit spread. The 

magnitude of the effect is difficult to predict. Indeed, in some cases, even the direction of effect 

can be difficult to predict. As shown by the tables, sometimes the direction of the effect depends 

on the collateral arrangements.  

In general, the impact of wrong-way and right-way risk on CVA depends in a complex way on 

CVA itself and the collateral arrangements. To illustrate this for more realistic portfolios, we 

randomly generated 250 portfolios. Each portfolio consists of 25 options on one of five different 

assets. The asset prices are assumed to follow geometric Brownian motion with pairwise 

correlations of 0.36. As before, only the counterparty is required to post collateral. Each option 

has the following properties: 

(a) It is equally likely to be long or short 

(b) It is equally likely to be a call or a put 

(c) The underlying is equally likely to any one of the five assets 

(d) All maturities between one and five years are equally likely 

(e) All strike prices within 30% of the current asset price are equally likely 

(f) The underlying principal is $25 million. 

The assets do not provide any income. They have an initial price of $25 and a volatility of 25%. 

The risk-free rate is 5%, the credit spread of the counterparty (all maturities) is 125 basis points, 

and the recovery rate is 40%.  

Figure 2a provides a scatter plot of the relationship between the dollar change in CVA caused 

increasing b from 0 to 0.01 and the CVA for b=0 for the 250 portfolios when there is no 

collateralization. It can be seen that the change in CVA tends to increase as CVA increases. The 

reason is that as CVA increases there is a tendency for both the mean and standard deviation of 

the value of the portfolio at future times to increase. The gap between the exposures on high-w(t) 

paths and low-w(t) paths increases. Wrong-way risk causes the hazard rate to increase 

dramatically on the high-w(t) paths and decrease (modestly) on the low-w(t) paths.  

The case illustrated in Figure 2a is roughly consistent with an alpha of 1.4, the regulatory 

requirement. The increase in CVA as a result of wrong-way risk is on average about 30% to 40% 
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of the CVA calculated when there is no wrong-way risk. However, the impact of b=0.01 for the 

portfolios considered does depend on the collateral arrangements and the assumption that wrong-

way risk on average tends to increase CVA by a certain percentage is not always valid.. This is 

illustrated by the next chart, Figure 2b, where there is a non-zero threshold.  

In Figure 2b, the threshold is $10 million and the cure period is 15 days. The average 

relationship between the change in CVA and CVA is no longer monotonic. The change first 

increases and then decreases. To understand the reason for this, we ignore the cure period and 

focus on the threshold. With zero threshold, the impact of the threshold is to restrict the net 

exposure to less than $10 million. For low w(t)-paths this restriction has little effect. However, as 

w(t) increases, the net exposure is increasingly impacted by the $10 million restriction. The gap 

between the exposure on high-w(t) paths and low-w(t) paths is much less than in the no collateral 

case. The highest theoretical CVA is achieved when the value of w(t) is certain to be above $10 

million at all times. In this case, the net exposure is the same on all w(t) paths and wrong-way 

risk has no effect. This explains the pattern observed in Figure 2b. The cure period does have an 

effect on the results, but its effect is less than the effect of the threshold. 

Figure 2c provides a plot similar to Figures 2a and 2b for the situation where the threshold is 

zero and the cure period is 15 days. In this case the net exposure is entirely as a result of the cure 

period. When w(t) is positive, the net exposure increases as the standard deviation of the change 

in w(t) during the cure period increases. High standard deviations of w(t) tend to be associated 

with high w(t)-path. High w(t)-paths are in turn associated with increases in the hazard rate when 

there is wrong-way risk. This leads to the pattern shown in Figure 2c. 

Figure 2d provides a plot for the situation where there is an independent amount equal to $5 

million and a cure period of 15 days. As in the case of Figure 2c the impact of the cure period on 

the exposure at time t for a particular w(t) depends on the standard deviation of the change in 

w(t) during the cure period. Indeed, for positive exposures to be generated, the standard deviation 

has to be sufficiently high that there is a reasonable chance of a $5 million increase in w(t) during 

the cure period. The reasons for the pattern observed are similar to those for Figure 2c. 

The impact of right-way risk can be examined by changing b from 0 to −0.01 instead of from 0 

to +0.01. The results are similar to those shown in Figure 2, except that the change in CVA is 
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negative instead of positive. We have carried out other experiments involving portfolios of 

interest rate swaps and other derivatives. The results are similar to those in Figures 2. 

6. Conclusions 

We have proposed a simple model for handling wrong-way/right-way risk in the calculation of 

CVA. The model involves estimating a relationship between the counterparty’s hazard rate and 

other relevant variables. The model can be implemented by making a small change to the usual 

method for calculating CVA and can incorporate credit triggers.  

Tests of the model show that wrong-way and right-way risk have a significant effect on the 

Greek letters of CVA as well as on CVA itself. Because CVA is such a complex derivative, it is 

difficult to estimate these effects without a model. Indeed, even the sign of the effect can be 

counterintuitive. 

Tests involving the random generation of portfolios indicate that when there is no collateral or 

when collateral is posted with zero threshold or when collateral is posted with an independent 

amount, the dollar impact of wrong-way risk on CVA tends to increase as CVA increases. The 

situation where the threshold is materially positive is more interesting. As CVA increases, the 

impact of wrong way risk tends to first increase and then decrease. 

Models involving a relationship between hazard rates and other observable variables have a 

number of advantages over the more complex models that have been proposed in the literature to 

date. They are simpler, computationally faster, and easier to backtest. As indicated, a number of 

different observable variables can be chosen.  Further research is needed to determine variables 

which work best and to determine the appropriate functional form for the relationship. 
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Appendix 

 

Calibration of the Model 

 

To match survival probabilities in the model in equation (8), we discretize the model so that 

 *expij i ij ijh a t bw   
 

 

where hij and ijw  are the values of  *

ih t and  *

iw t  on the jth simulation trial and ij is a random 

sample from a standard normal distribution. We require 

1 1

1
exp exp for 1

1

m k
k k

ij

j i

s t
h t k n

m R 

    
         

   
   

where m is the number of simulation trials, and sk is the credit spread for a maturity of tk. 

The values of  *

ka t  for 1 ≤ k ≤ n are determined sequentially so that the average survival 

probability, across all simulations, up to time *

kt  equals the survival probability calculated from 

the term structure of credit spreads. First, k is set equal to 1 and an iterative search is used to 

determine  *

1a t from the w1j. This determines the h1j. Second, k is set equal to 2 and an iterative 

search is carried out to determine  *

2a t  from the w2j values and the h1j. This determines the h2j; 

and so on.  

For example, suppose we are using the model in equation (8) with  = 0 and that we simulate 

three paths (m=3). The credit spread for all maturities is 1%, the recovery rate is zero, the time 

step in the simulation is 0.5 years, and the value of b is 0.01. The values of w at the first step of 

each path are 100, 200 and 300. We choose the first value of a in order to satisfy 

 

        











 

01

5.001.
exp

3

1 5.030001.0exp5.020001.0exp5.010001.0exp aaa eee  
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The solution to this is  *

1a t  = –6.9128 and the three hazard rates are h11=0.00270, h12=0.00735, 

and h13=0.01998. The corresponding values of w at the second step of each path are 100, 300 and 

400. We choose the second value of a in order to satisfy 

                        











 

01

0.101.
exp

3

1 5.0)4exp(01998.5.0)3exp(00735.5.0)1exp(00270. aaa eee  

The solution to this is  *

2a t  = –7.8509 and the three hazard rates are h21=0.00106, h22=0.00782, 

and h23=0.02126. 
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Table 1: Impact of wrong-way risk on CVA for a long forward contract to buy 100 million units 

of a foreign currency in one year. The current exchange rate is 1.0, the domestic and foreign risk-

free interest rates are both 5%, and the volatility of the exchange rate is 15%. The credit spread is 

125 basis points for all maturities and the recovery rate is 40%. K is the threshold in $ millions, c 

is the cure period in days, and b is the parameter in equation (9). 

 No 

Collateral 

K = 10 K = 0 K = –5 

 c = 15 c = 15 c = 15 

CVA ($ millions) for b = 0 0.048 0.036 0.011 0.002 

Impact of b = 0.03 per $mm on:     

CVA 54.8% 41.7% 37.3% 53.5% 

Delta wrt Exch Rate 32.0% 15.6% 12.8% 39.3% 

Gamma wrt Exch Rate 2.6% –25.4% 17.7% –0.7% 

Delta wrt Spread 53.8% 41.2% 36.8% 52.8% 

Gamma wrt Spread 181.8% 124.3% 122.8% 184.3% 

 

 

 

Table 2: Impact of wrong-way risk on CVA for a short forward contract to sell 100 million units 

of a foreign currency in one year. The current exchange rate is 1.0, the domestic and foreign risk-

free interest rates are both 5%, and the volatility of the exchange rate is 15%. The credit spread is 

125 basis points for all maturities and the recovery rate is 40%. K is the threshold in $ millions, c 

is the cure period in days, and b is the parameter in equation (9).  

 No 

Collateral 

K = 10 K = 0 K = –5 

 c = 15 c = 15 c = 15 

CVA ($ millions) for b = 0 0.048 0.039 0.011 0.001 

Impact of b = 0.03 per $mm on:     

CVA 40.5% 34.0% 27.6% 28.9% 

Delta wrt Exch Rate 16.2% 7.7% –1.9% –341.9% 

Gamma wrt Exch Rate –7.0% –21.4% 16.4% 26.5% 

Delta wrt Spread 40.0% 33.7% 27.4% 28.8% 

Gamma wrt Spread 114.8% 91.0% 77.0% 70.7% 
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Table 3: Impact of right-way risk on CVA for a long forward contract to buy 100 million units 

of a foreign currency in one year. The current exchange rate is 1.0, the domestic and foreign risk-

free interest rates are both 5%, and the volatility of the exchange rate is 15%. The credit spread is 

125 basis points for all maturities and the recovery rate is 40%. K is the threshold in $ millions, c 

is the cure period in days, and b is the parameter in equation (9). 

 No 

Collateral 

K = 10 K = 0 K = –5 

 c = 15 c = 15 c = 15 

CVA ($ millions) for b = 0 0.048 0.036 0.011 0.002 

Impact of b = –0.03 per $mm on:     

CVA –37.5% –32.7% –29.1% –35.7% 

Delta wrt Exch Rate –26.7% –18.8% –14.8% –28.9% 

Gamma wrt Exch Rate –8.2% 11.7% –16.0% 6.2% 

Delta wrt Spread –37.2% –32.5% –28.9% –35.6% 

Gamma wrt Spread –79.2% –74.5% –72.1% –77.3% 

 

 

 

Table 4: Impact of right-way risk on CVA for a short forward contract to buy 100 million units 

of a foreign currency in one year. The current exchange rate is 1.0, the domestic and foreign risk-

free interest rates are both 5%, and the volatility of the exchange rate is 15%. The credit spread is 

125 basis points for all maturities and the recovery rate is 40%. K is the threshold in $ millions, c 

is the cure period in days, and b is the parameter in equation (9). 

 No 

Collateral 

K = 10 K = 0 K = –5 

 c = 15 c = 15 c = 15 

CVA ($ millions) for b = 0 0.048 0.039 0.011 0.001 

Impact of b = –0.03 per $mm on:     

CVA –33.9% –30.8% –25.9% –26.9% 

Delta wrt Exch Rate –19.3% –13.6% –4.9% 209.1% 

Gamma wrt Exch Rate 0.9% 14.4% –16.7% –37.5% 

Delta wrt Spread –33.6% –30.6% –25.7% –26.7% 

Gamma wrt Spread –78.8% –75.5% –71.3% –69.0% 
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Figure 1: The model in equation (9) when a(t) = −4.  

 

  

 b = 0.005 b = −0.005 
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Figure 2: Impact of wrong-way risk for 250 portfolios of options when there is no collateral. 

The horizontal axis shows CVA when b=0. The vertical axis shows the change in CVA when b 

is increased from 0 to 0.01 per million.  

   

 (a) No collateral (b) Threshold=10 million 

 

 

  

 (c) Threshold=0 (d) Independent Amount=5 million  

 


